gas/config/
[binutils.git] / gas / config / tc-i386.c
blobe0913222245ecd822675fed8adba570db5873b25
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
37 #ifndef REGISTER_WARNINGS
38 #define REGISTER_WARNINGS 1
39 #endif
41 #ifndef INFER_ADDR_PREFIX
42 #define INFER_ADDR_PREFIX 1
43 #endif
45 #ifndef SCALE1_WHEN_NO_INDEX
46 /* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50 #define SCALE1_WHEN_NO_INDEX 1
51 #endif
53 #ifndef DEFAULT_ARCH
54 #define DEFAULT_ARCH "i386"
55 #endif
57 #ifndef INLINE
58 #if __GNUC__ >= 2
59 #define INLINE __inline__
60 #else
61 #define INLINE
62 #endif
63 #endif
65 static void set_code_flag (int);
66 static void set_16bit_gcc_code_flag (int);
67 static void set_intel_syntax (int);
68 static void set_cpu_arch (int);
69 #ifdef TE_PE
70 static void pe_directive_secrel (int);
71 #endif
72 static void signed_cons (int);
73 static char *output_invalid (int c);
74 static int i386_operand (char *);
75 static int i386_intel_operand (char *, int);
76 static const reg_entry *parse_register (char *, char **);
77 static char *parse_insn (char *, char *);
78 static char *parse_operands (char *, const char *);
79 static void swap_operands (void);
80 static void swap_2_operands (int, int);
81 static void optimize_imm (void);
82 static void optimize_disp (void);
83 static int match_template (void);
84 static int check_string (void);
85 static int process_suffix (void);
86 static int check_byte_reg (void);
87 static int check_long_reg (void);
88 static int check_qword_reg (void);
89 static int check_word_reg (void);
90 static int finalize_imm (void);
91 static int process_operands (void);
92 static const seg_entry *build_modrm_byte (void);
93 static void output_insn (void);
94 static void output_imm (fragS *, offsetT);
95 static void output_disp (fragS *, offsetT);
96 #ifndef I386COFF
97 static void s_bss (int);
98 #endif
99 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100 static void handle_large_common (int small ATTRIBUTE_UNUSED);
101 #endif
103 static const char *default_arch = DEFAULT_ARCH;
105 /* 'md_assemble ()' gathers together information and puts it into a
106 i386_insn. */
108 union i386_op
110 expressionS *disps;
111 expressionS *imms;
112 const reg_entry *regs;
115 struct _i386_insn
117 /* TM holds the template for the insn were currently assembling. */
118 template tm;
120 /* SUFFIX holds the instruction mnemonic suffix if given.
121 (e.g. 'l' for 'movl') */
122 char suffix;
124 /* OPERANDS gives the number of given operands. */
125 unsigned int operands;
127 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128 of given register, displacement, memory operands and immediate
129 operands. */
130 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
132 /* TYPES [i] is the type (see above #defines) which tells us how to
133 use OP[i] for the corresponding operand. */
134 unsigned int types[MAX_OPERANDS];
136 /* Displacement expression, immediate expression, or register for each
137 operand. */
138 union i386_op op[MAX_OPERANDS];
140 /* Flags for operands. */
141 unsigned int flags[MAX_OPERANDS];
142 #define Operand_PCrel 1
144 /* Relocation type for operand */
145 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
147 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148 the base index byte below. */
149 const reg_entry *base_reg;
150 const reg_entry *index_reg;
151 unsigned int log2_scale_factor;
153 /* SEG gives the seg_entries of this insn. They are zero unless
154 explicit segment overrides are given. */
155 const seg_entry *seg[2];
157 /* PREFIX holds all the given prefix opcodes (usually null).
158 PREFIXES is the number of prefix opcodes. */
159 unsigned int prefixes;
160 unsigned char prefix[MAX_PREFIXES];
162 /* RM and SIB are the modrm byte and the sib byte where the
163 addressing modes of this insn are encoded. */
165 modrm_byte rm;
166 rex_byte rex;
167 sib_byte sib;
170 typedef struct _i386_insn i386_insn;
172 /* List of chars besides those in app.c:symbol_chars that can start an
173 operand. Used to prevent the scrubber eating vital white-space. */
174 const char extra_symbol_chars[] = "*%-(["
175 #ifdef LEX_AT
177 #endif
178 #ifdef LEX_QM
180 #endif
183 #if (defined (TE_I386AIX) \
184 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
185 && !defined (TE_GNU) \
186 && !defined (TE_LINUX) \
187 && !defined (TE_NETWARE) \
188 && !defined (TE_FreeBSD) \
189 && !defined (TE_NetBSD)))
190 /* This array holds the chars that always start a comment. If the
191 pre-processor is disabled, these aren't very useful. The option
192 --divide will remove '/' from this list. */
193 const char *i386_comment_chars = "#/";
194 #define SVR4_COMMENT_CHARS 1
195 #define PREFIX_SEPARATOR '\\'
197 #else
198 const char *i386_comment_chars = "#";
199 #define PREFIX_SEPARATOR '/'
200 #endif
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars[] = "#/";
212 const char line_separator_chars[] = ";";
214 /* Chars that can be used to separate mant from exp in floating point
215 nums. */
216 const char EXP_CHARS[] = "eE";
218 /* Chars that mean this number is a floating point constant
219 As in 0f12.456
220 or 0d1.2345e12. */
221 const char FLT_CHARS[] = "fFdDxX";
223 /* Tables for lexical analysis. */
224 static char mnemonic_chars[256];
225 static char register_chars[256];
226 static char operand_chars[256];
227 static char identifier_chars[256];
228 static char digit_chars[256];
230 /* Lexical macros. */
231 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232 #define is_operand_char(x) (operand_chars[(unsigned char) x])
233 #define is_register_char(x) (register_chars[(unsigned char) x])
234 #define is_space_char(x) ((x) == ' ')
235 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236 #define is_digit_char(x) (digit_chars[(unsigned char) x])
238 /* All non-digit non-letter characters that may occur in an operand. */
239 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
241 /* md_assemble() always leaves the strings it's passed unaltered. To
242 effect this we maintain a stack of saved characters that we've smashed
243 with '\0's (indicating end of strings for various sub-fields of the
244 assembler instruction). */
245 static char save_stack[32];
246 static char *save_stack_p;
247 #define END_STRING_AND_SAVE(s) \
248 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249 #define RESTORE_END_STRING(s) \
250 do { *(s) = *--save_stack_p; } while (0)
252 /* The instruction we're assembling. */
253 static i386_insn i;
255 /* Possible templates for current insn. */
256 static const templates *current_templates;
258 /* Per instruction expressionS buffers: max displacements & immediates. */
259 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
262 /* Current operand we are working on. */
263 static int this_operand;
265 /* We support four different modes. FLAG_CODE variable is used to distinguish
266 these. */
268 enum flag_code {
269 CODE_32BIT,
270 CODE_16BIT,
271 CODE_64BIT };
272 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
274 static enum flag_code flag_code;
275 static unsigned int object_64bit;
276 static int use_rela_relocations = 0;
278 /* The names used to print error messages. */
279 static const char *flag_code_names[] =
281 "32",
282 "16",
283 "64"
286 /* 1 for intel syntax,
287 0 if att syntax. */
288 static int intel_syntax = 0;
290 /* 1 if register prefix % not required. */
291 static int allow_naked_reg = 0;
293 /* Register prefix used for error message. */
294 static const char *register_prefix = "%";
296 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297 leave, push, and pop instructions so that gcc has the same stack
298 frame as in 32 bit mode. */
299 static char stackop_size = '\0';
301 /* Non-zero to optimize code alignment. */
302 int optimize_align_code = 1;
304 /* Non-zero to quieten some warnings. */
305 static int quiet_warnings = 0;
307 /* CPU name. */
308 static const char *cpu_arch_name = NULL;
309 static const char *cpu_sub_arch_name = NULL;
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
314 /* If we have selected a cpu we are generating instructions for. */
315 static int cpu_arch_tune_set = 0;
317 /* Cpu we are generating instructions for. */
318 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
320 /* CPU feature flags of cpu we are generating instructions for. */
321 static unsigned int cpu_arch_tune_flags = 0;
323 /* CPU instruction set architecture used. */
324 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
326 /* CPU feature flags of instruction set architecture used. */
327 static unsigned int cpu_arch_isa_flags = 0;
329 /* If set, conditional jumps are not automatically promoted to handle
330 larger than a byte offset. */
331 static unsigned int no_cond_jump_promotion = 0;
333 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
334 static symbolS *GOT_symbol;
336 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
337 unsigned int x86_dwarf2_return_column;
339 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
340 int x86_cie_data_alignment;
342 /* Interface to relax_segment.
343 There are 3 major relax states for 386 jump insns because the
344 different types of jumps add different sizes to frags when we're
345 figuring out what sort of jump to choose to reach a given label. */
347 /* Types. */
348 #define UNCOND_JUMP 0
349 #define COND_JUMP 1
350 #define COND_JUMP86 2
352 /* Sizes. */
353 #define CODE16 1
354 #define SMALL 0
355 #define SMALL16 (SMALL | CODE16)
356 #define BIG 2
357 #define BIG16 (BIG | CODE16)
359 #ifndef INLINE
360 #ifdef __GNUC__
361 #define INLINE __inline__
362 #else
363 #define INLINE
364 #endif
365 #endif
367 #define ENCODE_RELAX_STATE(type, size) \
368 ((relax_substateT) (((type) << 2) | (size)))
369 #define TYPE_FROM_RELAX_STATE(s) \
370 ((s) >> 2)
371 #define DISP_SIZE_FROM_RELAX_STATE(s) \
372 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
374 /* This table is used by relax_frag to promote short jumps to long
375 ones where necessary. SMALL (short) jumps may be promoted to BIG
376 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
377 don't allow a short jump in a 32 bit code segment to be promoted to
378 a 16 bit offset jump because it's slower (requires data size
379 prefix), and doesn't work, unless the destination is in the bottom
380 64k of the code segment (The top 16 bits of eip are zeroed). */
382 const relax_typeS md_relax_table[] =
384 /* The fields are:
385 1) most positive reach of this state,
386 2) most negative reach of this state,
387 3) how many bytes this mode will have in the variable part of the frag
388 4) which index into the table to try if we can't fit into this one. */
390 /* UNCOND_JUMP states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393 /* dword jmp adds 4 bytes to frag:
394 0 extra opcode bytes, 4 displacement bytes. */
395 {0, 0, 4, 0},
396 /* word jmp adds 2 byte2 to frag:
397 0 extra opcode bytes, 2 displacement bytes. */
398 {0, 0, 2, 0},
400 /* COND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403 /* dword conditionals adds 5 bytes to frag:
404 1 extra opcode byte, 4 displacement bytes. */
405 {0, 0, 5, 0},
406 /* word conditionals add 3 bytes to frag:
407 1 extra opcode byte, 2 displacement bytes. */
408 {0, 0, 3, 0},
410 /* COND_JUMP86 states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 4 bytes to frag:
417 1 displacement byte and a 3 byte long branch insn. */
418 {0, 0, 4, 0}
421 static const arch_entry cpu_arch[] =
423 {"generic32", PROCESSOR_GENERIC32,
424 Cpu186|Cpu286|Cpu386},
425 {"generic64", PROCESSOR_GENERIC64,
426 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
427 |CpuMMX2|CpuSSE|CpuSSE2},
428 {"i8086", PROCESSOR_UNKNOWN,
430 {"i186", PROCESSOR_UNKNOWN,
431 Cpu186},
432 {"i286", PROCESSOR_UNKNOWN,
433 Cpu186|Cpu286},
434 {"i386", PROCESSOR_GENERIC32,
435 Cpu186|Cpu286|Cpu386},
436 {"i486", PROCESSOR_I486,
437 Cpu186|Cpu286|Cpu386|Cpu486},
438 {"i586", PROCESSOR_PENTIUM,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
440 {"i686", PROCESSOR_PENTIUMPRO,
441 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
442 {"pentium", PROCESSOR_PENTIUM,
443 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
444 {"pentiumpro",PROCESSOR_PENTIUMPRO,
445 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
446 {"pentiumii", PROCESSOR_PENTIUMPRO,
447 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
448 {"pentiumiii",PROCESSOR_PENTIUMPRO,
449 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
450 {"pentium4", PROCESSOR_PENTIUM4,
451 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
452 |CpuMMX2|CpuSSE|CpuSSE2},
453 {"prescott", PROCESSOR_NOCONA,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
455 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456 {"nocona", PROCESSOR_NOCONA,
457 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
458 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
459 {"yonah", PROCESSOR_CORE,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
461 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
462 {"core", PROCESSOR_CORE,
463 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
464 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465 {"merom", PROCESSOR_CORE2,
466 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468 {"core2", PROCESSOR_CORE2,
469 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
471 {"k6", PROCESSOR_K6,
472 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
473 {"k6_2", PROCESSOR_K6,
474 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
475 {"athlon", PROCESSOR_ATHLON,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
477 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478 {"sledgehammer", PROCESSOR_K8,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
480 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481 {"opteron", PROCESSOR_K8,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
483 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484 {"k8", PROCESSOR_K8,
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
486 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
487 {"amdfam10", PROCESSOR_AMDFAM10,
488 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490 |CpuABM},
491 {".mmx", PROCESSOR_UNKNOWN,
492 CpuMMX},
493 {".sse", PROCESSOR_UNKNOWN,
494 CpuMMX|CpuMMX2|CpuSSE},
495 {".sse2", PROCESSOR_UNKNOWN,
496 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497 {".sse3", PROCESSOR_UNKNOWN,
498 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
499 {".ssse3", PROCESSOR_UNKNOWN,
500 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
501 {".sse4.1", PROCESSOR_UNKNOWN,
502 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
503 {".sse4.2", PROCESSOR_UNKNOWN,
504 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505 {".sse4", PROCESSOR_UNKNOWN,
506 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
507 {".3dnow", PROCESSOR_UNKNOWN,
508 CpuMMX|Cpu3dnow},
509 {".3dnowa", PROCESSOR_UNKNOWN,
510 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511 {".padlock", PROCESSOR_UNKNOWN,
512 CpuPadLock},
513 {".pacifica", PROCESSOR_UNKNOWN,
514 CpuSVME},
515 {".svme", PROCESSOR_UNKNOWN,
516 CpuSVME},
517 {".sse4a", PROCESSOR_UNKNOWN,
518 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519 {".abm", PROCESSOR_UNKNOWN,
520 CpuABM}
523 const pseudo_typeS md_pseudo_table[] =
525 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
526 {"align", s_align_bytes, 0},
527 #else
528 {"align", s_align_ptwo, 0},
529 #endif
530 {"arch", set_cpu_arch, 0},
531 #ifndef I386COFF
532 {"bss", s_bss, 0},
533 #endif
534 {"ffloat", float_cons, 'f'},
535 {"dfloat", float_cons, 'd'},
536 {"tfloat", float_cons, 'x'},
537 {"value", cons, 2},
538 {"slong", signed_cons, 4},
539 {"noopt", s_ignore, 0},
540 {"optim", s_ignore, 0},
541 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
542 {"code16", set_code_flag, CODE_16BIT},
543 {"code32", set_code_flag, CODE_32BIT},
544 {"code64", set_code_flag, CODE_64BIT},
545 {"intel_syntax", set_intel_syntax, 1},
546 {"att_syntax", set_intel_syntax, 0},
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 {"largecomm", handle_large_common, 0},
549 #else
550 {"file", (void (*) (int)) dwarf2_directive_file, 0},
551 {"loc", dwarf2_directive_loc, 0},
552 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
553 #endif
554 #ifdef TE_PE
555 {"secrel32", pe_directive_secrel, 0},
556 #endif
557 {0, 0, 0}
560 /* For interface with expression (). */
561 extern char *input_line_pointer;
563 /* Hash table for instruction mnemonic lookup. */
564 static struct hash_control *op_hash;
566 /* Hash table for register lookup. */
567 static struct hash_control *reg_hash;
569 void
570 i386_align_code (fragS *fragP, int count)
572 /* Various efficient no-op patterns for aligning code labels.
573 Note: Don't try to assemble the instructions in the comments.
574 0L and 0w are not legal. */
575 static const char f32_1[] =
576 {0x90}; /* nop */
577 static const char f32_2[] =
578 {0x66,0x90}; /* xchg %ax,%ax */
579 static const char f32_3[] =
580 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
581 static const char f32_4[] =
582 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
583 static const char f32_5[] =
584 {0x90, /* nop */
585 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
586 static const char f32_6[] =
587 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
588 static const char f32_7[] =
589 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
590 static const char f32_8[] =
591 {0x90, /* nop */
592 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
593 static const char f32_9[] =
594 {0x89,0xf6, /* movl %esi,%esi */
595 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
596 static const char f32_10[] =
597 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
598 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
599 static const char f32_11[] =
600 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
601 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
602 static const char f32_12[] =
603 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
604 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
605 static const char f32_13[] =
606 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_14[] =
609 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f32_15[] =
612 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
613 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
614 static const char f16_3[] =
615 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
616 static const char f16_4[] =
617 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
618 static const char f16_5[] =
619 {0x90, /* nop */
620 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
621 static const char f16_6[] =
622 {0x89,0xf6, /* mov %si,%si */
623 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
624 static const char f16_7[] =
625 {0x8d,0x74,0x00, /* lea 0(%si),%si */
626 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
627 static const char f16_8[] =
628 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
629 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
630 static const char *const f32_patt[] = {
631 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
632 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
634 static const char *const f16_patt[] = {
635 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
636 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
638 /* nopl (%[re]ax) */
639 static const char alt_3[] =
640 {0x0f,0x1f,0x00};
641 /* nopl 0(%[re]ax) */
642 static const char alt_4[] =
643 {0x0f,0x1f,0x40,0x00};
644 /* nopl 0(%[re]ax,%[re]ax,1) */
645 static const char alt_5[] =
646 {0x0f,0x1f,0x44,0x00,0x00};
647 /* nopw 0(%[re]ax,%[re]ax,1) */
648 static const char alt_6[] =
649 {0x66,0x0f,0x1f,0x44,0x00,0x00};
650 /* nopl 0L(%[re]ax) */
651 static const char alt_7[] =
652 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
653 /* nopl 0L(%[re]ax,%[re]ax,1) */
654 static const char alt_8[] =
655 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
656 /* nopw 0L(%[re]ax,%[re]ax,1) */
657 static const char alt_9[] =
658 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
659 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
660 static const char alt_10[] =
661 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
662 /* data16
663 nopw %cs:0L(%[re]ax,%[re]ax,1) */
664 static const char alt_long_11[] =
665 {0x66,
666 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
667 /* data16
668 data16
669 nopw %cs:0L(%[re]ax,%[re]ax,1) */
670 static const char alt_long_12[] =
671 {0x66,
672 0x66,
673 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
674 /* data16
675 data16
676 data16
677 nopw %cs:0L(%[re]ax,%[re]ax,1) */
678 static const char alt_long_13[] =
679 {0x66,
680 0x66,
681 0x66,
682 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
683 /* data16
684 data16
685 data16
686 data16
687 nopw %cs:0L(%[re]ax,%[re]ax,1) */
688 static const char alt_long_14[] =
689 {0x66,
690 0x66,
691 0x66,
692 0x66,
693 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
694 /* data16
695 data16
696 data16
697 data16
698 data16
699 nopw %cs:0L(%[re]ax,%[re]ax,1) */
700 static const char alt_long_15[] =
701 {0x66,
702 0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
707 /* nopl 0(%[re]ax,%[re]ax,1)
708 nopw 0(%[re]ax,%[re]ax,1) */
709 static const char alt_short_11[] =
710 {0x0f,0x1f,0x44,0x00,0x00,
711 0x66,0x0f,0x1f,0x44,0x00,0x00};
712 /* nopw 0(%[re]ax,%[re]ax,1)
713 nopw 0(%[re]ax,%[re]ax,1) */
714 static const char alt_short_12[] =
715 {0x66,0x0f,0x1f,0x44,0x00,0x00,
716 0x66,0x0f,0x1f,0x44,0x00,0x00};
717 /* nopw 0(%[re]ax,%[re]ax,1)
718 nopl 0L(%[re]ax) */
719 static const char alt_short_13[] =
720 {0x66,0x0f,0x1f,0x44,0x00,0x00,
721 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
722 /* nopl 0L(%[re]ax)
723 nopl 0L(%[re]ax) */
724 static const char alt_short_14[] =
725 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
726 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
727 /* nopl 0L(%[re]ax)
728 nopl 0L(%[re]ax,%[re]ax,1) */
729 static const char alt_short_15[] =
730 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
731 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
732 static const char *const alt_short_patt[] = {
733 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
734 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
735 alt_short_14, alt_short_15
737 static const char *const alt_long_patt[] = {
738 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
739 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
740 alt_long_14, alt_long_15
743 if (count <= 0 || count > 15)
744 return;
746 /* We need to decide which NOP sequence to use for 32bit and
747 64bit. When -mtune= is used:
749 1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
750 f32_patt will be used.
751 2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with
752 0x66 prefix will be used.
753 3. For PROCESSOR_CORE2, alt_long_patt will be used.
754 4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
755 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
756 and PROCESSOR_GENERIC64, alt_short_patt will be used.
758 When -mtune= isn't used, alt_short_patt will be used if
759 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
761 When -march= or .arch is used, we can't use anything beyond
762 cpu_arch_isa_flags. */
764 if (flag_code == CODE_16BIT)
766 memcpy (fragP->fr_literal + fragP->fr_fix,
767 f16_patt[count - 1], count);
768 if (count > 8)
769 /* Adjust jump offset. */
770 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
772 else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
774 int i;
775 int nnops = (count + 3) / 4;
776 int len = count / nnops;
777 int remains = count - nnops * len;
778 int pos = 0;
780 /* The recommended way to pad 64bit code is to use NOPs preceded
781 by maximally four 0x66 prefixes. Balance the size of nops. */
782 for (i = 0; i < remains; i++)
784 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
785 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
786 pos += len + 1;
788 for (; i < nnops; i++)
790 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
791 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
792 pos += len;
795 else
797 const char *const *patt = NULL;
799 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
801 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
802 switch (cpu_arch_tune)
804 case PROCESSOR_UNKNOWN:
805 /* We use cpu_arch_isa_flags to check if we SHOULD
806 optimize for Cpu686. */
807 if ((cpu_arch_isa_flags & Cpu686) != 0)
808 patt = alt_short_patt;
809 else
810 patt = f32_patt;
811 break;
812 case PROCESSOR_CORE2:
813 patt = alt_long_patt;
814 break;
815 case PROCESSOR_PENTIUMPRO:
816 case PROCESSOR_PENTIUM4:
817 case PROCESSOR_NOCONA:
818 case PROCESSOR_CORE:
819 case PROCESSOR_K6:
820 case PROCESSOR_ATHLON:
821 case PROCESSOR_K8:
822 case PROCESSOR_GENERIC64:
823 case PROCESSOR_AMDFAM10:
824 patt = alt_short_patt;
825 break;
826 case PROCESSOR_I486:
827 case PROCESSOR_PENTIUM:
828 case PROCESSOR_GENERIC32:
829 patt = f32_patt;
830 break;
833 else
835 switch (cpu_arch_tune)
837 case PROCESSOR_UNKNOWN:
838 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
839 PROCESSOR_UNKNOWN. */
840 abort ();
841 break;
843 case PROCESSOR_I486:
844 case PROCESSOR_PENTIUM:
845 case PROCESSOR_PENTIUMPRO:
846 case PROCESSOR_PENTIUM4:
847 case PROCESSOR_NOCONA:
848 case PROCESSOR_CORE:
849 case PROCESSOR_K6:
850 case PROCESSOR_ATHLON:
851 case PROCESSOR_K8:
852 case PROCESSOR_AMDFAM10:
853 case PROCESSOR_GENERIC32:
854 /* We use cpu_arch_isa_flags to check if we CAN optimize
855 for Cpu686. */
856 if ((cpu_arch_isa_flags & Cpu686) != 0)
857 patt = alt_short_patt;
858 else
859 patt = f32_patt;
860 break;
861 case PROCESSOR_CORE2:
862 if ((cpu_arch_isa_flags & Cpu686) != 0)
863 patt = alt_long_patt;
864 else
865 patt = f32_patt;
866 break;
867 case PROCESSOR_GENERIC64:
868 patt = alt_short_patt;
869 break;
873 memcpy (fragP->fr_literal + fragP->fr_fix,
874 patt[count - 1], count);
876 fragP->fr_var = count;
879 static INLINE unsigned int
880 mode_from_disp_size (unsigned int t)
882 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
885 static INLINE int
886 fits_in_signed_byte (offsetT num)
888 return (num >= -128) && (num <= 127);
891 static INLINE int
892 fits_in_unsigned_byte (offsetT num)
894 return (num & 0xff) == num;
897 static INLINE int
898 fits_in_unsigned_word (offsetT num)
900 return (num & 0xffff) == num;
903 static INLINE int
904 fits_in_signed_word (offsetT num)
906 return (-32768 <= num) && (num <= 32767);
909 static INLINE int
910 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
912 #ifndef BFD64
913 return 1;
914 #else
915 return (!(((offsetT) -1 << 31) & num)
916 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
917 #endif
918 } /* fits_in_signed_long() */
920 static INLINE int
921 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
923 #ifndef BFD64
924 return 1;
925 #else
926 return (num & (((offsetT) 2 << 31) - 1)) == num;
927 #endif
928 } /* fits_in_unsigned_long() */
930 static unsigned int
931 smallest_imm_type (offsetT num)
933 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
935 /* This code is disabled on the 486 because all the Imm1 forms
936 in the opcode table are slower on the i486. They're the
937 versions with the implicitly specified single-position
938 displacement, which has another syntax if you really want to
939 use that form. */
940 if (num == 1)
941 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
943 return (fits_in_signed_byte (num)
944 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
945 : fits_in_unsigned_byte (num)
946 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
947 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
948 ? (Imm16 | Imm32 | Imm32S | Imm64)
949 : fits_in_signed_long (num)
950 ? (Imm32 | Imm32S | Imm64)
951 : fits_in_unsigned_long (num)
952 ? (Imm32 | Imm64)
953 : Imm64);
956 static offsetT
957 offset_in_range (offsetT val, int size)
959 addressT mask;
961 switch (size)
963 case 1: mask = ((addressT) 1 << 8) - 1; break;
964 case 2: mask = ((addressT) 1 << 16) - 1; break;
965 case 4: mask = ((addressT) 2 << 31) - 1; break;
966 #ifdef BFD64
967 case 8: mask = ((addressT) 2 << 63) - 1; break;
968 #endif
969 default: abort ();
972 /* If BFD64, sign extend val. */
973 if (!use_rela_relocations)
974 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
975 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
977 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
979 char buf1[40], buf2[40];
981 sprint_value (buf1, val);
982 sprint_value (buf2, val & mask);
983 as_warn (_("%s shortened to %s"), buf1, buf2);
985 return val & mask;
988 /* Returns 0 if attempting to add a prefix where one from the same
989 class already exists, 1 if non rep/repne added, 2 if rep/repne
990 added. */
991 static int
992 add_prefix (unsigned int prefix)
994 int ret = 1;
995 unsigned int q;
997 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
998 && flag_code == CODE_64BIT)
1000 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1001 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1002 && (prefix & (REX_R | REX_X | REX_B))))
1003 ret = 0;
1004 q = REX_PREFIX;
1006 else
1008 switch (prefix)
1010 default:
1011 abort ();
1013 case CS_PREFIX_OPCODE:
1014 case DS_PREFIX_OPCODE:
1015 case ES_PREFIX_OPCODE:
1016 case FS_PREFIX_OPCODE:
1017 case GS_PREFIX_OPCODE:
1018 case SS_PREFIX_OPCODE:
1019 q = SEG_PREFIX;
1020 break;
1022 case REPNE_PREFIX_OPCODE:
1023 case REPE_PREFIX_OPCODE:
1024 ret = 2;
1025 /* fall thru */
1026 case LOCK_PREFIX_OPCODE:
1027 q = LOCKREP_PREFIX;
1028 break;
1030 case FWAIT_OPCODE:
1031 q = WAIT_PREFIX;
1032 break;
1034 case ADDR_PREFIX_OPCODE:
1035 q = ADDR_PREFIX;
1036 break;
1038 case DATA_PREFIX_OPCODE:
1039 q = DATA_PREFIX;
1040 break;
1042 if (i.prefix[q] != 0)
1043 ret = 0;
1046 if (ret)
1048 if (!i.prefix[q])
1049 ++i.prefixes;
1050 i.prefix[q] |= prefix;
1052 else
1053 as_bad (_("same type of prefix used twice"));
1055 return ret;
1058 static void
1059 set_code_flag (int value)
1061 flag_code = value;
1062 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1063 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1064 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1066 as_bad (_("64bit mode not supported on this CPU."));
1068 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1070 as_bad (_("32bit mode not supported on this CPU."));
1072 stackop_size = '\0';
1075 static void
1076 set_16bit_gcc_code_flag (int new_code_flag)
1078 flag_code = new_code_flag;
1079 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1080 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1081 stackop_size = LONG_MNEM_SUFFIX;
1084 static void
1085 set_intel_syntax (int syntax_flag)
1087 /* Find out if register prefixing is specified. */
1088 int ask_naked_reg = 0;
1090 SKIP_WHITESPACE ();
1091 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1093 char *string = input_line_pointer;
1094 int e = get_symbol_end ();
1096 if (strcmp (string, "prefix") == 0)
1097 ask_naked_reg = 1;
1098 else if (strcmp (string, "noprefix") == 0)
1099 ask_naked_reg = -1;
1100 else
1101 as_bad (_("bad argument to syntax directive."));
1102 *input_line_pointer = e;
1104 demand_empty_rest_of_line ();
1106 intel_syntax = syntax_flag;
1108 if (ask_naked_reg == 0)
1109 allow_naked_reg = (intel_syntax
1110 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1111 else
1112 allow_naked_reg = (ask_naked_reg < 0);
1114 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1115 identifier_chars['$'] = intel_syntax ? '$' : 0;
1116 register_prefix = allow_naked_reg ? "" : "%";
1119 static void
1120 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1122 SKIP_WHITESPACE ();
1124 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1126 char *string = input_line_pointer;
1127 int e = get_symbol_end ();
1128 unsigned int i;
1130 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1132 if (strcmp (string, cpu_arch[i].name) == 0)
1134 if (*string != '.')
