gas/
[binutils.git] / gas / doc / c-i386.texi
blobdc276b8abfc81a4e5d1f7eaec4e18d6c0a6ec757
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
24 @menu
25 * i386-Options::                Options
26 * i386-Directives::             X86 specific directives
27 * i386-Syntax::                 AT&T Syntax versus Intel Syntax
28 * i386-Mnemonics::              Instruction Naming
29 * i386-Regs::                   Register Naming
30 * i386-Prefixes::               Instruction Prefixes
31 * i386-Memory::                 Memory References
32 * i386-Jumps::                  Handling of Jump Instructions
33 * i386-Float::                  Floating Point
34 * i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-16bit::                  Writing 16-bit Code
36 * i386-Arch::                   Specifying an x86 CPU architecture
37 * i386-Bugs::                   AT&T Syntax bugs
38 * i386-Notes::                  Notes
39 @end menu
41 @node i386-Options
42 @section Options
44 @cindex options for i386
45 @cindex options for x86-64
46 @cindex i386 options
47 @cindex x86-64 options 
49 The i386 version of @code{@value{AS}} has a few machine
50 dependent options:
52 @table @code
53 @cindex @samp{--32} option, i386
54 @cindex @samp{--32} option, x86-64
55 @cindex @samp{--64} option, i386
56 @cindex @samp{--64} option, x86-64
57 @item --32 | --64
58 Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59 implies Intel i386 architecture, while 64-bit implies AMD x86-64
60 architecture.
62 These options are only available with the ELF object file format, and
63 require that the necessary BFD support has been included (on a 32-bit
64 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65 usage and use x86-64 as target platform).
67 @item -n
68 By default, x86 GAS replaces multiple nop instructions used for
69 alignment within code sections with multi-byte nop instructions such
70 as leal 0(%esi,1),%esi.  This switch disables the optimization.
72 @cindex @samp{--divide} option, i386
73 @item --divide
74 On SVR4-derived platforms, the character @samp{/} is treated as a comment
75 character, which means that it cannot be used in expressions.  The
76 @samp{--divide} option turns @samp{/} into a normal character.  This does
77 not disable @samp{/} at the beginning of a line starting a comment, or
78 affect using @samp{#} for starting a comment.
80 @cindex @samp{-march=} option, i386
81 @cindex @samp{-march=} option, x86-64
82 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83 This option specifies the target processor.  The assembler will
84 issue an error message if an attempt is made to assemble an instruction
85 which will not execute on the target processor.  The following
86 processor names are recognized: 
87 @code{i8086},
88 @code{i186},
89 @code{i286},
90 @code{i386},
91 @code{i486},
92 @code{i586},
93 @code{i686},
94 @code{pentium},
95 @code{pentiumpro},
96 @code{pentiumii},
97 @code{pentiumiii},
98 @code{pentium4},
99 @code{prescott},
100 @code{nocona},
101 @code{core},
102 @code{core2},
103 @code{corei7},
104 @code{k6},
105 @code{k6_2},
106 @code{athlon},
107 @code{opteron},
108 @code{k8},
109 @code{amdfam10},
110 @code{generic32} and
111 @code{generic64}.
113 In addition to the basic instruction set, the assembler can be told to 
114 accept various extension mnemonics.  For example,
115 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
116 @var{vmx}.  The following extensions are currently supported:
117 @code{8087},
118 @code{287},
119 @code{387},
120 @code{no87},
121 @code{mmx},
122 @code{nommx},
123 @code{sse},
124 @code{sse2},
125 @code{sse3},
126 @code{ssse3},
127 @code{sse4.1},
128 @code{sse4.2},
129 @code{sse4},
130 @code{nosse},
131 @code{avx},
132 @code{noavx},
133 @code{vmx},
134 @code{smx},
135 @code{xsave},
136 @code{aes},
137 @code{pclmul},
138 @code{fma},
139 @code{movbe},
140 @code{ept},
141 @code{clflush},
142 @code{syscall},
143 @code{rdtscp},
144 @code{3dnow},
145 @code{3dnowa},
146 @code{sse4a},
147 @code{sse5},
148 @code{svme},
149 @code{abm} and
150 @code{padlock}.
151 Note that rather than extending a basic instruction set, the extension
152 mnemonics starting with @code{no} revoke the respective functionality.
