* object.cc (Sized_relobj::include_section_group): Check for
[binutils.git] / gold / object.cc
blob1672225d0298c955fb5cd5c3276f380d524f8239
1 // object.cc -- support for an object file for linking in gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
31 #include "target-select.h"
32 #include "dwarf_reader.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "symtab.h"
36 #include "reloc.h"
37 #include "object.h"
38 #include "dynobj.h"
40 namespace gold
43 // Class Xindex.
45 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
46 // section and read it in. SYMTAB_SHNDX is the index of the symbol
47 // table we care about.
49 template<int size, bool big_endian>
50 void
51 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
53 if (!this->symtab_xindex_.empty())
54 return;
56 gold_assert(symtab_shndx != 0);
58 // Look through the sections in reverse order, on the theory that it
59 // is more likely to be near the end than the beginning.
60 unsigned int i = object->shnum();
61 while (i > 0)
63 --i;
64 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
65 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
67 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
68 return;
72 object->error(_("missing SHT_SYMTAB_SHNDX section"));
75 // Read in the symtab_xindex_ array, given the section index of the
76 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
77 // section headers.
79 template<int size, bool big_endian>
80 void
81 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
82 const unsigned char* pshdrs)
84 section_size_type bytecount;
85 const unsigned char* contents;
86 if (pshdrs == NULL)
87 contents = object->section_contents(xindex_shndx, &bytecount, false);
88 else
90 const unsigned char* p = (pshdrs
91 + (xindex_shndx
92 * elfcpp::Elf_sizes<size>::shdr_size));
93 typename elfcpp::Shdr<size, big_endian> shdr(p);
94 bytecount = convert_to_section_size_type(shdr.get_sh_size());
95 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
98 gold_assert(this->symtab_xindex_.empty());
99 this->symtab_xindex_.reserve(bytecount / 4);
100 for (section_size_type i = 0; i < bytecount; i += 4)
102 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
103 // We preadjust the section indexes we save.
104 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
108 // Symbol symndx has a section of SHN_XINDEX; return the real section
109 // index.
111 unsigned int
112 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
114 if (symndx >= this->symtab_xindex_.size())
116 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
117 symndx);
118 return elfcpp::SHN_UNDEF;
120 unsigned int shndx = this->symtab_xindex_[symndx];
121 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
123 object->error(_("extended index for symbol %u out of range: %u"),
124 symndx, shndx);
125 return elfcpp::SHN_UNDEF;
127 return shndx;
130 // Class Object.
132 // Set the target based on fields in the ELF file header.
134 void
135 Object::set_target(int machine, int size, bool big_endian, int osabi,
136 int abiversion)
138 Target* target = select_target(machine, size, big_endian, osabi, abiversion);
139 if (target == NULL)
140 gold_fatal(_("%s: unsupported ELF machine number %d"),
141 this->name().c_str(), machine);
142 this->target_ = target;
145 // Report an error for this object file. This is used by the
146 // elfcpp::Elf_file interface, and also called by the Object code
147 // itself.
149 void
150 Object::error(const char* format, ...) const
152 va_list args;
153 va_start(args, format);
154 char* buf = NULL;
155 if (vasprintf(&buf, format, args) < 0)
156 gold_nomem();
157 va_end(args);
158 gold_error(_("%s: %s"), this->name().c_str(), buf);
159 free(buf);
162 // Return a view of the contents of a section.
164 const unsigned char*
165 Object::section_contents(unsigned int shndx, section_size_type* plen,
166 bool cache)
168 Location loc(this->do_section_contents(shndx));
169 *plen = convert_to_section_size_type(loc.data_size);
170 return this->get_view(loc.file_offset, *plen, true, cache);
173 // Read the section data into SD. This is code common to Sized_relobj
174 // and Sized_dynobj, so we put it into Object.
176 template<int size, bool big_endian>
177 void
178 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
179 Read_symbols_data* sd)
181 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
183 // Read the section headers.
184 const off_t shoff = elf_file->shoff();
185 const unsigned int shnum = this->shnum();
186 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
187 true, true);
189 // Read the section names.
190 const unsigned char* pshdrs = sd->section_headers->data();
191 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
192 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
194 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
195 this->error(_("section name section has wrong type: %u"),
196 static_cast<unsigned int>(shdrnames.get_sh_type()));
198 sd->section_names_size =
199 convert_to_section_size_type(shdrnames.get_sh_size());
200 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
201 sd->section_names_size, false,
202 false);
205 // If NAME is the name of a special .gnu.warning section, arrange for
206 // the warning to be issued. SHNDX is the section index. Return
207 // whether it is a warning section.
209 bool
210 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
211 Symbol_table* symtab)
213 const char warn_prefix[] = ".gnu.warning.";
214 const int warn_prefix_len = sizeof warn_prefix - 1;
215 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
217 // Read the section contents to get the warning text. It would
218 // be nicer if we only did this if we have to actually issue a
219 // warning. Unfortunately, warnings are issued as we relocate
220 // sections. That means that we can not lock the object then,
221 // as we might try to issue the same warning multiple times
222 // simultaneously.
223 section_size_type len;
224 const unsigned char* contents = this->section_contents(shndx, &len,
225 false);
226 std::string warning(reinterpret_cast<const char*>(contents), len);
227 symtab->add_warning(name + warn_prefix_len, this, warning);
228 return true;
230 return false;
233 // Class Sized_relobj.
235 template<int size, bool big_endian>
236 Sized_relobj<size, big_endian>::Sized_relobj(
237 const std::string& name,
238 Input_file* input_file,
239 off_t offset,
240 const elfcpp::Ehdr<size, big_endian>& ehdr)
241 : Relobj(name, input_file, offset),
242 elf_file_(this, ehdr),
243 symtab_shndx_(-1U),
244 local_symbol_count_(0),
245 output_local_symbol_count_(0),
246 output_local_dynsym_count_(0),
247 symbols_(),
248 local_symbol_offset_(0),
249 local_dynsym_offset_(0),
250 local_values_(),
251 local_got_offsets_(),
252 has_eh_frame_(false)
256 template<int size, bool big_endian>
257 Sized_relobj<size, big_endian>::~Sized_relobj()
261 // Set up an object file based on the file header. This sets up the
262 // target and reads the section information.