1136 cpu_arch_name = cpu_arch[i].name;
1137 cpu_sub_arch_name = NULL;
1138 cpu_arch_flags = (cpu_arch[i].flags
1139 | (flag_code == CODE_64BIT
1140 ? Cpu64 : CpuNo64));
1141 cpu_arch_isa = cpu_arch[i].type;
1142 cpu_arch_isa_flags = cpu_arch[i].flags;
1143 if (!cpu_arch_tune_set)
1145 cpu_arch_tune = cpu_arch_isa;
1146 cpu_arch_tune_flags = cpu_arch_isa_flags;
1148 break;
1150 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1152 cpu_sub_arch_name = cpu_arch[i].name;
1153 cpu_arch_flags |= cpu_arch[i].flags;
1155 *input_line_pointer = e;
1156 demand_empty_rest_of_line ();
1157 return;
1160 if (i >= ARRAY_SIZE (cpu_arch))
1161 as_bad (_("no such architecture: `%s'"), string);
1163 *input_line_pointer = e;
1165 else
1166 as_bad (_("missing cpu architecture"));
1168 no_cond_jump_promotion = 0;
1169 if (*input_line_pointer == ','
1170 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1172 char *string = ++input_line_pointer;
1173 int e = get_symbol_end ();
1175 if (strcmp (string, "nojumps") == 0)
1176 no_cond_jump_promotion = 1;
1177 else if (strcmp (string, "jumps") == 0)
1179 else
1180 as_bad (_("no such architecture modifier: `%s'"), string);
1182 *input_line_pointer = e;
1185 demand_empty_rest_of_line ();
1188 unsigned long
1189 i386_mach ()
1191 if (!strcmp (default_arch, "x86_64"))
1192 return bfd_mach_x86_64;
1193 else if (!strcmp (default_arch, "i386"))
1194 return bfd_mach_i386_i386;
1195 else
1196 as_fatal (_("Unknown architecture"));
1199 void
1200 md_begin ()
1202 const char *hash_err;
1204 /* Initialize op_hash hash table. */
1205 op_hash = hash_new ();
1208 const template *optab;
1209 templates *core_optab;
1211 /* Setup for loop. */
1212 optab = i386_optab;
1213 core_optab = (templates *) xmalloc (sizeof (templates));
1214 core_optab->start = optab;
1216 while (1)
1218 ++optab;
1219 if (optab->name == NULL
1220 || strcmp (optab->name, (optab - 1)->name) != 0)
1222 /* different name --> ship out current template list;
1223 add to hash table; & begin anew. */
1224 core_optab->end = optab;
1225 hash_err = hash_insert (op_hash,
1226 (optab - 1)->name,
1227 (PTR) core_optab);
1228 if (hash_err)
1230 as_fatal (_("Internal Error: Can't hash %s: %s"),
1231 (optab - 1)->name,
1232 hash_err);
1234 if (optab->name == NULL)
1235 break;
1236 core_optab = (templates *) xmalloc (sizeof (templates));
1237 core_optab->start = optab;
1242 /* Initialize reg_hash hash table. */
1243 reg_hash = hash_new ();
1245 const reg_entry *regtab;
1246 unsigned int regtab_size = i386_regtab_size;
1248 for (regtab = i386_regtab; regtab_size--; regtab++)
1250 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1251 if (hash_err)
1252 as_fatal (_("Internal Error: Can't hash %s: %s"),
1253 regtab->reg_name,
1254 hash_err);
1258 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1260 int c;
1261 char *p;
1263 for (c = 0; c < 256; c++)
1265 if (ISDIGIT (c))
1267 digit_chars[c] = c;
1268 mnemonic_chars[c] = c;
1269 register_chars[c] = c;
1270 operand_chars[c] = c;
1272 else if (ISLOWER (c))
1274 mnemonic_chars[c] = c;
1275 register_chars[c] = c;
1276 operand_chars[c] = c;
1278 else if (ISUPPER (c))
1280 mnemonic_chars[c] = TOLOWER (c);
1281 register_chars[c] = mnemonic_chars[c];
1282 operand_chars[c] = c;
1285 if (ISALPHA (c) || ISDIGIT (c))
1286 identifier_chars[c] = c;
1287 else if (c >= 128)
1289 identifier_chars[c] = c;
1290 operand_chars[c] = c;
1294 #ifdef LEX_AT
1295 identifier_chars['@'] = '@';
1296 #endif
1297 #ifdef LEX_QM
1298 identifier_chars['?'] = '?';
1299 operand_chars['?'] = '?';
1300 #endif
1301 digit_chars['-'] = '-';
1302 mnemonic_chars['-'] = '-';
1303 mnemonic_chars['.'] = '.';
1304 identifier_chars['_'] = '_';
1305 identifier_chars['.'] = '.';
1307 for (p = operand_special_chars; *p != '\0'; p++)
1308 operand_chars[(unsigned char) *p] = *p;
1311 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1312 if (IS_ELF)
1314 record_alignment (text_section, 2);
1315 record_alignment (data_section, 2);
1316 record_alignment (bss_section, 2);
1318 #endif
1320 if (flag_code == CODE_64BIT)
1322 x86_dwarf2_return_column = 16;
1323 x86_cie_data_alignment = -8;
1325 else
1327 x86_dwarf2_return_column = 8;
1328 x86_cie_data_alignment = -4;
1332 void
1333 i386_print_statistics (FILE *file)
1335 hash_print_statistics (file, "i386 opcode", op_hash);
1336 hash_print_statistics (file, "i386 register", reg_hash);
1339 #ifdef DEBUG386
1341 /* Debugging routines for md_assemble. */
1342 static void pte (template *);
1343 static void pt (unsigned int);
1344 static void pe (expressionS *);
1345 static void ps (symbolS *);
1347 static void
1348 pi (char *line, i386_insn *x)
1350 unsigned int i;
1352 fprintf (stdout, "%s: template ", line);
1353 pte (&x->tm);
1354 fprintf (stdout, " address: base %s index %s scale %x\n",
1355 x->base_reg ? x->base_reg->reg_name : "none",
1356 x->index_reg ? x->index_reg->reg_name : "none",
1357 x->log2_scale_factor);
1358 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1359 x->rm.mode, x->rm.reg, x->rm.regmem);
1360 fprintf (stdout, " sib: base %x index %x scale %x\n",
1361 x->sib.base, x->sib.index, x->sib.scale);
1362 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1363 (x->rex & REX_W) != 0,
1364 (x->rex & REX_R) != 0,
1365 (x->rex & REX_X) != 0,
1366 (x->rex & REX_B) != 0);
1367 for (i = 0; i < x->operands; i++)
1369 fprintf (stdout, " #%d: ", i + 1);
1370 pt (x->types[i]);
1371 fprintf (stdout, "\n");
1372 if (x->types[i]
1373 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1374 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1375 if (x->types[i] & Imm)
1376 pe (x->op[i].imms);
1377 if (x->types[i] & Disp)
1378 pe (x->op[i].disps);
1382 static void
1383 pte (template *t)
1385 unsigned int i;
1386 fprintf (stdout, " %d operands ", t->operands);
1387 fprintf (stdout, "opcode %x ", t->base_opcode);
1388 if (t->extension_opcode != None)
1389 fprintf (stdout, "ext %x ", t->extension_opcode);
1390 if (t->opcode_modifier & D)
1391 fprintf (stdout, "D");
1392 if (t->opcode_modifier & W)
1393 fprintf (stdout, "W");
1394 fprintf (stdout, "\n");
1395 for (i = 0; i < t->operands; i++)
1397 fprintf (stdout, " #%d type ", i + 1);
1398 pt (t->operand_types[i]);
1399 fprintf (stdout, "\n");
1403 static void
1404 pe (expressionS *e)
1406 fprintf (stdout, " operation %d\n", e->X_op);
1407 fprintf (stdout, " add_number %ld (%lx)\n",
1408 (long) e->X_add_number, (long) e->X_add_number);
1409 if (e->X_add_symbol)
1411 fprintf (stdout, " add_symbol ");
1412 ps (e->X_add_symbol);
1413 fprintf (stdout, "\n");
1415 if (e->X_op_symbol)
1417 fprintf (stdout, " op_symbol ");
1418 ps (e->X_op_symbol);
1419 fprintf (stdout, "\n");
1423 static void
1424 ps (symbolS *s)
1426 fprintf (stdout, "%s type %s%s",
1427 S_GET_NAME (s),
1428 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1429 segment_name (S_GET_SEGMENT (s)));
1432 static struct type_name
1434 unsigned int mask;
1435 char *tname;
1437 const type_names[] =
1439 { Reg8, "r8" },
1440 { Reg16, "r16" },
1441 { Reg32, "r32" },
1442 { Reg64, "r64" },
1443 { Imm8, "i8" },
1444 { Imm8S, "i8s" },
1445 { Imm16, "i16" },
1446 { Imm32, "i32" },
1447 { Imm32S, "i32s" },
1448 { Imm64, "i64" },
1449 { Imm1, "i1" },
1450 { BaseIndex, "BaseIndex" },
1451 { Disp8, "d8" },
1452 { Disp16, "d16" },
1453 { Disp32, "d32" },
1454 { Disp32S, "d32s" },
1455 { Disp64, "d64" },
1456 { InOutPortReg, "InOutPortReg" },
1457 { ShiftCount, "ShiftCount" },
1458 { Control, "control reg" },
1459 { Test, "test reg" },
1460 { Debug, "debug reg" },
1461 { FloatReg, "FReg" },
1462 { FloatAcc, "FAcc" },
1463 { SReg2, "SReg2" },
1464 { SReg3, "SReg3" },
1465 { Acc, "Acc" },
1466 { JumpAbsolute, "Jump Absolute" },
1467 { RegMMX, "rMMX" },
1468 { RegXMM, "rXMM" },
1469 { EsSeg, "es" },
1470 { 0, "" }
1473 static void
1474 pt (t)
1475 unsigned int t;
1477 const struct type_name *ty;
1479 for (ty = type_names; ty->mask; ty++)
1480 if (t & ty->mask)
1481 fprintf (stdout, "%s, ", ty->tname);
1482 fflush (stdout);
1485 #endif /* DEBUG386 */
1487 static bfd_reloc_code_real_type
1488 reloc (unsigned int size,
1489 int pcrel,
1490 int sign,
1491 bfd_reloc_code_real_type other)
1493 if (other != NO_RELOC)
1495 reloc_howto_type *reloc;
1497 if (size == 8)
1498 switch (other)
1500 case BFD_RELOC_X86_64_GOT32:
1501 return BFD_RELOC_X86_64_GOT64;
1502 break;
1503 case BFD_RELOC_X86_64_PLTOFF64:
1504 return BFD_RELOC_X86_64_PLTOFF64;
1505 break;
1506 case BFD_RELOC_X86_64_GOTPC32:
1507 other = BFD_RELOC_X86_64_GOTPC64;
1508 break;
1509 case BFD_RELOC_X86_64_GOTPCREL:
1510 other = BFD_RELOC_X86_64_GOTPCREL64;
1511 break;
1512 case BFD_RELOC_X86_64_TPOFF32:
1513 other = BFD_RELOC_X86_64_TPOFF64;
1514 break;
1515 case BFD_RELOC_X86_64_DTPOFF32:
1516 other = BFD_RELOC_X86_64_DTPOFF64;
1517 break;
1518 default:
1519 break;
1522 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1523 if (size == 4 && flag_code != CODE_64BIT)
1524 sign = -1;
1526 reloc = bfd_reloc_type_lookup (stdoutput, other);
1527 if (!reloc)
1528 as_bad (_("unknown relocation (%u)"), other);
1529 else if (size != bfd_get_reloc_size (reloc))
1530 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1531 bfd_get_reloc_size (reloc),
1532 size);
1533 else if (pcrel && !reloc->pc_relative)
1534 as_bad (_("non-pc-relative relocation for pc-relative field"));
1535 else if ((reloc->complain_on_overflow == complain_overflow_signed
1536 && !sign)
1537 || (reloc->complain_on_overflow == complain_overflow_unsigned
1538 && sign > 0))
1539 as_bad (_("relocated field and relocation type differ in signedness"));
1540 else
1541 return other;
1542 return NO_RELOC;
1545 if (pcrel)
1547 if (!sign)
1548 as_bad (_("there are no unsigned pc-relative relocations"));
1549 switch (size)
1551 case 1: return BFD_RELOC_8_PCREL;
1552 case 2: return BFD_RELOC_16_PCREL;
1553 case 4: return BFD_RELOC_32_PCREL;
1554 case 8: return BFD_RELOC_64_PCREL;
1556 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1558 else
1560 if (sign > 0)
1561 switch (size)
1563 case 4: return BFD_RELOC_X86_64_32S;
1565 else
1566 switch (size)
1568 case 1: return BFD_RELOC_8;
1569 case 2: return BFD_RELOC_16;
1570 case 4: return BFD_RELOC_32;
1571 case 8: return BFD_RELOC_64;
1573 as_bad (_("cannot do %s %u byte relocation"),
1574 sign > 0 ? "signed" : "unsigned", size);
1577 abort ();
1578 return BFD_RELOC_NONE;
1581 /* Here we decide which fixups can be adjusted to make them relative to
1582 the beginning of the section instead of the symbol. Basically we need
1583 to make sure that the dynamic relocations are done correctly, so in
1584 some cases we force the original symbol to be used. */
1587 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1589 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1590 if (!IS_ELF)
1591 return 1;
1593 /* Don't adjust pc-relative references to merge sections in 64-bit
1594 mode. */
1595 if (use_rela_relocations
1596 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1597 && fixP->fx_pcrel)
1598 return 0;
1600 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1601 and changed later by validate_fix. */
1602 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1603 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1604 return 0;
1606 /* adjust_reloc_syms doesn't know about the GOT. */
1607 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1608 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1609 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1610 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1611 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1612 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1613 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1614 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1615 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1616 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1617 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1618 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1619 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1620 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1621 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1622 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1623 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1624 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1625 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1626 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1627 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1628 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1629 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1630 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1631 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1632 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1633 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1634 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1635 return 0;
1636 #endif
1637 return 1;
1640 static int
1641 intel_float_operand (const char *mnemonic)
1643 /* Note that the value returned is meaningful only for opcodes with (memory)
1644 operands, hence the code here is free to improperly handle opcodes that
1645 have no operands (for better performance and smaller code). */
1647 if (mnemonic[0] != 'f')
1648 return 0; /* non-math */
1650 switch (mnemonic[1])
1652 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1653 the fs segment override prefix not currently handled because no
1654 call path can make opcodes without operands get here */
1655 case 'i':
1656 return 2 /* integer op */;
1657 case 'l':
1658 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1659 return 3; /* fldcw/fldenv */
1660 break;
1661 case 'n':
1662 if (mnemonic[2] != 'o' /* fnop */)
1663 return 3; /* non-waiting control op */
1664 break;
1665 case 'r':
1666 if (mnemonic[2] == 's')
1667 return 3; /* frstor/frstpm */
1668 break;
1669 case 's':
1670 if (mnemonic[2] == 'a')
1671 return 3; /* fsave */
1672 if (mnemonic[2] == 't')
1674 switch (mnemonic[3])
1676 case 'c': /* fstcw */
1677 case 'd': /* fstdw */
1678 case 'e': /* fstenv */
1679 case 's': /* fsts[gw] */
1680 return 3;
1683 break;
1684 case 'x':
1685 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1686 return 0; /* fxsave/fxrstor are not really math ops */
1687 break;
1690 return 1;
1693 /* This is the guts of the machine-dependent assembler. LINE points to a
1694 machine dependent instruction. This function is supposed to emit
1695 the frags/bytes it assembles to. */
1697 void
1698 md_assemble (line)
1699 char *line;
1701 int j;
1702 char mnemonic[MAX_MNEM_SIZE];
1704 /* Initialize globals. */
1705 memset (&i, '\0', sizeof (i));
1706 for (j = 0; j < MAX_OPERANDS; j++)
1707 i.reloc[j] = NO_RELOC;
1708 memset (disp_expressions, '\0', sizeof (disp_expressions));
1709 memset (im_expressions, '\0', sizeof (im_expressions));
1710 save_stack_p = save_stack;
1712 /* First parse an instruction mnemonic & call i386_operand for the operands.
1713 We assume that the scrubber has arranged it so that line[0] is the valid
1714 start of a (possibly prefixed) mnemonic. */
1716 line = parse_insn (line, mnemonic);
1717 if (line == NULL)
1718 return;
1720 line = parse_operands (line, mnemonic);
1721 if (line == NULL)
1722 return;
1724 /* The order of the immediates should be reversed
1725 for 2 immediates extrq and insertq instructions */
1726 if ((i.imm_operands == 2)
1727 && ((strcmp (mnemonic, "extrq") == 0)
1728 || (strcmp (mnemonic, "insertq") == 0)))
1730 swap_2_operands (0, 1);
1731 /* "extrq" and insertq" are the only two instructions whose operands
1732 have to be reversed even though they have two immediate operands.
1734 if (intel_syntax)
1735 swap_operands ();
1738 /* Now we've parsed the mnemonic into a set of templates, and have the
1739 operands at hand. */
1741 /* All intel opcodes have reversed operands except for "bound" and
1742 "enter". We also don't reverse intersegment "jmp" and "call"
1743 instructions with 2 immediate operands so that the immediate segment
1744 precedes the offset, as it does when in AT&T mode. */
1745 if (intel_syntax
1746 && i.operands > 1
1747 && (strcmp (mnemonic, "bound") != 0)
1748 && (strcmp (mnemonic, "invlpga") != 0)
1749 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1750 swap_operands ();
1752 if (i.imm_operands)
1753 optimize_imm ();
1755 /* Don't optimize displacement for movabs since it only takes 64bit
1756 displacement. */
1757 if (i.disp_operands
1758 && (flag_code != CODE_64BIT
1759 || strcmp (mnemonic, "movabs") != 0))
1760 optimize_disp ();
1762 /* Next, we find a template that matches the given insn,
1763 making sure the overlap of the given operands types is consistent
1764 with the template operand types. */
1766 if (!match_template ())
1767 return;
1769 if (intel_syntax)
1771 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1772 if (SYSV386_COMPAT
1773 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1774 i.tm.base_opcode ^= Opcode_FloatR;
1776 /* Zap movzx and movsx suffix. The suffix may have been set from
1777 "word ptr" or "byte ptr" on the source operand, but we'll use
1778 the suffix later to choose the destination register. */
1779 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1781 if (i.reg_operands < 2
1782 && !i.suffix
1783 && (~i.tm.opcode_modifier
1784 & (No_bSuf
1785 | No_wSuf
1786 | No_lSuf
1787 | No_sSuf
1788 | No_xSuf
1789 | No_qSuf)))
1790 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1792 i.suffix = 0;
1796 if (i.tm.opcode_modifier & FWait)
1797 if (!add_prefix (FWAIT_OPCODE))
1798 return;
1800 /* Check string instruction segment overrides. */
1801 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1803 if (!check_string ())
1804 return;
1807 if (!process_suffix ())
1808 return;
1810 /* Make still unresolved immediate matches conform to size of immediate
1811 given in i.suffix. */
1812 if (!finalize_imm ())
1813 return;
1815 if (i.types[0] & Imm1)
1816 i.imm_operands = 0; /* kludge for shift insns. */
1817 if (i.types[0] & ImplicitRegister)
1818 i.reg_operands--;
1819 if (i.types[1] & ImplicitRegister)
1820 i.reg_operands--;
1821 if (i.types[2] & ImplicitRegister)
1822 i.reg_operands--;
1824 if (i.tm.opcode_modifier & ImmExt)
1826 expressionS *exp;
1828 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1830 /* Streaming SIMD extensions 3 Instructions have the fixed
1831 operands with an opcode suffix which is coded in the same
1832 place as an 8-bit immediate field would be. Here we check
1833 those operands and remove them afterwards. */
1834 unsigned int x;
1836 for (x = 0; x < i.operands; x++)
1837 if (i.op[x].regs->reg_num != x)
1838 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1839 register_prefix,
1840 i.op[x].regs->reg_name,
1841 x + 1,
1842 i.tm.name);
1843 i.operands = 0;
1846 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1847 opcode suffix which is coded in the same place as an 8-bit
1848 immediate field would be. Here we fake an 8-bit immediate
1849 operand from the opcode suffix stored in tm.extension_opcode. */
1851 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1853 exp = &im_expressions[i.imm_operands++];
1854 i.op[i.operands].imms = exp;
1855 i.types[i.operands++] = Imm8;
1856 exp->X_op = O_constant;
1857 exp->X_add_number = i.tm.extension_opcode;
1858 i.tm.extension_opcode = None;
1861 /* For insns with operands there are more diddles to do to the opcode. */
1862 if (i.operands)
1864 if (!process_operands ())
1865 return;
1867 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1869 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1870 as_warn (_("translating to `%sp'"), i.tm.name);
1873 /* Handle conversion of 'int $3' --> special int3 insn. */
1874 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1876 i.tm.base_opcode = INT3_OPCODE;
1877 i.imm_operands = 0;
1880 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1881 && i.op[0].disps->X_op == O_constant)
1883 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1884 the absolute address given by the constant. Since ix86 jumps and
1885 calls are pc relative, we need to generate a reloc. */
1886 i.op[0].disps->X_add_symbol = &abs_symbol;
1887 i.op[0].disps->X_op = O_symbol;
1890 if ((i.tm.opcode_modifier & Rex64) != 0)
1891 i.rex |= REX_W;
1893 /* For 8 bit registers we need an empty rex prefix. Also if the
1894 instruction already has a prefix, we need to convert old
1895 registers to new ones. */
1897 if (((i.types[0] & Reg8) != 0
1898 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1899 || ((i.types[1] & Reg8) != 0
1900 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1901 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1902 && i.rex != 0))
1904 int x;
1906 i.rex |= REX_OPCODE;
1907 for (x = 0; x < 2; x++)
1909 /* Look for 8 bit operand that uses old registers. */
1910 if ((i.types[x] & Reg8) != 0
1911 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1913 /* In case it is "hi" register, give up. */
1914 if (i.op[x].regs->reg_num > 3)
1915 as_bad (_("can't encode register '%s%s' in an "
1916 "instruction requiring REX prefix."),
1917 register_prefix, i.op[x].regs->reg_name);
1919 /* Otherwise it is equivalent to the extended register.
1920 Since the encoding doesn't change this is merely
1921 cosmetic cleanup for debug output. */
1923 i.op[x].regs = i.op[x].regs + 8;
1928 if (i.rex != 0)
1929 add_prefix (REX_OPCODE | i.rex);
1931 /* We are ready to output the insn. */
1932 output_insn ();
1935 static char *
1936 parse_insn (char *line, char *mnemonic)
1938 char *l = line;
1939 char *token_start = l;
1940 char *mnem_p;
1941 int supported;
1942 const template *t;
1944 /* Non-zero if we found a prefix only acceptable with string insns. */
1945 const char *expecting_string_instruction = NULL;
1947 while (1)
1949 mnem_p = mnemonic;
1950 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1952 mnem_p++;
1953 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1955 as_bad (_("no such instruction: `%s'"), token_start);
1956 return NULL;
1958 l++;
1960 if (!is_space_char (*l)
1961 && *l != END_OF_INSN
1962 && (intel_syntax
1963 || (*l != PREFIX_SEPARATOR
1964 && *l != ',')))
1966 as_bad (_("invalid character %s in mnemonic"),
1967 output_invalid (*l));
1968 return NULL;
1970 if (token_start == l)
1972 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1973 as_bad (_("expecting prefix; got nothing"));
1974 else
1975 as_bad (_("expecting mnemonic; got nothing"));
1976 return NULL;
1979 /* Look up instruction (or prefix) via hash table. */
1980 current_templates = hash_find (op_hash, mnemonic);
1982 if (*l != END_OF_INSN
1983 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1984 && current_templates
1985 && (current_templates->start->opcode_modifier & IsPrefix))
1987 if (current_templates->start->cpu_flags
1988 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1990 as_bad ((flag_code != CODE_64BIT
1991 ? _("`%s' is only supported in 64-bit mode")
1992 : _("`%s' is not supported in 64-bit mode")),
1993 current_templates->start->name);
1994 return NULL;
1996 /* If we are in 16-bit mode, do not allow addr16 or data16.
