* elf32-hppa.c (elf32_hppa_check_relocs): Handle R_PARISC_PCREL32.
[binutils.git] / bfd / elf32-hppa.c
blob3e4df2e44edb6222fc1dc6e6a3ac084d61863341
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return. */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
147 shared lib. */
148 #define ELIMINATE_COPY_RELOCS 1
150 enum elf32_hppa_stub_type {
151 hppa_stub_long_branch,
152 hppa_stub_long_branch_shared,
153 hppa_stub_import,
154 hppa_stub_import_shared,
155 hppa_stub_export,
156 hppa_stub_none
159 struct elf32_hppa_stub_hash_entry {
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root;
164 /* The stub section. */
165 asection *stub_sec;
167 /* Offset within stub_sec of the beginning of this stub. */
168 bfd_vma stub_offset;
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value;
173 asection *target_section;
175 enum elf32_hppa_stub_type stub_type;
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry *h;
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
182 asection *id_sec;
185 struct elf32_hppa_link_hash_entry {
187 struct elf_link_hash_entry elf;
189 /* A pointer to the most recently used stub hash entry against this
190 symbol. */
191 struct elf32_hppa_stub_hash_entry *stub_cache;
193 /* Used to count relocations for delayed sizing of relocation
194 sections. */
195 struct elf32_hppa_dyn_reloc_entry {
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry *next;
200 /* The input section of the reloc. */
201 asection *sec;
203 /* Number of relocs copied in this section. */
204 bfd_size_type count;
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count;
209 #endif
210 } *dyn_relocs;
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel:1;
216 struct elf32_hppa_link_hash_table {
218 /* The main hash table. */
219 struct elf_link_hash_table elf;
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table;
224 /* Linker stub bfd. */
225 bfd *stub_bfd;
227 /* Linker call-backs. */
228 asection * (*add_stub_section) (const char *, asection *);
229 void (*layout_sections_again) (void);
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
233 struct map_stub {
234 /* This is the section to which stubs in the group will be
235 attached. */
236 asection *link_sec;
237 /* The stub section. */
238 asection *stub_sec;
239 } *stub_group;
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count;
243 int top_index;
244 asection **input_list;
245 Elf_Internal_Sym **all_local_syms;
247 /* Short-cuts to get to dynamic linker sections. */
248 asection *sgot;
249 asection *srelgot;
250 asection *splt;
251 asection *srelplt;
252 asection *sdynbss;
253 asection *srelbss;
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base;
258 bfd_vma data_segment_base;
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace:1;
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch:1;
266 unsigned int has_17bit_branch:1;
267 unsigned int has_22bit_branch:1;
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub:1;
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec;
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
284 /* Assorted hash table functions. */
286 /* Initialize an entry in the stub hash table. */
288 static struct bfd_hash_entry *
289 stub_hash_newfunc (struct bfd_hash_entry *entry,
290 struct bfd_hash_table *table,
291 const char *string)
293 /* Allocate the structure if it has not already been allocated by a
294 subclass. */
295 if (entry == NULL)
297 entry = bfd_hash_allocate (table,
298 sizeof (struct elf32_hppa_stub_hash_entry));
299 if (entry == NULL)
300 return entry;
303 /* Call the allocation method of the superclass. */
304 entry = bfd_hash_newfunc (entry, table, string);
305 if (entry != NULL)
307 struct elf32_hppa_stub_hash_entry *eh;
309 /* Initialize the local fields. */
310 eh = (struct elf32_hppa_stub_hash_entry *) entry;
311 eh->stub_sec = NULL;
312 eh->stub_offset = 0;
313 eh->target_value = 0;
314 eh->target_section = NULL;
315 eh->stub_type = hppa_stub_long_branch;
316 eh->h = NULL;
317 eh->id_sec = NULL;
320 return entry;
323 /* Initialize an entry in the link hash table. */
325 static struct bfd_hash_entry *
326 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_link_hash_entry));
336 if (entry == NULL)
337 return entry;
340 /* Call the allocation method of the superclass. */
341 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
342 if (entry != NULL)
344 struct elf32_hppa_link_hash_entry *eh;
346 /* Initialize the local fields. */
347 eh = (struct elf32_hppa_link_hash_entry *) entry;
348 eh->stub_cache = NULL;
349 eh->dyn_relocs = NULL;
350 eh->plabel = 0;
353 return entry;
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
360 static struct bfd_link_hash_table *
361 elf32_hppa_link_hash_table_create (bfd *abfd)
363 struct elf32_hppa_link_hash_table *ret;
364 bfd_size_type amt = sizeof (*ret);
366 ret = bfd_malloc (amt);
367 if (ret == NULL)
368 return NULL;
370 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
372 free (ret);
373 return NULL;
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
378 return NULL;
380 ret->stub_bfd = NULL;
381 ret->add_stub_section = NULL;
382 ret->layout_sections_again = NULL;
383 ret->stub_group = NULL;
384 ret->sgot = NULL;
385 ret->srelgot = NULL;
386 ret->splt = NULL;
387 ret->srelplt = NULL;
388 ret->sdynbss = NULL;
389 ret->srelbss = NULL;
390 ret->text_segment_base = (bfd_vma) -1;
391 ret->data_segment_base = (bfd_vma) -1;
392 ret->multi_subspace = 0;
393 ret->has_12bit_branch = 0;
394 ret->has_17bit_branch = 0;
395 ret->has_22bit_branch = 0;
396 ret->need_plt_stub = 0;
397 ret->sym_sec.abfd = NULL;
399 return &ret->elf.root;
402 /* Free the derived linker hash table. */
404 static void
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *hash)
407 struct elf32_hppa_link_hash_table *ret
408 = (struct elf32_hppa_link_hash_table *) hash;
410 bfd_hash_table_free (&ret->stub_hash_table);
411 _bfd_generic_link_hash_table_free (hash);
414 /* Build a name for an entry in the stub hash table. */
416 static char *
417 hppa_stub_name (const asection *input_section,
418 const asection *sym_sec,
419 const struct elf32_hppa_link_hash_entry *hash,
420 const Elf_Internal_Rela *rel)
422 char *stub_name;
423 bfd_size_type len;
425 if (hash)
427 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
428 stub_name = bfd_malloc (len);
429 if (stub_name != NULL)
431 sprintf (stub_name, "%08x_%s+%x",
432 input_section->id & 0xffffffff,
433 hash->elf.root.root.string,
434 (int) rel->r_addend & 0xffffffff);
437 else
439 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name = bfd_malloc (len);
441 if (stub_name != NULL)
443 sprintf (stub_name, "%08x_%x:%x+%x",
444 input_section->id & 0xffffffff,
445 sym_sec->id & 0xffffffff,
446 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
447 (int) rel->r_addend & 0xffffffff);
450 return stub_name;
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
456 static struct elf32_hppa_stub_hash_entry *
457 hppa_get_stub_entry (const asection *input_section,
458 const asection *sym_sec,
459 struct elf32_hppa_link_hash_entry *hash,
460 const Elf_Internal_Rela *rel,
461 struct elf32_hppa_link_hash_table *htab)
463 struct elf32_hppa_stub_hash_entry *stub_entry;
464 const asection *id_sec;
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec = htab->stub_group[input_section->id].link_sec;
473 if (hash != NULL && hash->stub_cache != NULL
474 && hash->stub_cache->h == hash
475 && hash->stub_cache->id_sec == id_sec)
477 stub_entry = hash->stub_cache;
479 else
481 char *stub_name;
483 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
484 if (stub_name == NULL)
485 return NULL;
487 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
488 stub_name, FALSE, FALSE);
489 if (hash != NULL)
490 hash->stub_cache = stub_entry;
492 free (stub_name);
495 return stub_entry;
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
501 static struct elf32_hppa_stub_hash_entry *
502 hppa_add_stub (const char *stub_name,
503 asection *section,
504 struct elf32_hppa_link_hash_table *htab)
506 asection *link_sec;
507 asection *stub_sec;
508 struct elf32_hppa_stub_hash_entry *stub_entry;
510 link_sec = htab->stub_group[section->id].link_sec;
511 stub_sec = htab->stub_group[section->id].stub_sec;
512 if (stub_sec == NULL)
514 stub_sec = htab->stub_group[link_sec->id].stub_sec;
515 if (stub_sec == NULL)
517 size_t namelen;
518 bfd_size_type len;
519 char *s_name;
521 namelen = strlen (link_sec->name);
522 len = namelen + sizeof (STUB_SUFFIX);
523 s_name = bfd_alloc (htab->stub_bfd, len);
524 if (s_name == NULL)
525 return NULL;
527 memcpy (s_name, link_sec->name, namelen);
528 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
529 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
530 if (stub_sec == NULL)
531 return NULL;
532 htab->stub_group[link_sec->id].stub_sec = stub_sec;
534 htab->stub_group[section->id].stub_sec = stub_sec;
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
539 TRUE, FALSE);
540 if (stub_entry == NULL)
542 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
543 bfd_archive_filename (section->owner),
544 stub_name);
545 return NULL;
548 stub_entry->stub_sec = stub_sec;
549 stub_entry->stub_offset = 0;
550 stub_entry->id_sec = link_sec;
551 return stub_entry;
554 /* Determine the type of stub needed, if any, for a call. */
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection *input_sec,
558 const Elf_Internal_Rela *rel,
559 struct elf32_hppa_link_hash_entry *hash,
560 bfd_vma destination,
561 struct bfd_link_info *info)
563 bfd_vma location;
564 bfd_vma branch_offset;
565 bfd_vma max_branch_offset;
566 unsigned int r_type;
568 if (hash != NULL
569 && hash->elf.plt.offset != (bfd_vma) -1
570 && hash->elf.dynindx != -1
571 && !hash->plabel
572 && (info->shared
573 || !(hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
574 || hash->elf.root.type == bfd_link_hash_defweak))
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import;
581 /* Determine where the call point is. */
582 location = (input_sec->output_offset
583 + input_sec->output_section->vma
584 + rel->r_offset);
586 branch_offset = destination - location - 8;
587 r_type = ELF32_R_TYPE (rel->r_info);
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type == (unsigned int) R_PARISC_PCREL17F)
595 max_branch_offset = (1 << (17-1)) << 2;
597 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
599 max_branch_offset = (1 << (12-1)) << 2;
601 else /* R_PARISC_PCREL22F. */
603 max_branch_offset = (1 << (22-1)) << 2;
606 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
607 return hppa_stub_long_branch;
609 return hppa_stub_none;
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
642 #ifndef R19_STUBS
643 #define R19_STUBS 1
644 #endif
646 #if R19_STUBS
647 #define LDW_R1_DLT LDW_R1_R19
648 #else
649 #define LDW_R1_DLT LDW_R1_DP
650 #endif
652 static bfd_boolean
653 hppa_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
655 struct elf32_hppa_stub_hash_entry *stub_entry;
656 struct bfd_link_info *info;
657 struct elf32_hppa_link_hash_table *htab;
658 asection *stub_sec;
659 bfd *stub_bfd;
660 bfd_byte *loc;
661 bfd_vma sym_value;
662 bfd_vma insn;
663 bfd_vma off;
664 int val;
665 int size;
667 /* Massage our args to the form they really have. */
668 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
669 info = in_arg;
671 htab = hppa_link_hash_table (info);
672 stub_sec = stub_entry->stub_sec;
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry->stub_offset = stub_sec->_raw_size;
676 loc = stub_sec->contents + stub_entry->stub_offset;
678 stub_bfd = stub_sec->owner;
680 switch (stub_entry->stub_type)
682 case hppa_stub_long_branch:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value = (stub_entry->target_value
688 + stub_entry->target_section->output_offset
689 + stub_entry->target_section->output_section->vma);
691 val = hppa_field_adjust (sym_value, 0, e_lrsel);
692 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
693 bfd_put_32 (stub_bfd, insn, loc);
695 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
696 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
697 bfd_put_32 (stub_bfd, insn, loc + 4);
699 size = 8;
700 break;
702 case hppa_stub_long_branch_shared:
703 /* Branches are relative. This is where we are going to. */
704 sym_value = (stub_entry->target_value
705 + stub_entry->target_section->output_offset
706 + stub_entry->target_section->output_section->vma);
708 /* And this is where we are coming from, more or less. */
709 sym_value -= (stub_entry->stub_offset
710 + stub_sec->output_offset
711 + stub_sec->output_section->vma);
713 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
714 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
715 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
716 bfd_put_32 (stub_bfd, insn, loc + 4);
718 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
719 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
720 bfd_put_32 (stub_bfd, insn, loc + 8);
721 size = 12;
722 break;
724 case hppa_stub_import:
725 case hppa_stub_import_shared:
726 off = stub_entry->h->elf.plt.offset;
727 if (off >= (bfd_vma) -2)
728 abort ();
730 off &= ~ (bfd_vma) 1;
731 sym_value = (off
732 + htab->splt->output_offset
733 + htab->splt->output_section->vma
734 - elf_gp (htab->splt->output_section->owner));
736 insn = ADDIL_DP;
737 #if R19_STUBS
738 if (stub_entry->stub_type == hppa_stub_import_shared)
739 insn = ADDIL_R19;
740 #endif
741 val = hppa_field_adjust (sym_value, 0, e_lrsel),
742 insn = hppa_rebuild_insn ((int) insn, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val = hppa_field_adjust (sym_value, 0, e_rrsel);
751 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
754 if (htab->multi_subspace)
756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
757 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
758 bfd_put_32 (stub_bfd, insn, loc + 8);
760 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
761 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
762 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
763 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
765 size = 28;
767 else
769 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
770 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
771 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
772 bfd_put_32 (stub_bfd, insn, loc + 12);
774 size = 16;
777 break;
779 case hppa_stub_export:
780 /* Branches are relative. This is where we are going to. */
781 sym_value = (stub_entry->target_value
782 + stub_entry->target_section->output_offset
783 + stub_entry->target_section->output_section->vma);
785 /* And this is where we are coming from. */
786 sym_value -= (stub_entry->stub_offset
787 + stub_sec->output_offset
788 + stub_sec->output_section->vma);
790 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab->has_22bit_branch
792 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
794 (*_bfd_error_handler)
795 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 bfd_archive_filename (stub_entry->target_section->owner),
797 stub_sec->name,
798 (long) stub_entry->stub_offset,
799 stub_entry->root.string);
800 bfd_set_error (bfd_error_bad_value);
801 return FALSE;
804 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
805 if (!htab->has_22bit_branch)
806 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
807 else