264 template<int size, bool big_endian>
265 void
266 Sized_relobj<size, big_endian>::setup(
267 const elfcpp::Ehdr<size, big_endian>& ehdr)
269 this->set_target(ehdr.get_e_machine(), size, big_endian,
270 ehdr.get_e_ident()[elfcpp::EI_OSABI],
271 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
273 const unsigned int shnum = this->elf_file_.shnum();
274 this->set_shnum(shnum);
277 // Find the SHT_SYMTAB section, given the section headers. The ELF
278 // standard says that maybe in the future there can be more than one
279 // SHT_SYMTAB section. Until somebody figures out how that could
280 // work, we assume there is only one.
282 template<int size, bool big_endian>
283 void
284 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
286 const unsigned int shnum = this->shnum();
287 this->symtab_shndx_ = 0;
288 if (shnum > 0)
290 // Look through the sections in reverse order, since gas tends
291 // to put the symbol table at the end.
292 const unsigned char* p = pshdrs + shnum * This::shdr_size;
293 unsigned int i = shnum;
294 unsigned int xindex_shndx = 0;
295 unsigned int xindex_link = 0;
296 while (i > 0)
298 --i;
299 p -= This::shdr_size;
300 typename This::Shdr shdr(p);
301 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
303 this->symtab_shndx_ = i;
304 if (xindex_shndx > 0 && xindex_link == i)
306 Xindex* xindex =
307 new Xindex(this->elf_file_.large_shndx_offset());
308 xindex->read_symtab_xindex<size, big_endian>(this,
309 xindex_shndx,
310 pshdrs);
311 this->set_xindex(xindex);
313 break;
316 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
317 // one. This will work if it follows the SHT_SYMTAB
318 // section.
319 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
321 xindex_shndx = i;
322 xindex_link = this->adjust_shndx(shdr.get_sh_link());
328 // Return the Xindex structure to use for object with lots of
329 // sections.
331 template<int size, bool big_endian>
332 Xindex*
333 Sized_relobj<size, big_endian>::do_initialize_xindex()
335 gold_assert(this->symtab_shndx_ != -1U);
336 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
337 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
338 return xindex;
341 // Return whether SHDR has the right type and flags to be a GNU
342 // .eh_frame section.
344 template<int size, bool big_endian>
345 bool
346 Sized_relobj<size, big_endian>::check_eh_frame_flags(
347 const elfcpp::Shdr<size, big_endian>* shdr) const
349 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
350 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
353 // Return whether there is a GNU .eh_frame section, given the section
354 // headers and the section names.
356 template<int size, bool big_endian>
357 bool
358 Sized_relobj<size, big_endian>::find_eh_frame(
359 const unsigned char* pshdrs,
360 const char* names,
361 section_size_type names_size) const
363 const unsigned int shnum = this->shnum();
364 const unsigned char* p = pshdrs + This::shdr_size;
365 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
367 typename This::Shdr shdr(p);
368 if (this->check_eh_frame_flags(&shdr))
370 if (shdr.get_sh_name() >= names_size)
372 this->error(_("bad section name offset for section %u: %lu"),
373 i, static_cast<unsigned long>(shdr.get_sh_name()));
374 continue;
377 const char* name = names + shdr.get_sh_name();
378 if (strcmp(name, ".eh_frame") == 0)
379 return true;
382 return false;
385 // Read the sections and symbols from an object file.
387 template<int size, bool big_endian>
388 void
389 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
391 this->read_section_data(&this->elf_file_, sd);
393 const unsigned char* const pshdrs = sd->section_headers->data();
395 this->find_symtab(pshdrs);
397 const unsigned char* namesu = sd->section_names->data();
398 const char* names = reinterpret_cast<const char*>(namesu);
399 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
401 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
402 this->has_eh_frame_ = true;
405 sd->symbols = NULL;
406 sd->symbols_size = 0;
407 sd->external_symbols_offset = 0;
408 sd->symbol_names = NULL;
409 sd->symbol_names_size = 0;
411 if (this->symtab_shndx_ == 0)
413 // No symbol table. Weird but legal.
414 return;
417 // Get the symbol table section header.
418 typename This::Shdr symtabshdr(pshdrs
419 + this->symtab_shndx_ * This::shdr_size);
420 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
422 // If this object has a .eh_frame section, we need all the symbols.
423 // Otherwise we only need the external symbols. While it would be
424 // simpler to just always read all the symbols, I've seen object
425 // files with well over 2000 local symbols, which for a 64-bit
426 // object file format is over 5 pages that we don't need to read
427 // now.
429 const int sym_size = This::sym_size;
430 const unsigned int loccount = symtabshdr.get_sh_info();
431 this->local_symbol_count_ = loccount;
432 this->local_values_.resize(loccount);
433 section_offset_type locsize = loccount * sym_size;
434 off_t dataoff = symtabshdr.get_sh_offset();
435 section_size_type datasize =
436 convert_to_section_size_type(symtabshdr.get_sh_size());
437 off_t extoff = dataoff + locsize;
438 section_size_type extsize = datasize - locsize;
440 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
441 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
443 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
445 // Read the section header for the symbol names.
446 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
447 if (strtab_shndx >= this->shnum())
449 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
450 return;
452 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
453 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
455 this->error(_("symbol table name section has wrong type: %u"),
456 static_cast<unsigned int>(strtabshdr.get_sh_type()));
457 return;
460 // Read the symbol names.
461 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
462 strtabshdr.get_sh_size(),
463 false, true);
465 sd->symbols = fvsymtab;
466 sd->symbols_size = readsize;
467 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
468 sd->symbol_names = fvstrtab;
469 sd->symbol_names_size =
470 convert_to_section_size_type(strtabshdr.get_sh_size());
473 // Return the section index of symbol SYM. Set *VALUE to its value in
474 // the object file. Set *IS_ORDINARY if this is an ordinary section
475 // index. not a special cod between SHN_LORESERVE and SHN_HIRESERVE.
476 // Note that for a symbol which is not defined in this object file,
477 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
478 // the final value of the symbol in the link.