1997 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1998 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1999 && flag_code != CODE_64BIT
2000 && (((current_templates->start->opcode_modifier & Size32) != 0)
2001 ^ (flag_code == CODE_16BIT)))
2003 as_bad (_("redundant %s prefix"),
2004 current_templates->start->name);
2005 return NULL;
2007 /* Add prefix, checking for repeated prefixes. */
2008 switch (add_prefix (current_templates->start->base_opcode))
2010 case 0:
2011 return NULL;
2012 case 2:
2013 expecting_string_instruction = current_templates->start->name;
2014 break;
2016 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2017 token_start = ++l;
2019 else
2020 break;
2023 if (!current_templates)
2025 /* See if we can get a match by trimming off a suffix. */
2026 switch (mnem_p[-1])
2028 case WORD_MNEM_SUFFIX:
2029 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2030 i.suffix = SHORT_MNEM_SUFFIX;
2031 else
2032 case BYTE_MNEM_SUFFIX:
2033 case QWORD_MNEM_SUFFIX:
2034 i.suffix = mnem_p[-1];
2035 mnem_p[-1] = '\0';
2036 current_templates = hash_find (op_hash, mnemonic);
2037 break;
2038 case SHORT_MNEM_SUFFIX:
2039 case LONG_MNEM_SUFFIX:
2040 if (!intel_syntax)
2042 i.suffix = mnem_p[-1];
2043 mnem_p[-1] = '\0';
2044 current_templates = hash_find (op_hash, mnemonic);
2046 break;
2048 /* Intel Syntax. */
2049 case 'd':
2050 if (intel_syntax)
2052 if (intel_float_operand (mnemonic) == 1)
2053 i.suffix = SHORT_MNEM_SUFFIX;
2054 else
2055 i.suffix = LONG_MNEM_SUFFIX;
2056 mnem_p[-1] = '\0';
2057 current_templates = hash_find (op_hash, mnemonic);
2059 break;
2061 if (!current_templates)
2063 as_bad (_("no such instruction: `%s'"), token_start);
2064 return NULL;
2068 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2070 /* Check for a branch hint. We allow ",pt" and ",pn" for
2071 predict taken and predict not taken respectively.
2072 I'm not sure that branch hints actually do anything on loop
2073 and jcxz insns (JumpByte) for current Pentium4 chips. They
2074 may work in the future and it doesn't hurt to accept them
2075 now. */
2076 if (l[0] == ',' && l[1] == 'p')
2078 if (l[2] == 't')
2080 if (!add_prefix (DS_PREFIX_OPCODE))
2081 return NULL;
2082 l += 3;
2084 else if (l[2] == 'n')
2086 if (!add_prefix (CS_PREFIX_OPCODE))
2087 return NULL;
2088 l += 3;
2092 /* Any other comma loses. */
2093 if (*l == ',')
2095 as_bad (_("invalid character %s in mnemonic"),
2096 output_invalid (*l));
2097 return NULL;
2100 /* Check if instruction is supported on specified architecture. */
2101 supported = 0;
2102 for (t = current_templates->start; t < current_templates->end; ++t)
2104 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2105 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2106 supported |= 1;
2107 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2108 supported |= 2;
2110 if (!(supported & 2))
2112 as_bad (flag_code == CODE_64BIT
2113 ? _("`%s' is not supported in 64-bit mode")
2114 : _("`%s' is only supported in 64-bit mode"),
2115 current_templates->start->name);
2116 return NULL;
2118 if (!(supported & 1))
2120 as_warn (_("`%s' is not supported on `%s%s'"),
2121 current_templates->start->name,
2122 cpu_arch_name,
2123 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2125 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2127 as_warn (_("use .code16 to ensure correct addressing mode"));
2130 /* Check for rep/repne without a string instruction. */
2131 if (expecting_string_instruction)
2133 static templates override;
2135 for (t = current_templates->start; t < current_templates->end; ++t)
2136 if (t->opcode_modifier & IsString)
2137 break;
2138 if (t >= current_templates->end)
2140 as_bad (_("expecting string instruction after `%s'"),
2141 expecting_string_instruction);
2142 return NULL;
2144 for (override.start = t; t < current_templates->end; ++t)
2145 if (!(t->opcode_modifier & IsString))
2146 break;
2147 override.end = t;
2148 current_templates = &override;
2151 return l;
2154 static char *
2155 parse_operands (char *l, const char *mnemonic)
2157 char *token_start;
2159 /* 1 if operand is pending after ','. */
2160 unsigned int expecting_operand = 0;
2162 /* Non-zero if operand parens not balanced. */
2163 unsigned int paren_not_balanced;
2165 while (*l != END_OF_INSN)
2167 /* Skip optional white space before operand. */
2168 if (is_space_char (*l))
2169 ++l;
2170 if (!is_operand_char (*l) && *l != END_OF_INSN)
2172 as_bad (_("invalid character %s before operand %d"),
2173 output_invalid (*l),
2174 i.operands + 1);
2175 return NULL;
2177 token_start = l; /* after white space */
2178 paren_not_balanced = 0;
2179 while (paren_not_balanced || *l != ',')
2181 if (*l == END_OF_INSN)
2183 if (paren_not_balanced)
2185 if (!intel_syntax)
2186 as_bad (_("unbalanced parenthesis in operand %d."),
2187 i.operands + 1);
2188 else
2189 as_bad (_("unbalanced brackets in operand %d."),
2190 i.operands + 1);
2191 return NULL;
2193 else
2194 break; /* we are done */
2196 else if (!is_operand_char (*l) && !is_space_char (*l))
2198 as_bad (_("invalid character %s in operand %d"),
2199 output_invalid (*l),
2200 i.operands + 1);
2201 return NULL;
2203 if (!intel_syntax)
2205 if (*l == '(')
2206 ++paren_not_balanced;
2207 if (*l == ')')
2208 --paren_not_balanced;
2210 else
2212 if (*l == '[')
2213 ++paren_not_balanced;
2214 if (*l == ']')
2215 --paren_not_balanced;
2217 l++;
2219 if (l != token_start)
2220 { /* Yes, we've read in another operand. */
2221 unsigned int operand_ok;
2222 this_operand = i.operands++;
2223 if (i.operands > MAX_OPERANDS)
2225 as_bad (_("spurious operands; (%d operands/instruction max)"),
2226 MAX_OPERANDS);
2227 return NULL;
2229 /* Now parse operand adding info to 'i' as we go along. */
2230 END_STRING_AND_SAVE (l);
2232 if (intel_syntax)
2233 operand_ok =
2234 i386_intel_operand (token_start,
2235 intel_float_operand (mnemonic));
2236 else
2237 operand_ok = i386_operand (token_start);
2239 RESTORE_END_STRING (l);
2240 if (!operand_ok)
2241 return NULL;
2243 else
2245 if (expecting_operand)
2247 expecting_operand_after_comma:
2248 as_bad (_("expecting operand after ','; got nothing"));
2249 return NULL;
2251 if (*l == ',')
2253 as_bad (_("expecting operand before ','; got nothing"));
2254 return NULL;
2258 /* Now *l must be either ',' or END_OF_INSN. */
2259 if (*l == ',')
2261 if (*++l == END_OF_INSN)
2263 /* Just skip it, if it's \n complain. */
2264 goto expecting_operand_after_comma;
2266 expecting_operand = 1;
2269 return l;
2272 static void
2273 swap_2_operands (int xchg1, int xchg2)
2275 union i386_op temp_op;
2276 unsigned int temp_type;
2277 enum bfd_reloc_code_real temp_reloc;
2279 temp_type = i.types[xchg2];
2280 i.types[xchg2] = i.types[xchg1];
2281 i.types[xchg1] = temp_type;
2282 temp_op = i.op[xchg2];
2283 i.op[xchg2] = i.op[xchg1];
2284 i.op[xchg1] = temp_op;
2285 temp_reloc = i.reloc[xchg2];
2286 i.reloc[xchg2] = i.reloc[xchg1];
2287 i.reloc[xchg1] = temp_reloc;
2290 static void
2291 swap_operands (void)
2293 switch (i.operands)
2295 case 4:
2296 swap_2_operands (1, i.operands - 2);
2297 case 3:
2298 case 2:
2299 swap_2_operands (0, i.operands - 1);
2300 break;
2301 default:
2302 abort ();
2305 if (i.mem_operands == 2)
2307 const seg_entry *temp_seg;
2308 temp_seg = i.seg[0];
2309 i.seg[0] = i.seg[1];
2310 i.seg[1] = temp_seg;
2314 /* Try to ensure constant immediates are represented in the smallest
2315 opcode possible. */
2316 static void
2317 optimize_imm (void)
2319 char guess_suffix = 0;
2320 int op;
2322 if (i.suffix)
2323 guess_suffix = i.suffix;
2324 else if (i.reg_operands)
2326 /* Figure out a suffix from the last register operand specified.
2327 We can't do this properly yet, ie. excluding InOutPortReg,
2328 but the following works for instructions with immediates.
2329 In any case, we can't set i.suffix yet. */
2330 for (op = i.operands; --op >= 0;)
2331 if (i.types[op] & Reg)
2333 if (i.types[op] & Reg8)
2334 guess_suffix = BYTE_MNEM_SUFFIX;
2335 else if (i.types[op] & Reg16)
2336 guess_suffix = WORD_MNEM_SUFFIX;
2337 else if (i.types[op] & Reg32)
2338 guess_suffix = LONG_MNEM_SUFFIX;
2339 else if (i.types[op] & Reg64)
2340 guess_suffix = QWORD_MNEM_SUFFIX;
2341 break;
2344 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2345 guess_suffix = WORD_MNEM_SUFFIX;
2347 for (op = i.operands; --op >= 0;)
2348 if (i.types[op] & Imm)
2350 switch (i.op[op].imms->X_op)
2352 case O_constant:
2353 /* If a suffix is given, this operand may be shortened. */
2354 switch (guess_suffix)
2356 case LONG_MNEM_SUFFIX:
2357 i.types[op] |= Imm32 | Imm64;
2358 break;
2359 case WORD_MNEM_SUFFIX:
2360 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2361 break;
2362 case BYTE_MNEM_SUFFIX:
2363 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2364 break;
2367 /* If this operand is at most 16 bits, convert it
2368 to a signed 16 bit number before trying to see
2369 whether it will fit in an even smaller size.
2370 This allows a 16-bit operand such as $0xffe0 to
2371 be recognised as within Imm8S range. */
2372 if ((i.types[op] & Imm16)
2373 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2375 i.op[op].imms->X_add_number =
2376 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2378 if ((i.types[op] & Imm32)
2379 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2380 == 0))
2382 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2383 ^ ((offsetT) 1 << 31))
2384 - ((offsetT) 1 << 31));
2386 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2388 /* We must avoid matching of Imm32 templates when 64bit
2389 only immediate is available. */
2390 if (guess_suffix == QWORD_MNEM_SUFFIX)
2391 i.types[op] &= ~Imm32;
2392 break;
2394 case O_absent:
2395 case O_register:
2396 abort ();
2398 /* Symbols and expressions. */
2399 default:
2400 /* Convert symbolic operand to proper sizes for matching, but don't
2401 prevent matching a set of insns that only supports sizes other
2402 than those matching the insn suffix. */
2404 unsigned int mask, allowed = 0;
2405 const template *t;
2407 for (t = current_templates->start;
2408 t < current_templates->end;
2409 ++t)
2410 allowed |= t->operand_types[op];
2411 switch (guess_suffix)
2413 case QWORD_MNEM_SUFFIX:
2414 mask = Imm64 | Imm32S;
2415 break;
2416 case LONG_MNEM_SUFFIX:
2417 mask = Imm32;
2418 break;
2419 case WORD_MNEM_SUFFIX:
2420 mask = Imm16;
2421 break;
2422 case BYTE_MNEM_SUFFIX:
2423 mask = Imm8;
2424 break;
2425 default:
2426 mask = 0;
2427 break;
2429 if (mask & allowed)
2430 i.types[op] &= mask;
2432 break;
2437 /* Try to use the smallest displacement type too. */
2438 static void
2439 optimize_disp (void)
2441 int op;
2443 for (op = i.operands; --op >= 0;)
2444 if (i.types[op] & Disp)
2446 if (i.op[op].disps->X_op == O_constant)
2448 offsetT disp = i.op[op].disps->X_add_number;
2450 if ((i.types[op] & Disp16)
2451 && (disp & ~(offsetT) 0xffff) == 0)
2453 /* If this operand is at most 16 bits, convert
2454 to a signed 16 bit number and don't use 64bit
2455 displacement. */
2456 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2457 i.types[op] &= ~Disp64;
2459 if ((i.types[op] & Disp32)
2460 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2462 /* If this operand is at most 32 bits, convert
2463 to a signed 32 bit number and don't use 64bit
2464 displacement. */
2465 disp &= (((offsetT) 2 << 31) - 1);
2466 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2467 i.types[op] &= ~Disp64;
2469 if (!disp && (i.types[op] & BaseIndex))
2471 i.types[op] &= ~Disp;
2472 i.op[op].disps = 0;
2473 i.disp_operands--;
2475 else if (flag_code == CODE_64BIT)
2477 if (fits_in_signed_long (disp))
2479 i.types[op] &= ~Disp64;
2480 i.types[op] |= Disp32S;
2482 if (fits_in_unsigned_long (disp))
2483 i.types[op] |= Disp32;
2485 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2486 && fits_in_signed_byte (disp))
2487 i.types[op] |= Disp8;
2489 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2490 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2492 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2493 i.op[op].disps, 0, i.reloc[op]);
2494 i.types[op] &= ~Disp;
2496 else
2497 /* We only support 64bit displacement on constants. */
2498 i.types[op] &= ~Disp64;
2502 static int
2503 match_template (void)
2505 /* Points to template once we've found it. */
2506 const template *t;
2507 unsigned int overlap0, overlap1, overlap2, overlap3;
2508 unsigned int found_reverse_match;
2509 int suffix_check;
2510 unsigned int operand_types [MAX_OPERANDS];
2511 int addr_prefix_disp;
2512 unsigned int j;
2514 #if MAX_OPERANDS != 4
2515 # error "MAX_OPERANDS must be 4."
2516 #endif
2518 #define MATCH(overlap, given, template) \
2519 ((overlap & ~JumpAbsolute) \
2520 && (((given) & (BaseIndex | JumpAbsolute)) \
2521 == ((overlap) & (BaseIndex | JumpAbsolute))))
2523 /* If given types r0 and r1 are registers they must be of the same type
2524 unless the expected operand type register overlap is null.
2525 Note that Acc in a template matches every size of reg. */
2526 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2527 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2528 || ((g0) & Reg) == ((g1) & Reg) \
2529 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2531 overlap0 = 0;
2532 overlap1 = 0;
2533 overlap2 = 0;
2534 overlap3 = 0;
2535 found_reverse_match = 0;
2536 for (j = 0; j < MAX_OPERANDS; j++)
2537 operand_types [j] = 0;
2538 addr_prefix_disp = -1;
2539 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2540 ? No_bSuf
2541 : (i.suffix == WORD_MNEM_SUFFIX
2542 ? No_wSuf
2543 : (i.suffix == SHORT_MNEM_SUFFIX
2544 ? No_sSuf
2545 : (i.suffix == LONG_MNEM_SUFFIX
2546 ? No_lSuf
2547 : (i.suffix == QWORD_MNEM_SUFFIX
2548 ? No_qSuf
2549 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2550 ? No_xSuf : 0))))));
2552 for (t = current_templates->start; t < current_templates->end; t++)
2554 addr_prefix_disp = -1;
2556 /* Must have right number of operands. */
2557 if (i.operands != t->operands)
2558 continue;
2560 /* Check the suffix, except for some instructions in intel mode.
2561 We do want to check suffix for crc32 even in intel mode. */
2562 if ((t->opcode_modifier & suffix_check)
2563 && !(intel_syntax
2564 && t->base_opcode != 0xf20f38f1
2565 && (t->opcode_modifier & IgnoreSize)))
2566 continue;
2568 for (j = 0; j < MAX_OPERANDS; j++)
2569 operand_types [j] = t->operand_types [j];
2571 /* In general, don't allow 64-bit operands in 32-bit mode. */
2572 if (i.suffix == QWORD_MNEM_SUFFIX
2573 && flag_code != CODE_64BIT
2574 && (intel_syntax
2575 ? (!(t->opcode_modifier & IgnoreSize)
2576 && !intel_float_operand (t->name))
2577 : intel_float_operand (t->name) != 2)
2578 && (!(operand_types[0] & (RegMMX | RegXMM))
2579 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2580 && (t->base_opcode != 0x0fc7
2581 || t->extension_opcode != 1 /* cmpxchg8b */))
2582 continue;
2584 /* Do not verify operands when there are none. */
2585 else if (!t->operands)
2587 if (t->cpu_flags & ~cpu_arch_flags)
2588 continue;
2589 /* We've found a match; break out of loop. */
2590 break;
2593 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2594 into Disp32/Disp16/Disp32 operand. */
2595 if (i.prefix[ADDR_PREFIX] != 0)
2597 unsigned int DispOn = 0, DispOff = 0;
2599 switch (flag_code)
2601 case CODE_16BIT:
2602 DispOn = Disp32;
2603 DispOff = Disp16;
2604 break;
2605 case CODE_32BIT:
2606 DispOn = Disp16;
2607 DispOff = Disp32;
2608 break;
2609 case CODE_64BIT:
2610 DispOn = Disp32;
2611 DispOff = Disp64;
2612 break;
2615 for (j = 0; j < MAX_OPERANDS; j++)
2617 /* There should be only one Disp operand. */
2618 if ((operand_types[j] & DispOff))
2620 addr_prefix_disp = j;
2621 operand_types[j] |= DispOn;
2622 operand_types[j] &= ~DispOff;
2623 break;
2628 overlap0 = i.types[0] & operand_types[0];
2629 switch (t->operands)
2631 case 1:
2632 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2633 continue;
2634 break;
2635 case 2:
2636 /* xchg %eax, %eax is a special case. It is an aliase for nop
2637 only in 32bit mode and we can use opcode 0x90. In 64bit
2638 mode, we can't use 0x90 for xchg %eax, %eax since it should
2639 zero-extend %eax to %rax. */
2640 if (flag_code == CODE_64BIT
2641 && t->base_opcode == 0x90
2642 && i.types [0] == (Acc | Reg32)
2643 && i.types [1] == (Acc | Reg32))
2644 continue;
2645 case 3:
2646 case 4:
2647 overlap1 = i.types[1] & operand_types[1];
2648 if (!MATCH (overlap0, i.types[0], operand_types[0])
2649 || !MATCH (overlap1, i.types[1], operand_types[1])
2650 /* monitor in SSE3 is a very special case. The first
2651 register and the second register may have different
2652 sizes. The same applies to crc32 in SSE4.2. */
2653 || !((t->base_opcode == 0x0f01
2654 && t->extension_opcode == 0xc8)
2655 || t->base_opcode == 0xf20f38f1
2656 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2657 operand_types[0],
2658 overlap1, i.types[1],
2659 operand_types[1])))
2661 /* Check if other direction is valid ... */
2662 if ((t->opcode_modifier & (D | FloatD)) == 0)
2663 continue;
2665 /* Try reversing direction of operands. */
2666 overlap0 = i.types[0] & operand_types[1];
2667 overlap1 = i.types[1] & operand_types[0];
2668 if (!MATCH (overlap0, i.types[0], operand_types[1])
2669 || !MATCH (overlap1, i.types[1], operand_types[0])
2670 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2671 operand_types[1],
2672 overlap1, i.types[1],
2673 operand_types[0]))
2675 /* Does not match either direction. */
2676 continue;
2678 /* found_reverse_match holds which of D or FloatDR
2679 we've found. */
2680 if ((t->opcode_modifier & D))
2681 found_reverse_match = Opcode_D;
2682 else if ((t->opcode_modifier & FloatD))
2683 found_reverse_match = Opcode_FloatD;
2684 else
2685 found_reverse_match = 0;
2686 if ((t->opcode_modifier & FloatR))
2687 found_reverse_match |= Opcode_FloatR;
2689 else
2691 /* Found a forward 2 operand match here. */
2692 switch (t->operands)
2694 case 4:
2695 overlap3 = i.types[3] & operand_types[3];
2696 case 3:
2697 overlap2 = i.types[2] & operand_types[2];
2698 break;
2701 switch (t->operands)
2703 case 4:
2704 if (!MATCH (overlap3, i.types[3], operand_types[3])
2705 || !CONSISTENT_REGISTER_MATCH (overlap2,
2706 i.types[2],
2707 operand_types[2],
2708 overlap3,
2709 i.types[3],
2710 operand_types[3]))
2711 continue;
2712 case 3:
2713 /* Here we make use of the fact that there are no
2714 reverse match 3 operand instructions, and all 3
2715 operand instructions only need to be checked for
2716 register consistency between operands 2 and 3. */
2717 if (!MATCH (overlap2, i.types[2], operand_types[2])
2718 || !CONSISTENT_REGISTER_MATCH (overlap1,
2719 i.types[1],
2720 operand_types[1],
2721 overlap2,
2722 i.types[2],
2723 operand_types[2]))
2724 continue;
2725 break;
2728 /* Found either forward/reverse 2, 3 or 4 operand match here:
2729 slip through to break. */
2731 if (t->cpu_flags & ~cpu_arch_flags)
2733 found_reverse_match = 0;
2734 continue;
2736 /* We've found a match; break out of loop. */
2737 break;
2740 if (t == current_templates->end)
2742 /* We found no match. */
2743 as_bad (_("suffix or operands invalid for `%s'"),
2744 current_templates->start->name);
2745 return 0;
2748 if (!quiet_warnings)
2750 if (!intel_syntax
2751 && ((i.types[0] & JumpAbsolute)
2752 != (operand_types[0] & JumpAbsolute)))
2754 as_warn (_("indirect %s without `*'"), t->name);
2757 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2758 == (IsPrefix | IgnoreSize))
2760 /* Warn them that a data or address size prefix doesn't
2761 affect assembly of the next line of code. */
2762 as_warn (_("stand-alone `%s' prefix"), t->name);
2766 /* Copy the template we found. */
2767 i.tm = *t;
2769 if (addr_prefix_disp != -1)
2770 i.tm.operand_types[addr_prefix_disp]
2771 = operand_types[addr_prefix_disp];
2773 if (found_reverse_match)
2775 /* If we found a reverse match we must alter the opcode
2776 direction bit. found_reverse_match holds bits to change
2777 (different for int & float insns). */
2779 i.tm.base_opcode ^= found_reverse_match;
2781 i.tm.operand_types[0] = operand_types[1];
2782 i.tm.operand_types[1] = operand_types[0];
2785 return 1;
2788 static int
2789 check_string (void)
2791 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2792 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2794 if (i.seg[0] != NULL && i.seg[0] != &es)
2796 as_bad (_("`%s' operand %d must use `%%es' segment"),
2797 i.tm.name,
2798 mem_op + 1);
2799 return 0;
2801 /* There's only ever one segment override allowed per instruction.