154 When the @code{.arch} directive is used with @option{-march}, the
155 @code{.arch} directive will take precedent.
157 @cindex @samp{-mtune=} option, i386
158 @cindex @samp{-mtune=} option, x86-64
159 @item -mtune=@var{CPU}
160 This option specifies a processor to optimize for. When used in
161 conjunction with the @option{-march} option, only instructions
162 of the processor specified by the @option{-march} option will be
163 generated.
165 Valid @var{CPU} values are identical to the processor list of
166 @option{-march=@var{CPU}}.
168 @cindex @samp{-msse2avx} option, i386
169 @cindex @samp{-msse2avx} option, x86-64
170 @item -msse2avx
171 This option specifies that the assembler should encode SSE instructions
172 with VEX prefix.
174 @cindex @samp{-msse-check=} option, i386
175 @cindex @samp{-msse-check=} option, x86-64
176 @item -msse-check=@var{none}
177 @item -msse-check=@var{warning}
178 @item -msse-check=@var{error}
179 These options control if the assembler should check SSE intructions.
180 @option{-msse-check=@var{none}} will make the assembler not to check SSE
181 instructions,  which is the default.  @option{-msse-check=@var{warning}}
182 will make the assembler issue a warning for any SSE intruction.
183 @option{-msse-check=@var{error}} will make the assembler issue an error
184 for any SSE intruction.
186 @cindex @samp{-mmnemonic=} option, i386
187 @cindex @samp{-mmnemonic=} option, x86-64
188 @item -mmnemonic=@var{att}
189 @item -mmnemonic=@var{intel}
190 This option specifies instruction mnemonic for matching instructions. 
191 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
192 take precedent.
194 @cindex @samp{-msyntax=} option, i386
195 @cindex @samp{-msyntax=} option, x86-64
196 @item -msyntax=@var{att}
197 @item -msyntax=@var{intel}
198 This option specifies instruction syntax when processing instructions. 
199 The @code{.att_syntax} and @code{.intel_syntax} directives will
200 take precedent.
202 @cindex @samp{-mnaked-reg} option, i386
203 @cindex @samp{-mnaked-reg} option, x86-64
204 @item -mnaked-reg
205 This opetion specifies that registers don't require a @samp{%} prefix.
206 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
208 @end table
210 @node i386-Directives
211 @section x86 specific Directives
213 @cindex machine directives, x86
214 @cindex x86 machine directives
215 @table @code
217 @cindex @code{lcomm} directive, COFF
218 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
219 Reserve @var{length} (an absolute expression) bytes for a local common
220 denoted by @var{symbol}.  The section and value of @var{symbol} are
221 those of the new local common.  The addresses are allocated in the bss
222 section, so that at run-time the bytes start off zeroed.  Since
223 @var{symbol} is not declared global, it is normally not visible to
224 @code{@value{LD}}.  The optional third parameter, @var{alignment},
225 specifies the desired alignment of the symbol in the bss section.
227 This directive is only available for COFF based x86 targets.
229 @c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
230 @c .largecomm
232 @end table
234 @node i386-Syntax
235 @section AT&T Syntax versus Intel Syntax
237 @cindex i386 intel_syntax pseudo op
238 @cindex intel_syntax pseudo op, i386
239 @cindex i386 att_syntax pseudo op
240 @cindex att_syntax pseudo op, i386
241 @cindex i386 syntax compatibility
242 @cindex syntax compatibility, i386
243 @cindex x86-64 intel_syntax pseudo op
244 @cindex intel_syntax pseudo op, x86-64
245 @cindex x86-64 att_syntax pseudo op
246 @cindex att_syntax pseudo op, x86-64
247 @cindex x86-64 syntax compatibility
248 @cindex syntax compatibility, x86-64
250 @code{@value{AS}} now supports assembly using Intel assembler syntax.