480 template<int size, bool big_endian>
481 unsigned int
482 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
483 Address* value,
484 bool* is_ordinary)
486 section_size_type symbols_size;
487 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
488 &symbols_size,
489 false);
491 const size_t count = symbols_size / This::sym_size;
492 gold_assert(sym < count);
494 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
495 *value = elfsym.get_st_value();
497 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
500 // Return whether to include a section group in the link. LAYOUT is
501 // used to keep track of which section groups we have already seen.
502 // INDEX is the index of the section group and SHDR is the section
503 // header. If we do not want to include this group, we set bits in
504 // OMIT for each section which should be discarded.
506 template<int size, bool big_endian>
507 bool
508 Sized_relobj<size, big_endian>::include_section_group(
509 Symbol_table* symtab,
510 Layout* layout,
511 unsigned int index,
512 const char* name,
513 const elfcpp::Shdr<size, big_endian>& shdr,
514 std::vector<bool>* omit)
516 // Read the section contents.
517 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
518 shdr.get_sh_size(), true, false);
519 const elfcpp::Elf_Word* pword =
520 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
522 // The first word contains flags. We only care about COMDAT section
523 // groups. Other section groups are always included in the link
524 // just like ordinary sections.
525 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
527 // Look up the group signature, which is the name of a symbol. This
528 // is a lot of effort to go to to read a string. Why didn't they
529 // just have the group signature point into the string table, rather
530 // than indirect through a symbol?
532 // Get the appropriate symbol table header (this will normally be
533 // the single SHT_SYMTAB section, but in principle it need not be).
534 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
535 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
537 // Read the symbol table entry.
538 unsigned int symndx = shdr.get_sh_info();
539 if (symndx >= symshdr.get_sh_size() / This::sym_size)
541 this->error(_("section group %u info %u out of range"),
542 index, symndx);
543 return false;
545 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
546 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
547 false);
548 elfcpp::Sym<size, big_endian> sym(psym);
550 // Read the symbol table names.
551 section_size_type symnamelen;
552 const unsigned char* psymnamesu;
553 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
554 &symnamelen, true);
555 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
557 // Get the section group signature.
558 if (sym.get_st_name() >= symnamelen)
560 this->error(_("symbol %u name offset %u out of range"),
561 symndx, sym.get_st_name());
562 return false;
565 const char* signature = psymnames + sym.get_st_name();
567 // It seems that some versions of gas will create a section group
568 // associated with a section symbol, and then fail to give a name to
569 // the section symbol. In such a case, use the name of the section.
570 std::string secname;
571 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
573 bool is_ordinary;
574 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
575 sym.get_st_shndx(),
576 &is_ordinary);
577 if (!is_ordinary || sym_shndx >= this->shnum())
579 this->error(_("symbol %u invalid section index %u"),
580 symndx, sym_shndx);
581 return false;
583 secname = this->section_name(sym_shndx);
584 signature = secname.c_str();
587 // Record this section group, and see whether we've already seen one
588 // with the same signature.
590 if ((flags & elfcpp::GRP_COMDAT) == 0
591 || layout->add_comdat(signature, true))
593 if (parameters->options().relocatable())
594 layout->layout_group(symtab, this, index, name, signature, shdr,
595 pword);
596 return true;
599 // This is a duplicate. We want to discard the sections in this
600 // group.
601 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
602 for (size_t i = 1; i < count; ++i)
604 elfcpp::Elf_Word secnum =
605 elfcpp::Swap<32, big_endian>::readval(pword + i);
606 if (secnum >= this->shnum())
608 this->error(_("section %u in section group %u out of range"),
609 secnum, index);
610 continue;
613 // Check for an earlier section number, since we're going to get
614 // it wrong--we may have already decided to include the section.
615 if (secnum < index)
616 this->error(_("invalid section group %u refers to earlier section %u"),
617 index, secnum);
619 (*omit)[secnum] = true;
622 return false;
625 // Whether to include a linkonce section in the link. NAME is the
626 // name of the section and SHDR is the section header.
628 // Linkonce sections are a GNU extension implemented in the original
629 // GNU linker before section groups were defined. The semantics are
630 // that we only include one linkonce section with a given name. The
631 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
632 // where T is the type of section and SYMNAME is the name of a symbol.
633 // In an attempt to make linkonce sections interact well with section
634 // groups, we try to identify SYMNAME and use it like a section group
635 // signature. We want to block section groups with that signature,
636 // but not other linkonce sections with that signature. We also use
637 // the full name of the linkonce section as a normal section group
638 // signature.
640 template<int size, bool big_endian>
641 bool
642 Sized_relobj<size, big_endian>::include_linkonce_section(
643 Layout* layout,
644 const char* name,
645 const elfcpp::Shdr<size, big_endian>&)
647 // In general the symbol name we want will be the string following
648 // the last '.'. However, we have to handle the case of
649 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
650 // some versions of gcc. So we use a heuristic: if the name starts
651 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
652 // we look for the last '.'. We can't always simply skip
653 // ".gnu.linkonce.X", because we have to deal with cases like
654 // ".gnu.linkonce.d.rel.ro.local".
655 const char* const linkonce_t = ".gnu.linkonce.t.";
656 const char* symname;
657 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
658 symname = name + strlen(linkonce_t);
659 else
660 symname = strrchr(name, '.') + 1;
661 bool include1 = layout->add_comdat(symname, false);
662 bool include2 = layout->add_comdat(name, true);
663 return include1 && include2;
666 // Lay out the input sections. We walk through the sections and check
667 // whether they should be included in the link. If they should, we
668 // pass them to the Layout object, which will return an output section
669 // and an offset.
671 template<int size, bool big_endian>
672 void
673 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
674 Layout* layout,
675 Read_symbols_data* sd)
677 const unsigned int shnum = this->shnum();
678 if (shnum == 0)
679 return;
681 // Get the section headers.
682 const unsigned char* pshdrs = sd->section_headers->data();
684 // Get the section names.
685 const unsigned char* pnamesu = sd->section_names->data();
686 const char* pnames = reinterpret_cast<const char*>(pnamesu);
688 // For each section, record the index of the reloc section if any.
689 // Use 0 to mean that there is no reloc section, -1U to mean that
690 // there is more than one.
691 std::vector<unsigned int> reloc_shndx(shnum, 0);
692 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
693 // Skip the first, dummy, section.