2802 This instruction possibly has a legal segment override on the
2803 second operand, so copy the segment to where non-string
2804 instructions store it, allowing common code. */
2805 i.seg[0] = i.seg[1];
2807 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2809 if (i.seg[1] != NULL && i.seg[1] != &es)
2811 as_bad (_("`%s' operand %d must use `%%es' segment"),
2812 i.tm.name,
2813 mem_op + 2);
2814 return 0;
2817 return 1;
2820 static int
2821 process_suffix (void)
2823 /* If matched instruction specifies an explicit instruction mnemonic
2824 suffix, use it. */
2825 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2827 if (i.tm.opcode_modifier & Size16)
2828 i.suffix = WORD_MNEM_SUFFIX;
2829 else if (i.tm.opcode_modifier & Size64)
2830 i.suffix = QWORD_MNEM_SUFFIX;
2831 else
2832 i.suffix = LONG_MNEM_SUFFIX;
2834 else if (i.reg_operands)
2836 /* If there's no instruction mnemonic suffix we try to invent one
2837 based on register operands. */
2838 if (!i.suffix)
2840 /* We take i.suffix from the last register operand specified,
2841 Destination register type is more significant than source
2842 register type. crc32 in SSE4.2 prefers source register
2843 type. */
2844 if (i.tm.base_opcode == 0xf20f38f1)
2846 if ((i.types[0] & Reg))
2847 i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
2848 LONG_MNEM_SUFFIX);
2850 else if (i.tm.base_opcode == 0xf20f38f0)
2851 i.suffix = BYTE_MNEM_SUFFIX;
2853 if (!i.suffix)
2855 int op;
2857 for (op = i.operands; --op >= 0;)
2858 if ((i.types[op] & Reg)
2859 && !(i.tm.operand_types[op] & InOutPortReg))
2861 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2862 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2863 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2864 LONG_MNEM_SUFFIX);
2865 break;
2869 else if (i.suffix == BYTE_MNEM_SUFFIX)
2871 if (!check_byte_reg ())
2872 return 0;
2874 else if (i.suffix == LONG_MNEM_SUFFIX)
2876 if (!check_long_reg ())
2877 return 0;
2879 else if (i.suffix == QWORD_MNEM_SUFFIX)
2881 if (!check_qword_reg ())
2882 return 0;
2884 else if (i.suffix == WORD_MNEM_SUFFIX)
2886 if (!check_word_reg ())
2887 return 0;
2889 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2890 /* Do nothing if the instruction is going to ignore the prefix. */
2892 else
2893 abort ();
2895 else if ((i.tm.opcode_modifier & DefaultSize)
2896 && !i.suffix
2897 /* exclude fldenv/frstor/fsave/fstenv */
2898 && (i.tm.opcode_modifier & No_sSuf))
2900 i.suffix = stackop_size;
2902 else if (intel_syntax
2903 && !i.suffix
2904 && ((i.tm.operand_types[0] & JumpAbsolute)
2905 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2906 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2907 && i.tm.extension_opcode <= 3)))
2909 switch (flag_code)
2911 case CODE_64BIT:
2912 if (!(i.tm.opcode_modifier & No_qSuf))
2914 i.suffix = QWORD_MNEM_SUFFIX;
2915 break;
2917 case CODE_32BIT:
2918 if (!(i.tm.opcode_modifier & No_lSuf))
2919 i.suffix = LONG_MNEM_SUFFIX;
2920 break;
2921 case CODE_16BIT:
2922 if (!(i.tm.opcode_modifier & No_wSuf))
2923 i.suffix = WORD_MNEM_SUFFIX;
2924 break;
2928 if (!i.suffix)
2930 if (!intel_syntax)
2932 if (i.tm.opcode_modifier & W)
2934 as_bad (_("no instruction mnemonic suffix given and "
2935 "no register operands; can't size instruction"));
2936 return 0;
2939 else
2941 unsigned int suffixes = (~i.tm.opcode_modifier
2942 & (No_bSuf
2943 | No_wSuf
2944 | No_lSuf
2945 | No_sSuf
2946 | No_xSuf
2947 | No_qSuf));
2949 if ((i.tm.opcode_modifier & W)
2950 || ((suffixes & (suffixes - 1))
2951 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2953 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2954 return 0;
2959 /* Change the opcode based on the operand size given by i.suffix;
2960 We don't need to change things for byte insns. */
2962 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2964 /* It's not a byte, select word/dword operation. */
2965 if (i.tm.opcode_modifier & W)
2967 if (i.tm.opcode_modifier & ShortForm)
2968 i.tm.base_opcode |= 8;
2969 else
2970 i.tm.base_opcode |= 1;
2973 /* Now select between word & dword operations via the operand
2974 size prefix, except for instructions that will ignore this
2975 prefix anyway. */
2976 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2978 /* monitor in SSE3 is a very special case. The default size
2979 of AX is the size of mode. The address size override
2980 prefix will change the size of AX. */
2981 if (i.op->regs[0].reg_type &
2982 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2983 if (!add_prefix (ADDR_PREFIX_OPCODE))
2984 return 0;
2986 else if (i.suffix != QWORD_MNEM_SUFFIX
2987 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2988 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2989 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2990 || (flag_code == CODE_64BIT
2991 && (i.tm.opcode_modifier & JumpByte))))
2993 unsigned int prefix = DATA_PREFIX_OPCODE;
2995 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2996 prefix = ADDR_PREFIX_OPCODE;
2998 if (!add_prefix (prefix))
2999 return 0;
3002 /* Set mode64 for an operand. */
3003 if (i.suffix == QWORD_MNEM_SUFFIX
3004 && flag_code == CODE_64BIT
3005 && (i.tm.opcode_modifier & NoRex64) == 0)
3007 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3008 need rex64. */
3009 if (i.operands != 2
3010 || i.types [0] != (Acc | Reg64)
3011 || i.types [1] != (Acc | Reg64)
3012 || i.tm.base_opcode != 0x90)
3013 i.rex |= REX_W;
3016 /* Size floating point instruction. */
3017 if (i.suffix == LONG_MNEM_SUFFIX)
3018 if (i.tm.opcode_modifier & FloatMF)
3019 i.tm.base_opcode ^= 4;
3022 return 1;
3025 static int
3026 check_byte_reg (void)
3028 int op;
3030 for (op = i.operands; --op >= 0;)
3032 /* If this is an eight bit register, it's OK. If it's the 16 or
3033 32 bit version of an eight bit register, we will just use the
3034 low portion, and that's OK too. */
3035 if (i.types[op] & Reg8)
3036 continue;
3038 /* movzx and movsx should not generate this warning. */
3039 if (intel_syntax
3040 && (i.tm.base_opcode == 0xfb7
3041 || i.tm.base_opcode == 0xfb6
3042 || i.tm.base_opcode == 0x63
3043 || i.tm.base_opcode == 0xfbe
3044 || i.tm.base_opcode == 0xfbf))
3045 continue;
3047 /* crc32 doesn't generate this warning. */
3048 if (i.tm.base_opcode == 0xf20f38f0)
3049 continue;
3051 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3053 /* Prohibit these changes in the 64bit mode, since the
3054 lowering is more complicated. */
3055 if (flag_code == CODE_64BIT
3056 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3058 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3059 register_prefix, i.op[op].regs->reg_name,
3060 i.suffix);
3061 return 0;
3063 #if REGISTER_WARNINGS
3064 if (!quiet_warnings
3065 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3066 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3067 register_prefix,
3068 (i.op[op].regs + (i.types[op] & Reg16
3069 ? REGNAM_AL - REGNAM_AX
3070 : REGNAM_AL - REGNAM_EAX))->reg_name,
3071 register_prefix,
3072 i.op[op].regs->reg_name,
3073 i.suffix);
3074 #endif
3075 continue;
3077 /* Any other register is bad. */
3078 if (i.types[op] & (Reg | RegMMX | RegXMM
3079 | SReg2 | SReg3
3080 | Control | Debug | Test
3081 | FloatReg | FloatAcc))
3083 as_bad (_("`%s%s' not allowed with `%s%c'"),
3084 register_prefix,
3085 i.op[op].regs->reg_name,
3086 i.tm.name,
3087 i.suffix);
3088 return 0;
3091 return 1;
3094 static int
3095 check_long_reg (void)
3097 int op;
3099 for (op = i.operands; --op >= 0;)
3100 /* Reject eight bit registers, except where the template requires
3101 them. (eg. movzb) */
3102 if ((i.types[op] & Reg8) != 0
3103 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3105 as_bad (_("`%s%s' not allowed with `%s%c'"),
3106 register_prefix,
3107 i.op[op].regs->reg_name,
3108 i.tm.name,
3109 i.suffix);
3110 return 0;
3112 /* Warn if the e prefix on a general reg is missing. */
3113 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3114 && (i.types[op] & Reg16) != 0
3115 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3117 /* Prohibit these changes in the 64bit mode, since the
3118 lowering is more complicated. */
3119 if (flag_code == CODE_64BIT)
3121 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3122 register_prefix, i.op[op].regs->reg_name,
3123 i.suffix);
3124 return 0;
3126 #if REGISTER_WARNINGS
3127 else
3128 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3129 register_prefix,
3130 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3131 register_prefix,
3132 i.op[op].regs->reg_name,
3133 i.suffix);
3134 #endif
3136 /* Warn if the r prefix on a general reg is missing. */
3137 else if ((i.types[op] & Reg64) != 0
3138 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3140 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3141 register_prefix, i.op[op].regs->reg_name,
3142 i.suffix);
3143 return 0;
3145 return 1;
3148 static int
3149 check_qword_reg (void)
3151 int op;
3153 for (op = i.operands; --op >= 0; )
3154 /* Reject eight bit registers, except where the template requires
3155 them. (eg. movzb) */
3156 if ((i.types[op] & Reg8) != 0
3157 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3159 as_bad (_("`%s%s' not allowed with `%s%c'"),
3160 register_prefix,
3161 i.op[op].regs->reg_name,
3162 i.tm.name,
3163 i.suffix);
3164 return 0;
3166 /* Warn if the e prefix on a general reg is missing. */
3167 else if (((i.types[op] & Reg16) != 0
3168 || (i.types[op] & Reg32) != 0)
3169 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3171 /* Prohibit these changes in the 64bit mode, since the
3172 lowering is more complicated. */
3173 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3174 register_prefix, i.op[op].regs->reg_name,
3175 i.suffix);
3176 return 0;
3178 return 1;
3181 static int
3182 check_word_reg (void)
3184 int op;
3185 for (op = i.operands; --op >= 0;)
3186 /* Reject eight bit registers, except where the template requires
3187 them. (eg. movzb) */
3188 if ((i.types[op] & Reg8) != 0
3189 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3191 as_bad (_("`%s%s' not allowed with `%s%c'"),
3192 register_prefix,
3193 i.op[op].regs->reg_name,
3194 i.tm.name,
3195 i.suffix);
3196 return 0;
3198 /* Warn if the e prefix on a general reg is present. */
3199 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3200 && (i.types[op] & Reg32) != 0
3201 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3203 /* Prohibit these changes in the 64bit mode, since the
3204 lowering is more complicated. */
3205 if (flag_code == CODE_64BIT)
3207 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3208 register_prefix, i.op[op].regs->reg_name,
3209 i.suffix);
3210 return 0;
3212 else
3213 #if REGISTER_WARNINGS
3214 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3215 register_prefix,
3216 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3217 register_prefix,
3218 i.op[op].regs->reg_name,
3219 i.suffix);
3220 #endif
3222 return 1;
3225 static int
3226 finalize_imm (void)
3228 unsigned int overlap0, overlap1, overlap2;
3230 overlap0 = i.types[0] & i.tm.operand_types[0];
3231 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3232 && overlap0 != Imm8 && overlap0 != Imm8S
3233 && overlap0 != Imm16 && overlap0 != Imm32S
3234 && overlap0 != Imm32 && overlap0 != Imm64)
3236 if (i.suffix)
3238 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3239 ? Imm8 | Imm8S
3240 : (i.suffix == WORD_MNEM_SUFFIX
3241 ? Imm16
3242 : (i.suffix == QWORD_MNEM_SUFFIX
3243 ? Imm64 | Imm32S
3244 : Imm32)));
3246 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3247 || overlap0 == (Imm16 | Imm32)
3248 || overlap0 == (Imm16 | Imm32S))
3250 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3251 ? Imm16 : Imm32S);
3253 if (overlap0 != Imm8 && overlap0 != Imm8S
3254 && overlap0 != Imm16 && overlap0 != Imm32S
3255 && overlap0 != Imm32 && overlap0 != Imm64)
3257 as_bad (_("no instruction mnemonic suffix given; "
3258 "can't determine immediate size"));
3259 return 0;
3262 i.types[0] = overlap0;
3264 overlap1 = i.types[1] & i.tm.operand_types[1];
3265 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3266 && overlap1 != Imm8 && overlap1 != Imm8S
3267 && overlap1 != Imm16 && overlap1 != Imm32S
3268 && overlap1 != Imm32 && overlap1 != Imm64)
3270 if (i.suffix)
3272 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3273 ? Imm8 | Imm8S
3274 : (i.suffix == WORD_MNEM_SUFFIX
3275 ? Imm16
3276 : (i.suffix == QWORD_MNEM_SUFFIX
3277 ? Imm64 | Imm32S
3278 : Imm32)));
3280 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3281 || overlap1 == (Imm16 | Imm32)
3282 || overlap1 == (Imm16 | Imm32S))
3284 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3285 ? Imm16 : Imm32S);
3287 if (overlap1 != Imm8 && overlap1 != Imm8S
3288 && overlap1 != Imm16 && overlap1 != Imm32S
3289 && overlap1 != Imm32 && overlap1 != Imm64)
3291 as_bad (_("no instruction mnemonic suffix given; "
3292 "can't determine immediate size %x %c"),
3293 overlap1, i.suffix);
3294 return 0;
3297 i.types[1] = overlap1;
3299 overlap2 = i.types[2] & i.tm.operand_types[2];
3300 assert ((overlap2 & Imm) == 0);
3301 i.types[2] = overlap2;
3303 return 1;
3306 static int
3307 process_operands (void)
3309 /* Default segment register this instruction will use for memory
3310 accesses. 0 means unknown. This is only for optimizing out
3311 unnecessary segment overrides. */
3312 const seg_entry *default_seg = 0;
3314 /* The imul $imm, %reg instruction is converted into
3315 imul $imm, %reg, %reg, and the clr %reg instruction
3316 is converted into xor %reg, %reg. */
3317 if (i.tm.opcode_modifier & regKludge)
3319 if ((i.tm.cpu_flags & CpuSSE4_1))
3321 /* The first operand in instruction blendvpd, blendvps and
3322 pblendvb in SSE4.1 is implicit and must be xmm0. */
3323 assert (i.operands == 3
3324 && i.reg_operands >= 2
3325 && i.types[0] == RegXMM);
3326 if (i.op[0].regs->reg_num != 0)
3328 if (intel_syntax)
3329 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3330 i.tm.name, register_prefix);
3331 else
3332 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3333 i.tm.name, register_prefix);
3334 return 0;
3336 i.op[0] = i.op[1];
3337 i.op[1] = i.op[2];
3338 i.types[0] = i.types[1];
3339 i.types[1] = i.types[2];
3340 i.operands--;
3341 i.reg_operands--;
3343 /* We need to adjust fields in i.tm since they are used by
3344 build_modrm_byte. */
3345 i.tm.operand_types [0] = i.tm.operand_types [1];
3346 i.tm.operand_types [1] = i.tm.operand_types [2];
3347 i.tm.operands--;
3349 else
3351 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3352 /* Pretend we saw the extra register operand. */
3353 assert (i.reg_operands == 1
3354 && i.op[first_reg_op + 1].regs == 0);
3355 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3356 i.types[first_reg_op + 1] = i.types[first_reg_op];
3357 i.operands++;
3358 i.reg_operands++;
3362 if (i.tm.opcode_modifier & ShortForm)
3364 if (i.types[0] & (SReg2 | SReg3))
3366 if (i.tm.base_opcode == POP_SEG_SHORT
3367 && i.op[0].regs->reg_num == 1)
3369 as_bad (_("you can't `pop %%cs'"));
3370 return 0;
3372 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3373 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3374 i.rex |= REX_B;
3376 else
3378 /* The register or float register operand is in operand 0 or 1. */
3379 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3380 /* Register goes in low 3 bits of opcode. */
3381 i.tm.base_opcode |= i.op[op].regs->reg_num;
3382 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3383 i.rex |= REX_B;
3384 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3386 /* Warn about some common errors, but press on regardless.
3387 The first case can be generated by gcc (<= 2.8.1). */
3388 if (i.operands == 2)
3390 /* Reversed arguments on faddp, fsubp, etc. */
3391 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
3392 register_prefix, i.op[1].regs->reg_name,
3393 register_prefix, i.op[0].regs->reg_name);
3395 else
3397 /* Extraneous `l' suffix on fp insn. */
3398 as_warn (_("translating to `%s %s%s'"), i.tm.name,
3399 register_prefix, i.op[0].regs->reg_name);
3404 else if (i.tm.opcode_modifier & Modrm)
3406 /* The opcode is completed (modulo i.tm.extension_opcode which
3407 must be put into the modrm byte). Now, we make the modrm and
3408 index base bytes based on all the info we've collected. */
3410 default_seg = build_modrm_byte ();
3412 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3414 default_seg = &ds;
3416 else if ((i.tm.opcode_modifier & IsString) != 0)
3418 /* For the string instructions that allow a segment override
3419 on one of their operands, the default segment is ds. */
3420 default_seg = &ds;
3423 if ((i.tm.base_opcode == 0x8d /* lea */
3424 || (i.tm.cpu_flags & CpuSVME))
3425 && i.seg[0] && !quiet_warnings)
3426 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3428 /* If a segment was explicitly specified, and the specified segment
3429 is not the default, use an opcode prefix to select it. If we
3430 never figured out what the default segment is, then default_seg
3431 will be zero at this point, and the specified segment prefix will
3432 always be used. */
3433 if ((i.seg[0]) && (i.seg[0] != default_seg))
3435 if (!add_prefix (i.seg[0]->seg_prefix))
3436 return 0;
3438 return 1;
3441 static const seg_entry *
3442 build_modrm_byte (void)
3444 const seg_entry *default_seg = 0;
3446 /* i.reg_operands MUST be the number of real register operands;
3447 implicit registers do not count. */
3448 if (i.reg_operands == 2)
3450 unsigned int source, dest;
3452 switch (i.operands)
3454 case 2:
3455 source = 0;
3456 break;
3457 case 3:
3458 /* When there are 3 operands, one of them may be immediate,
3459 which may be the first or the last operand. Otherwise,
3460 the first operand must be shift count register (cl). */
3461 assert (i.imm_operands == 1
3462 || (i.imm_operands == 0
3463 && (i.types[0] & ShiftCount)));
3464 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3465 break;
3466 case 4:
3467 /* When there are 4 operands, the first two must be immediate
3468 operands. The source operand will be the 3rd one. */
3469 assert (i.imm_operands == 2
3470 && (i.types[0] & Imm)
3471 && (i.types[1] & Imm));
3472 source = 2;
3473 break;
3474 default:
3475 abort ();
3478 dest = source + 1;
3480 i.rm.mode = 3;
3481 /* One of the register operands will be encoded in the i.tm.reg
3482 field, the other in the combined i.tm.mode and i.tm.regmem
3483 fields. If no form of this instruction supports a memory
3484 destination operand, then we assume the source operand may
3485 sometimes be a memory operand and so we need to store the
3486 destination in the i.rm.reg field. */
3487 if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
3489 i.rm.reg = i.op[dest].regs->reg_num;
3490 i.rm.regmem = i.op[source].regs->reg_num;
3491 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3492 i.rex |= REX_R;
3493 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3494 i.rex |= REX_B;
3496 else
3498 i.rm.reg = i.op[source].regs->reg_num;
3499 i.rm.regmem = i.op[dest].regs->reg_num;
3500 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3501 i.rex |= REX_B;
3502 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3503 i.rex |= REX_R;
3505 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
3507 if (!((i.types[0] | i.types[1]) & Control))
3508 abort ();
3509 i.rex &= ~(REX_R | REX_B);
3510 add_prefix (LOCK_PREFIX_OPCODE);
3513 else
3514 { /* If it's not 2 reg operands... */
3515 if (i.mem_operands)
3517 unsigned int fake_zero_displacement = 0;
3518 unsigned int op;
3520 for (op = 0; op < i.operands; op++)
3521 if ((i.types[op] & AnyMem))
3522 break;
3523 assert (op < i.operands);
3525 default_seg = &ds;
3527 if (i.base_reg == 0)
3529 i.rm.mode = 0;
3530 if (!i.disp_operands)
3531 fake_zero_displacement = 1;
3532 if (i.index_reg == 0)
3534 /* Operand is just <disp> */
3535 if (flag_code == CODE_64BIT)
3537 /* 64bit mode overwrites the 32bit absolute
3538 addressing by RIP relative addressing and
3539 absolute addressing is encoded by one of the
3540 redundant SIB forms. */
3541 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3542 i.sib.base = NO_BASE_REGISTER;
3543 i.sib.index = NO_INDEX_REGISTER;
3544 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3545 ? Disp32S : Disp32);
3547 else if ((flag_code == CODE_16BIT)
3548 ^ (i.prefix[ADDR_PREFIX] != 0))
3550 i.rm.regmem = NO_BASE_REGISTER_16;
3551 i.types[op] = Disp16;
3553 else
3555 i.rm.regmem = NO_BASE_REGISTER;
3556 i.types[op] = Disp32;
3559 else /* !i.base_reg && i.index_reg */
3561 i.sib.index = i.index_reg->reg_num;
3562 i.sib.base = NO_BASE_REGISTER;
3563 i.sib.scale = i.log2_scale_factor;
3564 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3565 i.types[op] &= ~Disp;
3566 if (flag_code != CODE_64BIT)
3567 i.types[op] |= Disp32; /* Must be 32 bit */
3568 else
3569 i.types[op] |= Disp32S;
3570 if ((i.index_reg->reg_flags & RegRex) != 0)
3571 i.rex |= REX_X;
3574 /* RIP addressing for 64bit mode. */
3575 else if (i.base_reg->reg_type == BaseIndex)
3577 i.rm.regmem = NO_BASE_REGISTER;
3578 i.types[op] &= ~ Disp;
3579 i.types[op] |= Disp32S;
3580 i.flags[op] |= Operand_PCrel;
3581 if (! i.disp_operands)
3582 fake_zero_displacement = 1;
3584 else if (i.base_reg->reg_type & Reg16)
3586 switch (i.base_reg->reg_num)
3588 case 3: /* (%bx) */
3589 if (i.index_reg == 0)
3590 i.rm.regmem = 7;
3591 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3592 i.rm.regmem = i.index_reg->reg_num - 6;
3593 break;
3594 case 5: /* (%bp) */
3595 default_seg = &ss;
3596 if (i.index_reg == 0)
3598 i.rm.regmem = 6;
3599 if ((i.types[op] & Disp) == 0)
3601 /* fake (%bp) into 0(%bp) */
3602 i.types[op] |= Disp8;
3603 fake_zero_displacement = 1;
3606 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3607 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3608 break;
3609 default: /* (%si) -> 4 or (%di) -> 5 */
3610 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3612 i.rm.mode = mode_from_disp_size (i.types[op]);
3614 else /* i.base_reg and 32/64 bit mode */
3616 if (flag_code == CODE_64BIT
3617 && (i.types[op] & Disp))
3618 i.types[op] = ((i.types[op] & Disp8)
3619 | (i.prefix[ADDR_PREFIX] == 0
3620 ? Disp32S : Disp32));
3622 i.rm.regmem = i.base_reg->reg_num;
3623 if ((i.base_reg->reg_flags & RegRex) != 0)
3624 i.rex |= REX_B;
3625 i.sib.base = i.base_reg->reg_num;
3626 /* x86-64 ignores REX prefix bit here to avoid decoder
3627 complications. */
3628 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3630 default_seg = &ss;
3631 if (i.disp_operands == 0)
3633 fake_zero_displacement = 1;
3634 i.types[op] |= Disp8;
3637 else if (i.base_reg->reg_num == ESP_REG_NUM)
3639 default_seg = &ss;
3641 i.sib.scale = i.log2_scale_factor;
3642 if (i.index_reg == 0)
3644 /* <disp>(%esp) becomes two byte modrm with no index
3645 register. We've already stored the code for esp
3646 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3647 Any base register besides %esp will not use the
3648 extra modrm byte. */
3649 i.sib.index = NO_INDEX_REGISTER;
3650 #if !SCALE1_WHEN_NO_INDEX
3651 /* Another case where we force the second modrm byte. */
3652 if (i.log2_scale_factor)
3653 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3654 #endif
3656 else
3658 i.sib.index = i.index_reg->reg_num;
3659 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3660 if ((i.index_reg->reg_flags & RegRex) != 0)
3661 i.rex |= REX_X;
3664 if (i.disp_operands
3665 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3666 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3667 i.rm.mode = 0;
3668 else
3669 i.rm.mode = mode_from_disp_size (i.types[op]);
3672 if (fake_zero_displacement)
3674 /* Fakes a zero displacement assuming that i.types[op]
3675 holds the correct displacement size. */
3676 expressionS *exp;
3678 assert (i.op[op].disps == 0);
3679 exp = &disp_expressions[i.disp_operands++];
3680 i.op[op].disps = exp;
3681 exp->X_op = O_constant;
3682 exp->X_add_number = 0;
3683 exp->X_add_symbol = (symbolS *) 0;
3684 exp->X_op_symbol = (symbolS *) 0;
3688 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3689 (if any) based on i.tm.extension_opcode. Again, we must be
3690 careful to make sure that segment/control/debug/test/MMX
3691 registers are coded into the i.rm.reg field. */
3692 if (i.reg_operands)
3694 unsigned int op;
3696 for (op = 0; op < i.operands; op++)
3697 if ((i.types[op] & (Reg | RegMMX | RegXMM
3698 | SReg2 | SReg3
3699 | Control | Debug | Test)))
3700 break;
3701 assert (op < i.operands);
3703 /* If there is an extension opcode to put here, the register
3704 number must be put into the regmem field. */
3705 if (i.tm.extension_opcode != None)
3707 i.rm.regmem = i.op[op].regs->reg_num;
3708 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3709 i.rex |= REX_B;
3711 else
3713 i.rm.reg = i.op[op].regs->reg_num;
3714 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3715 i.rex |= REX_R;
3718 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3719 must set it to 3 to indicate this is a register operand
3720 in the regmem field. */
3721 if (!i.mem_operands)
3722 i.rm.mode = 3;
3725 /* Fill in i.rm.reg field with extension opcode (if any). */
3726 if (i.tm.extension_opcode != None)
3727 i.rm.reg = i.tm.extension_opcode;
3729 return default_seg;
3732 static void
3733 output_branch (void)
3735 char *p;
3736 int code16;
3737 int prefix;
3738 relax_substateT subtype;
3739 symbolS *sym;
3740 offsetT off;
3742 code16 = 0;
3743 if (flag_code == CODE_16BIT)
3744 code16 = CODE16;
3746 prefix = 0;
3747 if (i.prefix[DATA_PREFIX] != 0)
3749 prefix = 1;
3750 i.prefixes -= 1;
3751 code16 ^= CODE16;
3753 /* Pentium4 branch hints. */
3754 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3755 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3757 prefix++;
3758 i.prefixes--;
3760 if (i.prefix[REX_PREFIX] != 0)
3762 prefix++;
3763 i.prefixes--;
3766 if (i.prefixes != 0 && !intel_syntax)
3767 as_warn (_("skipping prefixes on this instruction"));
3769 /* It's always a symbol; End frag & setup for relax.
3770 Make sure there is enough room in this frag for the largest
3771 instruction we may generate in md_convert_frag. This is 2
3772 bytes for the opcode and room for the prefix and largest
3773 displacement. */
3774 frag_grow (prefix + 2 + 4);
3775 /* Prefix and 1 opcode byte go in fr_fix. */
3776 p = frag_more (prefix + 1);
3777 if (i.prefix[DATA_PREFIX] != 0)
3778 *p++ = DATA_PREFIX_OPCODE;
3779 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3780 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3781 *p++ = i.prefix[SEG_PREFIX];
3782 if (i.prefix[REX_PREFIX] != 0)
3783 *p++ = i.prefix[REX_PREFIX];
3784 *p = i.tm.base_opcode;
3786 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3787 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3788 else if ((cpu_arch_flags & Cpu386) != 0)
3789 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3790 else
3791 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3792 subtype |= code16;
3794 sym = i.op[0].disps->X_add_symbol;
3795 off = i.op[0].disps->X_add_number;
3797 if (i.op[0].disps->X_op != O_constant
3798 && i.op[0].disps->X_op != O_symbol)
3800 /* Handle complex expressions. */
3801 sym = make_expr_symbol (i.op[0].disps);
3802 off = 0;
3805 /* 1 possible extra opcode + 4 byte displacement go in var part.
3806 Pass reloc in fr_var. */
3807 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3810 static void
3811 output_jump (void)
3813 char *p;
3814 int size;
3815 fixS *fixP;
3817 if (i.tm.opcode_modifier & JumpByte)
3819 /* This is a loop or jecxz type instruction. */
3820 size = 1;
3821 if (i.prefix[ADDR_PREFIX] != 0)
3823 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3824 i.prefixes -= 1;
3826 /* Pentium4 branch hints. */
3827 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3828 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3830 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3831 i.prefixes--;
3834 else
3836 int code16;
3838 code16 = 0;
3839 if (flag_code == CODE_16BIT)
3840 code16 = CODE16;
3842 if (i.prefix[DATA_PREFIX] != 0)
3844 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3845 i.prefixes -= 1;
3846 code16 ^= CODE16;
3849 size = 4;
3850 if (code16)
3851 size = 2;
3854 if (i.prefix[REX_PREFIX] != 0)
3856 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3857 i.prefixes -= 1;
3860 if (i.prefixes != 0 && !intel_syntax)
3861 as_warn (_("skipping prefixes on this instruction"));
3863 p = frag_more (1 + size);
3864 *p++ = i.tm.base_opcode;
3866 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3867 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3869 /* All jumps handled here are signed, but don't use a signed limit
3870 check for 32 and 16 bit jumps as we want to allow wrap around at
3871 4G and 64k respectively. */
3872 if (size == 1)
3873 fixP->fx_signed = 1;
3876 static void
3877 output_interseg_jump (void)
3879 char *p;
3880 int size;
3881 int prefix;
3882 int code16;
3884 code16 = 0;
3885 if (flag_code == CODE_16BIT)
3886 code16 = CODE16;
3888 prefix = 0;
3889 if (i.prefix[DATA_PREFIX] != 0)
3891 prefix = 1;
3892 i.prefixes -= 1;
3893 code16 ^= CODE16;
3895 if (i.prefix[REX_PREFIX] != 0)
3897 prefix++;
3898 i.prefixes -= 1;
3901 size = 4;
3902 if (code16)
3903 size = 2;
3905 if (i.prefixes != 0 && !intel_syntax)
3906 as_warn (_("skipping prefixes on this instruction"));
3908 /* 1 opcode; 2 segment; offset */
3909 p = frag_more (prefix + 1 + 2 + size);
3911 if (i.prefix[DATA_PREFIX] != 0)
3912 *p++ = DATA_PREFIX_OPCODE;
3914 if (i.prefix[REX_PREFIX] != 0)
3915 *p++ = i.prefix[REX_PREFIX];
3917 *p++ = i.tm.base_opcode;
3918 if (i.op[1].imms->X_op == O_constant)
3920 offsetT n = i.op[1].imms->X_add_number;
3922 if (size == 2
3923 && !fits_in_unsigned_word (n)
3924 && !fits_in_signed_word (n))
3926 as_bad (_("16-bit jump out of range"));
3927 return;
3929 md_number_to_chars (p, n, size);
3931 else
3932 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3933 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3934 if (i.op[0].imms->X_op != O_constant)
3935 as_bad (_("can't handle non absolute segment in `%s'"),
3936 i.tm.name);
3937 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3940 static void
3941 output_insn (void)
3943 fragS *insn_start_frag;
3944 offsetT insn_start_off;
3946 /* Tie dwarf2 debug info to the address at the start of the insn.