251 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
252 back to the usual AT&T mode for compatibility with the output of
253 @code{@value{GCC}}.  Either of these directives may have an optional
254 argument, @code{prefix}, or @code{noprefix} specifying whether registers
255 require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
256 different from Intel syntax.  We mention these differences because
257 almost all 80386 documents use Intel syntax.  Notable differences
258 between the two syntaxes are:
260 @cindex immediate operands, i386
261 @cindex i386 immediate operands
262 @cindex register operands, i386
263 @cindex i386 register operands
264 @cindex jump/call operands, i386
265 @cindex i386 jump/call operands
266 @cindex operand delimiters, i386
268 @cindex immediate operands, x86-64
269 @cindex x86-64 immediate operands
270 @cindex register operands, x86-64
271 @cindex x86-64 register operands
272 @cindex jump/call operands, x86-64
273 @cindex x86-64 jump/call operands
274 @cindex operand delimiters, x86-64
275 @itemize @bullet
276 @item
277 AT&T immediate operands are preceded by @samp{$}; Intel immediate
278 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
279 AT&T register operands are preceded by @samp{%}; Intel register operands
280 are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
281 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
283 @cindex i386 source, destination operands
284 @cindex source, destination operands; i386
285 @cindex x86-64 source, destination operands
286 @cindex source, destination operands; x86-64
287 @item
288 AT&T and Intel syntax use the opposite order for source and destination
289 operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
290 @samp{source, dest} convention is maintained for compatibility with
291 previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
292 instructions with 2 immediate operands, such as the @samp{enter}
293 instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
295 @cindex mnemonic suffixes, i386
296 @cindex sizes operands, i386
297 @cindex i386 size suffixes
298 @cindex mnemonic suffixes, x86-64
299 @cindex sizes operands, x86-64
300 @cindex x86-64 size suffixes
301 @item
302 In AT&T syntax the size of memory operands is determined from the last
303 character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
304 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
305 (32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
306 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
307 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
308 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
309 syntax.
311 @cindex return instructions, i386
312 @cindex i386 jump, call, return
313 @cindex return instructions, x86-64
314 @cindex x86-64 jump, call, return
315 @item
316 Immediate form long jumps and calls are
317 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
318 Intel syntax is
319 @samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
320 instruction
321 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
322 @samp{ret far @var{stack-adjust}}.
324 @cindex sections, i386
325 @cindex i386 sections
326 @cindex sections, x86-64
327 @cindex x86-64 sections
328 @item
329 The AT&T assembler does not provide support for multiple section
330 programs.  Unix style systems expect all programs to be single sections.
331 @end itemize
333 @node i386-Mnemonics
334 @section Instruction Naming
336 @cindex i386 instruction naming
337 @cindex instruction naming, i386
338 @cindex x86-64 instruction naming
339 @cindex instruction naming, x86-64
341 Instruction mnemonics are suffixed with one character modifiers which
342 specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
343 and @samp{q} specify byte, word, long and quadruple word operands.  If
344 no suffix is specified by an instruction then @code{@value{AS}} tries to
345 fill in the missing suffix based on the destination register operand
346 (the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
347 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
348 @samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
349 assembler which assumes that a missing mnemonic suffix implies long
350 operand size.  (This incompatibility does not affect compiler output
351 since compilers always explicitly specify the mnemonic suffix.)
353 Almost all instructions have the same names in AT&T and Intel format.
354 There are a few exceptions.  The sign extend and zero extend
355 instructions need two sizes to specify them.  They need a size to
356 sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
357 is accomplished by using two instruction mnemonic suffixes in AT&T
358 syntax.  Base names for sign extend and zero extend are
359 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
360 and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
361 are tacked on to this base name, the @emph{from} suffix before the
362 @emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
363 ``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
364 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
365 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
366 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
367 quadruple word).
369 @cindex encoding options, i386
370 @cindex encoding options, x86-64
372 Different encoding options can be specified via optional mnemonic
373 suffix.  @samp{.s} suffix swaps 2 register operands in encoding when
374 moving from one register to another.
376 @cindex conversion instructions, i386
377 @cindex i386 conversion instructions
378 @cindex conversion instructions, x86-64
379 @cindex x86-64 conversion instructions
380 The Intel-syntax conversion instructions
382 @itemize @bullet
383 @item
384 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
386 @item
387 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
389 @item
390 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
392 @item
393 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
395 @item
396 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
397 (x86-64 only),
399 @item
400 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
401 @samp{%rdx:%rax} (x86-64 only),
402 @end itemize
404 @noindent
405 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
406 @samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
407 instructions.