808 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
809 bfd_put_32 (stub_bfd, insn, loc);
811 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
812 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
813 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
814 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
815 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
817 /* Point the function symbol at the stub. */
818 stub_entry->h->elf.root.u.def.section = stub_sec;
819 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
821 size = 24;
822 break;
824 default:
825 BFD_FAIL ();
826 return FALSE;
829 stub_sec->_raw_size += size;
830 return TRUE;
833 #undef LDIL_R1
834 #undef BE_SR4_R1
835 #undef BL_R1
836 #undef ADDIL_R1
837 #undef DEPI_R1
838 #undef LDW_R1_R21
839 #undef LDW_R1_DLT
840 #undef LDW_R1_R19
841 #undef ADDIL_R19
842 #undef LDW_R1_DP
843 #undef LDSID_R21_R1
844 #undef MTSP_R1
845 #undef BE_SR0_R21
846 #undef STW_RP
847 #undef BV_R0_R21
848 #undef BL_RP
849 #undef NOP
850 #undef LDW_RP
851 #undef LDSID_RP_R1
852 #undef BE_SR0_RP
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
857 static bfd_boolean
858 hppa_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
860 struct elf32_hppa_stub_hash_entry *stub_entry;
861 struct elf32_hppa_link_hash_table *htab;
862 int size;
864 /* Massage our args to the form they really have. */
865 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
866 htab = in_arg;
868 if (stub_entry->stub_type == hppa_stub_long_branch)
869 size = 8;
870 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
871 size = 12;
872 else if (stub_entry->stub_type == hppa_stub_export)
873 size = 24;
874 else /* hppa_stub_import or hppa_stub_import_shared. */
876 if (htab->multi_subspace)
877 size = 28;
878 else
879 size = 16;
882 stub_entry->stub_sec->_raw_size += size;
883 return TRUE;
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
889 static bfd_boolean
890 elf32_hppa_object_p (bfd *abfd)
892 Elf_Internal_Ehdr * i_ehdrp;
893 unsigned int flags;
895 i_ehdrp = elf_elfheader (abfd);
896 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
901 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
902 return FALSE;
904 else
906 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
907 return FALSE;
910 flags = i_ehdrp->e_flags;
911 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
913 case EFA_PARISC_1_0:
914 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
915 case EFA_PARISC_1_1:
916 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
917 case EFA_PARISC_2_0:
918 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
919 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
920 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
922 return TRUE;
925 /* Create the .plt and .got sections, and set up our hash table
926 short-cuts to various dynamic sections. */
928 static bfd_boolean
929 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
931 struct elf32_hppa_link_hash_table *htab;
933 /* Don't try to create the .plt and .got twice. */
934 htab = hppa_link_hash_table (info);
935 if (htab->splt != NULL)
936 return TRUE;
938 /* Call the generic code to do most of the work. */
939 if (! _bfd_elf_create_dynamic_sections (abfd, info))
940 return FALSE;
942 htab->splt = bfd_get_section_by_name (abfd, ".plt");
943 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
945 htab->sgot = bfd_get_section_by_name (abfd, ".got");
946 htab->srelgot = bfd_make_section (abfd, ".rela.got");
947 if (htab->srelgot == NULL
948 || ! bfd_set_section_flags (abfd, htab->srelgot,
949 (SEC_ALLOC
950 | SEC_LOAD
951 | SEC_HAS_CONTENTS
952 | SEC_IN_MEMORY
953 | SEC_LINKER_CREATED
954 | SEC_READONLY))
955 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
956 return FALSE;
958 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
959 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
961 return TRUE;
964 /* Copy the extra info we tack onto an elf_link_hash_entry. */
966 static void
967 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data *bed,
968 struct elf_link_hash_entry *dir,
969 struct elf_link_hash_entry *ind)
971 struct elf32_hppa_link_hash_entry *edir, *eind;
973 edir = (struct elf32_hppa_link_hash_entry *) dir;
974 eind = (struct elf32_hppa_link_hash_entry *) ind;
976 if (eind->dyn_relocs != NULL)
978 if (edir->dyn_relocs != NULL)
980 struct elf32_hppa_dyn_reloc_entry **pp;
981 struct elf32_hppa_dyn_reloc_entry *p;
983 if (ind->root.type == bfd_link_hash_indirect)
984 abort ();
986 /* Add reloc counts against the weak sym to the strong sym
987 list. Merge any entries against the same section. */
988 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
990 struct elf32_hppa_dyn_reloc_entry *q;
992 for (q = edir->dyn_relocs; q != NULL; q = q->next)
993 if (q->sec == p->sec)
995 #if RELATIVE_DYNRELOCS
996 q->relative_count += p->relative_count;
997 #endif
998 q->count += p->count;
999 *pp = p->next;
1000 break;
1002 if (q == NULL)
1003 pp = &p->next;
1005 *pp = edir->dyn_relocs;
1008 edir->dyn_relocs = eind->dyn_relocs;
1009 eind->dyn_relocs = NULL;
1012 if (ELIMINATE_COPY_RELOCS
1013 && ind->root.type != bfd_link_hash_indirect
1014 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
1015 /* If called to transfer flags for a weakdef during processing
1016 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1017 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1018 dir->elf_link_hash_flags |=
1019 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1020 | ELF_LINK_HASH_REF_REGULAR
1021 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1022 | ELF_LINK_HASH_NEEDS_PLT));
1023 else
1024 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
1027 /* Look through the relocs for a section during the first phase, and
1028 calculate needed space in the global offset table, procedure linkage
1029 table, and dynamic reloc sections. At this point we haven't
1030 necessarily read all the input files. */
1032 static bfd_boolean
1033 elf32_hppa_check_relocs (bfd *abfd,
1034 struct bfd_link_info *info,
1035 asection *sec,
1036 const Elf_Internal_Rela *relocs)
1038 Elf_Internal_Shdr *symtab_hdr;
1039 struct elf_link_hash_entry **sym_hashes;
1040 const Elf_Internal_Rela *rel;
1041 const Elf_Internal_Rela *rel_end;
1042 struct elf32_hppa_link_hash_table *htab;
1043 asection *sreloc;
1044 asection *stubreloc;
1046 if (info->relocatable)
1047 return TRUE;
1049 htab = hppa_link_hash_table (info);
1050 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1051 sym_hashes = elf_sym_hashes (abfd);
1052 sreloc = NULL;
1053 stubreloc = NULL;
1055 rel_end = relocs + sec->reloc_count;
1056 for (rel = relocs; rel < rel_end; rel++)
1058 enum {
1059 NEED_GOT = 1,
1060 NEED_PLT = 2,
1061 NEED_DYNREL = 4,
1062 PLT_PLABEL = 8
1065 unsigned int r_symndx, r_type;
1066 struct elf32_hppa_link_hash_entry *h;
1067 int need_entry;
1069 r_symndx = ELF32_R_SYM (rel->r_info);
1071 if (r_symndx < symtab_hdr->sh_info)
1072 h = NULL;
1073 else
1074 h = ((struct elf32_hppa_link_hash_entry *)
1075 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1077 r_type = ELF32_R_TYPE (rel->r_info);
1079 switch (r_type)
1081 case R_PARISC_DLTIND14F:
1082 case R_PARISC_DLTIND14R:
1083 case R_PARISC_DLTIND21L:
1084 /* This symbol requires a global offset table entry. */
1085 need_entry = NEED_GOT;
1086 break;
1088 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1089 case R_PARISC_PLABEL21L:
1090 case R_PARISC_PLABEL32:
1091 /* If the addend is non-zero, we break badly. */
1092 if (rel->r_addend != 0)
1093 abort ();
1095 /* If we are creating a shared library, then we need to
1096 create a PLT entry for all PLABELs, because PLABELs with
1097 local symbols may be passed via a pointer to another
1098 object. Additionally, output a dynamic relocation
1099 pointing to the PLT entry.
1100 For executables, the original 32-bit ABI allowed two
1101 different styles of PLABELs (function pointers): For
1102 global functions, the PLABEL word points into the .plt
1103 two bytes past a (function address, gp) pair, and for
1104 local functions the PLABEL points directly at the
1105 function. The magic +2 for the first type allows us to
1106 differentiate between the two. As you can imagine, this
1107 is a real pain when it comes to generating code to call
1108 functions indirectly or to compare function pointers.
1109 We avoid the mess by always pointing a PLABEL into the
1110 .plt, even for local functions. */
1111 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1112 break;
1114 case R_PARISC_PCREL12F:
1115 htab->has_12bit_branch = 1;
1116 goto branch_common;
1118 case R_PARISC_PCREL17C:
1119 case R_PARISC_PCREL17F:
1120 htab->has_17bit_branch = 1;
1121 goto branch_common;
1123 case R_PARISC_PCREL22F:
1124 htab->has_22bit_branch = 1;
1125 branch_common:
1126 /* Function calls might need to go through the .plt, and
1127 might require long branch stubs. */
1128 if (h == NULL)
1130 /* We know local syms won't need a .plt entry, and if
1131 they need a long branch stub we can't guarantee that
1132 we can reach the stub. So just flag an error later
1133 if we're doing a shared link and find we need a long
1134 branch stub. */
1135 continue;
1137 else
1139 /* Global symbols will need a .plt entry if they remain
1140 global, and in most cases won't need a long branch
1141 stub. Unfortunately, we have to cater for the case
1142 where a symbol is forced local by versioning, or due
1143 to symbolic linking, and we lose the .plt entry. */
1144 need_entry = NEED_PLT;
1145 if (h->elf.type == STT_PARISC_MILLI)
1146 need_entry = 0;
1148 break;
1150 case R_PARISC_SEGBASE: /* Used to set segment base. */
1151 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1152 case R_PARISC_PCREL14F: /* PC relative load/store. */
1153 case R_PARISC_PCREL14R:
1154 case R_PARISC_PCREL17R: /* External branches. */
1155 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1156 case R_PARISC_PCREL32:
1157 /* We don't need to propagate the relocation if linking a
1158 shared object since these are section relative. */
1159 continue;
1161 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1162 case R_PARISC_DPREL14R:
1163 case R_PARISC_DPREL21L:
1164 if (info->shared)
1166 (*_bfd_error_handler)
1167 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1168 bfd_archive_filename (abfd),
1169 elf_hppa_howto_table[r_type].name);
1170 bfd_set_error (bfd_error_bad_value);
1171 return FALSE;
1173 /* Fall through. */
1175 case R_PARISC_DIR17F: /* Used for external branches. */
1176 case R_PARISC_DIR17R:
1177 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1178 case R_PARISC_DIR14R:
1179 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1180 #if 0
1181 /* Help debug shared library creation. Any of the above
1182 relocs can be used in shared libs, but they may cause
1183 pages to become unshared. */
1184 if (info->shared)
1186 (*_bfd_error_handler)
1187 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1188 bfd_archive_filename (abfd),
1189 elf_hppa_howto_table[r_type].name);
1191 /* Fall through. */
1192 #endif
1194 case R_PARISC_DIR32: /* .word relocs. */
1195 /* We may want to output a dynamic relocation later. */
1196 need_entry = NEED_DYNREL;
1197 break;
1199 /* This relocation describes the C++ object vtable hierarchy.
1200 Reconstruct it for later use during GC. */
1201 case R_PARISC_GNU_VTINHERIT:
1202 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1203 &h->elf, rel->r_offset))
1204 return FALSE;
1205 continue;
1207 /* This relocation describes which C++ vtable entries are actually
1208 used. Record for later use during GC. */
1209 case R_PARISC_GNU_VTENTRY:
1210 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1211 &h->elf, rel->r_addend))
1212 return FALSE;
1213 continue;
1215 default:
1216 continue;
1219 /* Now carry out our orders. */
1220 if (need_entry & NEED_GOT)
1222 /* Allocate space for a GOT entry, as well as a dynamic
1223 relocation for this entry. */
1224 if (htab->sgot == NULL)
1226 if (htab->elf.dynobj == NULL)
1227 htab->elf.dynobj = abfd;
1228 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1229 return FALSE;
1232 if (h != NULL)
1234 h->elf.got.refcount += 1;
1236 else
1238 bfd_signed_vma *local_got_refcounts;
1240 /* This is a global offset table entry for a local symbol. */
1241 local_got_refcounts = elf_local_got_refcounts (abfd);
1242 if (local_got_refcounts == NULL)
1244 bfd_size_type size;
1246 /* Allocate space for local got offsets and local
1247 plt offsets. Done this way to save polluting
1248 elf_obj_tdata with another target specific
1249 pointer. */
1250 size = symtab_hdr->sh_info;
1251 size *= 2 * sizeof (bfd_signed_vma);
1252 local_got_refcounts = bfd_zalloc (abfd, size);
1253 if (local_got_refcounts == NULL)
1254 return FALSE;
1255 elf_local_got_refcounts (abfd) = local_got_refcounts;
1257 local_got_refcounts[r_symndx] += 1;
1261 if (need_entry & NEED_PLT)
1263 /* If we are creating a shared library, and this is a reloc
1264 against a weak symbol or a global symbol in a dynamic
1265 object, then we will be creating an import stub and a
1266 .plt entry for the symbol. Similarly, on a normal link
1267 to symbols defined in a dynamic object we'll need the
1268 import stub and a .plt entry. We don't know yet whether
1269 the symbol is defined or not, so make an entry anyway and
1270 clean up later in adjust_dynamic_symbol. */
1271 if ((sec->flags & SEC_ALLOC) != 0)
1273 if (h != NULL)
1275 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1276 h->elf.plt.refcount += 1;
1278 /* If this .plt entry is for a plabel, mark it so
1279 that adjust_dynamic_symbol will keep the entry
1280 even if it appears to be local. */
1281 if (need_entry & PLT_PLABEL)
1282 h->plabel = 1;
1284 else if (need_entry & PLT_PLABEL)
1286 bfd_signed_vma *local_got_refcounts;
1287 bfd_signed_vma *local_plt_refcounts;
1289 local_got_refcounts = elf_local_got_refcounts (abfd);
1290 if (local_got_refcounts == NULL)
1292 bfd_size_type size;
1294 /* Allocate space for local got offsets and local
1295 plt offsets. */
1296 size = symtab_hdr->sh_info;
1297 size *= 2 * sizeof (bfd_signed_vma);
1298 local_got_refcounts = bfd_zalloc (abfd, size);
1299 if (local_got_refcounts == NULL)
1300 return FALSE;
1301 elf_local_got_refcounts (abfd) = local_got_refcounts;
1303 local_plt_refcounts = (local_got_refcounts
1304 + symtab_hdr->sh_info);
1305 local_plt_refcounts[r_symndx] += 1;
1310 if (need_entry & NEED_DYNREL)
1312 /* Flag this symbol as having a non-got, non-plt reference
1313 so that we generate copy relocs if it turns out to be
1314 dynamic. */
1315 if (h != NULL && !info->shared)
1316 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1318 /* If we are creating a shared library then we need to copy
1319 the reloc into the shared library. However, if we are
1320 linking with -Bsymbolic, we need only copy absolute
1321 relocs or relocs against symbols that are not defined in
1322 an object we are including in the link. PC- or DP- or
1323 DLT-relative relocs against any local sym or global sym
1324 with DEF_REGULAR set, can be discarded. At this point we
1325 have not seen all the input files, so it is possible that
1326 DEF_REGULAR is not set now but will be set later (it is
1327 never cleared). We account for that possibility below by
1328 storing information in the dyn_relocs field of the
1329 hash table entry.