3947 We can't do this after the insn has been output as the current
3948 frag may have been closed off. eg. by frag_var. */
3949 dwarf2_emit_insn (0);
3951 insn_start_frag = frag_now;
3952 insn_start_off = frag_now_fix ();
3954 /* Output jumps. */
3955 if (i.tm.opcode_modifier & Jump)
3956 output_branch ();
3957 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3958 output_jump ();
3959 else if (i.tm.opcode_modifier & JumpInterSegment)
3960 output_interseg_jump ();
3961 else
3963 /* Output normal instructions here. */
3964 char *p;
3965 unsigned char *q;
3966 unsigned int prefix;
3968 /* All opcodes on i386 have either 1 or 2 bytes. SSSE3 and
3969 SSE4 instructions have 3 bytes. We may use one more higher
3970 byte to specify a prefix the instruction requires. Exclude
3971 instructions which are in both SSE4 and ABM. */
3972 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
3973 && (i.tm.cpu_flags & CpuABM) == 0)
3975 if (i.tm.base_opcode & 0xff000000)
3977 prefix = (i.tm.base_opcode >> 24) & 0xff;
3978 goto check_prefix;
3981 else if ((i.tm.base_opcode & 0xff0000) != 0)
3983 prefix = (i.tm.base_opcode >> 16) & 0xff;
3984 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3986 check_prefix:
3987 if (prefix != REPE_PREFIX_OPCODE
3988 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3989 add_prefix (prefix);
3991 else
3992 add_prefix (prefix);
3995 /* The prefix bytes. */
3996 for (q = i.prefix;
3997 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3998 q++)
4000 if (*q)
4002 p = frag_more (1);
4003 md_number_to_chars (p, (valueT) *q, 1);
4007 /* Now the opcode; be careful about word order here! */
4008 if (fits_in_unsigned_byte (i.tm.base_opcode))
4010 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
4012 else
4014 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4015 && (i.tm.cpu_flags & CpuABM) == 0)
4017 p = frag_more (3);
4018 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4020 else
4021 p = frag_more (2);
4023 /* Put out high byte first: can't use md_number_to_chars! */
4024 *p++ = (i.tm.base_opcode >> 8) & 0xff;
4025 *p = i.tm.base_opcode & 0xff;
4028 /* Now the modrm byte and sib byte (if present). */
4029 if (i.tm.opcode_modifier & Modrm)
4031 p = frag_more (1);
4032 md_number_to_chars (p,
4033 (valueT) (i.rm.regmem << 0
4034 | i.rm.reg << 3
4035 | i.rm.mode << 6),
4037 /* If i.rm.regmem == ESP (4)
4038 && i.rm.mode != (Register mode)
4039 && not 16 bit
4040 ==> need second modrm byte. */
4041 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4042 && i.rm.mode != 3
4043 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4045 p = frag_more (1);
4046 md_number_to_chars (p,
4047 (valueT) (i.sib.base << 0
4048 | i.sib.index << 3
4049 | i.sib.scale << 6),
4054 if (i.disp_operands)
4055 output_disp (insn_start_frag, insn_start_off);
4057 if (i.imm_operands)
4058 output_imm (insn_start_frag, insn_start_off);
4061 #ifdef DEBUG386
4062 if (flag_debug)
4064 pi ("" /*line*/, &i);
4066 #endif /* DEBUG386 */
4069 static void
4070 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4072 char *p;
4073 unsigned int n;
4075 for (n = 0; n < i.operands; n++)
4077 if (i.types[n] & Disp)
4079 if (i.op[n].disps->X_op == O_constant)
4081 int size;
4082 offsetT val;
4084 size = 4;
4085 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4087 size = 2;
4088 if (i.types[n] & Disp8)
4089 size = 1;
4090 if (i.types[n] & Disp64)
4091 size = 8;
4093 val = offset_in_range (i.op[n].disps->X_add_number,
4094 size);
4095 p = frag_more (size);
4096 md_number_to_chars (p, val, size);
4098 else
4100 enum bfd_reloc_code_real reloc_type;
4101 int size = 4;
4102 int sign = 0;
4103 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4105 /* The PC relative address is computed relative
4106 to the instruction boundary, so in case immediate
4107 fields follows, we need to adjust the value. */
4108 if (pcrel && i.imm_operands)
4110 int imm_size = 4;
4111 unsigned int n1;
4113 for (n1 = 0; n1 < i.operands; n1++)
4114 if (i.types[n1] & Imm)
4116 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
4118 imm_size = 2;
4119 if (i.types[n1] & (Imm8 | Imm8S))
4120 imm_size = 1;
4121 if (i.types[n1] & Imm64)
4122 imm_size = 8;
4124 break;
4126 /* We should find the immediate. */
4127 if (n1 == i.operands)
4128 abort ();
4129 i.op[n].disps->X_add_number -= imm_size;
4132 if (i.types[n] & Disp32S)
4133 sign = 1;
4135 if (i.types[n] & (Disp16 | Disp64))
4137 size = 2;
4138 if (i.types[n] & Disp64)
4139 size = 8;
4142 p = frag_more (size);
4143 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4144 if (GOT_symbol
4145 && GOT_symbol == i.op[n].disps->X_add_symbol
4146 && (((reloc_type == BFD_RELOC_32
4147 || reloc_type == BFD_RELOC_X86_64_32S
4148 || (reloc_type == BFD_RELOC_64
4149 && object_64bit))
4150 && (i.op[n].disps->X_op == O_symbol
4151 || (i.op[n].disps->X_op == O_add
4152 && ((symbol_get_value_expression
4153 (i.op[n].disps->X_op_symbol)->X_op)
4154 == O_subtract))))
4155 || reloc_type == BFD_RELOC_32_PCREL))
4157 offsetT add;
4159 if (insn_start_frag == frag_now)
4160 add = (p - frag_now->fr_literal) - insn_start_off;
4161 else
4163 fragS *fr;
4165 add = insn_start_frag->fr_fix - insn_start_off;
4166 for (fr = insn_start_frag->fr_next;
4167 fr && fr != frag_now; fr = fr->fr_next)
4168 add += fr->fr_fix;
4169 add += p - frag_now->fr_literal;
4172 if (!object_64bit)
4174 reloc_type = BFD_RELOC_386_GOTPC;
4175 i.op[n].imms->X_add_number += add;
4177 else if (reloc_type == BFD_RELOC_64)
4178 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4179 else
4180 /* Don't do the adjustment for x86-64, as there
4181 the pcrel addressing is relative to the _next_
4182 insn, and that is taken care of in other code. */
4183 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4185 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4186 i.op[n].disps, pcrel, reloc_type);
4192 static void
4193 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4195 char *p;
4196 unsigned int n;
4198 for (n = 0; n < i.operands; n++)
4200 if (i.types[n] & Imm)
4202 if (i.op[n].imms->X_op == O_constant)
4204 int size;
4205 offsetT val;
4207 size = 4;
4208 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4210 size = 2;
4211 if (i.types[n] & (Imm8 | Imm8S))
4212 size = 1;
4213 else if (i.types[n] & Imm64)
4214 size = 8;
4216 val = offset_in_range (i.op[n].imms->X_add_number,
4217 size);
4218 p = frag_more (size);
4219 md_number_to_chars (p, val, size);
4221 else
4223 /* Not absolute_section.
4224 Need a 32-bit fixup (don't support 8bit
4225 non-absolute imms). Try to support other
4226 sizes ... */
4227 enum bfd_reloc_code_real reloc_type;
4228 int size = 4;
4229 int sign = 0;
4231 if ((i.types[n] & (Imm32S))
4232 && (i.suffix == QWORD_MNEM_SUFFIX
4233 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4234 sign = 1;
4235 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4237 size = 2;
4238 if (i.types[n] & (Imm8 | Imm8S))
4239 size = 1;
4240 if (i.types[n] & Imm64)
4241 size = 8;
4244 p = frag_more (size);
4245 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4247 /* This is tough to explain. We end up with this one if we
4248 * have operands that look like
4249 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4250 * obtain the absolute address of the GOT, and it is strongly
4251 * preferable from a performance point of view to avoid using
4252 * a runtime relocation for this. The actual sequence of
4253 * instructions often look something like:
4255 * call .L66
4256 * .L66:
4257 * popl %ebx
4258 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4260 * The call and pop essentially return the absolute address
4261 * of the label .L66 and store it in %ebx. The linker itself
4262 * will ultimately change the first operand of the addl so
4263 * that %ebx points to the GOT, but to keep things simple, the
4264 * .o file must have this operand set so that it generates not
4265 * the absolute address of .L66, but the absolute address of
4266 * itself. This allows the linker itself simply treat a GOTPC
4267 * relocation as asking for a pcrel offset to the GOT to be
4268 * added in, and the addend of the relocation is stored in the
4269 * operand field for the instruction itself.
4271 * Our job here is to fix the operand so that it would add
4272 * the correct offset so that %ebx would point to itself. The
4273 * thing that is tricky is that .-.L66 will point to the
4274 * beginning of the instruction, so we need to further modify
4275 * the operand so that it will point to itself. There are
4276 * other cases where you have something like:
4278 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4280 * and here no correction would be required. Internally in
4281 * the assembler we treat operands of this form as not being
4282 * pcrel since the '.' is explicitly mentioned, and I wonder
4283 * whether it would simplify matters to do it this way. Who
4284 * knows. In earlier versions of the PIC patches, the
4285 * pcrel_adjust field was used to store the correction, but
4286 * since the expression is not pcrel, I felt it would be
4287 * confusing to do it this way. */
4289 if ((reloc_type == BFD_RELOC_32
4290 || reloc_type == BFD_RELOC_X86_64_32S
4291 || reloc_type == BFD_RELOC_64)
4292 && GOT_symbol
4293 && GOT_symbol == i.op[n].imms->X_add_symbol
4294 && (i.op[n].imms->X_op == O_symbol
4295 || (i.op[n].imms->X_op == O_add
4296 && ((symbol_get_value_expression
4297 (i.op[n].imms->X_op_symbol)->X_op)
4298 == O_subtract))))
4300 offsetT add;
4302 if (insn_start_frag == frag_now)
4303 add = (p - frag_now->fr_literal) - insn_start_off;
4304 else
4306 fragS *fr;
4308 add = insn_start_frag->fr_fix - insn_start_off;
4309 for (fr = insn_start_frag->fr_next;
4310 fr && fr != frag_now; fr = fr->fr_next)
4311 add += fr->fr_fix;
4312 add += p - frag_now->fr_literal;
4315 if (!object_64bit)
4316 reloc_type = BFD_RELOC_386_GOTPC;
4317 else if (size == 4)
4318 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4319 else if (size == 8)
4320 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4321 i.op[n].imms->X_add_number += add;
4323 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4324 i.op[n].imms, 0, reloc_type);
4330 /* x86_cons_fix_new is called via the expression parsing code when a
4331 reloc is needed. We use this hook to get the correct .got reloc. */
4332 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4333 static int cons_sign = -1;
4335 void
4336 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4337 expressionS *exp)
4339 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4341 got_reloc = NO_RELOC;
4343 #ifdef TE_PE
4344 if (exp->X_op == O_secrel)
4346 exp->X_op = O_symbol;
4347 r = BFD_RELOC_32_SECREL;
4349 #endif
4351 fix_new_exp (frag, off, len, exp, 0, r);
4354 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4355 # define lex_got(reloc, adjust, types) NULL
4356 #else
4357 /* Parse operands of the form
4358 <symbol>@GOTOFF+<nnn>
4359 and similar .plt or .got references.
4361 If we find one, set up the correct relocation in RELOC and copy the
4362 input string, minus the `@GOTOFF' into a malloc'd buffer for
4363 parsing by the calling routine. Return this buffer, and if ADJUST
4364 is non-null set it to the length of the string we removed from the
4365 input line. Otherwise return NULL. */
4366 static char *
4367 lex_got (enum bfd_reloc_code_real *reloc,
4368 int *adjust,
4369 unsigned int *types)
4371 /* Some of the relocations depend on the size of what field is to
4372 be relocated. But in our callers i386_immediate and i386_displacement
4373 we don't yet know the operand size (this will be set by insn
4374 matching). Hence we record the word32 relocation here,
4375 and adjust the reloc according to the real size in reloc(). */
4376 static const struct {
4377 const char *str;
4378 const enum bfd_reloc_code_real rel[2];
4379 const unsigned int types64;
4380 } gotrel[] = {
4381 { "PLTOFF", { 0,
4382 BFD_RELOC_X86_64_PLTOFF64 },
4383 Imm64 },
4384 { "PLT", { BFD_RELOC_386_PLT32,
4385 BFD_RELOC_X86_64_PLT32 },
4386 Imm32 | Imm32S | Disp32 },
4387 { "GOTPLT", { 0,
4388 BFD_RELOC_X86_64_GOTPLT64 },
4389 Imm64 | Disp64 },
4390 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4391 BFD_RELOC_X86_64_GOTOFF64 },
4392 Imm64 | Disp64 },
4393 { "GOTPCREL", { 0,
4394 BFD_RELOC_X86_64_GOTPCREL },
4395 Imm32 | Imm32S | Disp32 },
4396 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4397 BFD_RELOC_X86_64_TLSGD },
4398 Imm32 | Imm32S | Disp32 },
4399 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4400 0 },
4401 0 },
4402 { "TLSLD", { 0,
4403 BFD_RELOC_X86_64_TLSLD },
4404 Imm32 | Imm32S | Disp32 },
4405 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4406 BFD_RELOC_X86_64_GOTTPOFF },
4407 Imm32 | Imm32S | Disp32 },
4408 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4409 BFD_RELOC_X86_64_TPOFF32 },
4410 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4411 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4412 0 },
4413 0 },
4414 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4415 BFD_RELOC_X86_64_DTPOFF32 },
4416 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4417 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4418 0 },
4419 0 },
4420 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4421 0 },
4422 0 },
4423 { "GOT", { BFD_RELOC_386_GOT32,
4424 BFD_RELOC_X86_64_GOT32 },
4425 Imm32 | Imm32S | Disp32 | Imm64 },
4426 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4427 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4428 Imm32 | Imm32S | Disp32 },
4429 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4430 BFD_RELOC_X86_64_TLSDESC_CALL },
4431 Imm32 | Imm32S | Disp32 }
4433 char *cp;
4434 unsigned int j;
4436 if (!IS_ELF)
4437 return NULL;
4439 for (cp = input_line_pointer; *cp != '@'; cp++)
4440 if (is_end_of_line[(unsigned char) *cp])
4441 return NULL;
4443 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4445 int len;
4447 len = strlen (gotrel[j].str);
4448 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4450 if (gotrel[j].rel[object_64bit] != 0)
4452 int first, second;
4453 char *tmpbuf, *past_reloc;
4455 *reloc = gotrel[j].rel[object_64bit];
4456 if (adjust)
4457 *adjust = len;
4459 if (types)
4461 if (flag_code != CODE_64BIT)
4462 *types = Imm32 | Disp32;
4463 else
4464 *types = gotrel[j].types64;
4467 if (GOT_symbol == NULL)
4468 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4470 /* Replace the relocation token with ' ', so that
4471 errors like foo@GOTOFF1 will be detected. */
4473 /* The length of the first part of our input line. */
4474 first = cp - input_line_pointer;
4476 /* The second part goes from after the reloc token until
4477 (and including) an end_of_line char. Don't use strlen
4478 here as the end_of_line char may not be a NUL. */
4479 past_reloc = cp + 1 + len;
4480 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4482 second = cp - past_reloc;
4484 /* Allocate and copy string. The trailing NUL shouldn't
4485 be necessary, but be safe. */
4486 tmpbuf = xmalloc (first + second + 2);
4487 memcpy (tmpbuf, input_line_pointer, first);
4488 tmpbuf[first] = ' ';
4489 memcpy (tmpbuf + first + 1, past_reloc, second);
4490 tmpbuf[first + second + 1] = '\0';
4491 return tmpbuf;
4494 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4495 gotrel[j].str, 1 << (5 + object_64bit));
4496 return NULL;
4500 /* Might be a symbol version string. Don't as_bad here. */
4501 return NULL;
4504 void
4505 x86_cons (expressionS *exp, int size)
4507 if (size == 4 || (object_64bit && size == 8))
4509 /* Handle @GOTOFF and the like in an expression. */
4510 char *save;
4511 char *gotfree_input_line;
4512 int adjust;
4514 save = input_line_pointer;
4515 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4516 if (gotfree_input_line)
4517 input_line_pointer = gotfree_input_line;
4519 expression (exp);
4521 if (gotfree_input_line)
4523 /* expression () has merrily parsed up to the end of line,
4524 or a comma - in the wrong buffer. Transfer how far
4525 input_line_pointer has moved to the right buffer. */
4526 input_line_pointer = (save
4527 + (input_line_pointer - gotfree_input_line)
4528 + adjust);
4529 free (gotfree_input_line);
4532 else
4533 expression (exp);
4535 #endif
4537 static void signed_cons (int size)
4539 if (flag_code == CODE_64BIT)
4540 cons_sign = 1;
4541 cons (size);
4542 cons_sign = -1;
4545 #ifdef TE_PE
4546 static void
4547 pe_directive_secrel (dummy)
4548 int dummy ATTRIBUTE_UNUSED;
4550 expressionS exp;
4554 expression (&exp);
4555 if (exp.X_op == O_symbol)
4556 exp.X_op = O_secrel;
4558 emit_expr (&exp, 4);
4560 while (*input_line_pointer++ == ',');
4562 input_line_pointer--;
4563 demand_empty_rest_of_line ();
4565 #endif
4567 static int
4568 i386_immediate (char *imm_start)
4570 char *save_input_line_pointer;
4571 char *gotfree_input_line;
4572 segT exp_seg = 0;
4573 expressionS *exp;
4574 unsigned int types = ~0U;
4576 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4578 as_bad (_("at most %d immediate operands are allowed"),
4579 MAX_IMMEDIATE_OPERANDS);
4580 return 0;
4583 exp = &im_expressions[i.imm_operands++];
4584 i.op[this_operand].imms = exp;
4586 if (is_space_char (*imm_start))
4587 ++imm_start;
4589 save_input_line_pointer = input_line_pointer;
4590 input_line_pointer = imm_start;
4592 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4593 if (gotfree_input_line)
4594 input_line_pointer = gotfree_input_line;
4596 exp_seg = expression (exp);
4598 SKIP_WHITESPACE ();
4599 if (*input_line_pointer)
4600 as_bad (_("junk `%s' after expression"), input_line_pointer);
4602 input_line_pointer = save_input_line_pointer;
4603 if (gotfree_input_line)
4604 free (gotfree_input_line);
4606 if (exp->X_op == O_absent || exp->X_op == O_big)
4608 /* Missing or bad expr becomes absolute 0. */
4609 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4610 imm_start);
4611 exp->X_op = O_constant;
4612 exp->X_add_number = 0;
4613 exp->X_add_symbol = (symbolS *) 0;
4614 exp->X_op_symbol = (symbolS *) 0;
4616 else if (exp->X_op == O_constant)
4618 /* Size it properly later. */
4619 i.types[this_operand] |= Imm64;
4620 /* If BFD64, sign extend val. */
4621 if (!use_rela_relocations
4622 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4623 exp->X_add_number
4624 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4626 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4627 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4628 && exp_seg != absolute_section
4629 && exp_seg != text_section
4630 && exp_seg != data_section
4631 && exp_seg != bss_section
4632 && exp_seg != undefined_section
4633 && !bfd_is_com_section (exp_seg))
4635 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4636 return 0;
4638 #endif
4639 else if (!intel_syntax && exp->X_op == O_register)
4641 as_bad (_("illegal immediate register operand %s"), imm_start);
4642 return 0;
4644 else
4646 /* This is an address. The size of the address will be
4647 determined later, depending on destination register,
4648 suffix, or the default for the section. */
4649 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4650 i.types[this_operand] &= types;
4653 return 1;
4656 static char *
4657 i386_scale (char *scale)
4659 offsetT val;
4660 char *save = input_line_pointer;
4662 input_line_pointer = scale;
4663 val = get_absolute_expression ();
4665 switch (val)
4667 case 1:
4668 i.log2_scale_factor = 0;
4669 break;
4670 case 2:
4671 i.log2_scale_factor = 1;
4672 break;
4673 case 4:
4674 i.log2_scale_factor = 2;
4675 break;
4676 case 8:
4677 i.log2_scale_factor = 3;
4678 break;
4679 default:
4681 char sep = *input_line_pointer;
4683 *input_line_pointer = '\0';
4684 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4685 scale);
4686 *input_line_pointer = sep;
4687 input_line_pointer = save;
4688 return NULL;
4691 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4693 as_warn (_("scale factor of %d without an index register"),
4694 1 << i.log2_scale_factor);
4695 #if SCALE1_WHEN_NO_INDEX
4696 i.log2_scale_factor = 0;
4697 #endif
4699 scale = input_line_pointer;
4700 input_line_pointer = save;
4701 return scale;
4704 static int
4705 i386_displacement (char *disp_start, char *disp_end)
4707 expressionS *exp;
4708 segT exp_seg = 0;
4709 char *save_input_line_pointer;
4710 char *gotfree_input_line;
4711 int bigdisp, override;
4712 unsigned int types = Disp;
4714 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4716 as_bad (_("at most %d displacement operands are allowed"),
4717 MAX_MEMORY_OPERANDS);
4718 return 0;
4721 if ((i.types[this_operand] & JumpAbsolute)
4722 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4724 bigdisp = Disp32;
4725 override = (i.prefix[ADDR_PREFIX] != 0);
4727 else
4729 /* For PC-relative branches, the width of the displacement
4730 is dependent upon data size, not address size. */
4731 bigdisp = 0;
4732 override = (i.prefix[DATA_PREFIX] != 0);
4734 if (flag_code == CODE_64BIT)
4736 if (!bigdisp)
4737 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4738 ? Disp16
4739 : Disp32S | Disp32);
4740 else if (!override)
4741 bigdisp = Disp64 | Disp32S | Disp32;
4743 else
4745 if (!bigdisp)
4747 if (!override)
4748 override = (i.suffix == (flag_code != CODE_16BIT
4749 ? WORD_MNEM_SUFFIX
4750 : LONG_MNEM_SUFFIX));
4751 bigdisp = Disp32;
4753 if ((flag_code == CODE_16BIT) ^ override)
4754 bigdisp = Disp16;
4756 i.types[this_operand] |= bigdisp;
4758 exp = &disp_expressions[i.disp_operands];
4759 i.op[this_operand].disps = exp;
4760 i.disp_operands++;
4761 save_input_line_pointer = input_line_pointer;
4762 input_line_pointer = disp_start;
4763 END_STRING_AND_SAVE (disp_end);
4765 #ifndef GCC_ASM_O_HACK
4766 #define GCC_ASM_O_HACK 0
4767 #endif
4768 #if GCC_ASM_O_HACK
4769 END_STRING_AND_SAVE (disp_end + 1);
4770 if ((i.types[this_operand] & BaseIndex) != 0
4771 && displacement_string_end[-1] == '+')
4773 /* This hack is to avoid a warning when using the "o"
4774 constraint within gcc asm statements.
4775 For instance:
4777 #define _set_tssldt_desc(n,addr,limit,type) \
4778 __asm__ __volatile__ ( \
4779 "movw %w2,%0\n\t" \
4780 "movw %w1,2+%0\n\t" \
4781 "rorl $16,%1\n\t" \
4782 "movb %b1,4+%0\n\t" \
4783 "movb %4,5+%0\n\t" \
4784 "movb $0,6+%0\n\t" \
4785 "movb %h1,7+%0\n\t" \
4786 "rorl $16,%1" \
4787 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4789 This works great except that the output assembler ends
4790 up looking a bit weird if it turns out that there is
4791 no offset. You end up producing code that looks like:
4793 #APP
4794 movw $235,(%eax)
4795 movw %dx,2+(%eax)
4796 rorl $16,%edx
4797 movb %dl,4+(%eax)
4798 movb $137,5+(%eax)
4799 movb $0,6+(%eax)
4800 movb %dh,7+(%eax)
4801 rorl $16,%edx
4802 #NO_APP
4804 So here we provide the missing zero. */
4806 *displacement_string_end = '0';
4808 #endif
4809 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4810 if (gotfree_input_line)
4811 input_line_pointer = gotfree_input_line;
4813 exp_seg = expression (exp);
4815 SKIP_WHITESPACE ();
4816 if (*input_line_pointer)
4817 as_bad (_("junk `%s' after expression"), input_line_pointer);
4818 #if GCC_ASM_O_HACK
4819 RESTORE_END_STRING (disp_end + 1);
4820 #endif
4821 RESTORE_END_STRING (disp_end);
4822 input_line_pointer = save_input_line_pointer;
4823 if (gotfree_input_line)
4824 free (gotfree_input_line);
4826 /* We do this to make sure that the section symbol is in
4827 the symbol table. We will ultimately change the relocation
4828 to be relative to the beginning of the section. */
4829 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4830 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4831 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4833 if (exp->X_op != O_symbol)
4835 as_bad (_("bad expression used with @%s"),
4836 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4837 ? "GOTPCREL"
4838 : "GOTOFF"));
4839 return 0;
4842 if (S_IS_LOCAL (exp->X_add_symbol)
4843 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4844 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4845 exp->X_op = O_subtract;
4846 exp->X_op_symbol = GOT_symbol;
4847 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4848 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4849 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4850 i.reloc[this_operand] = BFD_RELOC_64;
4851 else
4852 i.reloc[this_operand] = BFD_RELOC_32;
4855 if (exp->X_op == O_absent || exp->X_op == O_big)
4857 /* Missing or bad expr becomes absolute 0. */
4858 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4859 disp_start);
4860 exp->X_op = O_constant;
4861 exp->X_add_number = 0;
4862 exp->X_add_symbol = (symbolS *) 0;
4863 exp->X_op_symbol = (symbolS *) 0;
4866 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4867 if (exp->X_op != O_constant
4868 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4869 && exp_seg != absolute_section
4870 && exp_seg != text_section
4871 && exp_seg != data_section
4872 && exp_seg != bss_section
4873 && exp_seg != undefined_section
4874 && !bfd_is_com_section (exp_seg))
4876 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4877 return 0;
4879 #endif
4881 if (!(i.types[this_operand] & ~Disp))
4882 i.types[this_operand] &= types;
4884 return 1;
4887 /* Make sure the memory operand we've been dealt is valid.