409 @cindex jump instructions, i386
410 @cindex call instructions, i386
411 @cindex jump instructions, x86-64
412 @cindex call instructions, x86-64
413 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
414 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
415 convention.
417 @section AT&T Mnemonic versus Intel Mnemonic
419 @cindex i386 mnemonic compatibility
420 @cindex mnemonic compatibility, i386
422 @code{@value{AS}} supports assembly using Intel mnemonic.
423 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
424 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
425 syntax for compatibility with the output of @code{@value{GCC}}.
426 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
427 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
428 @samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
429 assembler with different mnemonics from those in Intel IA32 specification.
430 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
432 @node i386-Regs
433 @section Register Naming
435 @cindex i386 registers
436 @cindex registers, i386
437 @cindex x86-64 registers
438 @cindex registers, x86-64
439 Register operands are always prefixed with @samp{%}.  The 80386 registers
440 consist of
442 @itemize @bullet
443 @item
444 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
445 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
446 frame pointer), and @samp{%esp} (the stack pointer).
448 @item
449 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
450 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
452 @item
453 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
454 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
455 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
456 @samp{%cx}, and @samp{%dx})
458 @item
459 the 6 section registers @samp{%cs} (code section), @samp{%ds}
460 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
461 and @samp{%gs}.
463 @item
464 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
465 @samp{%cr3}.
467 @item
468 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
469 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
471 @item
472 the 2 test registers @samp{%tr6} and @samp{%tr7}.
474 @item
475 the 8 floating point register stack @samp{%st} or equivalently
476 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
477 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
478 These registers are overloaded by 8 MMX registers @samp{%mm0},
479 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
480 @samp{%mm6} and @samp{%mm7}.
482 @item
483 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
484 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
485 @end itemize
487 The AMD x86-64 architecture extends the register set by:
489 @itemize @bullet
490 @item
491 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
492 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
493 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
494 pointer)
496 @item
497 the 8 extended registers @samp{%r8}--@samp{%r15}.
499 @item
500 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
502 @item
503 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
505 @item
506 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
508 @item
509 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
511 @item
512 the 8 debug registers: @samp{%db8}--@samp{%db15}.
514 @item
515 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
516 @end itemize
518 @node i386-Prefixes
519 @section Instruction Prefixes
521 @cindex i386 instruction prefixes
522 @cindex instruction prefixes, i386
523 @cindex prefixes, i386
524 Instruction prefixes are used to modify the following instruction.  They
525 are used to repeat string instructions, to provide section overrides, to
526 perform bus lock operations, and to change operand and address sizes.
527 (Most instructions that normally operate on 32-bit operands will use
528 16-bit operands if the instruction has an ``operand size'' prefix.)
529 Instruction prefixes are best written on the same line as the instruction
530 they act upon. For example, the @samp{scas} (scan string) instruction is
531 repeated with:
533 @smallexample
534         repne scas %es:(%edi),%al
535 @end smallexample
537 You may also place prefixes on the lines immediately preceding the
538 instruction, but this circumvents checks that @code{@value{AS}} does
539 with prefixes, and will not work with all prefixes.
541 Here is a list of instruction prefixes:
543 @cindex section override prefixes, i386
544 @itemize @bullet
545 @item
546 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
547 @samp{fs}, @samp{gs}.  These are automatically added by specifying
548 using the @var{section}:@var{memory-operand} form for memory references.
550 @cindex size prefixes, i386
551 @item
552 Operand/Address size prefixes @samp{data16} and @samp{addr16}
553 change 32-bit operands/addresses into 16-bit operands/addresses,
554 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
555 @code{.code16} section) into 32-bit operands/addresses.  These prefixes
556 @emph{must} appear on the same line of code as the instruction they
557 modify. For example, in a 16-bit @code{.code16} section, you might
558 write:
560 @smallexample
561         addr32 jmpl *(%ebx)
562 @end smallexample
564 @cindex bus lock prefixes, i386
565 @cindex inhibiting interrupts, i386
566 @item
567 The bus lock prefix @samp{lock} inhibits interrupts during execution of
568 the instruction it precedes.  (This is only valid with certain
569 instructions; see a 80386 manual for details).
571 @cindex coprocessor wait, i386
572 @item
573 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
574 complete the current instruction.  This should never be needed for the
575 80386/80387 combination.