694 pshdrs += This::shdr_size;
695 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
697 typename This::Shdr shdr(pshdrs);
699 unsigned int sh_type = shdr.get_sh_type();
700 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
702 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
703 if (target_shndx == 0 || target_shndx >= shnum)
705 this->error(_("relocation section %u has bad info %u"),
706 i, target_shndx);
707 continue;
710 if (reloc_shndx[target_shndx] != 0)
711 reloc_shndx[target_shndx] = -1U;
712 else
714 reloc_shndx[target_shndx] = i;
715 reloc_type[target_shndx] = sh_type;
720 std::vector<Map_to_output>& map_sections(this->map_to_output());
721 map_sections.resize(shnum);
723 // If we are only linking for symbols, then there is nothing else to
724 // do here.
725 if (this->input_file()->just_symbols())
727 delete sd->section_headers;
728 sd->section_headers = NULL;
729 delete sd->section_names;
730 sd->section_names = NULL;
731 return;
734 // Whether we've seen a .note.GNU-stack section.
735 bool seen_gnu_stack = false;
736 // The flags of a .note.GNU-stack section.
737 uint64_t gnu_stack_flags = 0;
739 // Keep track of which sections to omit.
740 std::vector<bool> omit(shnum, false);
742 // Keep track of reloc sections when emitting relocations.
743 const bool relocatable = parameters->options().relocatable();
744 const bool emit_relocs = (relocatable
745 || parameters->options().emit_relocs());
746 std::vector<unsigned int> reloc_sections;
748 // Keep track of .eh_frame sections.
749 std::vector<unsigned int> eh_frame_sections;
751 // Skip the first, dummy, section.
752 pshdrs = sd->section_headers->data() + This::shdr_size;
753 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
755 typename This::Shdr shdr(pshdrs);
757 if (shdr.get_sh_name() >= sd->section_names_size)
759 this->error(_("bad section name offset for section %u: %lu"),
760 i, static_cast<unsigned long>(shdr.get_sh_name()));
761 return;
764 const char* name = pnames + shdr.get_sh_name();
766 if (this->handle_gnu_warning_section(name, i, symtab))
768 if (!relocatable)
769 omit[i] = true;
772 // The .note.GNU-stack section is special. It gives the
773 // protection flags that this object file requires for the stack
774 // in memory.
775 if (strcmp(name, ".note.GNU-stack") == 0)
777 seen_gnu_stack = true;
778 gnu_stack_flags |= shdr.get_sh_flags();
779 omit[i] = true;
782 bool discard = omit[i];
783 if (!discard)
785 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
787 if (!this->include_section_group(symtab, layout, i, name, shdr,
788 &omit))
789 discard = true;
791 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
792 && Layout::is_linkonce(name))
794 if (!this->include_linkonce_section(layout, name, shdr))
795 discard = true;
799 if (discard)
801 // Do not include this section in the link.
802 map_sections[i].output_section = NULL;
803 continue;
806 // When doing a relocatable link we are going to copy input
807 // reloc sections into the output. We only want to copy the
808 // ones associated with sections which are not being discarded.
809 // However, we don't know that yet for all sections. So save
810 // reloc sections and process them later.
811 if (emit_relocs
812 && (shdr.get_sh_type() == elfcpp::SHT_REL
813 || shdr.get_sh_type() == elfcpp::SHT_RELA))
815 reloc_sections.push_back(i);
816 continue;
819 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
820 continue;
822 // The .eh_frame section is special. It holds exception frame
823 // information that we need to read in order to generate the
824 // exception frame header. We process these after all the other
825 // sections so that the exception frame reader can reliably
826 // determine which sections are being discarded, and discard the
827 // corresponding information.
828 if (!relocatable
829 && strcmp(name, ".eh_frame") == 0
830 && this->check_eh_frame_flags(&shdr))
832 eh_frame_sections.push_back(i);
833 continue;
836 off_t offset;
837 Output_section* os = layout->layout(this, i, name, shdr,
838 reloc_shndx[i], reloc_type[i],
839 &offset);
841 map_sections[i].output_section = os;
842 map_sections[i].offset = offset;
844 // If this section requires special handling, and if there are
845 // relocs that apply to it, then we must do the special handling
846 // before we apply the relocs.
847 if (offset == -1 && reloc_shndx[i] != 0)
848 this->set_relocs_must_follow_section_writes();
851 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags);
853 // When doing a relocatable link handle the reloc sections at the
854 // end.
855 if (emit_relocs)
856 this->size_relocatable_relocs();
857 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
858 p != reloc_sections.end();
859 ++p)
861 unsigned int i = *p;
862 const unsigned char* pshdr;
863 pshdr = sd->section_headers->data() + i * This::shdr_size;
864 typename This::Shdr shdr(pshdr);
866 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
867 if (data_shndx >= shnum)
869 // We already warned about this above.
870 continue;
873 Output_section* data_section = map_sections[data_shndx].output_section;
874 if (data_section == NULL)
876 map_sections[i].output_section = NULL;
877 continue;
880 Relocatable_relocs* rr = new Relocatable_relocs();
881 this->set_relocatable_relocs(i, rr);
883 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
884 rr);
885 map_sections[i].output_section = os;
886 map_sections[i].offset = -1;
889 // Handle the .eh_frame sections at the end.
890 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
891 p != eh_frame_sections.end();
892 ++p)
894 gold_assert(this->has_eh_frame_);
895 gold_assert(sd->external_symbols_offset != 0);
897 unsigned int i = *p;
898 const unsigned char *pshdr;
899 pshdr = sd->section_headers->data() + i * This::shdr_size;
900 typename This::Shdr shdr(pshdr);
902 off_t offset;
903 Output_section* os = layout->layout_eh_frame(this,
904 sd->symbols->data(),
905 sd->symbols_size,
906 sd->symbol_names->data(),
907 sd->symbol_names_size,
908 i, shdr,
909 reloc_shndx[i],
910 reloc_type[i],
911 &offset);
912 map_sections[i].output_section = os;
913 map_sections[i].offset = offset;
915 // If this section requires special handling, and if there are
916 // relocs that apply to it, then we must do the special handling
917 // before we apply the relocs.
918 if (offset == -1 && reloc_shndx[i] != 0)
919 this->set_relocs_must_follow_section_writes();
922 delete sd->section_headers;
923 sd->section_headers = NULL;
924 delete sd->section_names;
925 sd->section_names = NULL;
928 // Add the symbols to the symbol table.
930 template<int size, bool big_endian>
931 void
932 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
933 Read_symbols_data* sd)
935 if (sd->symbols == NULL)
937 gold_assert(sd->symbol_names == NULL);
938 return;
941 const int sym_size = This::sym_size;
942 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
943 / sym_size);
944 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
946 this->error(_("size of symbols is not multiple of symbol size"));
947 return;
950 this->symbols_.resize(symcount);
952 const char* sym_names =
953 reinterpret_cast<const char*>(sd->symbol_names->data());
954 symtab->add_from_relobj(this,
955 sd->symbols->data() + sd->external_symbols_offset,
956 symcount, this->local_symbol_count_,
957 sym_names, sd->symbol_names_size,
958 &this->symbols_);
960 delete sd->symbols;
961 sd->symbols = NULL;
962 delete sd->symbol_names;
963 sd->symbol_names = NULL;
966 // First pass over the local symbols. Here we add their names to
967 // *POOL and *DYNPOOL, and we store the symbol value in
968 // THIS->LOCAL_VALUES_. This function is always called from a
969 // singleton thread. This is followed by a call to
970 // finalize_local_symbols.
972 template<int size, bool big_endian>
973 void
974 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
975 Stringpool* dynpool)
977 gold_assert(this->symtab_shndx_ != -1U);
978 if (this->symtab_shndx_ == 0)
980 // This object has no symbols. Weird but legal.
981 return;
984 // Read the symbol table section header.
985 const unsigned int symtab_shndx = this->symtab_shndx_;
986 typename This::Shdr symtabshdr(this,
987 this->elf_file_.section_header(symtab_shndx));
988 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
990 // Read the local symbols.
991 const int sym_size = This::sym_size;
992 const unsigned int loccount = this->local_symbol_count_;
993 gold_assert(loccount == symtabshdr.get_sh_info());
994 off_t locsize = loccount * sym_size;
995 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
996 locsize, true, true);
998 // Read the symbol names.
999 const unsigned int strtab_shndx =
1000 this->adjust_shndx(symtabshdr.get_sh_link());
1001 section_size_type strtab_size;
1002 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1003 &strtab_size,
1004 true);
1005 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1007 // Loop over the local symbols.
1009 const std::vector<Map_to_output>& mo(this->map_to_output());
1010 unsigned int shnum = this->shnum();
1011 unsigned int count = 0;
1012 unsigned int dyncount = 0;
1013 // Skip the first, dummy, symbol.
1014 psyms += sym_size;
1015 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1017 elfcpp::Sym<size, big_endian> sym(psyms);
1019 Symbol_value<size>& lv(this->local_values_[i]);
1021 bool is_ordinary;
1022 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1023 &is_ordinary);
1024 lv.set_input_shndx(shndx, is_ordinary);
1026 if (sym.get_st_type() == elfcpp::STT_SECTION)
1027 lv.set_is_section_symbol();
1028 else if (sym.get_st_type() == elfcpp::STT_TLS)
1029 lv.set_is_tls_symbol();
1031 // Save the input symbol value for use in do_finalize_local_symbols().
1032 lv.set_input_value(sym.get_st_value());
1034 // Decide whether this symbol should go into the output file.
1036 if (shndx < shnum && mo[shndx].output_section == NULL)
1038 lv.set_no_output_symtab_entry();
1039 gold_assert(!lv.needs_output_dynsym_entry());
1040 continue;
1043 if (sym.get_st_type() == elfcpp::STT_SECTION)
1045 lv.set_no_output_symtab_entry();
1046 gold_assert(!lv.needs_output_dynsym_entry());
1047 continue;
1050 if (sym.get_st_name() >= strtab_size)
1052 this->error(_("local symbol %u section name out of range: %u >= %u"),
1053 i, sym.get_st_name(),
1054 static_cast<unsigned int>(strtab_size));
1055 lv.set_no_output_symtab_entry();
1056 continue;
1059 // Add the symbol to the symbol table string pool.
1060 const char* name = pnames + sym.get_st_name();
1061 pool->add(name, true, NULL);
1062 ++count;
1064 // If needed, add the symbol to the dynamic symbol table string pool.
1065 if (lv.needs_output_dynsym_entry())
1067 dynpool->add(name, true, NULL);
1068 ++dyncount;
1072 this->output_local_symbol_count_ = count;
1073 this->output_local_dynsym_count_ = dyncount;
1076 // Finalize the local symbols. Here we set the final value in
1077 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
1078 // This function is always called from a singleton thread. The actual
1079 // output of the local symbols will occur in a separate task.
1081 template<int size, bool big_endian>
1082 unsigned int
1083 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
1084 off_t off)
1086 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1088 const unsigned int loccount = this->local_symbol_count_;
1089 this->local_symbol_offset_ = off;
1091 const std::vector<Map_to_output>& mo(this->map_to_output());
1092 unsigned int shnum = this->shnum();
1094 for (unsigned int i = 1; i < loccount; ++i)
1096 Symbol_value<size>& lv(this->local_values_[i]);
1098 bool is_ordinary;
1099 unsigned int shndx = lv.input_shndx(&is_ordinary);
1101 // Set the output symbol value.
1103 if (!is_ordinary)
1105 if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1106 lv.set_output_value(lv.input_value());
1107 else
1109 this->error(_("unknown section index %u for local symbol %u"),
1110 shndx, i);
1111 lv.set_output_value(0);
1114 else
1116 if (shndx >= shnum)
1118 this->error(_("local symbol %u section index %u out of range"),
1119 i, shndx);
1120 shndx = 0;
1123 Output_section* os = mo[shndx].output_section;
1125 if (os == NULL)
1127 lv.set_output_value(0);
1128 continue;
1130 else if (mo[shndx].offset == -1)
1132 // This is a SHF_MERGE section or one which otherwise
1133 // requires special handling. We get the output address
1134 // of the start of the merged section. If this is not a
1135 // section symbol, we can then determine the final
1136 // value. If it is a section symbol, we can not, as in
1137 // that case we have to consider the addend to determine
1138 // the value to use in a relocation.
1139 if (!lv.is_section_symbol())
1140 lv.set_output_value(os->output_address(this, shndx,
1141 lv.input_value()));
1142 else
1144 section_offset_type start =
1145 os->starting_output_address(this, shndx);
1146 Merged_symbol_value<size>* msv =
1147 new Merged_symbol_value<size>(lv.input_value(), start);
1148 lv.set_merged_symbol_value(msv);
1151 else if (lv.is_tls_symbol())
1152 lv.set_output_value(os->tls_offset()
1153 + mo[shndx].offset
1154 + lv.input_value());
1155 else
1156 lv.set_output_value(os->address()
1157 + mo[shndx].offset
1158 + lv.input_value());
1161 if (lv.needs_output_symtab_entry())
1163 lv.set_output_symtab_index(index);
1164 ++index;
1167 return index;
1170 // Set the output dynamic symbol table indexes for the local variables.
1172 template<int size, bool big_endian>
1173 unsigned int
1174 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
1176 const unsigned int loccount = this->local_symbol_count_;
1177 for (unsigned int i = 1; i < loccount; ++i)
1179 Symbol_value<size>& lv(this->local_values_[i]);
1180 if (lv.needs_output_dynsym_entry())
1182 lv.set_output_dynsym_index(index);
1183 ++index;
1186 return index;
1189 // Set the offset where local dynamic symbol information will be stored.
1190 // Returns the count of local symbols contributed to the symbol table by
1191 // this object.
1193 template<int size, bool big_endian>
1194 unsigned int
1195 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
1197 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
1198 this->local_dynsym_offset_ = off;
1199 return this->output_local_dynsym_count_;
1202 // Write out the local symbols.
1204 template<int size, bool big_endian>
1205 void
1206 Sized_relobj<size, big_endian>::write_local_symbols(
1207 Output_file* of,
1208 const Stringpool* sympool,
1209 const Stringpool* dynpool,
1210 Output_symtab_xindex* symtab_xindex,
1211 Output_symtab_xindex* dynsym_xindex)
1213 if (parameters->options().strip_all()
1214 && this->output_local_dynsym_count_ == 0)
1215 return;
1217 gold_assert(this->symtab_shndx_ != -1U);
1218 if (this->symtab_shndx_ == 0)
1220 // This object has no symbols. Weird but legal.
1221 return;
1224 // Read the symbol table section header.
1225 const unsigned int symtab_shndx = this->symtab_shndx_;
1226 typename This::Shdr symtabshdr(this,
1227 this->elf_file_.section_header(symtab_shndx));
1228 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1229 const unsigned int loccount = this->local_symbol_count_;
1230 gold_assert(loccount == symtabshdr.get_sh_info());
1232 // Read the local symbols.
1233 const int sym_size = This::sym_size;
1234 off_t locsize = loccount * sym_size;
1235 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1236 locsize, true, false);
1238 // Read the symbol names.
1239 const unsigned int strtab_shndx =
1240 this->adjust_shndx(symtabshdr.get_sh_link());
1241 section_size_type strtab_size;
1242 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1243 &strtab_size,
1244 false);
1245 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1247 // Get views into the output file for the portions of the symbol table
1248 // and the dynamic symbol table that we will be writing.
1249 off_t output_size = this->output_local_symbol_count_ * sym_size;
1250 unsigned char* oview = NULL;
1251 if (output_size > 0)
1252 oview = of->get_output_view(this->local_symbol_offset_, output_size);
1254 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
1255 unsigned char* dyn_oview = NULL;
1256 if (dyn_output_size > 0)
1257 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
1258 dyn_output_size);
1260 const std::vector<Map_to_output>& mo(this->map_to_output());
1262 gold_assert(this->local_values_.size() == loccount);
1264 unsigned char* ov = oview;
1265 unsigned char* dyn_ov = dyn_oview;
1266 psyms += sym_size;
1267 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1269 elfcpp::Sym<size, big_endian> isym(psyms);
1271 Symbol_value<size>& lv(this->local_values_[i]);
1273 bool is_ordinary;
1274 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1275 &is_ordinary);
1276 if (is_ordinary)
1278 gold_assert(st_shndx < mo.size());
1279 if (mo[st_shndx].output_section == NULL)
1280 continue;
1281 st_shndx = mo[st_shndx].output_section->out_shndx();
1282 if (st_shndx >= elfcpp::SHN_LORESERVE)
1284 if (lv.needs_output_symtab_entry())
1285 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
1286 if (lv.needs_output_dynsym_entry())
1287 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
1288 st_shndx = elfcpp::SHN_XINDEX;
1292 // Write the symbol to the output symbol table.
1293 if (!parameters->options().strip_all()
1294 && lv.needs_output_symtab_entry())
1296 elfcpp::Sym_write<size, big_endian> osym(ov);
1298 gold_assert(isym.get_st_name() < strtab_size);
1299 const char* name = pnames + isym.get_st_name();
1300 osym.put_st_name(sympool->get_offset(name));
1301 osym.put_st_value(this->local_values_[i].value(this, 0));
1302 osym.put_st_size(isym.get_st_size());
1303 osym.put_st_info(isym.get_st_info());
1304 osym.put_st_other(isym.get_st_other());
1305 osym.put_st_shndx(st_shndx);
1307 ov += sym_size;
1310 // Write the symbol to the output dynamic symbol table.
1311 if (lv.needs_output_dynsym_entry())
1313 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
1314 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
1316 gold_assert(isym.get_st_name() < strtab_size);
1317 const char* name = pnames + isym.get_st_name();
1318 osym.put_st_name(dynpool->get_offset(name));
1319 osym.put_st_value(this->local_values_[i].value(this, 0));
1320 osym.put_st_size(isym.get_st_size());
1321 osym.put_st_info(isym.get_st_info());
1322 osym.put_st_other(isym.get_st_other());
1323 osym.put_st_shndx(st_shndx);
1325 dyn_ov += sym_size;
1330 if (output_size > 0)
1332 gold_assert(ov - oview == output_size);
1333 of->write_output_view(this->local_symbol_offset_, output_size, oview);
1336 if (dyn_output_size > 0)
1338 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
1339 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
1340 dyn_oview);
1344 // Set *INFO to symbolic information about the offset OFFSET in the
1345 // section SHNDX. Return true if we found something, false if we
1346 // found nothing.