4888 Return 1 on success, 0 on a failure. */
4890 static int
4891 i386_index_check (const char *operand_string)
4893 int ok;
4894 #if INFER_ADDR_PREFIX
4895 int fudged = 0;
4897 tryprefix:
4898 #endif
4899 ok = 1;
4900 if ((current_templates->start->cpu_flags & CpuSVME)
4901 && current_templates->end[-1].operand_types[0] == AnyMem)
4903 /* Memory operands of SVME insns are special in that they only allow
4904 rAX as their memory address and ignore any segment override. */
4905 unsigned RegXX;
4907 /* SKINIT is even more restrictive: it always requires EAX. */
4908 if (strcmp (current_templates->start->name, "skinit") == 0)
4909 RegXX = Reg32;
4910 else if (flag_code == CODE_64BIT)
4911 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4912 else
4913 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4914 ? Reg16
4915 : Reg32);
4916 if (!i.base_reg
4917 || !(i.base_reg->reg_type & Acc)
4918 || !(i.base_reg->reg_type & RegXX)
4919 || i.index_reg
4920 || (i.types[0] & Disp))
4921 ok = 0;
4923 else if (flag_code == CODE_64BIT)
4925 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4927 if ((i.base_reg
4928 && ((i.base_reg->reg_type & RegXX) == 0)
4929 && (i.base_reg->reg_type != BaseIndex
4930 || i.index_reg))
4931 || (i.index_reg
4932 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4933 != (RegXX | BaseIndex))))
4934 ok = 0;
4936 else
4938 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4940 /* 16bit checks. */
4941 if ((i.base_reg
4942 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4943 != (Reg16 | BaseIndex)))
4944 || (i.index_reg
4945 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4946 != (Reg16 | BaseIndex))
4947 || !(i.base_reg
4948 && i.base_reg->reg_num < 6
4949 && i.index_reg->reg_num >= 6
4950 && i.log2_scale_factor == 0))))
4951 ok = 0;
4953 else
4955 /* 32bit checks. */
4956 if ((i.base_reg
4957 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4958 || (i.index_reg
4959 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4960 != (Reg32 | BaseIndex))))
4961 ok = 0;
4964 if (!ok)
4966 #if INFER_ADDR_PREFIX
4967 if (i.prefix[ADDR_PREFIX] == 0)
4969 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4970 i.prefixes += 1;
4971 /* Change the size of any displacement too. At most one of
4972 Disp16 or Disp32 is set.
4973 FIXME. There doesn't seem to be any real need for separate
4974 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4975 Removing them would probably clean up the code quite a lot. */
4976 if (flag_code != CODE_64BIT
4977 && (i.types[this_operand] & (Disp16 | Disp32)))
4978 i.types[this_operand] ^= (Disp16 | Disp32);
4979 fudged = 1;
4980 goto tryprefix;
4982 if (fudged)
4983 as_bad (_("`%s' is not a valid base/index expression"),
4984 operand_string);
4985 else
4986 #endif
4987 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4988 operand_string,
4989 flag_code_names[flag_code]);
4991 return ok;
4994 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4995 on error. */
4997 static int
4998 i386_operand (char *operand_string)
5000 const reg_entry *r;
5001 char *end_op;
5002 char *op_string = operand_string;
5004 if (is_space_char (*op_string))
5005 ++op_string;
5007 /* We check for an absolute prefix (differentiating,
5008 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
5009 if (*op_string == ABSOLUTE_PREFIX)
5011 ++op_string;
5012 if (is_space_char (*op_string))
5013 ++op_string;
5014 i.types[this_operand] |= JumpAbsolute;
5017 /* Check if operand is a register. */
5018 if ((r = parse_register (op_string, &end_op)) != NULL)
5020 /* Check for a segment override by searching for ':' after a
5021 segment register. */
5022 op_string = end_op;
5023 if (is_space_char (*op_string))
5024 ++op_string;
5025 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5027 switch (r->reg_num)
5029 case 0:
5030 i.seg[i.mem_operands] = &es;
5031 break;
5032 case 1:
5033 i.seg[i.mem_operands] = &cs;
5034 break;
5035 case 2:
5036 i.seg[i.mem_operands] = &ss;
5037 break;
5038 case 3:
5039 i.seg[i.mem_operands] = &ds;
5040 break;
5041 case 4:
5042 i.seg[i.mem_operands] = &fs;
5043 break;
5044 case 5:
5045 i.seg[i.mem_operands] = &gs;
5046 break;
5049 /* Skip the ':' and whitespace. */
5050 ++op_string;
5051 if (is_space_char (*op_string))
5052 ++op_string;
5054 if (!is_digit_char (*op_string)
5055 && !is_identifier_char (*op_string)
5056 && *op_string != '('
5057 && *op_string != ABSOLUTE_PREFIX)
5059 as_bad (_("bad memory operand `%s'"), op_string);
5060 return 0;
5062 /* Handle case of %es:*foo. */
5063 if (*op_string == ABSOLUTE_PREFIX)
5065 ++op_string;
5066 if (is_space_char (*op_string))
5067 ++op_string;
5068 i.types[this_operand] |= JumpAbsolute;
5070 goto do_memory_reference;
5072 if (*op_string)
5074 as_bad (_("junk `%s' after register"), op_string);
5075 return 0;
5077 i.types[this_operand] |= r->reg_type & ~BaseIndex;
5078 i.op[this_operand].regs = r;
5079 i.reg_operands++;
5081 else if (*op_string == REGISTER_PREFIX)
5083 as_bad (_("bad register name `%s'"), op_string);
5084 return 0;
5086 else if (*op_string == IMMEDIATE_PREFIX)
5088 ++op_string;
5089 if (i.types[this_operand] & JumpAbsolute)
5091 as_bad (_("immediate operand illegal with absolute jump"));
5092 return 0;
5094 if (!i386_immediate (op_string))
5095 return 0;
5097 else if (is_digit_char (*op_string)
5098 || is_identifier_char (*op_string)
5099 || *op_string == '(')
5101 /* This is a memory reference of some sort. */
5102 char *base_string;
5104 /* Start and end of displacement string expression (if found). */
5105 char *displacement_string_start;
5106 char *displacement_string_end;
5108 do_memory_reference:
5109 if ((i.mem_operands == 1
5110 && (current_templates->start->opcode_modifier & IsString) == 0)
5111 || i.mem_operands == 2)
5113 as_bad (_("too many memory references for `%s'"),
5114 current_templates->start->name);
5115 return 0;
5118 /* Check for base index form. We detect the base index form by
5119 looking for an ')' at the end of the operand, searching
5120 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5121 after the '('. */
5122 base_string = op_string + strlen (op_string);
5124 --base_string;
5125 if (is_space_char (*base_string))
5126 --base_string;
5128 /* If we only have a displacement, set-up for it to be parsed later. */
5129 displacement_string_start = op_string;
5130 displacement_string_end = base_string + 1;
5132 if (*base_string == ')')
5134 char *temp_string;
5135 unsigned int parens_balanced = 1;
5136 /* We've already checked that the number of left & right ()'s are
5137 equal, so this loop will not be infinite. */
5140 base_string--;
5141 if (*base_string == ')')
5142 parens_balanced++;
5143 if (*base_string == '(')
5144 parens_balanced--;
5146 while (parens_balanced);
5148 temp_string = base_string;
5150 /* Skip past '(' and whitespace. */
5151 ++base_string;
5152 if (is_space_char (*base_string))
5153 ++base_string;
5155 if (*base_string == ','
5156 || ((i.base_reg = parse_register (base_string, &end_op))
5157 != NULL))
5159 displacement_string_end = temp_string;
5161 i.types[this_operand] |= BaseIndex;
5163 if (i.base_reg)
5165 base_string = end_op;
5166 if (is_space_char (*base_string))
5167 ++base_string;
5170 /* There may be an index reg or scale factor here. */
5171 if (*base_string == ',')
5173 ++base_string;
5174 if (is_space_char (*base_string))
5175 ++base_string;
5177 if ((i.index_reg = parse_register (base_string, &end_op))
5178 != NULL)
5180 base_string = end_op;
5181 if (is_space_char (*base_string))
5182 ++base_string;
5183 if (*base_string == ',')
5185 ++base_string;
5186 if (is_space_char (*base_string))
5187 ++base_string;
5189 else if (*base_string != ')')
5191 as_bad (_("expecting `,' or `)' "
5192 "after index register in `%s'"),
5193 operand_string);
5194 return 0;
5197 else if (*base_string == REGISTER_PREFIX)
5199 as_bad (_("bad register name `%s'"), base_string);
5200 return 0;
5203 /* Check for scale factor. */
5204 if (*base_string != ')')
5206 char *end_scale = i386_scale (base_string);
5208 if (!end_scale)
5209 return 0;
5211 base_string = end_scale;
5212 if (is_space_char (*base_string))
5213 ++base_string;
5214 if (*base_string != ')')
5216 as_bad (_("expecting `)' "
5217 "after scale factor in `%s'"),
5218 operand_string);
5219 return 0;
5222 else if (!i.index_reg)
5224 as_bad (_("expecting index register or scale factor "
5225 "after `,'; got '%c'"),
5226 *base_string);
5227 return 0;
5230 else if (*base_string != ')')
5232 as_bad (_("expecting `,' or `)' "
5233 "after base register in `%s'"),
5234 operand_string);
5235 return 0;
5238 else if (*base_string == REGISTER_PREFIX)
5240 as_bad (_("bad register name `%s'"), base_string);
5241 return 0;
5245 /* If there's an expression beginning the operand, parse it,
5246 assuming displacement_string_start and
5247 displacement_string_end are meaningful. */
5248 if (displacement_string_start != displacement_string_end)
5250 if (!i386_displacement (displacement_string_start,
5251 displacement_string_end))
5252 return 0;
5255 /* Special case for (%dx) while doing input/output op. */
5256 if (i.base_reg
5257 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5258 && i.index_reg == 0
5259 && i.log2_scale_factor == 0
5260 && i.seg[i.mem_operands] == 0
5261 && (i.types[this_operand] & Disp) == 0)
5263 i.types[this_operand] = InOutPortReg;
5264 return 1;
5267 if (i386_index_check (operand_string) == 0)
5268 return 0;
5269 i.mem_operands++;
5271 else
5273 /* It's not a memory operand; argh! */
5274 as_bad (_("invalid char %s beginning operand %d `%s'"),
5275 output_invalid (*op_string),
5276 this_operand + 1,
5277 op_string);
5278 return 0;
5280 return 1; /* Normal return. */
5283 /* md_estimate_size_before_relax()
5285 Called just before relax() for rs_machine_dependent frags. The x86
5286 assembler uses these frags to handle variable size jump
5287 instructions.
5289 Any symbol that is now undefined will not become defined.
5290 Return the correct fr_subtype in the frag.
5291 Return the initial "guess for variable size of frag" to caller.
5292 The guess is actually the growth beyond the fixed part. Whatever
5293 we do to grow the fixed or variable part contributes to our
5294 returned value. */
5297 md_estimate_size_before_relax (fragP, segment)
5298 fragS *fragP;
5299 segT segment;
5301 /* We've already got fragP->fr_subtype right; all we have to do is
5302 check for un-relaxable symbols. On an ELF system, we can't relax
5303 an externally visible symbol, because it may be overridden by a
5304 shared library. */
5305 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5306 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5307 || (IS_ELF
5308 && (S_IS_EXTERNAL (fragP->fr_symbol)
5309 || S_IS_WEAK (fragP->fr_symbol)))
5310 #endif
5313 /* Symbol is undefined in this segment, or we need to keep a
5314 reloc so that weak symbols can be overridden. */
5315 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5316 enum bfd_reloc_code_real reloc_type;
5317 unsigned char *opcode;
5318 int old_fr_fix;
5320 if (fragP->fr_var != NO_RELOC)
5321 reloc_type = fragP->fr_var;
5322 else if (size == 2)
5323 reloc_type = BFD_RELOC_16_PCREL;
5324 else
5325 reloc_type = BFD_RELOC_32_PCREL;
5327 old_fr_fix = fragP->fr_fix;
5328 opcode = (unsigned char *) fragP->fr_opcode;
5330 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5332 case UNCOND_JUMP:
5333 /* Make jmp (0xeb) a (d)word displacement jump. */
5334 opcode[0] = 0xe9;
5335 fragP->fr_fix += size;
5336 fix_new (fragP, old_fr_fix, size,
5337 fragP->fr_symbol,
5338 fragP->fr_offset, 1,
5339 reloc_type);
5340 break;
5342 case COND_JUMP86:
5343 if (size == 2
5344 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5346 /* Negate the condition, and branch past an
5347 unconditional jump. */
5348 opcode[0] ^= 1;
5349 opcode[1] = 3;
5350 /* Insert an unconditional jump. */
5351 opcode[2] = 0xe9;
5352 /* We added two extra opcode bytes, and have a two byte
5353 offset. */
5354 fragP->fr_fix += 2 + 2;
5355 fix_new (fragP, old_fr_fix + 2, 2,
5356 fragP->fr_symbol,
5357 fragP->fr_offset, 1,
5358 reloc_type);
5359 break;
5361 /* Fall through. */
5363 case COND_JUMP:
5364 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5366 fixS *fixP;
5368 fragP->fr_fix += 1;
5369 fixP = fix_new (fragP, old_fr_fix, 1,
5370 fragP->fr_symbol,
5371 fragP->fr_offset, 1,
5372 BFD_RELOC_8_PCREL);
5373 fixP->fx_signed = 1;
5374 break;
5377 /* This changes the byte-displacement jump 0x7N
5378 to the (d)word-displacement jump 0x0f,0x8N. */
5379 opcode[1] = opcode[0] + 0x10;
5380 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5381 /* We've added an opcode byte. */
5382 fragP->fr_fix += 1 + size;
5383 fix_new (fragP, old_fr_fix + 1, size,
5384 fragP->fr_symbol,
5385 fragP->fr_offset, 1,
5386 reloc_type);
5387 break;
5389 default:
5390 BAD_CASE (fragP->fr_subtype);
5391 break;
5393 frag_wane (fragP);
5394 return fragP->fr_fix - old_fr_fix;
5397 /* Guess size depending on current relax state. Initially the relax
5398 state will correspond to a short jump and we return 1, because
5399 the variable part of the frag (the branch offset) is one byte
5400 long. However, we can relax a section more than once and in that
5401 case we must either set fr_subtype back to the unrelaxed state,
5402 or return the value for the appropriate branch. */
5403 return md_relax_table[fragP->fr_subtype].rlx_length;
5406 /* Called after relax() is finished.
5408 In: Address of frag.
5409 fr_type == rs_machine_dependent.
5410 fr_subtype is what the address relaxed to.
5412 Out: Any fixSs and constants are set up.
5413 Caller will turn frag into a ".space 0". */
5415 void
5416 md_convert_frag (abfd, sec, fragP)
5417 bfd *abfd ATTRIBUTE_UNUSED;
5418 segT sec ATTRIBUTE_UNUSED;
5419 fragS *fragP;
5421 unsigned char *opcode;
5422 unsigned char *where_to_put_displacement = NULL;
5423 offsetT target_address;
5424 offsetT opcode_address;
5425 unsigned int extension = 0;
5426 offsetT displacement_from_opcode_start;
5428 opcode = (unsigned char *) fragP->fr_opcode;
5430 /* Address we want to reach in file space. */
5431 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5433 /* Address opcode resides at in file space. */
5434 opcode_address = fragP->fr_address + fragP->fr_fix;
5436 /* Displacement from opcode start to fill into instruction. */
5437 displacement_from_opcode_start = target_address - opcode_address;
5439 if ((fragP->fr_subtype & BIG) == 0)
5441 /* Don't have to change opcode. */
5442 extension = 1; /* 1 opcode + 1 displacement */
5443 where_to_put_displacement = &opcode[1];
5445 else
5447 if (no_cond_jump_promotion
5448 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5449 as_warn_where (fragP->fr_file, fragP->fr_line,
5450 _("long jump required"));
5452 switch (fragP->fr_subtype)
5454 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5455 extension = 4; /* 1 opcode + 4 displacement */
5456 opcode[0] = 0xe9;
5457 where_to_put_displacement = &opcode[1];
5458 break;
5460 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5461 extension = 2; /* 1 opcode + 2 displacement */
5462 opcode[0] = 0xe9;
5463 where_to_put_displacement = &opcode[1];
5464 break;
5466 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5467 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5468 extension = 5; /* 2 opcode + 4 displacement */
5469 opcode[1] = opcode[0] + 0x10;
5470 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5471 where_to_put_displacement = &opcode[2];
5472 break;
5474 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5475 extension = 3; /* 2 opcode + 2 displacement */
5476 opcode[1] = opcode[0] + 0x10;
5477 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5478 where_to_put_displacement = &opcode[2];
5479 break;
5481 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5482 extension = 4;
5483 opcode[0] ^= 1;
5484 opcode[1] = 3;
5485 opcode[2] = 0xe9;
5486 where_to_put_displacement = &opcode[3];
5487 break;
5489 default:
5490 BAD_CASE (fragP->fr_subtype);
5491 break;
5495 /* If size if less then four we are sure that the operand fits,
5496 but if it's 4, then it could be that the displacement is larger
5497 then -/+ 2GB. */
5498 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5499 && object_64bit
5500 && ((addressT) (displacement_from_opcode_start - extension
5501 + ((addressT) 1 << 31))
5502 > (((addressT) 2 << 31) - 1)))
5504 as_bad_where (fragP->fr_file, fragP->fr_line,
5505 _("jump target out of range"));
5506 /* Make us emit 0. */
5507 displacement_from_opcode_start = extension;
5509 /* Now put displacement after opcode. */
5510 md_number_to_chars ((char *) where_to_put_displacement,
5511 (valueT) (displacement_from_opcode_start - extension),
5512 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5513 fragP->fr_fix += extension;
5516 /* Size of byte displacement jmp. */
5517 int md_short_jump_size = 2;
5519 /* Size of dword displacement jmp. */
5520 int md_long_jump_size = 5;
5522 void
5523 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5524 char *ptr;
5525 addressT from_addr, to_addr;
5526 fragS *frag ATTRIBUTE_UNUSED;
5527 symbolS *to_symbol ATTRIBUTE_UNUSED;
5529 offsetT offset;
5531 offset = to_addr - (from_addr + 2);
5532 /* Opcode for byte-disp jump. */
5533 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5534 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5537 void
5538 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5539 char *ptr;
5540 addressT from_addr, to_addr;
5541 fragS *frag ATTRIBUTE_UNUSED;
5542 symbolS *to_symbol ATTRIBUTE_UNUSED;
5544 offsetT offset;
5546 offset = to_addr - (from_addr + 5);
5547 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5548 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5551 /* Apply a fixup (fixS) to segment data, once it has been determined
5552 by our caller that we have all the info we need to fix it up.
5554 On the 386, immediates, displacements, and data pointers are all in
5555 the same (little-endian) format, so we don't need to care about which
5556 we are handling. */
5558 void
5559 md_apply_fix (fixP, valP, seg)
5560 /* The fix we're to put in. */
5561 fixS *fixP;
5562 /* Pointer to the value of the bits. */
5563 valueT *valP;
5564 /* Segment fix is from. */
5565 segT seg ATTRIBUTE_UNUSED;
5567 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5568 valueT value = *valP;
5570 #if !defined (TE_Mach)
5571 if (fixP->fx_pcrel)
5573 switch (fixP->fx_r_type)
5575 default:
5576 break;
5578 case BFD_RELOC_64:
5579 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5580 break;
5581 case BFD_RELOC_32:
5582 case BFD_RELOC_X86_64_32S:
5583 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5584 break;
5585 case BFD_RELOC_16:
5586 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5587 break;
5588 case BFD_RELOC_8:
5589 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5590 break;
5594 if (fixP->fx_addsy != NULL
5595 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5596 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5597 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5598 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5599 && !use_rela_relocations)
5601 /* This is a hack. There should be a better way to handle this.
5602 This covers for the fact that bfd_install_relocation will
5603 subtract the current location (for partial_inplace, PC relative
5604 relocations); see more below. */
5605 #ifndef OBJ_AOUT
5606 if (IS_ELF
5607 #ifdef TE_PE
5608 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5609 #endif
5611 value += fixP->fx_where + fixP->fx_frag->fr_address;
5612 #endif
5613 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5614 if (IS_ELF)
5616 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5618 if ((sym_seg == seg
5619 || (symbol_section_p (fixP->fx_addsy)
5620 && sym_seg != absolute_section))
5621 && !generic_force_reloc (fixP))
5623 /* Yes, we add the values in twice. This is because
5624 bfd_install_relocation subtracts them out again. I think
5625 bfd_install_relocation is broken, but I don't dare change
5626 it. FIXME. */
5627 value += fixP->fx_where + fixP->fx_frag->fr_address;
5630 #endif
5631 #if defined (OBJ_COFF) && defined (TE_PE)
5632 /* For some reason, the PE format does not store a
5633 section address offset for a PC relative symbol. */
5634 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5635 || S_IS_WEAK (fixP->fx_addsy))
5636 value += md_pcrel_from (fixP);
5637 #endif
5640 /* Fix a few things - the dynamic linker expects certain values here,
5641 and we must not disappoint it. */
5642 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5643 if (IS_ELF && fixP->fx_addsy)
5644 switch (fixP->fx_r_type)
5646 case BFD_RELOC_386_PLT32:
5647 case BFD_RELOC_X86_64_PLT32:
5648 /* Make the jump instruction point to the address of the operand. At
5649 runtime we merely add the offset to the actual PLT entry. */
5650 value = -4;
5651 break;
5653 case BFD_RELOC_386_TLS_GD:
5654 case BFD_RELOC_386_TLS_LDM:
5655 case BFD_RELOC_386_TLS_IE_32:
5656 case BFD_RELOC_386_TLS_IE:
5657 case BFD_RELOC_386_TLS_GOTIE:
5658 case BFD_RELOC_386_TLS_GOTDESC:
5659 case BFD_RELOC_X86_64_TLSGD:
5660 case BFD_RELOC_X86_64_TLSLD:
5661 case BFD_RELOC_X86_64_GOTTPOFF:
5662 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5663 value = 0; /* Fully resolved at runtime. No addend. */
5664 /* Fallthrough */
5665 case BFD_RELOC_386_TLS_LE:
5666 case BFD_RELOC_386_TLS_LDO_32:
5667 case BFD_RELOC_386_TLS_LE_32:
5668 case BFD_RELOC_X86_64_DTPOFF32:
5669 case BFD_RELOC_X86_64_DTPOFF64:
5670 case BFD_RELOC_X86_64_TPOFF32:
5671 case BFD_RELOC_X86_64_TPOFF64:
5672 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5673 break;
5675 case BFD_RELOC_386_TLS_DESC_CALL:
5676 case BFD_RELOC_X86_64_TLSDESC_CALL:
5677 value = 0; /* Fully resolved at runtime. No addend. */
5678 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5679 fixP->fx_done = 0;
5680 return;
5682 case BFD_RELOC_386_GOT32:
5683 case BFD_RELOC_X86_64_GOT32:
5684 value = 0; /* Fully resolved at runtime. No addend. */
5685 break;
5687 case BFD_RELOC_VTABLE_INHERIT:
5688 case BFD_RELOC_VTABLE_ENTRY:
5689 fixP->fx_done = 0;
5690 return;
5692 default:
5693 break;
5695 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5696 *valP = value;
5697 #endif /* !defined (TE_Mach) */
5699 /* Are we finished with this relocation now? */
5700 if (fixP->fx_addsy == NULL)
5701 fixP->fx_done = 1;
5702 else if (use_rela_relocations)
5704 fixP->fx_no_overflow = 1;
5705 /* Remember value for tc_gen_reloc. */
5706 fixP->fx_addnumber = value;
5707 value = 0;
5710 md_number_to_chars (p, value, fixP->fx_size);
5713 #define MAX_LITTLENUMS 6
5715 /* Turn the string pointed to by litP into a floating point constant
5716 of type TYPE, and emit the appropriate bytes. The number of
5717 LITTLENUMS emitted is stored in *SIZEP. An error message is
5718 returned, or NULL on OK. */
5720 char *
5721 md_atof (type, litP, sizeP)
5722 int type;
5723 char *litP;
5724 int *sizeP;
5726 int prec;
5727 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5728 LITTLENUM_TYPE *wordP;
5729 char *t;
5731 switch (type)
5733 case 'f':
5734 case 'F':
5735 prec = 2;
5736 break;
5738 case 'd':
5739 case 'D':
5740 prec = 4;
5741 break;
5743 case 'x':
5744 case 'X':
5745 prec = 5;
5746 break;
5748 default:
5749 *sizeP = 0;
5750 return _("Bad call to md_atof ()");
5752 t = atof_ieee (input_line_pointer, type, words);
5753 if (t)
5754 input_line_pointer = t;
5756 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5757 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5758 the bigendian 386. */
5759 for (wordP = words + prec - 1; prec--;)
5761 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5762 litP += sizeof (LITTLENUM_TYPE);
5764 return 0;
5767 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5769 static char *
5770 output_invalid (int c)
5772 if (ISPRINT (c))
5773 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5774 "'%c'", c);
5775 else
5776 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5777 "(0x%x)", (unsigned char) c);
5778 return output_invalid_buf;
5781 /* REG_STRING starts *before* REGISTER_PREFIX. */
5783 static const reg_entry *
5784 parse_real_register (char *reg_string, char **end_op)
5786 char *s = reg_string;
5787 char *p;
5788 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5789 const reg_entry *r;
5791 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5792 if (*s == REGISTER_PREFIX)
5793 ++s;
5795 if (is_space_char (*s))
5796 ++s;
5798 p = reg_name_given;
5799 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5801 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5802 return (const reg_entry *) NULL;
5803 s++;
5806 /* For naked regs, make sure that we are not dealing with an identifier.