577 @cindex repeat prefixes, i386
578 @item
579 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
580 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
581 times if the current address size is 16-bits).
582 @cindex REX prefixes, i386
583 @item
584 The @samp{rex} family of prefixes is used by x86-64 to encode
585 extensions to i386 instruction set.  The @samp{rex} prefix has four
586 bits --- an operand size overwrite (@code{64}) used to change operand size
587 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
588 register set.
590 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
591 instruction emits @samp{rex} prefix with all the bits set.  By omitting
592 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
593 prefixes as well.  Normally, there is no need to write the prefixes
594 explicitly, since gas will automatically generate them based on the
595 instruction operands.
596 @end itemize
598 @node i386-Memory
599 @section Memory References
601 @cindex i386 memory references
602 @cindex memory references, i386
603 @cindex x86-64 memory references
604 @cindex memory references, x86-64
605 An Intel syntax indirect memory reference of the form
607 @smallexample
608 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
609 @end smallexample
611 @noindent
612 is translated into the AT&T syntax
614 @smallexample
615 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
616 @end smallexample
618 @noindent
619 where @var{base} and @var{index} are the optional 32-bit base and
620 index registers, @var{disp} is the optional displacement, and
621 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
622 to calculate the address of the operand.  If no @var{scale} is
623 specified, @var{scale} is taken to be 1.  @var{section} specifies the
624 optional section register for the memory operand, and may override the
625 default section register (see a 80386 manual for section register
626 defaults). Note that section overrides in AT&T syntax @emph{must}
627 be preceded by a @samp{%}.  If you specify a section override which
628 coincides with the default section register, @code{@value{AS}} does @emph{not}
629 output any section register override prefixes to assemble the given
630 instruction.  Thus, section overrides can be specified to emphasize which
631 section register is used for a given memory operand.
633 Here are some examples of Intel and AT&T style memory references:
635 @table @asis
636 @item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
637 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
638 missing, and the default section is used (@samp{%ss} for addressing with
639 @samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
641 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
642 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
643 @samp{foo}.  All other fields are missing.  The section register here
644 defaults to @samp{%ds}.
646 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
647 This uses the value pointed to by @samp{foo} as a memory operand.
648 Note that @var{base} and @var{index} are both missing, but there is only
649 @emph{one} @samp{,}.  This is a syntactic exception.
651 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
652 This selects the contents of the variable @samp{foo} with section
653 register @var{section} being @samp{%gs}.
654 @end table
656 Absolute (as opposed to PC relative) call and jump operands must be
657 prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
658 always chooses PC relative addressing for jump/call labels.
660 Any instruction that has a memory operand, but no register operand,
661 @emph{must} specify its size (byte, word, long, or quadruple) with an
662 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
663 respectively).
665 The x86-64 architecture adds an RIP (instruction pointer relative)
666 addressing.  This addressing mode is specified by using @samp{rip} as a
667 base register.  Only constant offsets are valid. For example:
669 @table @asis
670 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
671 Points to the address 1234 bytes past the end of the current
672 instruction.
674 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
675 Points to the @code{symbol} in RIP relative way, this is shorter than
676 the default absolute addressing.
677 @end table
679 Other addressing modes remain unchanged in x86-64 architecture, except
680 registers used are 64-bit instead of 32-bit.
682 @node i386-Jumps
683 @section Handling of Jump Instructions
685 @cindex jump optimization, i386
686 @cindex i386 jump optimization
687 @cindex jump optimization, x86-64
688 @cindex x86-64 jump optimization
689 Jump instructions are always optimized to use the smallest possible
690 displacements.  This is accomplished by using byte (8-bit) displacement
691 jumps whenever the target is sufficiently close.  If a byte displacement
692 is insufficient a long displacement is used.  We do not support
693 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
694 instruction with the @samp{data16} instruction prefix), since the 80386
695 insists upon masking @samp{%eip} to 16 bits after the word displacement
696 is added. (See also @pxref{i386-Arch})
698 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
699 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
700 displacements, so that if you use these instructions (@code{@value{GCC}} does
701 not use them) you may get an error message (and incorrect code).  The AT&T
702 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
705 @smallexample
706          jcxz cx_zero
707          jmp cx_nonzero
708 cx_zero: jmp foo
709 cx_nonzero:
710 @end smallexample
712 @node i386-Float
713 @section Floating Point
715 @cindex i386 floating point
716 @cindex floating point, i386
717 @cindex x86-64 floating point
718 @cindex floating point, x86-64
719 All 80387 floating point types except packed BCD are supported.
720 (BCD support may be added without much difficulty).  These data
721 types are 16-, 32-, and 64- bit integers, and single (32-bit),
722 double (64-bit), and extended (80-bit) precision floating point.