1348 template<int size, bool big_endian>
1349 bool
1350 Sized_relobj<size, big_endian>::get_symbol_location_info(
1351 unsigned int shndx,
1352 off_t offset,
1353 Symbol_location_info* info)
1355 if (this->symtab_shndx_ == 0)
1356 return false;
1358 section_size_type symbols_size;
1359 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
1360 &symbols_size,
1361 false);
1363 unsigned int symbol_names_shndx =
1364 this->adjust_shndx(this->section_link(this->symtab_shndx_));
1365 section_size_type names_size;
1366 const unsigned char* symbol_names_u =
1367 this->section_contents(symbol_names_shndx, &names_size, false);
1368 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
1370 const int sym_size = This::sym_size;
1371 const size_t count = symbols_size / sym_size;
1373 const unsigned char* p = symbols;
1374 for (size_t i = 0; i < count; ++i, p += sym_size)
1376 elfcpp::Sym<size, big_endian> sym(p);
1378 if (sym.get_st_type() == elfcpp::STT_FILE)
1380 if (sym.get_st_name() >= names_size)
1381 info->source_file = "(invalid)";
1382 else
1383 info->source_file = symbol_names + sym.get_st_name();
1384 continue;
1387 bool is_ordinary;
1388 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1389 &is_ordinary);
1390 if (is_ordinary
1391 && st_shndx == shndx
1392 && static_cast<off_t>(sym.get_st_value()) <= offset
1393 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
1394 > offset))
1396 if (sym.get_st_name() > names_size)
1397 info->enclosing_symbol_name = "(invalid)";
1398 else
1400 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
1401 if (parameters->options().do_demangle())
1403 char* demangled_name = cplus_demangle(
1404 info->enclosing_symbol_name.c_str(),
1405 DMGL_ANSI | DMGL_PARAMS);
1406 if (demangled_name != NULL)
1408 info->enclosing_symbol_name.assign(demangled_name);
1409 free(demangled_name);
1413 return true;
1417 return false;
1420 // Input_objects methods.
1422 // Add a regular relocatable object to the list. Return false if this
1423 // object should be ignored.
1425 bool
1426 Input_objects::add_object(Object* obj)
1428 // Set the global target from the first object file we recognize.
1429 Target* target = obj->target();
1430 if (!parameters->target_valid())
1431 set_parameters_target(target);
1432 else if (target != &parameters->target())
1434 obj->error(_("incompatible target"));
1435 return false;
1438 // Print the filename if the -t/--trace option is selected.
1439 if (parameters->options().trace())
1440 gold_info("%s", obj->name().c_str());
1442 if (!obj->is_dynamic())
1443 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
1444 else
1446 // See if this is a duplicate SONAME.
1447 Dynobj* dynobj = static_cast<Dynobj*>(obj);
1448 const char* soname = dynobj->soname();
1450 std::pair<Unordered_set<std::string>::iterator, bool> ins =
1451 this->sonames_.insert(soname);
1452 if (!ins.second)
1454 // We have already seen a dynamic object with this soname.
1455 return false;
1458 this->dynobj_list_.push_back(dynobj);
1460 // If this is -lc, remember the directory in which we found it.
1461 // We use this when issuing warnings about undefined symbols: as
1462 // a heuristic, we don't warn about system libraries found in
1463 // the same directory as -lc.
1464 if (strncmp(soname, "libc.so", 7) == 0)
1466 const char* object_name = dynobj->name().c_str();
1467 const char* base = lbasename(object_name);
1468 if (base != object_name)
1469 this->system_library_directory_.assign(object_name,
1470 base - 1 - object_name);
1474 return true;
1477 // Return whether an object was found in the system library directory.
1479 bool
1480 Input_objects::found_in_system_library_directory(const Object* object) const
1482 return (!this->system_library_directory_.empty()
1483 && object->name().compare(0,
1484 this->system_library_directory_.size(),
1485 this->system_library_directory_) == 0);
1488 // For each dynamic object, record whether we've seen all of its
1489 // explicit dependencies.
1491 void
1492 Input_objects::check_dynamic_dependencies() const
1494 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
1495 p != this->dynobj_list_.end();
1496 ++p)
1498 const Dynobj::Needed& needed((*p)->needed());
1499 bool found_all = true;
1500 for (Dynobj::Needed::const_iterator pneeded = needed.begin();
1501 pneeded != needed.end();
1502 ++pneeded)
1504 if (this->sonames_.find(*pneeded) == this->sonames_.end())
1506 found_all = false;
1507 break;
1510 (*p)->set_has_unknown_needed_entries(!found_all);
1514 // Relocate_info methods.
1516 // Return a string describing the location of a relocation. This is
1517 // only used in error messages.
1519 template<int size, bool big_endian>
1520 std::string
1521 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
1523 // See if we can get line-number information from debugging sections.
1524 std::string filename;
1525 std::string file_and_lineno; // Better than filename-only, if available.
1527 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
1528 // This will be "" if we failed to parse the debug info for any reason.
1529 file_and_lineno = line_info.addr2line(this->data_shndx, offset);
1531 std::string ret(this->object->name());
1532 ret += ':';
1533 Symbol_location_info info;
1534 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
1536 ret += " in function ";
1537 ret += info.enclosing_symbol_name;
1538 ret += ":";
1539 filename = info.source_file;
1542 if (!file_and_lineno.empty())
1543 ret += file_and_lineno;
1544 else
1546 if (!filename.empty())
1547 ret += filename;
1548 ret += "(";
1549 ret += this->object->section_name(this->data_shndx);
1550 char buf[100];
1551 // Offsets into sections have to be positive.
1552 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
1553 ret += buf;
1554 ret += ")";
1556 return ret;
1559 } // End namespace gold.
1561 namespace
1564 using namespace gold;
1566 // Read an ELF file with the header and return the appropriate
1567 // instance of Object.
1569 template<int size, bool big_endian>
1570 Object*
1571 make_elf_sized_object(const std::string& name, Input_file* input_file,
1572 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
1574 int et = ehdr.get_e_type();
1575 if (et == elfcpp::ET_REL)
1577 Sized_relobj<size, big_endian>* obj =
1578 new Sized_relobj<size, big_endian>(name, input_file, offset, ehdr);
1579 obj->setup(ehdr);
1580 return obj;
1582 else if (et == elfcpp::ET_DYN)
1584 Sized_dynobj<size, big_endian>* obj =
1585 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
1586 obj->setup(ehdr);
1587 return obj;
1589 else
1591 gold_error(_("%s: unsupported ELF file type %d"),
1592 name.c_str(), et);
1593 return NULL;
1597 } // End anonymous namespace.
1599 namespace gold
1602 // Read an ELF file and return the appropriate instance of Object.
1604 Object*
1605 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
1606 const unsigned char* p, section_offset_type bytes)
1608 if (bytes < elfcpp::EI_NIDENT)
1610 gold_error(_("%s: ELF file too short"), name.c_str());
1611 return NULL;
1614 int v = p[elfcpp::EI_VERSION];
1615 if (v != elfcpp::EV_CURRENT)
1617 if (v == elfcpp::EV_NONE)
1618 gold_error(_("%s: invalid ELF version 0"), name.c_str());
1619 else
1620 gold_error(_("%s: unsupported ELF version %d"), name.c_str(), v);
1621 return NULL;
1624 int c = p[elfcpp::EI_CLASS];
1625 if (c == elfcpp::ELFCLASSNONE)
1627 gold_error(_("%s: invalid ELF class 0"), name.c_str());
1628 return NULL;
1630 else if (c != elfcpp::ELFCLASS32
1631 && c != elfcpp::ELFCLASS64)
1633 gold_error(_("%s: unsupported ELF class %d"), name.c_str(), c);
1634 return NULL;
1637 int d = p[elfcpp::EI_DATA];
1638 if (d == elfcpp::ELFDATANONE)
1640 gold_error(_("%s: invalid ELF data encoding"), name.c_str());
1641 return NULL;
1643 else if (d != elfcpp::ELFDATA2LSB
1644 && d != elfcpp::ELFDATA2MSB)
1646 gold_error(_("%s: unsupported ELF data encoding %d"), name.c_str(), d);
1647 return NULL;
1650 bool big_endian = d == elfcpp::ELFDATA2MSB;
1652 if (c == elfcpp::ELFCLASS32)
1654 if (bytes < elfcpp::Elf_sizes<32>::ehdr_size)
1656 gold_error(_("%s: ELF file too short"), name.c_str());
1657 return NULL;
1659 if (big_endian)
1661 #ifdef HAVE_TARGET_32_BIG
1662 elfcpp::Ehdr<32, true> ehdr(p);
1663 return make_elf_sized_object<32, true>(name, input_file,
1664 offset, ehdr);
1665 #else
1666 gold_error(_("%s: not configured to support "
1667 "32-bit big-endian object"),
1668 name.c_str());
1669 return NULL;
1670 #endif
1672 else
1674 #ifdef HAVE_TARGET_32_LITTLE
1675 elfcpp::Ehdr<32, false> ehdr(p);
1676 return make_elf_sized_object<32, false>(name, input_file,
1677 offset, ehdr);
1678 #else
1679 gold_error(_("%s: not configured to support "
1680 "32-bit little-endian object"),
1681 name.c_str());
1682 return NULL;
1683 #endif
1686 else
1688 if (bytes < elfcpp::Elf_sizes<64>::ehdr_size)
1690 gold_error(_("%s: ELF file too short"), name.c_str());
1691 return NULL;
1693 if (big_endian)
1695 #ifdef HAVE_TARGET_64_BIG
1696 elfcpp::Ehdr<64, true> ehdr(p);
1697 return make_elf_sized_object<64, true>(name, input_file,
1698 offset, ehdr);
1699 #else
1700 gold_error(_("%s: not configured to support "
1701 "64-bit big-endian object"),
1702 name.c_str());
1703 return NULL;
1704 #endif
1706 else
1708 #ifdef HAVE_TARGET_64_LITTLE
1709 elfcpp::Ehdr<64, false> ehdr(p);
1710 return make_elf_sized_object<64, false>(name, input_file,
1711 offset, ehdr);
1712 #else
1713 gold_error(_("%s: not configured to support "
1714 "64-bit little-endian object"),
1715 name.c_str());
1716 return NULL;
1717 #endif
1722 // Instantiate the templates we need.
1724 #ifdef HAVE_TARGET_32_LITTLE
1725 template
1726 void
1727 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
1728 Read_symbols_data*);
1729 #endif
1731 #ifdef HAVE_TARGET_32_BIG
1732 template
1733 void
1734 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
1735 Read_symbols_data*);
1736 #endif
1738 #ifdef HAVE_TARGET_64_LITTLE
1739 template
1740 void
1741 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
1742 Read_symbols_data*);
1743 #endif
1745 #ifdef HAVE_TARGET_64_BIG
1746 template
1747 void
1748 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
1749 Read_symbols_data*);
1750 #endif
1752 #ifdef HAVE_TARGET_32_LITTLE
1753 template
1754 class Sized_relobj<32, false>;
1755 #endif
1757 #ifdef HAVE_TARGET_32_BIG
1758 template
1759 class Sized_relobj<32, true>;
1760 #endif
1762 #ifdef HAVE_TARGET_64_LITTLE
1763 template
1764 class Sized_relobj<64, false>;
1765 #endif
1767 #ifdef HAVE_TARGET_64_BIG
1768 template
1769 class Sized_relobj<64, true>;
1770 #endif
1772 #ifdef HAVE_TARGET_32_LITTLE
1773 template
1774 struct Relocate_info<32, false>;
1775 #endif
1777 #ifdef HAVE_TARGET_32_BIG
1778 template
1779 struct Relocate_info<32, true>;
1780 #endif
1782 #ifdef HAVE_TARGET_64_LITTLE
1783 template
1784 struct Relocate_info<64, false>;
1785 #endif
1787 #ifdef HAVE_TARGET_64_BIG
1788 template
1789 struct Relocate_info<64, true>;
1790 #endif
1792 } // End namespace gold.