5807 This prevents confusing an identifier like `eax_var' with register
5808 `eax'. */
5809 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5810 return (const reg_entry *) NULL;
5812 *end_op = s;
5814 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5816 /* Handle floating point regs, allowing spaces in the (i) part. */
5817 if (r == i386_regtab /* %st is first entry of table */)
5819 if (is_space_char (*s))
5820 ++s;
5821 if (*s == '(')
5823 ++s;
5824 if (is_space_char (*s))
5825 ++s;
5826 if (*s >= '0' && *s <= '7')
5828 int fpr = *s - '0';
5829 ++s;
5830 if (is_space_char (*s))
5831 ++s;
5832 if (*s == ')')
5834 *end_op = s + 1;
5835 r = hash_find (reg_hash, "st(0)");
5836 know (r);
5837 return r + fpr;
5840 /* We have "%st(" then garbage. */
5841 return (const reg_entry *) NULL;
5845 if (r != NULL
5846 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5847 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5848 && flag_code != CODE_64BIT)
5849 return (const reg_entry *) NULL;
5851 return r;
5854 /* REG_STRING starts *before* REGISTER_PREFIX. */
5856 static const reg_entry *
5857 parse_register (char *reg_string, char **end_op)
5859 const reg_entry *r;
5861 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5862 r = parse_real_register (reg_string, end_op);
5863 else
5864 r = NULL;
5865 if (!r)
5867 char *save = input_line_pointer;
5868 char c;
5869 symbolS *symbolP;
5871 input_line_pointer = reg_string;
5872 c = get_symbol_end ();
5873 symbolP = symbol_find (reg_string);
5874 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5876 const expressionS *e = symbol_get_value_expression (symbolP);
5878 know (e->X_op == O_register);
5879 know (e->X_add_number >= 0
5880 && (valueT) e->X_add_number < i386_regtab_size);
5881 r = i386_regtab + e->X_add_number;
5882 *end_op = input_line_pointer;
5884 *input_line_pointer = c;
5885 input_line_pointer = save;
5887 return r;
5891 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5893 const reg_entry *r;
5894 char *end = input_line_pointer;
5896 *end = *nextcharP;
5897 r = parse_register (name, &input_line_pointer);
5898 if (r && end <= input_line_pointer)
5900 *nextcharP = *input_line_pointer;
5901 *input_line_pointer = 0;
5902 e->X_op = O_register;
5903 e->X_add_number = r - i386_regtab;
5904 return 1;
5906 input_line_pointer = end;
5907 *end = 0;
5908 return 0;
5911 void
5912 md_operand (expressionS *e)
5914 if (*input_line_pointer == REGISTER_PREFIX)
5916 char *end;
5917 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5919 if (r)
5921 e->X_op = O_register;
5922 e->X_add_number = r - i386_regtab;
5923 input_line_pointer = end;
5929 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5930 const char *md_shortopts = "kVQ:sqn";
5931 #else
5932 const char *md_shortopts = "qn";
5933 #endif
5935 #define OPTION_32 (OPTION_MD_BASE + 0)
5936 #define OPTION_64 (OPTION_MD_BASE + 1)
5937 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5938 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5939 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5941 struct option md_longopts[] =
5943 {"32", no_argument, NULL, OPTION_32},
5944 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5945 {"64", no_argument, NULL, OPTION_64},
5946 #endif
5947 {"divide", no_argument, NULL, OPTION_DIVIDE},
5948 {"march", required_argument, NULL, OPTION_MARCH},
5949 {"mtune", required_argument, NULL, OPTION_MTUNE},
5950 {NULL, no_argument, NULL, 0}
5952 size_t md_longopts_size = sizeof (md_longopts);
5955 md_parse_option (int c, char *arg)
5957 unsigned int i;
5959 switch (c)
5961 case 'n':
5962 optimize_align_code = 0;
5963 break;
5965 case 'q':
5966 quiet_warnings = 1;
5967 break;
5969 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5970 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5971 should be emitted or not. FIXME: Not implemented. */
5972 case 'Q':
5973 break;
5975 /* -V: SVR4 argument to print version ID. */
5976 case 'V':
5977 print_version_id ();
5978 break;
5980 /* -k: Ignore for FreeBSD compatibility. */
5981 case 'k':
5982 break;
5984 case 's':
5985 /* -s: On i386 Solaris, this tells the native assembler to use
5986 .stab instead of .stab.excl. We always use .stab anyhow. */
5987 break;
5988 #endif
5989 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5990 case OPTION_64:
5992 const char **list, **l;
5994 list = bfd_target_list ();
5995 for (l = list; *l != NULL; l++)
5996 if (CONST_STRNEQ (*l, "elf64-x86-64")
5997 || strcmp (*l, "coff-x86-64") == 0
5998 || strcmp (*l, "pe-x86-64") == 0
5999 || strcmp (*l, "pei-x86-64") == 0)
6001 default_arch = "x86_64";
6002 break;
6004 if (*l == NULL)
6005 as_fatal (_("No compiled in support for x86_64"));
6006 free (list);
6008 break;
6009 #endif
6011 case OPTION_32:
6012 default_arch = "i386";
6013 break;
6015 case OPTION_DIVIDE:
6016 #ifdef SVR4_COMMENT_CHARS
6018 char *n, *t;
6019 const char *s;
6021 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6022 t = n;
6023 for (s = i386_comment_chars; *s != '\0'; s++)
6024 if (*s != '/')
6025 *t++ = *s;
6026 *t = '\0';
6027 i386_comment_chars = n;
6029 #endif
6030 break;
6032 case OPTION_MARCH:
6033 if (*arg == '.')
6034 as_fatal (_("Invalid -march= option: `%s'"), arg);
6035 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6037 if (strcmp (arg, cpu_arch [i].name) == 0)
6039 cpu_arch_isa = cpu_arch[i].type;
6040 cpu_arch_isa_flags = cpu_arch[i].flags;
6041 if (!cpu_arch_tune_set)
6043 cpu_arch_tune = cpu_arch_isa;
6044 cpu_arch_tune_flags = cpu_arch_isa_flags;
6046 break;
6049 if (i >= ARRAY_SIZE (cpu_arch))
6050 as_fatal (_("Invalid -march= option: `%s'"), arg);
6051 break;
6053 case OPTION_MTUNE:
6054 if (*arg == '.')
6055 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6056 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6058 if (strcmp (arg, cpu_arch [i].name) == 0)
6060 cpu_arch_tune_set = 1;
6061 cpu_arch_tune = cpu_arch [i].type;
6062 cpu_arch_tune_flags = cpu_arch[i].flags;
6063 break;
6066 if (i >= ARRAY_SIZE (cpu_arch))
6067 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6068 break;
6070 default:
6071 return 0;
6073 return 1;
6076 void
6077 md_show_usage (stream)
6078 FILE *stream;
6080 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6081 fprintf (stream, _("\
6082 -Q ignored\n\
6083 -V print assembler version number\n\
6084 -k ignored\n"));
6085 #endif
6086 fprintf (stream, _("\
6087 -n Do not optimize code alignment\n\
6088 -q quieten some warnings\n"));
6089 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6090 fprintf (stream, _("\
6091 -s ignored\n"));
6092 #endif
6093 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6094 fprintf (stream, _("\
6095 --32/--64 generate 32bit/64bit code\n"));
6096 #endif
6097 #ifdef SVR4_COMMENT_CHARS
6098 fprintf (stream, _("\
6099 --divide do not treat `/' as a comment character\n"));
6100 #else
6101 fprintf (stream, _("\
6102 --divide ignored\n"));
6103 #endif
6104 fprintf (stream, _("\
6105 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6106 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6107 core, core2, k6, athlon, k8, generic32, generic64\n"));
6111 #if defined(TE_PEP)
6112 const char *
6113 x86_64_target_format (void)
6115 if (strcmp (default_arch, "x86_64") == 0)
6117 set_code_flag (CODE_64BIT);
6118 return COFF_TARGET_FORMAT;
6120 else if (strcmp (default_arch, "i386") == 0)
6122 set_code_flag (CODE_32BIT);
6123 return "coff-i386";
6126 as_fatal (_("Unknown architecture"));
6127 return NULL;
6129 #endif
6131 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6132 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6134 /* Pick the target format to use. */
6136 const char *
6137 i386_target_format (void)
6139 if (!strcmp (default_arch, "x86_64"))
6141 set_code_flag (CODE_64BIT);
6142 if (cpu_arch_isa_flags == 0)
6143 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6144 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6145 |CpuSSE|CpuSSE2;
6146 if (cpu_arch_tune_flags == 0)
6147 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6148 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6149 |CpuSSE|CpuSSE2;
6151 else if (!strcmp (default_arch, "i386"))
6153 set_code_flag (CODE_32BIT);
6154 if (cpu_arch_isa_flags == 0)
6155 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6156 if (cpu_arch_tune_flags == 0)
6157 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6159 else
6160 as_fatal (_("Unknown architecture"));
6161 switch (OUTPUT_FLAVOR)
6163 #ifdef OBJ_MAYBE_AOUT
6164 case bfd_target_aout_flavour:
6165 return AOUT_TARGET_FORMAT;
6166 #endif
6167 #ifdef OBJ_MAYBE_COFF
6168 case bfd_target_coff_flavour:
6169 return "coff-i386";
6170 #endif
6171 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6172 case bfd_target_elf_flavour:
6174 if (flag_code == CODE_64BIT)
6176 object_64bit = 1;
6177 use_rela_relocations = 1;
6179 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6181 #endif
6182 default:
6183 abort ();
6184 return NULL;
6188 #endif /* OBJ_MAYBE_ more than one */
6190 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6191 void
6192 i386_elf_emit_arch_note (void)
6194 if (IS_ELF && cpu_arch_name != NULL)
6196 char *p;
6197 asection *seg = now_seg;
6198 subsegT subseg = now_subseg;
6199 Elf_Internal_Note i_note;
6200 Elf_External_Note e_note;
6201 asection *note_secp;
6202 int len;
6204 /* Create the .note section. */
6205 note_secp = subseg_new (".note", 0);
6206 bfd_set_section_flags (stdoutput,
6207 note_secp,
6208 SEC_HAS_CONTENTS | SEC_READONLY);
6210 /* Process the arch string. */
6211 len = strlen (cpu_arch_name);
6213 i_note.namesz = len + 1;
6214 i_note.descsz = 0;
6215 i_note.type = NT_ARCH;
6216 p = frag_more (sizeof (e_note.namesz));
6217 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6218 p = frag_more (sizeof (e_note.descsz));
6219 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6220 p = frag_more (sizeof (e_note.type));
6221 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6222 p = frag_more (len + 1);
6223 strcpy (p, cpu_arch_name);
6225 frag_align (2, 0, 0);
6227 subseg_set (seg, subseg);
6230 #endif
6232 symbolS *
6233 md_undefined_symbol (name)
6234 char *name;
6236 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6237 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6238 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6239 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6241 if (!GOT_symbol)
6243 if (symbol_find (name))
6244 as_bad (_("GOT already in symbol table"));
6245 GOT_symbol = symbol_new (name, undefined_section,
6246 (valueT) 0, &zero_address_frag);
6248 return GOT_symbol;
6250 return 0;
6253 /* Round up a section size to the appropriate boundary. */
6255 valueT
6256 md_section_align (segment, size)
6257 segT segment ATTRIBUTE_UNUSED;
6258 valueT size;
6260 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6261 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6263 /* For a.out, force the section size to be aligned. If we don't do
6264 this, BFD will align it for us, but it will not write out the
6265 final bytes of the section. This may be a bug in BFD, but it is
6266 easier to fix it here since that is how the other a.out targets
6267 work. */
6268 int align;
6270 align = bfd_get_section_alignment (stdoutput, segment);
6271 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6273 #endif
6275 return size;
6278 /* On the i386, PC-relative offsets are relative to the start of the
6279 next instruction. That is, the address of the offset, plus its
6280 size, since the offset is always the last part of the insn. */
6282 long
6283 md_pcrel_from (fixS *fixP)
6285 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6288 #ifndef I386COFF
6290 static void
6291 s_bss (int ignore ATTRIBUTE_UNUSED)
6293 int temp;
6295 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6296 if (IS_ELF)
6297 obj_elf_section_change_hook ();
6298 #endif
6299 temp = get_absolute_expression ();
6300 subseg_set (bss_section, (subsegT) temp);
6301 demand_empty_rest_of_line ();
6304 #endif
6306 void
6307 i386_validate_fix (fixS *fixp)
6309 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6311 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6313 if (!object_64bit)
6314 abort ();
6315 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6317 else
6319 if (!object_64bit)
6320 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6321 else
6322 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6324 fixp->fx_subsy = 0;
6328 arelent *
6329 tc_gen_reloc (section, fixp)
6330 asection *section ATTRIBUTE_UNUSED;
6331 fixS *fixp;
6333 arelent *rel;
6334 bfd_reloc_code_real_type code;
6336 switch (fixp->fx_r_type)
6338 case BFD_RELOC_X86_64_PLT32:
6339 case BFD_RELOC_X86_64_GOT32:
6340 case BFD_RELOC_X86_64_GOTPCREL:
6341 case BFD_RELOC_386_PLT32:
6342 case BFD_RELOC_386_GOT32:
6343 case BFD_RELOC_386_GOTOFF:
6344 case BFD_RELOC_386_GOTPC:
6345 case BFD_RELOC_386_TLS_GD:
6346 case BFD_RELOC_386_TLS_LDM:
6347 case BFD_RELOC_386_TLS_LDO_32:
6348 case BFD_RELOC_386_TLS_IE_32:
6349 case BFD_RELOC_386_TLS_IE:
6350 case BFD_RELOC_386_TLS_GOTIE:
6351 case BFD_RELOC_386_TLS_LE_32:
6352 case BFD_RELOC_386_TLS_LE:
6353 case BFD_RELOC_386_TLS_GOTDESC:
6354 case BFD_RELOC_386_TLS_DESC_CALL:
6355 case BFD_RELOC_X86_64_TLSGD:
6356 case BFD_RELOC_X86_64_TLSLD:
6357 case BFD_RELOC_X86_64_DTPOFF32:
6358 case BFD_RELOC_X86_64_DTPOFF64:
6359 case BFD_RELOC_X86_64_GOTTPOFF:
6360 case BFD_RELOC_X86_64_TPOFF32:
6361 case BFD_RELOC_X86_64_TPOFF64:
6362 case BFD_RELOC_X86_64_GOTOFF64:
6363 case BFD_RELOC_X86_64_GOTPC32:
6364 case BFD_RELOC_X86_64_GOT64:
6365 case BFD_RELOC_X86_64_GOTPCREL64:
6366 case BFD_RELOC_X86_64_GOTPC64:
6367 case BFD_RELOC_X86_64_GOTPLT64:
6368 case BFD_RELOC_X86_64_PLTOFF64:
6369 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6370 case BFD_RELOC_X86_64_TLSDESC_CALL:
6371 case BFD_RELOC_RVA:
6372 case BFD_RELOC_VTABLE_ENTRY:
6373 case BFD_RELOC_VTABLE_INHERIT:
6374 #ifdef TE_PE
6375 case BFD_RELOC_32_SECREL:
6376 #endif
6377 code = fixp->fx_r_type;
6378 break;
6379 case BFD_RELOC_X86_64_32S:
6380 if (!fixp->fx_pcrel)
6382 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6383 code = fixp->fx_r_type;
6384 break;
6386 default:
6387 if (fixp->fx_pcrel)
6389 switch (fixp->fx_size)
6391 default:
6392 as_bad_where (fixp->fx_file, fixp->fx_line,
6393 _("can not do %d byte pc-relative relocation"),
6394 fixp->fx_size);
6395 code = BFD_RELOC_32_PCREL;
6396 break;
6397 case 1: code = BFD_RELOC_8_PCREL; break;
6398 case 2: code = BFD_RELOC_16_PCREL; break;
6399 case 4: code = BFD_RELOC_32_PCREL; break;
6400 #ifdef BFD64
6401 case 8: code = BFD_RELOC_64_PCREL; break;
6402 #endif
6405 else
6407 switch (fixp->fx_size)
6409 default:
6410 as_bad_where (fixp->fx_file, fixp->fx_line,
6411 _("can not do %d byte relocation"),
6412 fixp->fx_size);
6413 code = BFD_RELOC_32;
6414 break;
6415 case 1: code = BFD_RELOC_8; break;
6416 case 2: code = BFD_RELOC_16; break;
6417 case 4: code = BFD_RELOC_32; break;
6418 #ifdef BFD64
6419 case 8: code = BFD_RELOC_64; break;
6420 #endif
6423 break;
6426 if ((code == BFD_RELOC_32
6427 || code == BFD_RELOC_32_PCREL
6428 || code == BFD_RELOC_X86_64_32S)
6429 && GOT_symbol
6430 && fixp->fx_addsy == GOT_symbol)
6432 if (!object_64bit)
6433 code = BFD_RELOC_386_GOTPC;
6434 else
6435 code = BFD_RELOC_X86_64_GOTPC32;
6437 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6438 && GOT_symbol
6439 && fixp->fx_addsy == GOT_symbol)
6441 code = BFD_RELOC_X86_64_GOTPC64;
6444 rel = (arelent *) xmalloc (sizeof (arelent));
6445 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6446 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6448 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6450 if (!use_rela_relocations)
6452 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6453 vtable entry to be used in the relocation's section offset. */
6454 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6455 rel->address = fixp->fx_offset;
6457 rel->addend = 0;
6459 /* Use the rela in 64bit mode. */
6460 else
6462 if (!fixp->fx_pcrel)
6463 rel->addend = fixp->fx_offset;
6464 else
6465 switch (code)
6467 case BFD_RELOC_X86_64_PLT32:
6468 case BFD_RELOC_X86_64_GOT32:
6469 case BFD_RELOC_X86_64_GOTPCREL:
6470 case BFD_RELOC_X86_64_TLSGD:
6471 case BFD_RELOC_X86_64_TLSLD:
6472 case BFD_RELOC_X86_64_GOTTPOFF:
6473 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6474 case BFD_RELOC_X86_64_TLSDESC_CALL:
6475 rel->addend = fixp->fx_offset - fixp->fx_size;
6476 break;
6477 default:
6478 rel->addend = (section->vma
6479 - fixp->fx_size
6480 + fixp->fx_addnumber
6481 + md_pcrel_from (fixp));
6482 break;
6486 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6487 if (rel->howto == NULL)
6489 as_bad_where (fixp->fx_file, fixp->fx_line,
6490 _("cannot represent relocation type %s"),
6491 bfd_get_reloc_code_name (code));
6492 /* Set howto to a garbage value so that we can keep going. */
6493 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6494 assert (rel->howto != NULL);
6497 return rel;
6501 /* Parse operands using Intel syntax. This implements a recursive descent
6502 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6503 Programmer's Guide.
6505 FIXME: We do not recognize the full operand grammar defined in the MASM
6506 documentation. In particular, all the structure/union and
6507 high-level macro operands are missing.
6509 Uppercase words are terminals, lower case words are non-terminals.
6510 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6511 bars '|' denote choices. Most grammar productions are implemented in
6512 functions called 'intel_<production>'.
6514 Initial production is 'expr'.
6516 addOp + | -
6518 alpha [a-zA-Z]
6520 binOp & | AND | \| | OR | ^ | XOR
6522 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6524 constant digits [[ radixOverride ]]
6526 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6528 digits decdigit
6529 | digits decdigit
6530 | digits hexdigit
6532 decdigit [0-9]
6534 e04 e04 addOp e05
6535 | e05
6537 e05 e05 binOp e06
6538 | e06
6540 e06 e06 mulOp e09
6541 | e09
6543 e09 OFFSET e10
6544 | SHORT e10
6545 | + e10
6546 | - e10
6547 | ~ e10
6548 | NOT e10
6549 | e09 PTR e10
6550 | e09 : e10
6551 | e10
6553 e10 e10 [ expr ]
6554 | e11
6556 e11 ( expr )
6557 | [ expr ]
6558 | constant
6559 | dataType
6560 | id
6562 | register
6564 => expr expr cmpOp e04
6565 | e04
6567 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6568 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6570 hexdigit a | b | c | d | e | f
6571 | A | B | C | D | E | F
6573 id alpha
6574 | id alpha
6575 | id decdigit
6577 mulOp * | / | % | MOD | << | SHL | >> | SHR
6579 quote " | '
6581 register specialRegister
6582 | gpRegister
6583 | byteRegister
6585 segmentRegister CS | DS | ES | FS | GS | SS
6587 specialRegister CR0 | CR2 | CR3 | CR4
6588 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6589 | TR3 | TR4 | TR5 | TR6 | TR7
6591 We simplify the grammar in obvious places (e.g., register parsing is
6592 done by calling parse_register) and eliminate immediate left recursion
6593 to implement a recursive-descent parser.
6595 expr e04 expr'
6597 expr' cmpOp e04 expr'
6598 | Empty
6600 e04 e05 e04'
6602 e04' addOp e05 e04'
6603 | Empty
6605 e05 e06 e05'
6607 e05' binOp e06 e05'
6608 | Empty
6610 e06 e09 e06'
6612 e06' mulOp e09 e06'
6613 | Empty
6615 e09 OFFSET e10 e09'
6616 | SHORT e10'
6617 | + e10'
6618 | - e10'
6619 | ~ e10'
6620 | NOT e10'
6621 | e10 e09'
6623 e09' PTR e10 e09'
6624 | : e10 e09'
6625 | Empty
6627 e10 e11 e10'
6629 e10' [ expr ] e10'
6630 | Empty
6632 e11 ( expr )
6633 | [ expr ]
6634 | BYTE
6635 | WORD
6636 | DWORD
6637 | FWORD
6638 | QWORD
6639 | TBYTE
6640 | OWORD
6641 | XMMWORD
6644 | register
6645 | id
6646 | constant */
6648 /* Parsing structure for the intel syntax parser. Used to implement the
6649 semantic actions for the operand grammar. */
6650 struct intel_parser_s
6652 char *op_string; /* The string being parsed. */
6653 int got_a_float; /* Whether the operand is a float. */
6654 int op_modifier; /* Operand modifier. */
6655 int is_mem; /* 1 if operand is memory reference. */
6656 int in_offset; /* >=1 if parsing operand of offset. */
6657 int in_bracket; /* >=1 if parsing operand in brackets. */
6658 const reg_entry *reg; /* Last register reference found. */
6659 char *disp; /* Displacement string being built. */
6660 char *next_operand; /* Resume point when splitting operands. */
6663 static struct intel_parser_s intel_parser;
6665 /* Token structure for parsing intel syntax. */
6666 struct intel_token
6668 int code; /* Token code. */
6669 const reg_entry *reg; /* Register entry for register tokens. */
6670 char *str; /* String representation. */
6673 static struct intel_token cur_token, prev_token;
6675 /* Token codes for the intel parser. Since T_SHORT is already used
6676 by COFF, undefine it first to prevent a warning. */
6677 #define T_NIL -1
6678 #define T_CONST 1
6679 #define T_REG 2
6680 #define T_BYTE 3
6681 #define T_WORD 4
6682 #define T_DWORD 5
6683 #define T_FWORD 6
6684 #define T_QWORD 7
6685 #define T_TBYTE 8
6686 #define T_XMMWORD 9
6687 #undef T_SHORT
6688 #define T_SHORT 10
6689 #define T_OFFSET 11
6690 #define T_PTR 12
6691 #define T_ID 13
6692 #define T_SHL 14
6693 #define T_SHR 15
6695 /* Prototypes for intel parser functions. */
6696 static int intel_match_token (int);
6697 static void intel_putback_token (void);
6698 static void intel_get_token (void);
6699 static int intel_expr (void);
6700 static int intel_e04 (void);
6701 static int intel_e05 (void);
6702 static int intel_e06 (void);
6703 static int intel_e09 (void);
6704 static int intel_e10 (void);
6705 static int intel_e11 (void);
6707 static int
6708 i386_intel_operand (char *operand_string, int got_a_float)
6710 int ret;
6711 char *p;
6713 p = intel_parser.op_string = xstrdup (operand_string);
6714 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6716 for (;;)
6718 /* Initialize token holders. */
6719 cur_token.code = prev_token.code = T_NIL;
6720 cur_token.reg = prev_token.reg = NULL;
6721 cur_token.str = prev_token.str = NULL;
6723 /* Initialize parser structure. */
6724 intel_parser.got_a_float = got_a_float;
6725 intel_parser.op_modifier = 0;
6726 intel_parser.is_mem = 0;
6727 intel_parser.in_offset = 0;
6728 intel_parser.in_bracket = 0;
6729 intel_parser.reg = NULL;
6730 intel_parser.disp[0] = '\0';
6731 intel_parser.next_operand = NULL;
6733 /* Read the first token and start the parser. */
6734 intel_get_token ();
6735 ret = intel_expr ();
6737 if (!ret)
6738 break;
6740 if (cur_token.code != T_NIL)
6742 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6743 current_templates->start->name, cur_token.str);
6744 ret = 0;
6746 /* If we found a memory reference, hand it over to i386_displacement
6747 to fill in the rest of the operand fields. */
6748 else if (intel_parser.is_mem)
6750 if ((i.mem_operands == 1
6751 && (current_templates->start->opcode_modifier & IsString) == 0)
6752 || i.mem_operands == 2)
6754 as_bad (_("too many memory references for '%s'"),
6755 current_templates->start->name);
6756 ret = 0;
6758 else
6760 char *s = intel_parser.disp;
6761 i.mem_operands++;
6763 if (!quiet_warnings && intel_parser.is_mem < 0)
6764 /* See the comments in intel_bracket_expr. */
6765 as_warn (_("Treating `%s' as memory reference"), operand_string);
6767 /* Add the displacement expression. */
6768 if (*s != '\0')
6769 ret = i386_displacement (s, s + strlen (s));
6770 if (ret)
6772 /* Swap base and index in 16-bit memory operands like
6773 [si+bx]. Since i386_index_check is also used in AT&T
6774 mode we have to do that here. */
6775 if (i.base_reg
6776 && i.index_reg
6777 && (i.base_reg->reg_type & Reg16)
6778 && (i.index_reg->reg_type & Reg16)
6779 && i.base_reg->reg_num >= 6
6780 && i.index_reg->reg_num < 6)
6782 const reg_entry *base = i.index_reg;
6784 i.index_reg = i.base_reg;
6785 i.base_reg = base;
6787 ret = i386_index_check (operand_string);
6792 /* Constant and OFFSET expressions are handled by i386_immediate. */
6793 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6794 || intel_parser.reg == NULL)
6795 ret = i386_immediate (intel_parser.disp);
6797 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6798 ret = 0;
6799 if (!ret || !intel_parser.next_operand)
6800 break;
6801 intel_parser.op_string = intel_parser.next_operand;
6802 this_operand = i.operands++;
6805 free (p);
6806 free (intel_parser.disp);
6808 return ret;
6811 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6813 /* expr e04 expr'
6815 expr' cmpOp e04 expr'
6816 | Empty */
6817 static int
6818 intel_expr (void)
6820 /* XXX Implement the comparison operators. */
6821 return intel_e04 ();
6824 /* e04 e05 e04'
6826 e04' addOp e05 e04'
6827 | Empty */
6828 static int
6829 intel_e04 (void)
6831 int nregs = -1;
6833 for (;;)
6835 if (!intel_e05())
6836 return 0;
6838 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6839 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6841 if (cur_token.code == '+')
6842 nregs = -1;
6843 else if (cur_token.code == '-')
6844 nregs = NUM_ADDRESS_REGS;
6845 else
6846 return 1;
6848 strcat (intel_parser.disp, cur_token.str);
6849 intel_match_token (cur_token.code);
6853 /* e05 e06 e05'
6855 e05' binOp e06 e05'
6856 | Empty */
6857 static int
6858 intel_e05 (void)
6860 int nregs = ~NUM_ADDRESS_REGS;
6862 for (;;)
6864 if (!intel_e06())
6865 return 0;
6867 if (cur_token.code == '&'
6868 || cur_token.code == '|'
6869 || cur_token.code == '^')
6871 char str[2];
6873 str[0] = cur_token.code;
6874 str[1] = 0;
6875 strcat (intel_parser.disp, str);
6877 else
6878 break;
6880 intel_match_token (cur_token.code);
6882 if (nregs < 0)
6883 nregs = ~nregs;
6885 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6886 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6887 return 1;
6890 /* e06 e09 e06'
6892 e06' mulOp e09 e06'
6893 | Empty */
6894 static int
6895 intel_e06 (void)
6897 int nregs = ~NUM_ADDRESS_REGS;
6899 for (;;)
6901 if (!intel_e09())
6902 return 0;
6904 if (cur_token.code == '*'
6905 || cur_token.code == '/'
6906 || cur_token.code == '%')
6908 char str[2];
6910 str[0] = cur_token.code;
6911 str[1] = 0;
6912 strcat (intel_parser.disp, str);
6914 else if (cur_token.code == T_SHL)
6915 strcat (intel_parser.disp, "<<");
6916 else if (cur_token.code == T_SHR)
6917 strcat (intel_parser.disp, ">>");
6918 else
6919 break;
6921 intel_match_token (cur_token.code);
6923 if (nregs < 0)
6924 nregs = ~nregs;
6926 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6927 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6928 return 1;
6931 /* e09 OFFSET e09
6932 | SHORT e09
6933 | + e09
6934 | - e09
6935 | ~ e09
6936 | NOT e09
6937 | e10 e09'
6939 e09' PTR e10 e09'
6940 | : e10 e09'
6941 | Empty */
6942 static int
6943 intel_e09 (void)
6945 int nregs = ~NUM_ADDRESS_REGS;
6946 int in_offset = 0;
6948 for (;;)
6950 /* Don't consume constants here. */
6951 if (cur_token.code == '+' || cur_token.code == '-')
6953 /* Need to look one token ahead - if the next token
6954 is a constant, the current token is its sign. */
6955 int next_code;
6957 intel_match_token (cur_token.code);
6958 next_code = cur_token.code;
6959 intel_putback_token ();
6960 if (next_code == T_CONST)
6961 break;
6964 /* e09 OFFSET e09 */
6965 if (cur_token.code == T_OFFSET)
6967 if (!in_offset++)
6968 ++intel_parser.in_offset;
6971 /* e09 SHORT e09 */
6972 else if (cur_token.code == T_SHORT)
6973 intel_parser.op_modifier |= 1 << T_SHORT;
6975 /* e09 + e09 */
6976 else if (cur_token.code == '+')
6977 strcat (intel_parser.disp, "+");
6979 /* e09 - e09
6980 | ~ e09
6981 | NOT e09 */
6982 else if (cur_token.code == '-' || cur_token.code == '~')
6984 char str[2];
6986 if (nregs < 0)
6987 nregs = ~nregs;
6988 str[0] = cur_token.code;
6989 str[1] = 0;
6990 strcat (intel_parser.disp, str);
6993 /* e09 e10 e09' */
6994 else
6995 break;
6997 intel_match_token (cur_token.code);
7000 for (;;)
7002 if (!intel_e10 ())
7003 return 0;
7005 /* e09' PTR e10 e09' */
7006 if (cur_token.code == T_PTR)
7008 char suffix;
7010 if (prev_token.code == T_BYTE)
7011 suffix = BYTE_MNEM_SUFFIX;
7013 else if (prev_token.code == T_WORD)
7015 if (current_templates->start->name[0] == 'l'
7016 && current_templates->start->name[2] == 's'
7017 && current_templates->start->name[3] == 0)
7018 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7019 else if (intel_parser.got_a_float == 2) /* "fi..." */
7020 suffix = SHORT_MNEM_SUFFIX;
7021 else
7022 suffix = WORD_MNEM_SUFFIX;
7025 else if (prev_token.code == T_DWORD)
7027 if (current_templates->start->name[0] == 'l'
7028 && current_templates->start->name[2] == 's'
7029 && current_templates->start->name[3] == 0)
7030 suffix = WORD_MNEM_SUFFIX;
7031 else if (flag_code == CODE_16BIT
7032 && (current_templates->start->opcode_modifier
7033 & (Jump | JumpDword)))
7034 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7035 else if (intel_parser.got_a_float == 1) /* "f..." */
7036 suffix = SHORT_MNEM_SUFFIX;
7037 else
7038 suffix = LONG_MNEM_SUFFIX;
7041 else if (prev_token.code == T_FWORD)
7043 if (current_templates->start->name[0] == 'l'
7044 && current_templates->start->name[2] == 's'
7045 && current_templates->start->name[3] == 0)
7046 suffix = LONG_MNEM_SUFFIX;
7047 else if (!intel_parser.got_a_float)
7049 if (flag_code == CODE_16BIT)
7050 add_prefix (DATA_PREFIX_OPCODE);
7051 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7053 else
7054 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7057 else if (prev_token.code == T_QWORD)
7059 if (intel_parser.got_a_float == 1) /* "f..." */
7060 suffix = LONG_MNEM_SUFFIX;
7061 else
7062 suffix = QWORD_MNEM_SUFFIX;
7065 else if (prev_token.code == T_TBYTE)
7067 if (intel_parser.got_a_float == 1)
7068 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7069 else
7070 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7073 else if (prev_token.code == T_XMMWORD)
7075 /* XXX ignored for now, but accepted since gcc uses it */
7076 suffix = 0;
7079 else
7081 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7082 return 0;
7085 /* Operands for jump/call using 'ptr' notation denote absolute
7086 addresses. */
7087 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7088 i.types[this_operand] |= JumpAbsolute;
7090 if (current_templates->start->base_opcode == 0x8d /* lea */)
7092 else if (!i.suffix)
7093 i.suffix = suffix;
7094 else if (i.suffix != suffix)
7096 as_bad (_("Conflicting operand modifiers"));
7097 return 0;
7102 /* e09' : e10 e09' */
7103 else if (cur_token.code == ':')
7105 if (prev_token.code != T_REG)
7107 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7108 segment/group identifier (which we don't have), using comma
7109 as the operand separator there is even less consistent, since
7110 there all branches only have a single operand. */
7111 if (this_operand != 0
7112 || intel_parser.in_offset
7113 || intel_parser.in_bracket
7114 || (!(current_templates->start->opcode_modifier
7115 & (Jump|JumpDword|JumpInterSegment))
7116 && !(current_templates->start->operand_types[0]
7117 & JumpAbsolute)))
7118 return intel_match_token (T_NIL);
7119 /* Remember the start of the 2nd operand and terminate 1st
7120 operand here.