723 Each supported type has an instruction mnemonic suffix and a constructor
724 associated with it.  Instruction mnemonic suffixes specify the operand's
725 data type.  Constructors build these data types into memory.
727 @cindex @code{float} directive, i386
728 @cindex @code{single} directive, i386
729 @cindex @code{double} directive, i386
730 @cindex @code{tfloat} directive, i386
731 @cindex @code{float} directive, x86-64
732 @cindex @code{single} directive, x86-64
733 @cindex @code{double} directive, x86-64
734 @cindex @code{tfloat} directive, x86-64
735 @itemize @bullet
736 @item
737 Floating point constructors are @samp{.float} or @samp{.single},
738 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
739 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
740 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
741 only supports this format via the @samp{fldt} (load 80-bit real to stack
742 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
744 @cindex @code{word} directive, i386
745 @cindex @code{long} directive, i386
746 @cindex @code{int} directive, i386
747 @cindex @code{quad} directive, i386
748 @cindex @code{word} directive, x86-64
749 @cindex @code{long} directive, x86-64
750 @cindex @code{int} directive, x86-64
751 @cindex @code{quad} directive, x86-64
752 @item
753 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
754 @samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
755 corresponding instruction mnemonic suffixes are @samp{s} (single),
756 @samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
757 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
758 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
759 stack) instructions.
760 @end itemize
762 Register to register operations should not use instruction mnemonic suffixes.
763 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
764 wrote @samp{fst %st, %st(1)}, since all register to register operations
765 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
766 which converts @samp{%st} from 80-bit to 64-bit floating point format,
767 then stores the result in the 4 byte location @samp{mem})
769 @node i386-SIMD
770 @section Intel's MMX and AMD's 3DNow! SIMD Operations
772 @cindex MMX, i386
773 @cindex 3DNow!, i386
774 @cindex SIMD, i386
775 @cindex MMX, x86-64
776 @cindex 3DNow!, x86-64
777 @cindex SIMD, x86-64
779 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
780 instructions for integer data), available on Intel's Pentium MMX
781 processors and Pentium II processors, AMD's K6 and K6-2 processors,
782 Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
783 instruction set (SIMD instructions for 32-bit floating point data)
784 available on AMD's K6-2 processor and possibly others in the future.
786 Currently, @code{@value{AS}} does not support Intel's floating point
787 SIMD, Katmai (KNI).
789 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
790 @samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
791 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
792 floating point values.  The MMX registers cannot be used at the same time
793 as the floating point stack.
795 See Intel and AMD documentation, keeping in mind that the operand order in
796 instructions is reversed from the Intel syntax.
798 @node i386-16bit
799 @section Writing 16-bit Code
801 @cindex i386 16-bit code
802 @cindex 16-bit code, i386
803 @cindex real-mode code, i386
804 @cindex @code{code16gcc} directive, i386
805 @cindex @code{code16} directive, i386
806 @cindex @code{code32} directive, i386
807 @cindex @code{code64} directive, i386
808 @cindex @code{code64} directive, x86-64
809 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
810 or 64-bit x86-64 code depending on the default configuration,
811 it also supports writing code to run in real mode or in 16-bit protected
812 mode code segments.  To do this, put a @samp{.code16} or
813 @samp{.code16gcc} directive before the assembly language instructions to
814 be run in 16-bit mode.  You can switch @code{@value{AS}} back to writing
815 normal 32-bit code with the @samp{.code32} directive.
817 @samp{.code16gcc} provides experimental support for generating 16-bit
818 code from gcc, and differs from @samp{.code16} in that @samp{call},
819 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
820 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
821 default to 32-bit size.  This is so that the stack pointer is
822 manipulated in the same way over function calls, allowing access to
823 function parameters at the same stack offsets as in 32-bit mode.
824 @samp{.code16gcc} also automatically adds address size prefixes where
825 necessary to use the 32-bit addressing modes that gcc generates.
827 The code which @code{@value{AS}} generates in 16-bit mode will not
828 necessarily run on a 16-bit pre-80386 processor.  To write code that
829 runs on such a processor, you must refrain from using @emph{any} 32-bit
830 constructs which require @code{@value{AS}} to output address or operand
831 size prefixes.
833 Note that writing 16-bit code instructions by explicitly specifying a
834 prefix or an instruction mnemonic suffix within a 32-bit code section
835 generates different machine instructions than those generated for a
836 16-bit code segment.  In a 32-bit code section, the following code
837 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
838 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
840 @smallexample
841         pushw $4
842 @end smallexample
844 The same code in a 16-bit code section would generate the machine
845 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
846 is correct since the processor default operand size is assumed to be 16
847 bits in a 16-bit code section.
849 @node i386-Bugs
850 @section AT&T Syntax bugs
852 The UnixWare assembler, and probably other AT&T derived ix86 Unix
853 assemblers, generate floating point instructions with reversed source
854 and destination registers in certain cases.  Unfortunately, gcc and
855 possibly many other programs use this reversed syntax, so we're stuck
856 with it.
858 For example
860 @smallexample
861         fsub %st,%st(3)
862 @end smallexample
863 @noindent
864 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
865 than the expected @samp{%st(3) - %st}.  This happens with all the
866 non-commutative arithmetic floating point operations with two register
867 operands where the source register is @samp{%st} and the destination
868 register is @samp{%st(i)}.
870 @node i386-Arch
871 @section Specifying CPU Architecture
873 @cindex arch directive, i386
874 @cindex i386 arch directive
875 @cindex arch directive, x86-64
876 @cindex x86-64 arch directive
878 @code{@value{AS}} may be told to assemble for a particular CPU
879 (sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
880 directive enables a warning when gas detects an instruction that is not
881 supported on the CPU specified.  The choices for @var{cpu_type} are:
883 @multitable @columnfractions .20 .20 .20 .20
884 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
885 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
886 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
887 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
888 @item @samp{corei7}
889 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
890 @item @samp{amdfam10}
891 @item @samp{generic32} @tab @samp{generic64}
892 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
893 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
894 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
895 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
896 @item @samp{.ept} @tab @samp{.clflush}
897 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
898 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
899 @item @samp{.padlock}
900 @end multitable
902 Apart from the warning, there are only two other effects on
903 @code{@value{AS}} operation;  Firstly, if you specify a CPU other than
904 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
905 will automatically use a two byte opcode sequence.  The larger three
906 byte opcode sequence is used on the 486 (and when no architecture is
907 specified) because it executes faster on the 486.  Note that you can
908 explicitly request the two byte opcode by writing @samp{sarl %eax}.
909 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
910 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
911 conditional jumps will be promoted when necessary to a two instruction
912 sequence consisting of a conditional jump of the opposite sense around
913 an unconditional jump to the target.
915 Following the CPU architecture (but not a sub-architecture, which are those
916 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
917 control automatic promotion of conditional jumps. @samp{jumps} is the
918 default, and enables jump promotion;  All external jumps will be of the long
919 variety, and file-local jumps will be promoted as necessary.
920 (@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
921 byte offset jumps, and warns about file-local conditional jumps that
922 @code{@value{AS}} promotes.
923 Unconditional jumps are treated as for @samp{jumps}.
925 For example
927 @smallexample
928  .arch i8086,nojumps
929 @end smallexample
931 @node i386-Notes
932 @section Notes
934 @cindex i386 @code{mul}, @code{imul} instructions
935 @cindex @code{mul} instruction, i386
936 @cindex @code{imul} instruction, i386
937 @cindex @code{mul} instruction, x86-64
938 @cindex @code{imul} instruction, x86-64
939 There is some trickery concerning the @samp{mul} and @samp{imul}
940 instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
941 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
942 for @samp{imul}) can be output only in the one operand form.  Thus,
943 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
944 the expanding multiply would clobber the @samp{%edx} register, and this
945 would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
946 64-bit product in @samp{%edx:%eax}.
948 We have added a two operand form of @samp{imul} when the first operand
949 is an immediate mode expression and the second operand is a register.
950 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
951 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
952 $69, %eax, %eax}.