1331 A similar situation to the -Bsymbolic case occurs when
1332 creating shared libraries and symbol visibility changes
1333 render the symbol local.
1335 As it turns out, all the relocs we will be creating here
1336 are absolute, so we cannot remove them on -Bsymbolic
1337 links or visibility changes anyway. A STUB_REL reloc
1338 is absolute too, as in that case it is the reloc in the
1339 stub we will be creating, rather than copying the PCREL
1340 reloc in the branch.
1342 If on the other hand, we are creating an executable, we
1343 may need to keep relocations for symbols satisfied by a
1344 dynamic library if we manage to avoid copy relocs for the
1345 symbol. */
1346 if ((info->shared
1347 && (sec->flags & SEC_ALLOC) != 0
1348 && (IS_ABSOLUTE_RELOC (r_type)
1349 || (h != NULL
1350 && (!info->symbolic
1351 || h->elf.root.type == bfd_link_hash_defweak
1352 || (h->elf.elf_link_hash_flags
1353 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1354 || (ELIMINATE_COPY_RELOCS
1355 && !info->shared
1356 && (sec->flags & SEC_ALLOC) != 0
1357 && h != NULL
1358 && (h->elf.root.type == bfd_link_hash_defweak
1359 || (h->elf.elf_link_hash_flags
1360 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1362 struct elf32_hppa_dyn_reloc_entry *p;
1363 struct elf32_hppa_dyn_reloc_entry **head;
1365 /* Create a reloc section in dynobj and make room for
1366 this reloc. */
1367 if (sreloc == NULL)
1369 char *name;
1370 bfd *dynobj;
1372 name = (bfd_elf_string_from_elf_section
1373 (abfd,
1374 elf_elfheader (abfd)->e_shstrndx,
1375 elf_section_data (sec)->rel_hdr.sh_name));
1376 if (name == NULL)
1378 (*_bfd_error_handler)
1379 (_("Could not find relocation section for %s"),
1380 sec->name);
1381 bfd_set_error (bfd_error_bad_value);
1382 return FALSE;
1385 if (htab->elf.dynobj == NULL)
1386 htab->elf.dynobj = abfd;
1388 dynobj = htab->elf.dynobj;
1389 sreloc = bfd_get_section_by_name (dynobj, name);
1390 if (sreloc == NULL)
1392 flagword flags;
1394 sreloc = bfd_make_section (dynobj, name);
1395 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1396 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1397 if ((sec->flags & SEC_ALLOC) != 0)
1398 flags |= SEC_ALLOC | SEC_LOAD;
1399 if (sreloc == NULL
1400 || !bfd_set_section_flags (dynobj, sreloc, flags)
1401 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1402 return FALSE;
1405 elf_section_data (sec)->sreloc = sreloc;
1408 /* If this is a global symbol, we count the number of
1409 relocations we need for this symbol. */
1410 if (h != NULL)
1412 head = &h->dyn_relocs;
1414 else
1416 /* Track dynamic relocs needed for local syms too.
1417 We really need local syms available to do this
1418 easily. Oh well. */
1420 asection *s;
1421 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1422 sec, r_symndx);
1423 if (s == NULL)
1424 return FALSE;
1426 head = ((struct elf32_hppa_dyn_reloc_entry **)
1427 &elf_section_data (s)->local_dynrel);
1430 p = *head;
1431 if (p == NULL || p->sec != sec)
1433 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
1434 if (p == NULL)
1435 return FALSE;
1436 p->next = *head;
1437 *head = p;
1438 p->sec = sec;
1439 p->count = 0;
1440 #if RELATIVE_DYNRELOCS
1441 p->relative_count = 0;
1442 #endif
1445 p->count += 1;
1446 #if RELATIVE_DYNRELOCS
1447 if (!IS_ABSOLUTE_RELOC (rtype))
1448 p->relative_count += 1;
1449 #endif
1454 return TRUE;
1457 /* Return the section that should be marked against garbage collection
1458 for a given relocation. */
1460 static asection *
1461 elf32_hppa_gc_mark_hook (asection *sec,
1462 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1463 Elf_Internal_Rela *rel,
1464 struct elf_link_hash_entry *h,
1465 Elf_Internal_Sym *sym)
1467 if (h != NULL)
1469 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1471 case R_PARISC_GNU_VTINHERIT:
1472 case R_PARISC_GNU_VTENTRY:
1473 break;
1475 default:
1476 switch (h->root.type)
1478 case bfd_link_hash_defined:
1479 case bfd_link_hash_defweak:
1480 return h->root.u.def.section;
1482 case bfd_link_hash_common:
1483 return h->root.u.c.p->section;
1485 default:
1486 break;
1490 else
1491 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1493 return NULL;
1496 /* Update the got and plt entry reference counts for the section being
1497 removed. */
1499 static bfd_boolean
1500 elf32_hppa_gc_sweep_hook (bfd *abfd,
1501 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 asection *sec,
1503 const Elf_Internal_Rela *relocs)
1505 Elf_Internal_Shdr *symtab_hdr;
1506 struct elf_link_hash_entry **sym_hashes;
1507 bfd_signed_vma *local_got_refcounts;
1508 bfd_signed_vma *local_plt_refcounts;
1509 const Elf_Internal_Rela *rel, *relend;
1511 elf_section_data (sec)->local_dynrel = NULL;
1513 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1514 sym_hashes = elf_sym_hashes (abfd);
1515 local_got_refcounts = elf_local_got_refcounts (abfd);
1516 local_plt_refcounts = local_got_refcounts;
1517 if (local_plt_refcounts != NULL)
1518 local_plt_refcounts += symtab_hdr->sh_info;
1520 relend = relocs + sec->reloc_count;
1521 for (rel = relocs; rel < relend; rel++)
1523 unsigned long r_symndx;
1524 unsigned int r_type;
1525 struct elf_link_hash_entry *h = NULL;
1527 r_symndx = ELF32_R_SYM (rel->r_info);
1528 if (r_symndx >= symtab_hdr->sh_info)
1530 struct elf32_hppa_link_hash_entry *eh;
1531 struct elf32_hppa_dyn_reloc_entry **pp;
1532 struct elf32_hppa_dyn_reloc_entry *p;
1534 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1535 eh = (struct elf32_hppa_link_hash_entry *) h;
1537 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1538 if (p->sec == sec)
1540 /* Everything must go for SEC. */
1541 *pp = p->next;
1542 break;
1546 r_type = ELF32_R_TYPE (rel->r_info);
1547 switch (r_type)
1549 case R_PARISC_DLTIND14F:
1550 case R_PARISC_DLTIND14R:
1551 case R_PARISC_DLTIND21L:
1552 if (h != NULL)
1554 if (h->got.refcount > 0)
1555 h->got.refcount -= 1;
1557 else if (local_got_refcounts != NULL)
1559 if (local_got_refcounts[r_symndx] > 0)
1560 local_got_refcounts[r_symndx] -= 1;
1562 break;
1564 case R_PARISC_PCREL12F:
1565 case R_PARISC_PCREL17C:
1566 case R_PARISC_PCREL17F:
1567 case R_PARISC_PCREL22F:
1568 if (h != NULL)
1570 if (h->plt.refcount > 0)
1571 h->plt.refcount -= 1;
1573 break;
1575 case R_PARISC_PLABEL14R:
1576 case R_PARISC_PLABEL21L:
1577 case R_PARISC_PLABEL32:
1578 if (h != NULL)
1580 if (h->plt.refcount > 0)
1581 h->plt.refcount -= 1;
1583 else if (local_plt_refcounts != NULL)
1585 if (local_plt_refcounts[r_symndx] > 0)
1586 local_plt_refcounts[r_symndx] -= 1;
1588 break;
1590 default:
1591 break;
1595 return TRUE;
1598 /* Our own version of hide_symbol, so that we can keep plt entries for
1599 plabels. */
1601 static void
1602 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1603 struct elf_link_hash_entry *h,
1604 bfd_boolean force_local)
1606 if (force_local)
1608 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1609 if (h->dynindx != -1)
1611 h->dynindx = -1;
1612 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1613 h->dynstr_index);
1617 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1619 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1620 h->plt.offset = (bfd_vma) -1;
1624 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1625 will be called from elflink.h. If elflink.h doesn't call our
1626 finish_dynamic_symbol routine, we'll need to do something about
1627 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1628 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1629 ((DYN) \
1630 && ((INFO)->shared \
1631 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1632 && ((H)->dynindx != -1 \
1633 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1635 /* Adjust a symbol defined by a dynamic object and referenced by a
1636 regular object. The current definition is in some section of the
1637 dynamic object, but we're not including those sections. We have to
1638 change the definition to something the rest of the link can
1639 understand. */
1641 static bfd_boolean
1642 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1643 struct elf_link_hash_entry *h)
1645 struct elf32_hppa_link_hash_table *htab;
1646 asection *s;
1647 unsigned int power_of_two;
1649 /* If this is a function, put it in the procedure linkage table. We
1650 will fill in the contents of the procedure linkage table later. */
1651 if (h->type == STT_FUNC
1652 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1654 if (h->plt.refcount <= 0
1655 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1656 && h->root.type != bfd_link_hash_defweak
1657 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1658 && (!info->shared || info->symbolic)))
1660 /* The .plt entry is not needed when:
1661 a) Garbage collection has removed all references to the
1662 symbol, or
1663 b) We know for certain the symbol is defined in this
1664 object, and it's not a weak definition, nor is the symbol
1665 used by a plabel relocation. Either this object is the
1666 application or we are doing a shared symbolic link. */
1668 h->plt.offset = (bfd_vma) -1;
1669 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1672 return TRUE;
1674 else
1675 h->plt.offset = (bfd_vma) -1;
1677 /* If this is a weak symbol, and there is a real definition, the
1678 processor independent code will have arranged for us to see the
1679 real definition first, and we can just use the same value. */
1680 if (h->weakdef != NULL)
1682 if (h->weakdef->root.type != bfd_link_hash_defined
1683 && h->weakdef->root.type != bfd_link_hash_defweak)
1684 abort ();
1685 h->root.u.def.section = h->weakdef->root.u.def.section;
1686 h->root.u.def.value = h->weakdef->root.u.def.value;
1687 if (ELIMINATE_COPY_RELOCS)
1688 h->elf_link_hash_flags
1689 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1690 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1691 return TRUE;
1694 /* This is a reference to a symbol defined by a dynamic object which
1695 is not a function. */
1697 /* If we are creating a shared library, we must presume that the
1698 only references to the symbol are via the global offset table.
1699 For such cases we need not do anything here; the relocations will
1700 be handled correctly by relocate_section. */
1701 if (info->shared)
1702 return TRUE;
1704 /* If there are no references to this symbol that do not use the
1705 GOT, we don't need to generate a copy reloc. */
1706 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1707 return TRUE;
1709 if (ELIMINATE_COPY_RELOCS)
1711 struct elf32_hppa_link_hash_entry *eh;
1712 struct elf32_hppa_dyn_reloc_entry *p;
1714 eh = (struct elf32_hppa_link_hash_entry *) h;
1715 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1717 s = p->sec->output_section;
1718 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1719 break;
1722 /* If we didn't find any dynamic relocs in read-only sections, then
1723 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1724 if (p == NULL)
1726 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1727 return TRUE;
1731 /* We must allocate the symbol in our .dynbss section, which will
1732 become part of the .bss section of the executable. There will be
1733 an entry for this symbol in the .dynsym section. The dynamic
1734 object will contain position independent code, so all references
1735 from the dynamic object to this symbol will go through the global
1736 offset table. The dynamic linker will use the .dynsym entry to
1737 determine the address it must put in the global offset table, so
1738 both the dynamic object and the regular object will refer to the
1739 same memory location for the variable. */
1741 htab = hppa_link_hash_table (info);
1743 /* We must generate a COPY reloc to tell the dynamic linker to
1744 copy the initial value out of the dynamic object and into the
1745 runtime process image. */
1746 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1748 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1749 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1752 /* We need to figure out the alignment required for this symbol. I
1753 have no idea how other ELF linkers handle this. */
1755 power_of_two = bfd_log2 (h->size);
1756 if (power_of_two > 3)
1757 power_of_two = 3;
1759 /* Apply the required alignment. */
1760 s = htab->sdynbss;
1761 s->_raw_size = BFD_ALIGN (s->_raw_size,
1762 (bfd_size_type) (1 << power_of_two));
1763 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1765 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1766 return FALSE;
1769 /* Define the symbol as being at this point in the section. */
1770 h->root.u.def.section = s;
1771 h->root.u.def.value = s->_raw_size;
1773 /* Increment the section size to make room for the symbol. */
1774 s->_raw_size += h->size;
1776 return TRUE;
1779 /* Allocate space in the .plt for entries that won't have relocations.
1780 ie. plabel entries. */
1782 static bfd_boolean
1783 allocate_plt_static (struct elf_link_hash_entry *h, void *inf)
1785 struct bfd_link_info *info;
1786 struct elf32_hppa_link_hash_table *htab;
1787 asection *s;
1789 if (h->root.type == bfd_link_hash_indirect)
1790 return TRUE;
1792 if (h->root.type == bfd_link_hash_warning)
1793 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1795 info = inf;
1796 htab = hppa_link_hash_table (info);
1797 if (htab->elf.dynamic_sections_created
1798 && h->plt.refcount > 0)
1800 /* Make sure this symbol is output as a dynamic symbol.
1801 Undefined weak syms won't yet be marked as dynamic. */
1802 if (h->dynindx == -1
1803 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1804 && h->type != STT_PARISC_MILLI)
1806 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1807 return FALSE;
1810 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1812 /* Allocate these later. From this point on, h->plabel
1813 means that the plt entry is only used by a plabel.
1814 We'll be using a normal plt entry for this symbol, so
1815 clear the plabel indicator. */
1816 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
1818 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
1820 /* Make an entry in the .plt section for plabel references
1821 that won't have a .plt entry for other reasons. */
1822 s = htab->splt;
1823 h->plt.offset = s->_raw_size;
1824 s->_raw_size += PLT_ENTRY_SIZE;
1826 else
1828 /* No .plt entry needed. */
1829 h->plt.offset = (bfd_vma) -1;
1830 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1833 else
1835 h->plt.offset = (bfd_vma) -1;
1836 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1839 return TRUE;
1842 /* Allocate space in .plt, .got and associated reloc sections for
1843 global syms. */
1845 static bfd_boolean
1846 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
1848 struct bfd_link_info *info;
1849 struct elf32_hppa_link_hash_table *htab;
1850 asection *s;
1851 struct elf32_hppa_link_hash_entry *eh;
1852 struct elf32_hppa_dyn_reloc_entry *p;
1854 if (h->root.type == bfd_link_hash_indirect)
1855 return TRUE;
1857 if (h->root.type == bfd_link_hash_warning)
1858 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1860 info = inf;
1861 htab = hppa_link_hash_table (info);
1862 if (htab->elf.dynamic_sections_created
1863 && h->plt.offset != (bfd_vma) -1
1864 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
1866 /* Make an entry in the .plt section. */
1867 s = htab->splt;
1868 h->plt.offset = s->_raw_size;
1869 s->_raw_size += PLT_ENTRY_SIZE;
1871 /* We also need to make an entry in the .rela.plt section. */
1872 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
1873 htab->need_plt_stub = 1;
1876 if (h->got.refcount > 0)
1878 /* Make sure this symbol is output as a dynamic symbol.
1879 Undefined weak syms won't yet be marked as dynamic. */
1880 if (h->dynindx == -1
1881 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1882 && h->type != STT_PARISC_MILLI)
1884 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1885 return FALSE;
1888 s = htab->sgot;
1889 h->got.offset = s->_raw_size;
1890 s->_raw_size += GOT_ENTRY_SIZE;
1891 if (htab->elf.dynamic_sections_created
1892 && (info->shared
1893 || (h->dynindx != -1
1894 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
1896 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
1899 else
1900 h->got.offset = (bfd_vma) -1;
1902 eh = (struct elf32_hppa_link_hash_entry *) h;
1903 if (eh->dyn_relocs == NULL)
1904 return TRUE;
1906 /* If this is a -Bsymbolic shared link, then we need to discard all
1907 space allocated for dynamic pc-relative relocs against symbols
1908 defined in a regular object. For the normal shared case, discard
1909 space for relocs that have become local due to symbol visibility
1910 changes. */
1911 if (info->shared)
1913 #if RELATIVE_DYNRELOCS
1914 if (SYMBOL_CALLS_LOCAL (info, h))
1916 struct elf32_hppa_dyn_reloc_entry **pp;
1918 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1920 p->count -= p->relative_count;
1921 p->relative_count = 0;
1922 if (p->count == 0)
1923 *pp = p->next;
1924 else
1925 pp = &p->next;
1928 #endif
1930 /* Also discard relocs on undefined weak syms with non-default
1931 visibility. */
1932 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1933 && h->root.type == bfd_link_hash_undefweak)
1934 eh->dyn_relocs = NULL;
1936 else
1938 /* For the non-shared case, discard space for relocs against
1939 symbols which turn out to need copy relocs or are not
1940 dynamic. */
1941 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1942 && ((ELIMINATE_COPY_RELOCS
1943 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1944 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1945 || (htab->elf.dynamic_sections_created
1946 && (h->root.type == bfd_link_hash_undefweak
1947 || h->root.type == bfd_link_hash_undefined))))
1949 /* Make sure this symbol is output as a dynamic symbol.
1950 Undefined weak syms won't yet be marked as dynamic. */
1951 if (h->dynindx == -1
1952 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
1953 && h->type != STT_PARISC_MILLI)
1955 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1956 return FALSE;
1959 /* If that succeeded, we know we'll be keeping all the
1960 relocs. */
1961 if (h->dynindx != -1)
1962 goto keep;
1965 eh->dyn_relocs = NULL;
1966 return TRUE;
1968 keep: ;
1971 /* Finally, allocate space. */
1972 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1974 asection *sreloc = elf_section_data (p->sec)->sreloc;
1975 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
1978 return TRUE;
1981 /* This function is called via elf_link_hash_traverse to force
1982 millicode symbols local so they do not end up as globals in the
1983 dynamic symbol table. We ought to be able to do this in
1984 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1985 for all dynamic symbols. Arguably, this is a bug in
1986 elf_adjust_dynamic_symbol. */
1988 static bfd_boolean
1989 clobber_millicode_symbols (struct elf_link_hash_entry *h,
1990 struct bfd_link_info *info)
1992 if (h->root.type == bfd_link_hash_warning)
1993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1995 if (h->type == STT_PARISC_MILLI
1996 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1998 elf32_hppa_hide_symbol (info, h, TRUE);
2000 return TRUE;
2003 /* Find any dynamic relocs that apply to read-only sections. */
2005 static bfd_boolean
2006 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2008 struct elf32_hppa_link_hash_entry *eh;
2009 struct elf32_hppa_dyn_reloc_entry *p;
2011 if (h->root.type == bfd_link_hash_warning)
2012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2014 eh = (struct elf32_hppa_link_hash_entry *) h;
2015 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2017 asection *s = p->sec->output_section;
2019 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2021 struct bfd_link_info *info = inf;
2023 info->flags |= DF_TEXTREL;
2025 /* Not an error, just cut short the traversal. */
2026 return FALSE;
2029 return TRUE;
2032 /* Set the sizes of the dynamic sections. */
2034 static bfd_boolean
2035 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2036 struct bfd_link_info *info)
2038 struct elf32_hppa_link_hash_table *htab;
2039 bfd *dynobj;
2040 bfd *ibfd;
2041 asection *s;
2042 bfd_boolean relocs;
2044 htab = hppa_link_hash_table (info);
2045 dynobj = htab->elf.dynobj;
2046 if (dynobj == NULL)
2047 abort ();
2049 if (htab->elf.dynamic_sections_created)
2051 /* Set the contents of the .interp section to the interpreter. */
2052 if (info->executable)
2054 s = bfd_get_section_by_name (dynobj, ".interp");
2055 if (s == NULL)
2056 abort ();
2057 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2058 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2061 /* Force millicode symbols local. */
2062 elf_link_hash_traverse (&htab->elf,
2063 clobber_millicode_symbols,
2064 info);
2067 /* Set up .got and .plt offsets for local syms, and space for local
2068 dynamic relocs. */
2069 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2071 bfd_signed_vma *local_got;
2072 bfd_signed_vma *end_local_got;
2073 bfd_signed_vma *local_plt;
2074 bfd_signed_vma *end_local_plt;
2075 bfd_size_type locsymcount;
2076 Elf_Internal_Shdr *symtab_hdr;
2077 asection *srel;
2079 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2080 continue;
2082 for (s = ibfd->sections; s != NULL; s = s->next)
2084 struct elf32_hppa_dyn_reloc_entry *p;
2086 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2087 elf_section_data (s)->local_dynrel);
2088 p != NULL;
2089 p = p->next)
2091 if (!bfd_is_abs_section (p->sec)
2092 && bfd_is_abs_section (p->sec->output_section))
2094 /* Input section has been discarded, either because
2095 it is a copy of a linkonce section or due to
2096 linker script /DISCARD/, so we'll be discarding
2097 the relocs too. */
2099 else if (p->count != 0)
2101 srel = elf_section_data (p->sec)->sreloc;
2102 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2103 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2104 info->flags |= DF_TEXTREL;
2109 local_got = elf_local_got_refcounts (ibfd);
2110 if (!local_got)
2111 continue;
2113 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2114 locsymcount = symtab_hdr->sh_info;
2115 end_local_got = local_got + locsymcount;
2116 s = htab->sgot;
2117 srel = htab->srelgot;
2118 for (; local_got < end_local_got; ++local_got)
2120 if (*local_got > 0)
2122 *local_got = s->_raw_size;
2123 s->_raw_size += GOT_ENTRY_SIZE;
2124 if (info->shared)
2125 srel->_raw_size += sizeof (Elf32_External_Rela);
2127 else
2128 *local_got = (bfd_vma) -1;
2131 local_plt = end_local_got;
2132 end_local_plt = local_plt + locsymcount;
2133 if (! htab->elf.dynamic_sections_created)
2135 /* Won't be used, but be safe. */
2136 for (; local_plt < end_local_plt; ++local_plt)
2137 *local_plt = (bfd_vma) -1;
2139 else
2141 s = htab->splt;
2142 srel = htab->srelplt;
2143 for (; local_plt < end_local_plt; ++local_plt)
2145 if (*local_plt > 0)
2147 *local_plt = s->_raw_size;
2148 s->_raw_size += PLT_ENTRY_SIZE;
2149 if (info->shared)
2150 srel->_raw_size += sizeof (Elf32_External_Rela);
2152 else
2153 *local_plt = (bfd_vma) -1;
2158 /* Do all the .plt entries without relocs first. The dynamic linker
2159 uses the last .plt reloc to find the end of the .plt (and hence
2160 the start of the .got) for lazy linking. */
2161 elf_link_hash_traverse (&htab->elf, allocate_plt_static, info);
2163 /* Allocate global sym .plt and .got entries, and space for global
2164 sym dynamic relocs. */
2165 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
2167 /* The check_relocs and adjust_dynamic_symbol entry points have
2168 determined the sizes of the various dynamic sections. Allocate
2169 memory for them. */
2170 relocs = FALSE;
2171 for (s = dynobj->sections; s != NULL; s = s->next)
2173 if ((s->flags & SEC_LINKER_CREATED) == 0)
2174 continue;
2176 if (s == htab->splt)
2178 if (htab->need_plt_stub)
2180 /* Make space for the plt stub at the end of the .plt
2181 section. We want this stub right at the end, up
2182 against the .got section. */
2183 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2184 int pltalign = bfd_section_alignment (dynobj, s);
2185 bfd_size_type mask;
2187 if (gotalign > pltalign)
2188 bfd_set_section_alignment (dynobj, s, gotalign);
2189 mask = ((bfd_size_type) 1 << gotalign) - 1;
2190 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2193 else if (s == htab->sgot)
2195 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2197 if (s->_raw_size != 0)
2199 /* Remember whether there are any reloc sections other
2200 than .rela.plt. */
2201 if (s != htab->srelplt)
2202 relocs = TRUE;
2204 /* We use the reloc_count field as a counter if we need
2205 to copy relocs into the output file. */
2206 s->reloc_count = 0;
2209 else
2211 /* It's not one of our sections, so don't allocate space. */
2212 continue;
2215 if (s->_raw_size == 0)
2217 /* If we don't need this section, strip it from the
2218 output file. This is mostly to handle .rela.bss and
2219 .rela.plt. We must create both sections in
2220 create_dynamic_sections, because they must be created
2221 before the linker maps input sections to output
2222 sections. The linker does that before
2223 adjust_dynamic_symbol is called, and it is that
2224 function which decides whether anything needs to go
2225 into these sections. */
2226 _bfd_strip_section_from_output (info, s);
2227 continue;
2230 /* Allocate memory for the section contents. Zero it, because
2231 we may not fill in all the reloc sections. */
2232 s->contents = bfd_zalloc (dynobj, s->_raw_size);
2233 if (s->contents == NULL && s->_raw_size != 0)
2234 return FALSE;
2237 if (htab->elf.dynamic_sections_created)
2239 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2240 actually has nothing to do with the PLT, it is how we
2241 communicate the LTP value of a load module to the dynamic
2242 linker. */
2243 #define add_dynamic_entry(TAG, VAL) \
2244 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2246 if (!add_dynamic_entry (DT_PLTGOT, 0))
2247 return FALSE;
2249 /* Add some entries to the .dynamic section. We fill in the
2250 values later, in elf32_hppa_finish_dynamic_sections, but we
2251 must add the entries now so that we get the correct size for
2252 the .dynamic section. The DT_DEBUG entry is filled in by the
2253 dynamic linker and used by the debugger. */
2254 if (!info->shared)
2256 if (!add_dynamic_entry (DT_DEBUG, 0))
2257 return FALSE;
2260 if (htab->srelplt->_raw_size != 0)
2262 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2263 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2264 || !add_dynamic_entry (DT_JMPREL, 0))
2265 return FALSE;
2268 if (relocs)
2270 if (!add_dynamic_entry (DT_RELA, 0)
2271 || !add_dynamic_entry (DT_RELASZ, 0)
2272 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2273 return FALSE;
2275 /* If any dynamic relocs apply to a read-only section,
2276 then we need a DT_TEXTREL entry. */
2277 if ((info->flags & DF_TEXTREL) == 0)
2278 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
2280 if ((info->flags & DF_TEXTREL) != 0)
2282 if (!add_dynamic_entry (DT_TEXTREL, 0))
2283 return FALSE;
2287 #undef add_dynamic_entry
2289 return TRUE;
2292 /* External entry points for sizing and building linker stubs. */
2294 /* Set up various things so that we can make a list of input sections
2295 for each output section included in the link. Returns -1 on error,
2296 0 when no stubs will be needed, and 1 on success. */
2299 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2301 bfd *input_bfd;
2302 unsigned int bfd_count;
2303 int top_id, top_index;
2304 asection *section;
2305 asection **input_list, **list;
2306 bfd_size_type amt;
2307 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2309 /* Count the number of input BFDs and find the top input section id. */
2310 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2311 input_bfd != NULL;
2312 input_bfd = input_bfd->link_next)
2314 bfd_count += 1;
2315 for (section = input_bfd->sections;
2316 section != NULL;
2317 section = section->next)
2319 if (top_id < section->id)
2320 top_id = section->id;
2323 htab->bfd_count = bfd_count;
2325 amt = sizeof (struct map_stub) * (top_id + 1);
2326 htab->stub_group = bfd_zmalloc (amt);
2327 if (htab->stub_group == NULL)
2328 return -1;
2330 /* We can't use output_bfd->section_count here to find the top output
2331 section index as some sections may have been removed, and
2332 _bfd_strip_section_from_output doesn't renumber the indices. */
2333 for (section = output_bfd->sections, top_index = 0;
2334 section != NULL;
2335 section = section->next)
2337 if (top_index < section->index)
2338 top_index = section->index;
2341 htab->top_index = top_index;
2342 amt = sizeof (asection *) * (top_index + 1);
2343 input_list = bfd_malloc (amt);
2344 htab->input_list = input_list;
2345 if (input_list == NULL)
2346 return -1;
2348 /* For sections we aren't interested in, mark their entries with a
2349 value we can check later. */
2350 list = input_list + top_index;
2352 *list = bfd_abs_section_ptr;
2353 while (list-- != input_list);
2355 for (section = output_bfd->sections;
2356 section != NULL;
2357 section = section->next)
2359 if ((section->flags & SEC_CODE) != 0)
2360 input_list[section->index] = NULL;
2363 return 1;
2366 /* The linker repeatedly calls this function for each input section,
2367 in the order that input sections are linked into output sections.
2368 Build lists of input sections to determine groupings between which
2369 we may insert linker stubs. */
2371 void
2372 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2374 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2376 if (isec->output_section->index <= htab->top_index)
2378 asection **list = htab->input_list + isec->output_section->index;
2379 if (*list != bfd_abs_section_ptr)
2381 /* Steal the link_sec pointer for our list. */
2382 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2383 /* This happens to make the list in reverse order,
2384 which is what we want. */
2385 PREV_SEC (isec) = *list;
2386 *list = isec;
2391 /* See whether we can group stub sections together. Grouping stub
2392 sections may result in fewer stubs. More importantly, we need to
2393 put all .init* and .fini* stubs at the beginning of the .init or
2394 .fini output sections respectively, because glibc splits the
2395 _init and _fini functions into multiple parts. Putting a stub in
2396 the middle of a function is not a good idea. */
2398 static void
2399 group_sections (struct elf32_hppa_link_hash_table *htab,
2400 bfd_size_type stub_group_size,
2401 bfd_boolean stubs_always_before_branch)
2403 asection **list = htab->input_list + htab->top_index;
2406 asection *tail = *list;
2407 if (tail == bfd_abs_section_ptr)
2408 continue;
2409 while (tail != NULL)
2411 asection *curr;
2412 asection *prev;
2413 bfd_size_type total;
2414 bfd_boolean big_sec;
2416 curr = tail;
2417 if (tail->_cooked_size)
2418 total = tail->_cooked_size;
2419 else
2420 total = tail->_raw_size;
2421 big_sec = total >= stub_group_size;
2423 while ((prev = PREV_SEC (curr)) != NULL
2424 && ((total += curr->output_offset - prev->output_offset)
2425 < stub_group_size))
2426 curr = prev;
2428 /* OK, the size from the start of CURR to the end is less
2429 than 240000 bytes and thus can be handled by one stub
2430 section. (or the tail section is itself larger than
2431 240000 bytes, in which case we may be toast.)
2432 We should really be keeping track of the total size of
2433 stubs added here, as stubs contribute to the final output
2434 section size. That's a little tricky, and this way will
2435 only break if stubs added total more than 22144 bytes, or
2436 2768 long branch stubs. It seems unlikely for more than
2437 2768 different functions to be called, especially from
2438 code only 240000 bytes long. This limit used to be
2439 250000, but c++ code tends to generate lots of little
2440 functions, and sometimes violated the assumption. */
2443 prev = PREV_SEC (tail);
2444 /* Set up this stub group. */
2445 htab->stub_group[tail->id].link_sec = curr;
2447 while (tail != curr && (tail = prev) != NULL);
2449 /* But wait, there's more! Input sections up to 240000
2450 bytes before the stub section can be handled by it too.
2451 Don't do this if we have a really large section after the
2452 stubs, as adding more stubs increases the chance that
2453 branches may not reach into the stub section. */
2454 if (!stubs_always_before_branch && !big_sec)
2456 total = 0;
2457 while (prev != NULL
2458 && ((total += tail->output_offset - prev->output_offset)
2459 < stub_group_size))
2461 tail = prev;
2462 prev = PREV_SEC (tail);
2463 htab->stub_group[tail->id].link_sec = curr;
2466 tail = prev;
2469 while (list-- != htab->input_list);
2470 free (htab->input_list);
2471 #undef PREV_SEC
2474 /* Read in all local syms for all input bfds, and create hash entries
2475 for export stubs if we are building a multi-subspace shared lib.
2476 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2478 static int
2479 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2481 unsigned int bfd_indx;
2482 Elf_Internal_Sym *local_syms, **all_local_syms;
2483 int stub_changed = 0;
2484 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2486 /* We want to read in symbol extension records only once. To do this
2487 we need to read in the local symbols in parallel and save them for
2488 later use; so hold pointers to the local symbols in an array. */
2489 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2490 all_local_syms = bfd_zmalloc (amt);
2491 htab->all_local_syms = all_local_syms;
2492 if (all_local_syms == NULL)
2493 return -1;
2495 /* Walk over all the input BFDs, swapping in local symbols.
2496 If we are creating a shared library, create hash entries for the
2497 export stubs. */
2498 for (bfd_indx = 0;
2499 input_bfd != NULL;
2500 input_bfd = input_bfd->link_next, bfd_indx++)
2502 Elf_Internal_Shdr *symtab_hdr;
2504 /* We'll need the symbol table in a second. */
2505 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2506 if (symtab_hdr->sh_info == 0)
2507 continue;
2509 /* We need an array of the local symbols attached to the input bfd. */
2510 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2511 if (local_syms == NULL)
2513 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2514 symtab_hdr->sh_info, 0,
2515 NULL, NULL, NULL);
2516 /* Cache them for elf_link_input_bfd. */
2517 symtab_hdr->contents = (unsigned char *) local_syms;
2519 if (local_syms == NULL)
2520 return -1;
2522 all_local_syms[bfd_indx] = local_syms;
2524 if (info->shared && htab->multi_subspace)
2526 struct elf_link_hash_entry **sym_hashes;
2527 struct elf_link_hash_entry **end_hashes;
2528 unsigned int symcount;
2530 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2531 - symtab_hdr->sh_info);
2532 sym_hashes = elf_sym_hashes (input_bfd);
2533 end_hashes = sym_hashes + symcount;
2535 /* Look through the global syms for functions; We need to
2536 build export stubs for all globally visible functions. */
2537 for (; sym_hashes < end_hashes; sym_hashes++)
2539 struct elf32_hppa_link_hash_entry *hash;
2541 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2543 while (hash->elf.root.type == bfd_link_hash_indirect
2544 || hash->elf.root.type == bfd_link_hash_warning)
2545 hash = ((struct elf32_hppa_link_hash_entry *)
2546 hash->elf.root.u.i.link);
2548 /* At this point in the link, undefined syms have been
2549 resolved, so we need to check that the symbol was
2550 defined in this BFD. */
2551 if ((hash->elf.root.type == bfd_link_hash_defined
2552 || hash->elf.root.type == bfd_link_hash_defweak)
2553 && hash->elf.type == STT_FUNC
2554 && hash->elf.root.u.def.section->output_section != NULL
2555 && (hash->elf.root.u.def.section->output_section->owner
2556 == output_bfd)
2557 && hash->elf.root.u.def.section->owner == input_bfd
2558 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2559 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2560 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2562 asection *sec;
2563 const char *stub_name;
2564 struct elf32_hppa_stub_hash_entry *stub_entry;
2566 sec = hash->elf.root.u.def.section;
2567 stub_name = hash->elf.root.root.string;
2568 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2569 stub_name,
2570 FALSE, FALSE);
2571 if (stub_entry == NULL)
2573 stub_entry = hppa_add_stub (stub_name, sec, htab);
2574 if (!stub_entry)
2575 return -1;
2577 stub_entry->target_value = hash->elf.root.u.def.value;
2578 stub_entry->target_section = hash->elf.root.u.def.section;
2579 stub_entry->stub_type = hppa_stub_export;
2580 stub_entry->h = hash;
2581 stub_changed = 1;
2583 else
2585 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2586 bfd_archive_filename (input_bfd),
2587 stub_name);
2594 return stub_changed;
2597 /* Determine and set the size of the stub section for a final link.
2599 The basic idea here is to examine all the relocations looking for
2600 PC-relative calls to a target that is unreachable with a "bl"
2601 instruction. */
2603 bfd_boolean
2604 elf32_hppa_size_stubs
2605 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2606 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2607 asection * (*add_stub_section) (const char *, asection *),
2608 void (*layout_sections_again) (void))
2610 bfd_size_type stub_group_size;
2611 bfd_boolean stubs_always_before_branch;
2612 bfd_boolean stub_changed;
2613 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2615 /* Stash our params away. */
2616 htab->stub_bfd = stub_bfd;
2617 htab->multi_subspace = multi_subspace;
2618 htab->add_stub_section = add_stub_section;
2619 htab->layout_sections_again = layout_sections_again;
2620 stubs_always_before_branch = group_size < 0;
2621 if (group_size < 0)
2622 stub_group_size = -group_size;
2623 else
2624 stub_group_size = group_size;
2625 if (stub_group_size == 1)
2627 /* Default values. */
2628 if (stubs_always_before_branch)
2630 stub_group_size = 7680000;
2631 if (htab->has_17bit_branch || htab->multi_subspace)
2632 stub_group_size = 240000;
2633 if (htab->has_12bit_branch)
2634 stub_group_size = 7500;
2636 else
2638 stub_group_size = 6971392;
2639 if (htab->has_17bit_branch || htab->multi_subspace)
2640 stub_group_size = 217856;
2641 if (htab->has_12bit_branch)
2642 stub_group_size = 6808;
2646 group_sections (htab, stub_group_size, stubs_always_before_branch);
2648 switch (get_local_syms (output_bfd, info->input_bfds, info))
2650 default:
2651 if (htab->all_local_syms)
2652 goto error_ret_free_local;
2653 return FALSE;
2655 case 0:
2656 stub_changed = FALSE;
2657 break;
2659 case 1:
2660 stub_changed = TRUE;
2661 break;
2664 while (1)
2666 bfd *input_bfd;
2667 unsigned int bfd_indx;
2668 asection *stub_sec;
2670 for (input_bfd = info->input_bfds, bfd_indx = 0;
2671 input_bfd != NULL;
2672 input_bfd = input_bfd->link_next, bfd_indx++)
2674 Elf_Internal_Shdr *symtab_hdr;
2675 asection *section;
2676 Elf_Internal_Sym *local_syms;
2678 /* We'll need the symbol table in a second. */
2679 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2680 if (symtab_hdr->sh_info == 0)
2681 continue;
2683 local_syms = htab->all_local_syms[bfd_indx];
2685 /* Walk over each section attached to the input bfd. */
2686 for (section = input_bfd->sections;
2687 section != NULL;
2688 section = section->next)
2690 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2692 /* If there aren't any relocs, then there's nothing more
2693 to do. */
2694 if ((section->flags & SEC_RELOC) == 0
2695 || section->reloc_count == 0)
2696 continue;
2698 /* If this section is a link-once section that will be
2699 discarded, then don't create any stubs. */
2700 if (section->output_section == NULL
2701 || section->output_section->owner != output_bfd)
2702 continue;
2704 /* Get the relocs. */
2705 internal_relocs
2706 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2707 info->keep_memory);
2708 if (internal_relocs == NULL)
2709 goto error_ret_free_local;
2711 /* Now examine each relocation. */
2712 irela = internal_relocs;
2713 irelaend = irela + section->reloc_count;
2714 for (; irela < irelaend; irela++)
2716 unsigned int r_type, r_indx;
2717 enum elf32_hppa_stub_type stub_type;
2718 struct elf32_hppa_stub_hash_entry *stub_entry;
2719 asection *sym_sec;
2720 bfd_vma sym_value;
2721 bfd_vma destination;
2722 struct elf32_hppa_link_hash_entry *hash;
2723 char *stub_name;
2724 const asection *id_sec;
2726 r_type = ELF32_R_TYPE (irela->r_info);
2727 r_indx = ELF32_R_SYM (irela->r_info);
2729 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2731 bfd_set_error (bfd_error_bad_value);
2732 error_ret_free_internal:
2733 if (elf_section_data (section)->relocs == NULL)
2734 free (internal_relocs);
2735 goto error_ret_free_local;
2738 /* Only look for stubs on call instructions. */
2739 if (r_type != (unsigned int) R_PARISC_PCREL12F
2740 && r_type != (unsigned int) R_PARISC_PCREL17F
2741 && r_type != (unsigned int) R_PARISC_PCREL22F)
2742 continue;
2744 /* Now determine the call target, its name, value,
2745 section. */
2746 sym_sec = NULL;
2747 sym_value = 0;
2748 destination = 0;
2749 hash = NULL;
2750 if (r_indx < symtab_hdr->sh_info)
2752 /* It's a local symbol. */
2753 Elf_Internal_Sym *sym;
2754 Elf_Internal_Shdr *hdr;
2756 sym = local_syms + r_indx;
2757 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2758 sym_sec = hdr->bfd_section;
2759 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2760 sym_value = sym->st_value;
2761 destination = (sym_value + irela->r_addend
2762 + sym_sec->output_offset
2763 + sym_sec->output_section->vma);
2765 else
2767 /* It's an external symbol. */
2768 int e_indx;
2770 e_indx = r_indx - symtab_hdr->sh_info;
2771 hash = ((struct elf32_hppa_link_hash_entry *)
2772 elf_sym_hashes (input_bfd)[e_indx]);
2774 while (hash->elf.root.type == bfd_link_hash_indirect
2775 || hash->elf.root.type == bfd_link_hash_warning)
2776 hash = ((struct elf32_hppa_link_hash_entry *)
2777 hash->elf.root.u.i.link);
2779 if (hash->elf.root.type == bfd_link_hash_defined
2780 || hash->elf.root.type == bfd_link_hash_defweak)
2782 sym_sec = hash->elf.root.u.def.section;
2783 sym_value = hash->elf.root.u.def.value;
2784 if (sym_sec->output_section != NULL)
2785 destination = (sym_value + irela->r_addend
2786 + sym_sec->output_offset
2787 + sym_sec->output_section->vma);
2789 else if (hash->elf.root.type == bfd_link_hash_undefweak)
2791 if (! info->shared)
2792 continue;
2794 else if (hash->elf.root.type == bfd_link_hash_undefined)
2796 if (! (info->shared
2797 && info->unresolved_syms_in_objects == RM_IGNORE
2798 && (ELF_ST_VISIBILITY (hash->elf.other)
2799 == STV_DEFAULT)
2800 && hash->elf.type != STT_PARISC_MILLI))
2801 continue;
2803 else
2805 bfd_set_error (bfd_error_bad_value);
2806 goto error_ret_free_internal;
2810 /* Determine what (if any) linker stub is needed. */
2811 stub_type = hppa_type_of_stub (section, irela, hash,
2812 destination, info);
2813 if (stub_type == hppa_stub_none)
2814 continue;
2816 /* Support for grouping stub sections. */
2817 id_sec = htab->stub_group[section->id].link_sec;
2819 /* Get the name of this stub. */
2820 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
2821 if (!stub_name)
2822 goto error_ret_free_internal;
2824 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2825 stub_name,
2826 FALSE, FALSE);
2827 if (stub_entry != NULL)
2829 /* The proper stub has already been created. */
2830 free (stub_name);
2831 continue;
2834 stub_entry = hppa_add_stub (stub_name, section, htab);
2835 if (stub_entry == NULL)
2837 free (stub_name);
2838 goto error_ret_free_internal;
2841 stub_entry->target_value = sym_value;
2842 stub_entry->target_section = sym_sec;
2843 stub_entry->stub_type = stub_type;
2844 if (info->shared)
2846 if (stub_type == hppa_stub_import)
2847 stub_entry->stub_type = hppa_stub_import_shared;
2848 else if (stub_type == hppa_stub_long_branch)
2849 stub_entry->stub_type = hppa_stub_long_branch_shared;
2851 stub_entry->h = hash;
2852 stub_changed = TRUE;
2855 /* We're done with the internal relocs, free them. */
2856 if (elf_section_data (section)->relocs == NULL)
2857 free (internal_relocs);
2861 if (!stub_changed)
2862 break;
2864 /* OK, we've added some stubs. Find out the new size of the
2865 stub sections. */
2866 for (stub_sec = htab->stub_bfd->sections;
2867 stub_sec != NULL;
2868 stub_sec = stub_sec->next)
2870 stub_sec->_raw_size = 0;
2871 stub_sec->_cooked_size = 0;
2874 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
2876 /* Ask the linker to do its stuff. */
2877 (*htab->layout_sections_again) ();
2878 stub_changed = FALSE;
2881 free (htab->all_local_syms);
2882 return TRUE;
2884 error_ret_free_local:
2885 free (htab->all_local_syms);
2886 return FALSE;
2889 /* For a final link, this function is called after we have sized the
2890 stubs to provide a value for __gp. */
2892 bfd_boolean
2893 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2895 struct bfd_link_hash_entry *h;
2896 asection *sec = NULL;
2897 bfd_vma gp_val = 0;
2898 struct elf32_hppa_link_hash_table *htab;
2900 htab = hppa_link_hash_table (info);
2901 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", FALSE, FALSE, FALSE);
2903 if (h != NULL
2904 && (h->type == bfd_link_hash_defined
2905 || h->type == bfd_link_hash_defweak))
2907 gp_val = h->u.def.value;
2908 sec = h->u.def.section;
2910 else
2912 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2913 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2915 /* Choose to point our LTP at, in this order, one of .plt, .got,
2916 or .data, if these sections exist. In the case of choosing
2917 .plt try to make the LTP ideal for addressing anywhere in the
2918 .plt or .got with a 14 bit signed offset. Typically, the end
2919 of the .plt is the start of the .got, so choose .plt + 0x2000
2920 if either the .plt or .got is larger than 0x2000. If both
2921 the .plt and .got are smaller than 0x2000, choose the end of
2922 the .plt section. */
2923 sec = splt;
2924 if (sec != NULL)
2926 gp_val = sec->_raw_size;
2927 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
2929 gp_val = 0x2000;
2932 else
2934 sec = sgot;
2935 if (sec != NULL)
2937 /* We know we don't have a .plt. If .got is large,
2938 offset our LTP. */
2939 if (sec->_raw_size > 0x2000)
2940 gp_val = 0x2000;
2942 else
2944 /* No .plt or .got. Who cares what the LTP is? */
2945 sec = bfd_get_section_by_name (abfd, ".data");
2949 if (h != NULL)
2951 h->type = bfd_link_hash_defined;
2952 h->u.def.value = gp_val;
2953 if (sec != NULL)
2954 h->u.def.section = sec;
2955 else
2956 h->u.def.section = bfd_abs_section_ptr;
2960 if (sec != NULL && sec->output_section != NULL)
2961 gp_val += sec->output_section->vma + sec->output_offset;
2963 elf_gp (abfd) = gp_val;
2964 return TRUE;
2967 /* Build all the stubs associated with the current output file. The
2968 stubs are kept in a hash table attached to the main linker hash
2969 table. We also set up the .plt entries for statically linked PIC
2970 functions here. This function is called via hppaelf_finish in the
2971 linker. */
2973 bfd_boolean
2974 elf32_hppa_build_stubs (struct bfd_link_info *info)
2976 asection *stub_sec;
2977 struct bfd_hash_table *table;
2978 struct elf32_hppa_link_hash_table *htab;
2980 htab = hppa_link_hash_table (info);
2982 for (stub_sec = htab->stub_bfd->sections;
2983 stub_sec != NULL;
2984 stub_sec = stub_sec->next)
2986 bfd_size_type size;
2988 /* Allocate memory to hold the linker stubs. */
2989 size = stub_sec->_raw_size;
2990 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
2991 if (stub_sec->contents == NULL && size != 0)
2992 return FALSE;
2993 stub_sec->_raw_size = 0;
2996 /* Build the stubs as directed by the stub hash table. */
2997 table = &htab->stub_hash_table;
2998 bfd_hash_traverse (table, hppa_build_one_stub, info);
3000 return TRUE;
3003 /* Perform a final link. */
3005 static bfd_boolean
3006 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3008 /* Invoke the regular ELF linker to do all the work. */
3009 if (!bfd_elf32_bfd_final_link (abfd, info))
3010 return FALSE;
3012 /* If we're producing a final executable, sort the contents of the
3013 unwind section. */
3014 return elf_hppa_sort_unwind (abfd);
3017 /* Record the lowest address for the data and text segments. */
3019 static void
3020 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3021 asection *section,
3022 void *data)
3024 struct elf32_hppa_link_hash_table *htab;
3026 htab = (struct elf32_hppa_link_hash_table *) data;
3028 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3030 bfd_vma value = section->vma - section->filepos;
3032 if ((section->flags & SEC_READONLY) != 0)
3034 if (value < htab->text_segment_base)
3035 htab->text_segment_base = value;
3037 else
3039 if (value < htab->data_segment_base)
3040 htab->data_segment_base = value;
3045 /* Perform a relocation as part of a final link. */
3047 static bfd_reloc_status_type
3048 final_link_relocate (asection *input_section,
3049 bfd_byte *contents,
3050 const Elf_Internal_Rela *rel,
3051 bfd_vma value,
3052 struct elf32_hppa_link_hash_table *htab,
3053 asection *sym_sec,
3054 struct elf32_hppa_link_hash_entry *h,
3055 struct bfd_link_info *info)
3057 int insn;
3058 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3059 unsigned int orig_r_type = r_type;
3060 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3061 int r_format = howto->bitsize;
3062 enum hppa_reloc_field_selector_type_alt r_field;
3063 bfd *input_bfd = input_section->owner;
3064 bfd_vma offset = rel->r_offset;
3065 bfd_vma max_branch_offset = 0;
3066 bfd_byte *hit_data = contents + offset;
3067 bfd_signed_vma addend = rel->r_addend;
3068 bfd_vma location;
3069 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3070 int val;
3072 if (r_type == R_PARISC_NONE)
3073 return bfd_reloc_ok;
3075 insn = bfd_get_32 (input_bfd, hit_data);
3077 /* Find out where we are and where we're going. */
3078 location = (offset +
3079 input_section->output_offset +
3080 input_section->output_section->vma);
3082 /* If we are not building a shared library, convert DLTIND relocs to
3083 DPREL relocs. */
3084 if (!info->shared)
3086 switch (r_type)
3088 case R_PARISC_DLTIND21L:
3089 r_type = R_PARISC_DPREL21L;
3090 break;
3092 case R_PARISC_DLTIND14R:
3093 r_type = R_PARISC_DPREL14R;
3094 break;
3096 case R_PARISC_DLTIND14F:
3097 r_type = R_PARISC_DPREL14F;
3098 break;
3102 switch (r_type)
3104 case R_PARISC_PCREL12F:
3105 case R_PARISC_PCREL17F:
3106 case R_PARISC_PCREL22F:
3107 /* If this call should go via the plt, find the import stub in
3108 the stub hash. */
3109 if (sym_sec == NULL
3110 || sym_sec->output_section == NULL
3111 || (h != NULL
3112 && h->elf.plt.offset != (bfd_vma) -1
3113 && h->elf.dynindx != -1
3114 && !h->plabel
3115 && (info->shared
3116 || !(h->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
3117 || h->elf.root.type == bfd_link_hash_defweak)))
3119 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3120 h, rel, htab);
3121 if (stub_entry != NULL)
3123 value = (stub_entry->stub_offset
3124 + stub_entry->stub_sec->output_offset
3125 + stub_entry->stub_sec->output_section->vma);
3126 addend = 0;
3128 else if (sym_sec == NULL && h != NULL
3129 && h->elf.root.type == bfd_link_hash_undefweak)
3131 /* It's OK if undefined weak. Calls to undefined weak
3132 symbols behave as if the "called" function
3133 immediately returns. We can thus call to a weak
3134 function without first checking whether the function
3135 is defined. */
3136 value = location;
3137 addend = 8;
3139 else
3140 return bfd_reloc_undefined;
3142 /* Fall thru. */
3144 case R_PARISC_PCREL21L:
3145 case R_PARISC_PCREL17C:
3146 case R_PARISC_PCREL17R:
3147 case R_PARISC_PCREL14R:
3148 case R_PARISC_PCREL14F:
3149 case R_PARISC_PCREL32:
3150 /* Make it a pc relative offset. */
3151 value -= location;
3152 addend -= 8;
3153 break;
3155 case R_PARISC_DPREL21L:
3156 case R_PARISC_DPREL14R:
3157 case R_PARISC_DPREL14F:
3158 /* Convert instructions that use the linkage table pointer (r19) to
3159 instructions that use the global data pointer (dp). This is the
3160 most efficient way of using PIC code in an incomplete executable,
3161 but the user must follow the standard runtime conventions for
3162 accessing data for this to work. */
3163 if (orig_r_type == R_PARISC_DLTIND21L)
3165 /* Convert addil instructions if the original reloc was a
3166 DLTIND21L. GCC sometimes uses a register other than r19 for
3167 the operation, so we must convert any addil instruction
3168 that uses this relocation. */
3169 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3170 insn = ADDIL_DP;
3171 else
3172 /* We must have a ldil instruction. It's too hard to find
3173 and convert the associated add instruction, so issue an
3174 error. */
3175 (*_bfd_error_handler)
3176 (_("%s(%s+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3177 bfd_archive_filename (input_bfd),
3178 input_section->name,
3179 (long) rel->r_offset,
3180 howto->name,
3181 insn);
3183 else if (orig_r_type == R_PARISC_DLTIND14F)
3185 /* This must be a format 1 load/store. Change the base
3186 register to dp. */
3187 insn = (insn & 0xfc1ffff) | (27 << 21);
3190 /* For all the DP relative relocations, we need to examine the symbol's
3191 section. If it has no section or if it's a code section, then
3192 "data pointer relative" makes no sense. In that case we don't
3193 adjust the "value", and for 21 bit addil instructions, we change the
3194 source addend register from %dp to %r0. This situation commonly
3195 arises for undefined weak symbols and when a variable's "constness"
3196 is declared differently from the way the variable is defined. For
3197 instance: "extern int foo" with foo defined as "const int foo". */
3198 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3200 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3201 == (((int) OP_ADDIL << 26) | (27 << 21)))
3203 insn &= ~ (0x1f << 21);
3204 #if 0 /* debug them. */
3205 (*_bfd_error_handler)
3206 (_("%s(%s+0x%lx): fixing %s"),
3207 bfd_archive_filename (input_bfd),
3208 input_section->name,
3209 (long) rel->r_offset,
3210 howto->name);
3211 #endif
3213 /* Now try to make things easy for the dynamic linker. */
3215 break;
3217 /* Fall thru. */
3219 case R_PARISC_DLTIND21L:
3220 case R_PARISC_DLTIND14R:
3221 case R_PARISC_DLTIND14F:
3222 value -= elf_gp (input_section->output_section->owner);
3223 break;
3225 case R_PARISC_SEGREL32:
3226 if ((sym_sec->flags & SEC_CODE) != 0)
3227 value -= htab->text_segment_base;
3228 else
3229 value -= htab->data_segment_base;
3230 break;
3232 default:
3233 break;
3236 switch (r_type)
3238 case R_PARISC_DIR32:
3239 case R_PARISC_DIR14F:
3240 case R_PARISC_DIR17F:
3241 case R_PARISC_PCREL17C:
3242 case R_PARISC_PCREL14F:
3243 case R_PARISC_PCREL32:
3244 case R_PARISC_DPREL14F:
3245 case R_PARISC_PLABEL32:
3246 case R_PARISC_DLTIND14F:
3247 case R_PARISC_SEGBASE:
3248 case R_PARISC_SEGREL32:
3249 r_field = e_fsel;
3250 break;
3252 case R_PARISC_DLTIND21L:
3253 case R_PARISC_PCREL21L:
3254 case R_PARISC_PLABEL21L:
3255 r_field = e_lsel;
3256 break;
3258 case R_PARISC_DIR21L:
3259 case R_PARISC_DPREL21L:
3260 r_field = e_lrsel;
3261 break;
3263 case R_PARISC_PCREL17R:
3264 case R_PARISC_PCREL14R:
3265 case R_PARISC_PLABEL14R:
3266 case R_PARISC_DLTIND14R:
3267 r_field = e_rsel;
3268 break;
3270 case R_PARISC_DIR17R:
3271 case R_PARISC_DIR14R:
3272 case R_PARISC_DPREL14R:
3273 r_field = e_rrsel;
3274 break;
3276 case R_PARISC_PCREL12F:
3277 case R_PARISC_PCREL17F:
3278 case R_PARISC_PCREL22F:
3279 r_field = e_fsel;
3281 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3283 max_branch_offset = (1 << (17-1)) << 2;
3285 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3287 max_branch_offset = (1 << (12-1)) << 2;
3289 else
3291 max_branch_offset = (1 << (22-1)) << 2;
3294 /* sym_sec is NULL on undefined weak syms or when shared on
3295 undefined syms. We've already checked for a stub for the
3296 shared undefined case. */
3297 if (sym_sec == NULL)
3298 break;
3300 /* If the branch is out of reach, then redirect the
3301 call to the local stub for this function. */
3302 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3304 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3305 h, rel, htab);
3306 if (stub_entry == NULL)
3307 return bfd_reloc_undefined;
3309 /* Munge up the value and addend so that we call the stub
3310 rather than the procedure directly. */
3311 value = (stub_entry->stub_offset
3312 + stub_entry->stub_sec->output_offset
3313 + stub_entry->stub_sec->output_section->vma
3314 - location);
3315 addend = -8;
3317 break;
3319 /* Something we don't know how to handle. */
3320 default:
3321 return bfd_reloc_notsupported;
3324 /* Make sure we can reach the stub. */
3325 if (max_branch_offset != 0
3326 && value + addend + max_branch_offset >= 2*max_branch_offset)
3328 (*_bfd_error_handler)
3329 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3330 bfd_archive_filename (input_bfd),
3331 input_section->name,
3332 (long) rel->r_offset,
3333 stub_entry->root.string);
3334 bfd_set_error (bfd_error_bad_value);
3335 return bfd_reloc_notsupported;
3338 val = hppa_field_adjust (value, addend, r_field);
3340 switch (r_type)
3342 case R_PARISC_PCREL12F:
3343 case R_PARISC_PCREL17C:
3344 case R_PARISC_PCREL17F:
3345 case R_PARISC_PCREL17R:
3346 case R_PARISC_PCREL22F:
3347 case R_PARISC_DIR17F:
3348 case R_PARISC_DIR17R:
3349 /* This is a branch. Divide the offset by four.
3350 Note that we need to decide whether it's a branch or
3351 otherwise by inspecting the reloc. Inspecting insn won't
3352 work as insn might be from a .word directive. */
3353 val >>= 2;
3354 break;
3356 default:
3357 break;
3360 insn = hppa_rebuild_insn (insn, val, r_format);
3362 /* Update the instruction word. */
3363 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3364 return bfd_reloc_ok;
3367 /* Relocate an HPPA ELF section. */
3369 static bfd_boolean
3370 elf32_hppa_relocate_section (bfd *output_bfd,
3371 struct bfd_link_info *info,
3372 bfd *input_bfd,
3373 asection *input_section,
3374 bfd_byte *contents,
3375 Elf_Internal_Rela *relocs,
3376 Elf_Internal_Sym *local_syms,
3377 asection **local_sections)
3379 bfd_vma *local_got_offsets;
3380 struct elf32_hppa_link_hash_table *htab;
3381 Elf_Internal_Shdr *symtab_hdr;
3382 Elf_Internal_Rela *rel;
3383 Elf_Internal_Rela *relend;
3385 if (info->relocatable)
3386 return TRUE;
3388 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3390 htab = hppa_link_hash_table (info);
3391 local_got_offsets = elf_local_got_offsets (input_bfd);
3393 rel = relocs;
3394 relend = relocs + input_section->reloc_count;
3395 for (; rel < relend; rel++)
3397 unsigned int r_type;
3398 reloc_howto_type *howto;
3399 unsigned int r_symndx;
3400 struct elf32_hppa_link_hash_entry *h;
3401 Elf_Internal_Sym *sym;
3402 asection *sym_sec;
3403 bfd_vma relocation;
3404 bfd_reloc_status_type r;
3405 const char *sym_name;
3406 bfd_boolean plabel;
3407 bfd_boolean warned_undef;
3409 r_type = ELF32_R_TYPE (rel->r_info);
3410 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3412 bfd_set_error (bfd_error_bad_value);
3413 return FALSE;
3415 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3416 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3417 continue;
3419 /* This is a final link. */
3420 r_symndx = ELF32_R_SYM (rel->r_info);
3421 h = NULL;
3422 sym = NULL;
3423 sym_sec = NULL;
3424 warned_undef = FALSE;
3425 if (r_symndx < symtab_hdr->sh_info)
3427 /* This is a local symbol, h defaults to NULL. */
3428 sym = local_syms + r_symndx;
3429 sym_sec = local_sections[r_symndx];
3430 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3432 else
3434 struct elf_link_hash_entry *hh;
3435 bfd_boolean unresolved_reloc;
3437 RELOC_FOR_GLOBAL_SYMBOL (hh, elf_sym_hashes (input_bfd), r_symndx, symtab_hdr,
3438 relocation, sym_sec, unresolved_reloc, info,
3439 warned_undef);
3441 if (relocation == 0
3442 && hh->root.type != bfd_link_hash_defined
3443 && hh->root.type != bfd_link_hash_defweak
3444 && hh->root.type != bfd_link_hash_undefweak)
3446 if (!info->executable
3447 && info->unresolved_syms_in_objects == RM_IGNORE
3448 && ELF_ST_VISIBILITY (hh->other) == STV_DEFAULT
3449 && hh->type == STT_PARISC_MILLI)
3451 if (! info->callbacks->undefined_symbol
3452 (info, hh->root.root.string, input_bfd,
3453 input_section, rel->r_offset,
3454 ((info->shared && info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)
3455 || (!info->shared && info->unresolved_syms_in_objects == RM_GENERATE_ERROR))))
3456 return FALSE;
3457 warned_undef = TRUE;
3460 h = (struct elf32_hppa_link_hash_entry *) hh;
3463 /* Do any required modifications to the relocation value, and
3464 determine what types of dynamic info we need to output, if
3465 any. */
3466 plabel = 0;
3467 switch (r_type)
3469 case R_PARISC_DLTIND14F:
3470 case R_PARISC_DLTIND14R:
3471 case R_PARISC_DLTIND21L:
3473 bfd_vma off;
3474 bfd_boolean do_got = 0;
3476 /* Relocation is to the entry for this symbol in the
3477 global offset table. */
3478 if (h != NULL)
3480 bfd_boolean dyn;
3482 off = h->elf.got.offset;
3483 dyn = htab->elf.dynamic_sections_created;
3484 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3486 /* If we aren't going to call finish_dynamic_symbol,
3487 then we need to handle initialisation of the .got
3488 entry and create needed relocs here. Since the
3489 offset must always be a multiple of 4, we use the
3490 least significant bit to record whether we have
3491 initialised it already. */
3492 if ((off & 1) != 0)
3493 off &= ~1;
3494 else
3496 h->elf.got.offset |= 1;
3497 do_got = 1;
3501 else
3503 /* Local symbol case. */
3504 if (local_got_offsets == NULL)
3505 abort ();
3507 off = local_got_offsets[r_symndx];
3509 /* The offset must always be a multiple of 4. We use
3510 the least significant bit to record whether we have
3511 already generated the necessary reloc. */
3512 if ((off & 1) != 0)
3513 off &= ~1;
3514 else
3516 local_got_offsets[r_symndx] |= 1;
3517 do_got = 1;
3521 if (do_got)
3523 if (info->shared)
3525 /* Output a dynamic relocation for this GOT entry.
3526 In this case it is relative to the base of the
3527 object because the symbol index is zero. */
3528 Elf_Internal_Rela outrel;
3529 bfd_byte *loc;
3530 asection *s = htab->srelgot;
3532 outrel.r_offset = (off
3533 + htab->sgot->output_offset
3534 + htab->sgot->output_section->vma);
3535 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3536 outrel.r_addend = relocation;
3537 loc = s->contents;
3538 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3539 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3541 else
3542 bfd_put_32 (output_bfd, relocation,
3543 htab->sgot->contents + off);
3546 if (off >= (bfd_vma) -2)
3547 abort ();
3549 /* Add the base of the GOT to the relocation value. */
3550 relocation = (off
3551 + htab->sgot->output_offset
3552 + htab->sgot->output_section->vma);
3554 break;
3556 case R_PARISC_SEGREL32:
3557 /* If this is the first SEGREL relocation, then initialize
3558 the segment base values. */
3559 if (htab->text_segment_base == (bfd_vma) -1)
3560 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3561 break;
3563 case R_PARISC_PLABEL14R:
3564 case R_PARISC_PLABEL21L:
3565 case R_PARISC_PLABEL32:
3566 if (htab->elf.dynamic_sections_created)
3568 bfd_vma off;
3569 bfd_boolean do_plt = 0;
3571 /* If we have a global symbol with a PLT slot, then
3572 redirect this relocation to it. */
3573 if (h != NULL)
3575 off = h->elf.plt.offset;
3576 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3578 /* In a non-shared link, adjust_dynamic_symbols
3579 isn't called for symbols forced local. We
3580 need to write out the plt entry here. */
3581 if ((off & 1) != 0)
3582 off &= ~1;
3583 else
3585 h->elf.plt.offset |= 1;
3586 do_plt = 1;
3590 else
3592 bfd_vma *local_plt_offsets;
3594 if (local_got_offsets == NULL)
3595 abort ();
3597 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3598 off = local_plt_offsets[r_symndx];
3600 /* As for the local .got entry case, we use the last
3601 bit to record whether we've already initialised
3602 this local .plt entry. */
3603 if ((off & 1) != 0)
3604 off &= ~1;
3605 else
3607 local_plt_offsets[r_symndx] |= 1;
3608 do_plt = 1;
3612 if (do_plt)
3614 if (info->shared)
3616 /* Output a dynamic IPLT relocation for this
3617 PLT entry. */
3618 Elf_Internal_Rela outrel;
3619 bfd_byte *loc;
3620 asection *s = htab->srelplt;
3622 outrel.r_offset = (off
3623 + htab->splt->output_offset
3624 + htab->splt->output_section->vma);
3625 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3626 outrel.r_addend = relocation;
3627 loc = s->contents;
3628 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3629 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3631 else
3633 bfd_put_32 (output_bfd,
3634 relocation,
3635 htab->splt->contents + off);
3636 bfd_put_32 (output_bfd,
3637 elf_gp (htab->splt->output_section->owner),
3638 htab->splt->contents + off + 4);
3642 if (off >= (bfd_vma) -2)
3643 abort ();
3645 /* PLABELs contain function pointers. Relocation is to
3646 the entry for the function in the .plt. The magic +2
3647 offset signals to $$dyncall that the function pointer
3648 is in the .plt and thus has a gp pointer too.
3649 Exception: Undefined PLABELs should have a value of
3650 zero. */
3651 if (h == NULL
3652 || (h->elf.root.type != bfd_link_hash_undefweak
3653 && h->elf.root.type != bfd_link_hash_undefined))
3655 relocation = (off
3656 + htab->splt->output_offset
3657 + htab->splt->output_section->vma
3658 + 2);
3660 plabel = 1;
3662 /* Fall through and possibly emit a dynamic relocation. */
3664 case R_PARISC_DIR17F:
3665 case R_PARISC_DIR17R:
3666 case R_PARISC_DIR14F:
3667 case R_PARISC_DIR14R:
3668 case R_PARISC_DIR21L:
3669 case R_PARISC_DPREL14F:
3670 case R_PARISC_DPREL14R:
3671 case R_PARISC_DPREL21L:
3672 case R_PARISC_DIR32:
3673 /* r_symndx will be zero only for relocs against symbols
3674 from removed linkonce sections, or sections discarded by
3675 a linker script. */
3676 if (r_symndx == 0
3677 || (input_section->flags & SEC_ALLOC) == 0)
3678 break;
3680 /* The reloc types handled here and this conditional
3681 expression must match the code in ..check_relocs and
3682 allocate_dynrelocs. ie. We need exactly the same condition
3683 as in ..check_relocs, with some extra conditions (dynindx
3684 test in this case) to cater for relocs removed by
3685 allocate_dynrelocs. If you squint, the non-shared test
3686 here does indeed match the one in ..check_relocs, the
3687 difference being that here we test DEF_DYNAMIC as well as
3688 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3689 which is why we can't use just that test here.
3690 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3691 there all files have not been loaded. */
3692 if ((info->shared
3693 && (h == NULL
3694 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3695 || h->elf.root.type != bfd_link_hash_undefweak)
3696 && (IS_ABSOLUTE_RELOC (r_type)
3697 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
3698 || (!info->shared
3699 && h != NULL
3700 && h->elf.dynindx != -1
3701 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3702 && ((ELIMINATE_COPY_RELOCS
3703 && (h->elf.elf_link_hash_flags
3704 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3705 && (h->elf.elf_link_hash_flags
3706 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3707 || h->elf.root.type == bfd_link_hash_undefweak
3708 || h->elf.root.type == bfd_link_hash_undefined)))
3710 Elf_Internal_Rela outrel;
3711 bfd_boolean skip;
3712 asection *sreloc;
3713 bfd_byte *loc;
3715 /* When generating a shared object, these relocations
3716 are copied into the output file to be resolved at run
3717 time. */
3719 outrel.r_addend = rel->r_addend;
3720 outrel.r_offset =
3721 _bfd_elf_section_offset (output_bfd, info, input_section,
3722 rel->r_offset);
3723 skip = (outrel.r_offset == (bfd_vma) -1
3724 || outrel.r_offset == (bfd_vma) -2);
3725 outrel.r_offset += (input_section->output_offset
3726 + input_section->output_section->vma);
3728 if (skip)
3730 memset (&outrel, 0, sizeof (outrel));
3732 else if (h != NULL
3733 && h->elf.dynindx != -1
3734 && (plabel
3735 || !IS_ABSOLUTE_RELOC (r_type)
3736 || !info->shared
3737 || !info->symbolic
3738 || (h->elf.elf_link_hash_flags
3739 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3741 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3743 else /* It's a local symbol, or one marked to become local. */
3745 int indx = 0;
3747 /* Add the absolute offset of the symbol. */
3748 outrel.r_addend += relocation;
3750 /* Global plabels need to be processed by the
3751 dynamic linker so that functions have at most one
3752 fptr. For this reason, we need to differentiate
3753 between global and local plabels, which we do by
3754 providing the function symbol for a global plabel
3755 reloc, and no symbol for local plabels. */
3756 if (! plabel
3757 && sym_sec != NULL
3758 && sym_sec->output_section != NULL
3759 && ! bfd_is_abs_section (sym_sec))
3761 /* Skip this relocation if the output section has
3762 been discarded. */
3763 if (bfd_is_abs_section (sym_sec->output_section))
3764 break;
3766 indx = elf_section_data (sym_sec->output_section)->dynindx;
3767 /* We are turning this relocation into one
3768 against a section symbol, so subtract out the
3769 output section's address but not the offset
3770 of the input section in the output section. */
3771 outrel.r_addend -= sym_sec->output_section->vma;
3774 outrel.r_info = ELF32_R_INFO (indx, r_type);
3776 #if 0
3777 /* EH info can cause unaligned DIR32 relocs.
3778 Tweak the reloc type for the dynamic linker. */
3779 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
3780 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
3781 R_PARISC_DIR32U);
3782 #endif
3783 sreloc = elf_section_data (input_section)->sreloc;
3784 if (sreloc == NULL)
3785 abort ();
3787 loc = sreloc->contents;
3788 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3789 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3791 break;
3793 default:
3794 break;
3797 r = final_link_relocate (input_section, contents, rel, relocation,
3798 htab, sym_sec, h, info);
3800 if (r == bfd_reloc_ok)
3801 continue;
3803 if (h != NULL)
3804 sym_name = h->elf.root.root.string;
3805 else
3807 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3808 symtab_hdr->sh_link,
3809 sym->st_name);
3810 if (sym_name == NULL)
3811 return FALSE;
3812 if (*sym_name == '\0')
3813 sym_name = bfd_section_name (input_bfd, sym_sec);
3816 howto = elf_hppa_howto_table + r_type;
3818 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
3820 if (r == bfd_reloc_notsupported || !warned_undef)
3822 (*_bfd_error_handler)
3823 (_("%s(%s+0x%lx): cannot handle %s for %s"),
3824 bfd_archive_filename (input_bfd),
3825 input_section->name,
3826 (long) rel->r_offset,
3827 howto->name,
3828 sym_name);
3829 bfd_set_error (bfd_error_bad_value);
3830 return FALSE;
3833 else
3835 if (!((*info->callbacks->reloc_overflow)
3836 (info, sym_name, howto->name, 0, input_bfd, input_section,
3837 rel->r_offset)))
3838 return FALSE;
3842 return TRUE;
3845 /* Finish up dynamic symbol handling. We set the contents of various
3846 dynamic sections here. */
3848 static bfd_boolean
3849 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3850 struct bfd_link_info *info,
3851 struct elf_link_hash_entry *h,
3852 Elf_Internal_Sym *sym)
3854 struct elf32_hppa_link_hash_table *htab;
3855 Elf_Internal_Rela rel;
3856 bfd_byte *loc;
3858 htab = hppa_link_hash_table (info);
3860 if (h->plt.offset != (bfd_vma) -1)
3862 bfd_vma value;
3864 if (h->plt.offset & 1)
3865 abort ();
3867 /* This symbol has an entry in the procedure linkage table. Set
3868 it up.
3870 The format of a plt entry is
3871 <funcaddr>
3872 <__gp>
3874 value = 0;
3875 if (h->root.type == bfd_link_hash_defined
3876 || h->root.type == bfd_link_hash_defweak)
3878 value = h->root.u.def.value;
3879 if (h->root.u.def.section->output_section != NULL)
3880 value += (h->root.u.def.section->output_offset
3881 + h->root.u.def.section->output_section->vma);
3884 /* Create a dynamic IPLT relocation for this entry. */
3885 rel.r_offset = (h->plt.offset
3886 + htab->splt->output_offset
3887 + htab->splt->output_section->vma);
3888 if (h->dynindx != -1)
3890 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
3891 rel.r_addend = 0;
3893 else
3895 /* This symbol has been marked to become local, and is
3896 used by a plabel so must be kept in the .plt. */
3897 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3898 rel.r_addend = value;
3901 loc = htab->srelplt->contents;
3902 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3903 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rel, loc);
3905 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3907 /* Mark the symbol as undefined, rather than as defined in
3908 the .plt section. Leave the value alone. */
3909 sym->st_shndx = SHN_UNDEF;
3913 if (h->got.offset != (bfd_vma) -1)
3915 /* This symbol has an entry in the global offset table. Set it
3916 up. */
3918 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
3919 + htab->sgot->output_offset
3920 + htab->sgot->output_section->vma);
3922 /* If this is a -Bsymbolic link and the symbol is defined
3923 locally or was forced to be local because of a version file,
3924 we just want to emit a RELATIVE reloc. The entry in the
3925 global offset table will already have been initialized in the
3926 relocate_section function. */
3927 if (info->shared
3928 && (info->symbolic || h->dynindx == -1)
3929 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
3931 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3932 rel.r_addend = (h->root.u.def.value
3933 + h->root.u.def.section->output_offset
3934 + h->root.u.def.section->output_section->vma);
3936 else
3938 if ((h->got.offset & 1) != 0)
3939 abort ();
3940 bfd_put_32 (output_bfd, 0, htab->sgot->contents + h->got.offset);
3941 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
3942 rel.r_addend = 0;
3945 loc = htab->srelgot->contents;
3946 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3947 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3950 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
3952 asection *s;
3954 /* This symbol needs a copy reloc. Set it up. */
3956 if (! (h->dynindx != -1
3957 && (h->root.type == bfd_link_hash_defined
3958 || h->root.type == bfd_link_hash_defweak)))
3959 abort ();
3961 s = htab->srelbss;
3963 rel.r_offset = (h->root.u.def.value
3964 + h->root.u.def.section->output_offset
3965 + h->root.u.def.section->output_section->vma);
3966 rel.r_addend = 0;
3967 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
3968 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
3969 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
3972 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3973 if (h->root.root.string[0] == '_'
3974 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
3975 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
3977 sym->st_shndx = SHN_ABS;
3980 return TRUE;
3983 /* Used to decide how to sort relocs in an optimal manner for the
3984 dynamic linker, before writing them out. */
3986 static enum elf_reloc_type_class
3987 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
3989 if (ELF32_R_SYM (rela->r_info) == 0)
3990 return reloc_class_relative;
3992 switch ((int) ELF32_R_TYPE (rela->r_info))
3994 case R_PARISC_IPLT:
3995 return reloc_class_plt;
3996 case R_PARISC_COPY:
3997 return reloc_class_copy;
3998 default:
3999 return reloc_class_normal;
4003 /* Finish up the dynamic sections. */
4005 static bfd_boolean
4006 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4007 struct bfd_link_info *info)
4009 bfd *dynobj;
4010 struct elf32_hppa_link_hash_table *htab;
4011 asection *sdyn;
4013 htab = hppa_link_hash_table (info);
4014 dynobj = htab->elf.dynobj;
4016 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4018 if (htab->elf.dynamic_sections_created)
4020 Elf32_External_Dyn *dyncon, *dynconend;
4022 if (sdyn == NULL)
4023 abort ();
4025 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4026 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4027 for (; dyncon < dynconend; dyncon++)
4029 Elf_Internal_Dyn dyn;
4030 asection *s;
4032 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4034 switch (dyn.d_tag)
4036 default:
4037 continue;
4039 case DT_PLTGOT:
4040 /* Use PLTGOT to set the GOT register. */
4041 dyn.d_un.d_ptr = elf_gp (output_bfd);
4042 break;
4044 case DT_JMPREL:
4045 s = htab->srelplt;
4046 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4047 break;
4049 case DT_PLTRELSZ:
4050 s = htab->srelplt;
4051 dyn.d_un.d_val = s->_raw_size;
4052 break;
4054 case DT_RELASZ:
4055 /* Don't count procedure linkage table relocs in the
4056 overall reloc count. */
4057 s = htab->srelplt;
4058 if (s == NULL)
4059 continue;
4060 dyn.d_un.d_val -= s->_raw_size;
4061 break;
4063 case DT_RELA:
4064 /* We may not be using the standard ELF linker script.
4065 If .rela.plt is the first .rela section, we adjust
4066 DT_RELA to not include it. */
4067 s = htab->srelplt;
4068 if (s == NULL)
4069 continue;
4070 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4071 continue;
4072 dyn.d_un.d_ptr += s->_raw_size;
4073 break;
4076 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4080 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4082 /* Fill in the first entry in the global offset table.
4083 We use it to point to our dynamic section, if we have one. */
4084 bfd_put_32 (output_bfd,
4085 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4086 htab->sgot->contents);
4088 /* The second entry is reserved for use by the dynamic linker. */
4089 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4091 /* Set .got entry size. */
4092 elf_section_data (htab->sgot->output_section)
4093 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4096 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4098 /* Set plt entry size. */
4099 elf_section_data (htab->splt->output_section)
4100 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4102 if (htab->need_plt_stub)
4104 /* Set up the .plt stub. */
4105 memcpy (htab->splt->contents
4106 + htab->splt->_raw_size - sizeof (plt_stub),
4107 plt_stub, sizeof (plt_stub));
4109 if ((htab->splt->output_offset
4110 + htab->splt->output_section->vma
4111 + htab->splt->_raw_size)
4112 != (htab->sgot->output_offset
4113 + htab->sgot->output_section->vma))
4115 (*_bfd_error_handler)
4116 (_(".got section not immediately after .plt section"));
4117 return FALSE;
4122 return TRUE;
4125 /* Tweak the OSABI field of the elf header. */
4127 static void
4128 elf32_hppa_post_process_headers (bfd *abfd,
4129 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4131 Elf_Internal_Ehdr * i_ehdrp;
4133 i_ehdrp = elf_elfheader (abfd);
4135 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4137 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4139 else
4141 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4145 /* Called when writing out an object file to decide the type of a
4146 symbol. */
4147 static int
4148 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4150 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4151 return STT_PARISC_MILLI;
4152 else
4153 return type;
4156 /* Misc BFD support code. */
4157 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4158 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4159 #define elf_info_to_howto elf_hppa_info_to_howto
4160 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4162 /* Stuff for the BFD linker. */
4163 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4164 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4165 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4166 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4167 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4168 #define elf_backend_check_relocs elf32_hppa_check_relocs
4169 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4170 #define elf_backend_fake_sections elf_hppa_fake_sections
4171 #define elf_backend_relocate_section elf32_hppa_relocate_section
4172 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4173 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4174 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4175 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4176 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4177 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4178 #define elf_backend_object_p elf32_hppa_object_p
4179 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4180 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4181 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4182 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4184 #define elf_backend_can_gc_sections 1
4185 #define elf_backend_can_refcount 1
4186 #define elf_backend_plt_alignment 2
4187 #define elf_backend_want_got_plt 0
4188 #define elf_backend_plt_readonly 0
4189 #define elf_backend_want_plt_sym 0
4190 #define elf_backend_got_header_size 8
4191 #define elf_backend_rela_normal 1
4193 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4194 #define TARGET_BIG_NAME "elf32-hppa"
4195 #define ELF_ARCH bfd_arch_hppa
4196 #define ELF_MACHINE_CODE EM_PARISC
4197 #define ELF_MAXPAGESIZE 0x1000
4199 #include "elf32-target.h"
4201 #undef TARGET_BIG_SYM
4202 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4203 #undef TARGET_BIG_NAME
4204 #define TARGET_BIG_NAME "elf32-hppa-linux"
4206 #define INCLUDED_TARGET_FILE 1
4207 #include "elf32-target.h"