7121 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7122 another expression), but it gets at least the simplest case
7123 (a plain number or symbol on the left side) right. */
7124 intel_parser.next_operand = intel_parser.op_string;
7125 *--intel_parser.op_string = '\0';
7126 return intel_match_token (':');
7130 /* e09' Empty */
7131 else
7132 break;
7134 intel_match_token (cur_token.code);
7138 if (in_offset)
7140 --intel_parser.in_offset;
7141 if (nregs < 0)
7142 nregs = ~nregs;
7143 if (NUM_ADDRESS_REGS > nregs)
7145 as_bad (_("Invalid operand to `OFFSET'"));
7146 return 0;
7148 intel_parser.op_modifier |= 1 << T_OFFSET;
7151 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7152 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7153 return 1;
7156 static int
7157 intel_bracket_expr (void)
7159 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7160 const char *start = intel_parser.op_string;
7161 int len;
7163 if (i.op[this_operand].regs)
7164 return intel_match_token (T_NIL);
7166 intel_match_token ('[');
7168 /* Mark as a memory operand only if it's not already known to be an
7169 offset expression. If it's an offset expression, we need to keep
7170 the brace in. */
7171 if (!intel_parser.in_offset)
7173 ++intel_parser.in_bracket;
7175 /* Operands for jump/call inside brackets denote absolute addresses. */
7176 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7177 i.types[this_operand] |= JumpAbsolute;
7179 /* Unfortunately gas always diverged from MASM in a respect that can't
7180 be easily fixed without risking to break code sequences likely to be
7181 encountered (the testsuite even check for this): MASM doesn't consider
7182 an expression inside brackets unconditionally as a memory reference.
7183 When that is e.g. a constant, an offset expression, or the sum of the
7184 two, this is still taken as a constant load. gas, however, always
7185 treated these as memory references. As a compromise, we'll try to make
7186 offset expressions inside brackets work the MASM way (since that's
7187 less likely to be found in real world code), but make constants alone
7188 continue to work the traditional gas way. In either case, issue a
7189 warning. */
7190 intel_parser.op_modifier &= ~was_offset;
7192 else
7193 strcat (intel_parser.disp, "[");
7195 /* Add a '+' to the displacement string if necessary. */
7196 if (*intel_parser.disp != '\0'
7197 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7198 strcat (intel_parser.disp, "+");
7200 if (intel_expr ()
7201 && (len = intel_parser.op_string - start - 1,
7202 intel_match_token (']')))
7204 /* Preserve brackets when the operand is an offset expression. */
7205 if (intel_parser.in_offset)
7206 strcat (intel_parser.disp, "]");
7207 else
7209 --intel_parser.in_bracket;
7210 if (i.base_reg || i.index_reg)
7211 intel_parser.is_mem = 1;
7212 if (!intel_parser.is_mem)
7214 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7215 /* Defer the warning until all of the operand was parsed. */
7216 intel_parser.is_mem = -1;
7217 else if (!quiet_warnings)
7218 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7219 len, start, len, start);
7222 intel_parser.op_modifier |= was_offset;
7224 return 1;
7226 return 0;
7229 /* e10 e11 e10'
7231 e10' [ expr ] e10'
7232 | Empty */
7233 static int
7234 intel_e10 (void)
7236 if (!intel_e11 ())
7237 return 0;
7239 while (cur_token.code == '[')
7241 if (!intel_bracket_expr ())
7242 return 0;
7245 return 1;
7248 /* e11 ( expr )
7249 | [ expr ]
7250 | BYTE
7251 | WORD
7252 | DWORD
7253 | FWORD
7254 | QWORD
7255 | TBYTE
7256 | OWORD
7257 | XMMWORD
7260 | register
7261 | id
7262 | constant */
7263 static int
7264 intel_e11 (void)
7266 switch (cur_token.code)
7268 /* e11 ( expr ) */
7269 case '(':
7270 intel_match_token ('(');
7271 strcat (intel_parser.disp, "(");
7273 if (intel_expr () && intel_match_token (')'))
7275 strcat (intel_parser.disp, ")");
7276 return 1;
7278 return 0;
7280 /* e11 [ expr ] */
7281 case '[':
7282 return intel_bracket_expr ();
7284 /* e11 $
7285 | . */
7286 case '.':
7287 strcat (intel_parser.disp, cur_token.str);
7288 intel_match_token (cur_token.code);
7290 /* Mark as a memory operand only if it's not already known to be an
7291 offset expression. */
7292 if (!intel_parser.in_offset)
7293 intel_parser.is_mem = 1;
7295 return 1;
7297 /* e11 register */
7298 case T_REG:
7300 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7302 intel_match_token (T_REG);
7304 /* Check for segment change. */
7305 if (cur_token.code == ':')
7307 if (!(reg->reg_type & (SReg2 | SReg3)))
7309 as_bad (_("`%s' is not a valid segment register"),
7310 reg->reg_name);
7311 return 0;
7313 else if (i.seg[i.mem_operands])
7314 as_warn (_("Extra segment override ignored"));
7315 else
7317 if (!intel_parser.in_offset)
7318 intel_parser.is_mem = 1;
7319 switch (reg->reg_num)
7321 case 0:
7322 i.seg[i.mem_operands] = &es;
7323 break;
7324 case 1:
7325 i.seg[i.mem_operands] = &cs;
7326 break;
7327 case 2:
7328 i.seg[i.mem_operands] = &ss;
7329 break;
7330 case 3:
7331 i.seg[i.mem_operands] = &ds;
7332 break;
7333 case 4:
7334 i.seg[i.mem_operands] = &fs;
7335 break;
7336 case 5:
7337 i.seg[i.mem_operands] = &gs;
7338 break;
7343 /* Not a segment register. Check for register scaling. */
7344 else if (cur_token.code == '*')
7346 if (!intel_parser.in_bracket)
7348 as_bad (_("Register scaling only allowed in memory operands"));
7349 return 0;
7352 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7353 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7354 else if (i.index_reg)
7355 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7357 /* What follows must be a valid scale. */
7358 intel_match_token ('*');
7359 i.index_reg = reg;
7360 i.types[this_operand] |= BaseIndex;
7362 /* Set the scale after setting the register (otherwise,
7363 i386_scale will complain) */
7364 if (cur_token.code == '+' || cur_token.code == '-')
7366 char *str, sign = cur_token.code;
7367 intel_match_token (cur_token.code);
7368 if (cur_token.code != T_CONST)
7370 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7371 cur_token.str);
7372 return 0;
7374 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7375 strcpy (str + 1, cur_token.str);
7376 *str = sign;
7377 if (!i386_scale (str))
7378 return 0;
7379 free (str);
7381 else if (!i386_scale (cur_token.str))
7382 return 0;
7383 intel_match_token (cur_token.code);
7386 /* No scaling. If this is a memory operand, the register is either a
7387 base register (first occurrence) or an index register (second
7388 occurrence). */
7389 else if (intel_parser.in_bracket)
7392 if (!i.base_reg)
7393 i.base_reg = reg;
7394 else if (!i.index_reg)
7395 i.index_reg = reg;
7396 else
7398 as_bad (_("Too many register references in memory operand"));
7399 return 0;
7402 i.types[this_operand] |= BaseIndex;
7405 /* It's neither base nor index. */
7406 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7408 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7409 i.op[this_operand].regs = reg;
7410 i.reg_operands++;
7412 else
7414 as_bad (_("Invalid use of register"));
7415 return 0;
7418 /* Since registers are not part of the displacement string (except
7419 when we're parsing offset operands), we may need to remove any
7420 preceding '+' from the displacement string. */
7421 if (*intel_parser.disp != '\0'
7422 && !intel_parser.in_offset)
7424 char *s = intel_parser.disp;
7425 s += strlen (s) - 1;
7426 if (*s == '+')
7427 *s = '\0';
7430 return 1;
7433 /* e11 BYTE
7434 | WORD
7435 | DWORD
7436 | FWORD
7437 | QWORD
7438 | TBYTE
7439 | OWORD
7440 | XMMWORD */
7441 case T_BYTE:
7442 case T_WORD:
7443 case T_DWORD:
7444 case T_FWORD:
7445 case T_QWORD:
7446 case T_TBYTE:
7447 case T_XMMWORD:
7448 intel_match_token (cur_token.code);
7450 if (cur_token.code == T_PTR)
7451 return 1;
7453 /* It must have been an identifier. */
7454 intel_putback_token ();
7455 cur_token.code = T_ID;
7456 /* FALLTHRU */
7458 /* e11 id
7459 | constant */
7460 case T_ID:
7461 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7463 symbolS *symbolP;
7465 /* The identifier represents a memory reference only if it's not
7466 preceded by an offset modifier and if it's not an equate. */
7467 symbolP = symbol_find(cur_token.str);
7468 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7469 intel_parser.is_mem = 1;
7471 /* FALLTHRU */
7473 case T_CONST:
7474 case '-':
7475 case '+':
7477 char *save_str, sign = 0;
7479 /* Allow constants that start with `+' or `-'. */
7480 if (cur_token.code == '-' || cur_token.code == '+')
7482 sign = cur_token.code;
7483 intel_match_token (cur_token.code);
7484 if (cur_token.code != T_CONST)
7486 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7487 cur_token.str);
7488 return 0;
7492 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7493 strcpy (save_str + !!sign, cur_token.str);
7494 if (sign)
7495 *save_str = sign;
7497 /* Get the next token to check for register scaling. */
7498 intel_match_token (cur_token.code);
7500 /* Check if this constant is a scaling factor for an
7501 index register. */
7502 if (cur_token.code == '*')
7504 if (intel_match_token ('*') && cur_token.code == T_REG)
7506 const reg_entry *reg = cur_token.reg;
7508 if (!intel_parser.in_bracket)
7510 as_bad (_("Register scaling only allowed "
7511 "in memory operands"));
7512 return 0;
7515 /* Disallow things like [1*si].
7516 sp and esp are invalid as index. */
7517 if (reg->reg_type & Reg16)
7518 reg = i386_regtab + REGNAM_AX + 4;
7519 else if (i.index_reg)
7520 reg = i386_regtab + REGNAM_EAX + 4;
7522 /* The constant is followed by `* reg', so it must be
7523 a valid scale. */
7524 i.index_reg = reg;
7525 i.types[this_operand] |= BaseIndex;
7527 /* Set the scale after setting the register (otherwise,
7528 i386_scale will complain) */
7529 if (!i386_scale (save_str))
7530 return 0;
7531 intel_match_token (T_REG);
7533 /* Since registers are not part of the displacement
7534 string, we may need to remove any preceding '+' from
7535 the displacement string. */
7536 if (*intel_parser.disp != '\0')
7538 char *s = intel_parser.disp;
7539 s += strlen (s) - 1;
7540 if (*s == '+')
7541 *s = '\0';
7544 free (save_str);
7546 return 1;
7549 /* The constant was not used for register scaling. Since we have
7550 already consumed the token following `*' we now need to put it
7551 back in the stream. */
7552 intel_putback_token ();
7555 /* Add the constant to the displacement string. */
7556 strcat (intel_parser.disp, save_str);
7557 free (save_str);
7559 return 1;
7563 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7564 return 0;
7567 /* Match the given token against cur_token. If they match, read the next
7568 token from the operand string. */
7569 static int
7570 intel_match_token (int code)
7572 if (cur_token.code == code)
7574 intel_get_token ();
7575 return 1;
7577 else
7579 as_bad (_("Unexpected token `%s'"), cur_token.str);
7580 return 0;
7584 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7585 static void
7586 intel_get_token (void)
7588 char *end_op;
7589 const reg_entry *reg;
7590 struct intel_token new_token;
7592 new_token.code = T_NIL;
7593 new_token.reg = NULL;
7594 new_token.str = NULL;
7596 /* Free the memory allocated to the previous token and move
7597 cur_token to prev_token. */
7598 if (prev_token.str)
7599 free (prev_token.str);
7601 prev_token = cur_token;
7603 /* Skip whitespace. */
7604 while (is_space_char (*intel_parser.op_string))
7605 intel_parser.op_string++;
7607 /* Return an empty token if we find nothing else on the line. */
7608 if (*intel_parser.op_string == '\0')
7610 cur_token = new_token;
7611 return;
7614 /* The new token cannot be larger than the remainder of the operand
7615 string. */
7616 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7617 new_token.str[0] = '\0';
7619 if (strchr ("0123456789", *intel_parser.op_string))
7621 char *p = new_token.str;
7622 char *q = intel_parser.op_string;
7623 new_token.code = T_CONST;
7625 /* Allow any kind of identifier char to encompass floating point and
7626 hexadecimal numbers. */
7627 while (is_identifier_char (*q))
7628 *p++ = *q++;
7629 *p = '\0';
7631 /* Recognize special symbol names [0-9][bf]. */
7632 if (strlen (intel_parser.op_string) == 2
7633 && (intel_parser.op_string[1] == 'b'
7634 || intel_parser.op_string[1] == 'f'))
7635 new_token.code = T_ID;
7638 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7640 size_t len = end_op - intel_parser.op_string;
7642 new_token.code = T_REG;
7643 new_token.reg = reg;
7645 memcpy (new_token.str, intel_parser.op_string, len);
7646 new_token.str[len] = '\0';
7649 else if (is_identifier_char (*intel_parser.op_string))
7651 char *p = new_token.str;
7652 char *q = intel_parser.op_string;
7654 /* A '.' or '$' followed by an identifier char is an identifier.
7655 Otherwise, it's operator '.' followed by an expression. */
7656 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7658 new_token.code = '.';
7659 new_token.str[0] = '.';
7660 new_token.str[1] = '\0';
7662 else
7664 while (is_identifier_char (*q) || *q == '@')
7665 *p++ = *q++;
7666 *p = '\0';
7668 if (strcasecmp (new_token.str, "NOT") == 0)
7669 new_token.code = '~';
7671 else if (strcasecmp (new_token.str, "MOD") == 0)
7672 new_token.code = '%';
7674 else if (strcasecmp (new_token.str, "AND") == 0)
7675 new_token.code = '&';
7677 else if (strcasecmp (new_token.str, "OR") == 0)
7678 new_token.code = '|';
7680 else if (strcasecmp (new_token.str, "XOR") == 0)
7681 new_token.code = '^';
7683 else if (strcasecmp (new_token.str, "SHL") == 0)
7684 new_token.code = T_SHL;
7686 else if (strcasecmp (new_token.str, "SHR") == 0)
7687 new_token.code = T_SHR;
7689 else if (strcasecmp (new_token.str, "BYTE") == 0)
7690 new_token.code = T_BYTE;
7692 else if (strcasecmp (new_token.str, "WORD") == 0)
7693 new_token.code = T_WORD;
7695 else if (strcasecmp (new_token.str, "DWORD") == 0)
7696 new_token.code = T_DWORD;
7698 else if (strcasecmp (new_token.str, "FWORD") == 0)
7699 new_token.code = T_FWORD;
7701 else if (strcasecmp (new_token.str, "QWORD") == 0)
7702 new_token.code = T_QWORD;
7704 else if (strcasecmp (new_token.str, "TBYTE") == 0
7705 /* XXX remove (gcc still uses it) */
7706 || strcasecmp (new_token.str, "XWORD") == 0)
7707 new_token.code = T_TBYTE;
7709 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7710 || strcasecmp (new_token.str, "OWORD") == 0)
7711 new_token.code = T_XMMWORD;
7713 else if (strcasecmp (new_token.str, "PTR") == 0)
7714 new_token.code = T_PTR;
7716 else if (strcasecmp (new_token.str, "SHORT") == 0)
7717 new_token.code = T_SHORT;
7719 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7721 new_token.code = T_OFFSET;
7723 /* ??? This is not mentioned in the MASM grammar but gcc
7724 makes use of it with -mintel-syntax. OFFSET may be
7725 followed by FLAT: */
7726 if (strncasecmp (q, " FLAT:", 6) == 0)
7727 strcat (new_token.str, " FLAT:");
7730 /* ??? This is not mentioned in the MASM grammar. */
7731 else if (strcasecmp (new_token.str, "FLAT") == 0)
7733 new_token.code = T_OFFSET;
7734 if (*q == ':')
7735 strcat (new_token.str, ":");
7736 else
7737 as_bad (_("`:' expected"));
7740 else
7741 new_token.code = T_ID;
7745 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7747 new_token.code = *intel_parser.op_string;
7748 new_token.str[0] = *intel_parser.op_string;
7749 new_token.str[1] = '\0';
7752 else if (strchr ("<>", *intel_parser.op_string)
7753 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7755 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7756 new_token.str[0] = *intel_parser.op_string;
7757 new_token.str[1] = *intel_parser.op_string;
7758 new_token.str[2] = '\0';
7761 else
7762 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7764 intel_parser.op_string += strlen (new_token.str);
7765 cur_token = new_token;
7768 /* Put cur_token back into the token stream and make cur_token point to
7769 prev_token. */
7770 static void
7771 intel_putback_token (void)
7773 if (cur_token.code != T_NIL)
7775 intel_parser.op_string -= strlen (cur_token.str);
7776 free (cur_token.str);
7778 cur_token = prev_token;
7780 /* Forget prev_token. */
7781 prev_token.code = T_NIL;
7782 prev_token.reg = NULL;
7783 prev_token.str = NULL;
7787 tc_x86_regname_to_dw2regnum (char *regname)
7789 unsigned int regnum;
7790 unsigned int regnames_count;
7791 static const char *const regnames_32[] =
7793 "eax", "ecx", "edx", "ebx",
7794 "esp", "ebp", "esi", "edi",
7795 "eip", "eflags", NULL,
7796 "st0", "st1", "st2", "st3",
7797 "st4", "st5", "st6", "st7",
7798 NULL, NULL,
7799 "xmm0", "xmm1", "xmm2", "xmm3",
7800 "xmm4", "xmm5", "xmm6", "xmm7",
7801 "mm0", "mm1", "mm2", "mm3",
7802 "mm4", "mm5", "mm6", "mm7",
7803 "fcw", "fsw", "mxcsr",
7804 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7805 "tr", "ldtr"
7807 static const char *const regnames_64[] =
7809 "rax", "rdx", "rcx", "rbx",
7810 "rsi", "rdi", "rbp", "rsp",
7811 "r8", "r9", "r10", "r11",
7812 "r12", "r13", "r14", "r15",
7813 "rip",
7814 "xmm0", "xmm1", "xmm2", "xmm3",
7815 "xmm4", "xmm5", "xmm6", "xmm7",
7816 "xmm8", "xmm9", "xmm10", "xmm11",
7817 "xmm12", "xmm13", "xmm14", "xmm15",
7818 "st0", "st1", "st2", "st3",
7819 "st4", "st5", "st6", "st7",
7820 "mm0", "mm1", "mm2", "mm3",
7821 "mm4", "mm5", "mm6", "mm7",
7822 "rflags",
7823 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7824 "fs.base", "gs.base", NULL, NULL,
7825 "tr", "ldtr",
7826 "mxcsr", "fcw", "fsw"
7828 const char *const *regnames;
7830 if (flag_code == CODE_64BIT)
7832 regnames = regnames_64;
7833 regnames_count = ARRAY_SIZE (regnames_64);
7835 else
7837 regnames = regnames_32;
7838 regnames_count = ARRAY_SIZE (regnames_32);
7841 for (regnum = 0; regnum < regnames_count; regnum++)
7842 if (regnames[regnum] != NULL
7843 && strcmp (regname, regnames[regnum]) == 0)
7844 return regnum;
7846 return -1;
7849 void
7850 tc_x86_frame_initial_instructions (void)
7852 static unsigned int sp_regno;
7854 if (!sp_regno)
7855 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7856 ? "rsp" : "esp");
7858 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7859 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7863 i386_elf_section_type (const char *str, size_t len)
7865 if (flag_code == CODE_64BIT
7866 && len == sizeof ("unwind") - 1
7867 && strncmp (str, "unwind", 6) == 0)
7868 return SHT_X86_64_UNWIND;
7870 return -1;
7873 #ifdef TE_PE
7874 void
7875 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7877 expressionS expr;
7879 expr.X_op = O_secrel;
7880 expr.X_add_symbol = symbol;
7881 expr.X_add_number = 0;
7882 emit_expr (&expr, size);
7884 #endif
7886 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7887 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7890 x86_64_section_letter (int letter, char **ptr_msg)
7892 if (flag_code == CODE_64BIT)
7894 if (letter == 'l')
7895 return SHF_X86_64_LARGE;
7897 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7899 else
7900 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7901 return -1;
7905 x86_64_section_word (char *str, size_t len)
7907 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7908 return SHF_X86_64_LARGE;
7910 return -1;
7913 static void
7914 handle_large_common (int small ATTRIBUTE_UNUSED)
7916 if (flag_code != CODE_64BIT)
7918 s_comm_internal (0, elf_common_parse);
7919 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7921 else
7923 static segT lbss_section;
7924 asection *saved_com_section_ptr = elf_com_section_ptr;
7925 asection *saved_bss_section = bss_section;
7927 if (lbss_section == NULL)
7929 flagword applicable;
7930 segT seg = now_seg;
7931 subsegT subseg = now_subseg;
7933 /* The .lbss section is for local .largecomm symbols. */
7934 lbss_section = subseg_new (".lbss", 0);
7935 applicable = bfd_applicable_section_flags (stdoutput);
7936 bfd_set_section_flags (stdoutput, lbss_section,
7937 applicable & SEC_ALLOC);
7938 seg_info (lbss_section)->bss = 1;
7940 subseg_set (seg, subseg);
7943 elf_com_section_ptr = &_bfd_elf_large_com_section;
7944 bss_section = lbss_section;
7946 s_comm_internal (0, elf_common_parse);
7948 elf_com_section_ptr = saved_com_section_ptr;
7949 bss_section = saved_bss_section;
7952 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */