elfcpp/ChangeLog:
[binutils.git] / gold / layout.cc
blob1dd41f3df28f4aa0e8cba54d0b34a81c7ed9a30d
1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
55 namespace gold
58 // Layout::Relaxation_debug_check methods.
60 // Check that sections and special data are in reset states.
61 // We do not save states for Output_sections and special Output_data.
62 // So we check that they have not assigned any addresses or offsets.
63 // clean_up_after_relaxation simply resets their addresses and offsets.
64 void
65 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
66 const Layout::Section_list& sections,
67 const Layout::Data_list& special_outputs)
69 for(Layout::Section_list::const_iterator p = sections.begin();
70 p != sections.end();
71 ++p)
72 gold_assert((*p)->address_and_file_offset_have_reset_values());
74 for(Layout::Data_list::const_iterator p = special_outputs.begin();
75 p != special_outputs.end();
76 ++p)
77 gold_assert((*p)->address_and_file_offset_have_reset_values());
80 // Save information of SECTIONS for checking later.
82 void
83 Layout::Relaxation_debug_check::read_sections(
84 const Layout::Section_list& sections)
86 for(Layout::Section_list::const_iterator p = sections.begin();
87 p != sections.end();
88 ++p)
90 Output_section* os = *p;
91 Section_info info;
92 info.output_section = os;
93 info.address = os->is_address_valid() ? os->address() : 0;
94 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
95 info.offset = os->is_offset_valid()? os->offset() : -1 ;
96 this->section_infos_.push_back(info);
100 // Verify SECTIONS using previously recorded information.
102 void
103 Layout::Relaxation_debug_check::verify_sections(
104 const Layout::Section_list& sections)
106 size_t i = 0;
107 for(Layout::Section_list::const_iterator p = sections.begin();
108 p != sections.end();
109 ++p, ++i)
111 Output_section* os = *p;
112 uint64_t address = os->is_address_valid() ? os->address() : 0;
113 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
114 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
116 if (i >= this->section_infos_.size())
118 gold_fatal("Section_info of %s missing.\n", os->name());
120 const Section_info& info = this->section_infos_[i];
121 if (os != info.output_section)
122 gold_fatal("Section order changed. Expecting %s but see %s\n",
123 info.output_section->name(), os->name());
124 if (address != info.address
125 || data_size != info.data_size
126 || offset != info.offset)
127 gold_fatal("Section %s changed.\n", os->name());
131 // Layout_task_runner methods.
133 // Lay out the sections. This is called after all the input objects
134 // have been read.
136 void
137 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
139 off_t file_size = this->layout_->finalize(this->input_objects_,
140 this->symtab_,
141 this->target_,
142 task);
144 // Now we know the final size of the output file and we know where
145 // each piece of information goes.
147 if (this->mapfile_ != NULL)
149 this->mapfile_->print_discarded_sections(this->input_objects_);
150 this->layout_->print_to_mapfile(this->mapfile_);
153 Output_file* of = new Output_file(parameters->options().output_file_name());
154 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
155 of->set_is_temporary();
156 of->open(file_size);
158 // Queue up the final set of tasks.
159 gold::queue_final_tasks(this->options_, this->input_objects_,
160 this->symtab_, this->layout_, workqueue, of);
163 // Layout methods.
165 Layout::Layout(int number_of_input_files, Script_options* script_options)
166 : number_of_input_files_(number_of_input_files),
167 script_options_(script_options),
168 namepool_(),
169 sympool_(),
170 dynpool_(),
171 signatures_(),
172 section_name_map_(),
173 segment_list_(),
174 section_list_(),
175 unattached_section_list_(),
176 special_output_list_(),
177 section_headers_(NULL),
178 tls_segment_(NULL),
179 relro_segment_(NULL),
180 increase_relro_(0),
181 symtab_section_(NULL),
182 symtab_xindex_(NULL),
183 dynsym_section_(NULL),
184 dynsym_xindex_(NULL),
185 dynamic_section_(NULL),
186 dynamic_symbol_(NULL),
187 dynamic_data_(NULL),
188 eh_frame_section_(NULL),
189 eh_frame_data_(NULL),
190 added_eh_frame_data_(false),
191 eh_frame_hdr_section_(NULL),
192 build_id_note_(NULL),
193 debug_abbrev_(NULL),
194 debug_info_(NULL),
195 group_signatures_(),
196 output_file_size_(-1),
197 have_added_input_section_(false),
198 sections_are_attached_(false),
199 input_requires_executable_stack_(false),
200 input_with_gnu_stack_note_(false),
201 input_without_gnu_stack_note_(false),
202 has_static_tls_(false),
203 any_postprocessing_sections_(false),
204 resized_signatures_(false),
205 have_stabstr_section_(false),
206 incremental_inputs_(NULL),
207 record_output_section_data_from_script_(false),
208 script_output_section_data_list_(),
209 segment_states_(NULL),
210 relaxation_debug_check_(NULL)
212 // Make space for more than enough segments for a typical file.
213 // This is just for efficiency--it's OK if we wind up needing more.
214 this->segment_list_.reserve(12);
216 // We expect two unattached Output_data objects: the file header and
217 // the segment headers.
218 this->special_output_list_.reserve(2);
220 // Initialize structure needed for an incremental build.
221 if (parameters->options().incremental())
222 this->incremental_inputs_ = new Incremental_inputs;
224 // The section name pool is worth optimizing in all cases, because
225 // it is small, but there are often overlaps due to .rel sections.
226 this->namepool_.set_optimize();
229 // Hash a key we use to look up an output section mapping.
231 size_t
232 Layout::Hash_key::operator()(const Layout::Key& k) const
234 return k.first + k.second.first + k.second.second;
237 // Returns whether the given section is in the list of
238 // debug-sections-used-by-some-version-of-gdb. Currently,
239 // we've checked versions of gdb up to and including 6.7.1.
241 static const char* gdb_sections[] =
242 { ".debug_abbrev",
243 // ".debug_aranges", // not used by gdb as of 6.7.1
244 ".debug_frame",
245 ".debug_info",
246 ".debug_types",
247 ".debug_line",
248 ".debug_loc",
249 ".debug_macinfo",
250 // ".debug_pubnames", // not used by gdb as of 6.7.1
251 ".debug_ranges",
252 ".debug_str",
255 static const char* lines_only_debug_sections[] =
256 { ".debug_abbrev",
257 // ".debug_aranges", // not used by gdb as of 6.7.1
258 // ".debug_frame",
259 ".debug_info",
260 // ".debug_types",
261 ".debug_line",
262 // ".debug_loc",
263 // ".debug_macinfo",
264 // ".debug_pubnames", // not used by gdb as of 6.7.1
265 // ".debug_ranges",
266 ".debug_str",
269 static inline bool
270 is_gdb_debug_section(const char* str)
272 // We can do this faster: binary search or a hashtable. But why bother?
273 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
274 if (strcmp(str, gdb_sections[i]) == 0)
275 return true;
276 return false;
279 static inline bool
280 is_lines_only_debug_section(const char* str)
282 // We can do this faster: binary search or a hashtable. But why bother?
283 for (size_t i = 0;
284 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
285 ++i)
286 if (strcmp(str, lines_only_debug_sections[i]) == 0)
287 return true;
288 return false;
291 // Whether to include this section in the link.
293 template<int size, bool big_endian>
294 bool
295 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
296 const elfcpp::Shdr<size, big_endian>& shdr)
298 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
299 return false;
301 switch (shdr.get_sh_type())
303 case elfcpp::SHT_NULL:
304 case elfcpp::SHT_SYMTAB:
305 case elfcpp::SHT_DYNSYM:
306 case elfcpp::SHT_HASH:
307 case elfcpp::SHT_DYNAMIC:
308 case elfcpp::SHT_SYMTAB_SHNDX:
309 return false;
311 case elfcpp::SHT_STRTAB:
312 // Discard the sections which have special meanings in the ELF
313 // ABI. Keep others (e.g., .stabstr). We could also do this by
314 // checking the sh_link fields of the appropriate sections.
315 return (strcmp(name, ".dynstr") != 0
316 && strcmp(name, ".strtab") != 0
317 && strcmp(name, ".shstrtab") != 0);
319 case elfcpp::SHT_RELA:
320 case elfcpp::SHT_REL:
321 case elfcpp::SHT_GROUP:
322 // If we are emitting relocations these should be handled
323 // elsewhere.
324 gold_assert(!parameters->options().relocatable()
325 && !parameters->options().emit_relocs());
326 return false;
328 case elfcpp::SHT_PROGBITS:
329 if (parameters->options().strip_debug()
330 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
332 if (is_debug_info_section(name))
333 return false;
335 if (parameters->options().strip_debug_non_line()
336 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
338 // Debugging sections can only be recognized by name.
339 if (is_prefix_of(".debug", name)
340 && !is_lines_only_debug_section(name))
341 return false;
343 if (parameters->options().strip_debug_gdb()
344 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
346 // Debugging sections can only be recognized by name.
347 if (is_prefix_of(".debug", name)
348 && !is_gdb_debug_section(name))
349 return false;
351 if (parameters->options().strip_lto_sections()
352 && !parameters->options().relocatable()
353 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
355 // Ignore LTO sections containing intermediate code.
356 if (is_prefix_of(".gnu.lto_", name))
357 return false;
359 // The GNU linker strips .gnu_debuglink sections, so we do too.
360 // This is a feature used to keep debugging information in
361 // separate files.
362 if (strcmp(name, ".gnu_debuglink") == 0)
363 return false;
364 return true;
366 default:
367 return true;
371 // Return an output section named NAME, or NULL if there is none.
373 Output_section*
374 Layout::find_output_section(const char* name) const
376 for (Section_list::const_iterator p = this->section_list_.begin();
377 p != this->section_list_.end();
378 ++p)
379 if (strcmp((*p)->name(), name) == 0)
380 return *p;
381 return NULL;
384 // Return an output segment of type TYPE, with segment flags SET set
385 // and segment flags CLEAR clear. Return NULL if there is none.
387 Output_segment*
388 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
389 elfcpp::Elf_Word clear) const
391 for (Segment_list::const_iterator p = this->segment_list_.begin();
392 p != this->segment_list_.end();
393 ++p)
394 if (static_cast<elfcpp::PT>((*p)->type()) == type
395 && ((*p)->flags() & set) == set
396 && ((*p)->flags() & clear) == 0)
397 return *p;
398 return NULL;
401 // Return the output section to use for section NAME with type TYPE
402 // and section flags FLAGS. NAME must be canonicalized in the string
403 // pool, and NAME_KEY is the key. IS_INTERP is true if this is the
404 // .interp section. IS_DYNAMIC_LINKER_SECTION is true if this section
405 // is used by the dynamic linker. IS_RELRO is true for a relro
406 // section. IS_LAST_RELRO is true for the last relro section.
407 // IS_FIRST_NON_RELRO is true for the first non-relro section.
409 Output_section*
410 Layout::get_output_section(const char* name, Stringpool::Key name_key,
411 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
412 Output_section_order order, bool is_relro)
414 elfcpp::Elf_Xword lookup_flags = flags;
416 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
417 // read-write with read-only sections. Some other ELF linkers do
418 // not do this. FIXME: Perhaps there should be an option
419 // controlling this.
420 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
422 const Key key(name_key, std::make_pair(type, lookup_flags));
423 const std::pair<Key, Output_section*> v(key, NULL);
424 std::pair<Section_name_map::iterator, bool> ins(
425 this->section_name_map_.insert(v));
427 if (!ins.second)
428 return ins.first->second;
429 else
431 // This is the first time we've seen this name/type/flags
432 // combination. For compatibility with the GNU linker, we
433 // combine sections with contents and zero flags with sections
434 // with non-zero flags. This is a workaround for cases where
435 // assembler code forgets to set section flags. FIXME: Perhaps
436 // there should be an option to control this.
437 Output_section* os = NULL;
439 if (type == elfcpp::SHT_PROGBITS)
441 if (flags == 0)
443 Output_section* same_name = this->find_output_section(name);
444 if (same_name != NULL
445 && same_name->type() == elfcpp::SHT_PROGBITS
446 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
447 os = same_name;
449 else if ((flags & elfcpp::SHF_TLS) == 0)
451 elfcpp::Elf_Xword zero_flags = 0;
452 const Key zero_key(name_key, std::make_pair(type, zero_flags));
453 Section_name_map::iterator p =
454 this->section_name_map_.find(zero_key);
455 if (p != this->section_name_map_.end())
456 os = p->second;
460 if (os == NULL)
461 os = this->make_output_section(name, type, flags, order, is_relro);
463 ins.first->second = os;
464 return os;
468 // Pick the output section to use for section NAME, in input file
469 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
470 // linker created section. IS_INPUT_SECTION is true if we are
471 // choosing an output section for an input section found in a input
472 // file. IS_INTERP is true if this is the .interp section.
473 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
474 // dynamic linker. IS_RELRO is true for a relro section.
475 // IS_LAST_RELRO is true for the last relro section.
476 // IS_FIRST_NON_RELRO is true for the first non-relro section. This
477 // will return NULL if the input section should be discarded.
479 Output_section*
480 Layout::choose_output_section(const Relobj* relobj, const char* name,
481 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
482 bool is_input_section, Output_section_order order,
483 bool is_relro)
485 // We should not see any input sections after we have attached
486 // sections to segments.
487 gold_assert(!is_input_section || !this->sections_are_attached_);
489 // Some flags in the input section should not be automatically
490 // copied to the output section.
491 flags &= ~ (elfcpp::SHF_INFO_LINK
492 | elfcpp::SHF_LINK_ORDER
493 | elfcpp::SHF_GROUP
494 | elfcpp::SHF_MERGE
495 | elfcpp::SHF_STRINGS);
497 if (this->script_options_->saw_sections_clause())
499 // We are using a SECTIONS clause, so the output section is
500 // chosen based only on the name.
502 Script_sections* ss = this->script_options_->script_sections();
503 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
504 Output_section** output_section_slot;
505 Script_sections::Section_type script_section_type;
506 name = ss->output_section_name(file_name, name, &output_section_slot,
507 &script_section_type);
508 if (name == NULL)
510 // The SECTIONS clause says to discard this input section.
511 return NULL;
514 // We can only handle script section types ST_NONE and ST_NOLOAD.
515 switch (script_section_type)
517 case Script_sections::ST_NONE:
518 break;
519 case Script_sections::ST_NOLOAD:
520 flags &= elfcpp::SHF_ALLOC;
521 break;
522 default:
523 gold_unreachable();
526 // If this is an orphan section--one not mentioned in the linker
527 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
528 // default processing below.
530 if (output_section_slot != NULL)
532 if (*output_section_slot != NULL)
534 (*output_section_slot)->update_flags_for_input_section(flags);
535 return *output_section_slot;
538 // We don't put sections found in the linker script into
539 // SECTION_NAME_MAP_. That keeps us from getting confused
540 // if an orphan section is mapped to a section with the same
541 // name as one in the linker script.
543 name = this->namepool_.add(name, false, NULL);
545 Output_section* os = this->make_output_section(name, type, flags,
546 order, is_relro);
548 os->set_found_in_sections_clause();
550 // Special handling for NOLOAD sections.
551 if (script_section_type == Script_sections::ST_NOLOAD)
553 os->set_is_noload();
555 // The constructor of Output_section sets addresses of non-ALLOC
556 // sections to 0 by default. We don't want that for NOLOAD
557 // sections even if they have no SHF_ALLOC flag.
558 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
559 && os->is_address_valid())
561 gold_assert(os->address() == 0
562 && !os->is_offset_valid()
563 && !os->is_data_size_valid());
564 os->reset_address_and_file_offset();
568 *output_section_slot = os;
569 return os;
573 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
575 // Turn NAME from the name of the input section into the name of the
576 // output section.
578 size_t len = strlen(name);
579 if (is_input_section
580 && !this->script_options_->saw_sections_clause()
581 && !parameters->options().relocatable())
582 name = Layout::output_section_name(name, &len);
584 Stringpool::Key name_key;
585 name = this->namepool_.add_with_length(name, len, true, &name_key);
587 // Find or make the output section. The output section is selected
588 // based on the section name, type, and flags.
589 return this->get_output_section(name, name_key, type, flags, order, is_relro);
592 // Return the output section to use for input section SHNDX, with name
593 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
594 // index of a relocation section which applies to this section, or 0
595 // if none, or -1U if more than one. RELOC_TYPE is the type of the
596 // relocation section if there is one. Set *OFF to the offset of this
597 // input section without the output section. Return NULL if the
598 // section should be discarded. Set *OFF to -1 if the section
599 // contents should not be written directly to the output file, but
600 // will instead receive special handling.
602 template<int size, bool big_endian>
603 Output_section*
604 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
605 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
606 unsigned int reloc_shndx, unsigned int, off_t* off)
608 *off = 0;
610 if (!this->include_section(object, name, shdr))
611 return NULL;
613 Output_section* os;
615 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
616 // correct section types. Force them here.
617 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
618 if (sh_type == elfcpp::SHT_PROGBITS)
620 static const char init_array_prefix[] = ".init_array";
621 static const char preinit_array_prefix[] = ".preinit_array";
622 static const char fini_array_prefix[] = ".fini_array";
623 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
624 static size_t preinit_array_prefix_size =
625 sizeof(preinit_array_prefix) - 1;
626 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
628 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
629 sh_type = elfcpp::SHT_INIT_ARRAY;
630 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
631 == 0)
632 sh_type = elfcpp::SHT_PREINIT_ARRAY;
633 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
634 sh_type = elfcpp::SHT_FINI_ARRAY;
637 // In a relocatable link a grouped section must not be combined with
638 // any other sections.
639 if (parameters->options().relocatable()
640 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
642 name = this->namepool_.add(name, true, NULL);
643 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
644 ORDER_INVALID, false);
646 else
648 os = this->choose_output_section(object, name, sh_type,
649 shdr.get_sh_flags(), true,
650 ORDER_INVALID, false);
651 if (os == NULL)
652 return NULL;
655 // By default the GNU linker sorts input sections whose names match
656 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
657 // are sorted by name. This is used to implement constructor
658 // priority ordering. We are compatible.
659 if (!this->script_options_->saw_sections_clause()
660 && (is_prefix_of(".ctors.", name)
661 || is_prefix_of(".dtors.", name)
662 || is_prefix_of(".init_array.", name)
663 || is_prefix_of(".fini_array.", name)))
664 os->set_must_sort_attached_input_sections();
666 // FIXME: Handle SHF_LINK_ORDER somewhere.
668 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
669 this->script_options_->saw_sections_clause());
670 this->have_added_input_section_ = true;
672 return os;
675 // Handle a relocation section when doing a relocatable link.
677 template<int size, bool big_endian>
678 Output_section*
679 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
680 unsigned int,
681 const elfcpp::Shdr<size, big_endian>& shdr,
682 Output_section* data_section,
683 Relocatable_relocs* rr)
685 gold_assert(parameters->options().relocatable()
686 || parameters->options().emit_relocs());
688 int sh_type = shdr.get_sh_type();
690 std::string name;
691 if (sh_type == elfcpp::SHT_REL)
692 name = ".rel";
693 else if (sh_type == elfcpp::SHT_RELA)
694 name = ".rela";
695 else
696 gold_unreachable();
697 name += data_section->name();
699 // In a relocatable link relocs for a grouped section must not be
700 // combined with other reloc sections.
701 Output_section* os;
702 if (!parameters->options().relocatable()
703 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
704 os = this->choose_output_section(object, name.c_str(), sh_type,
705 shdr.get_sh_flags(), false,
706 ORDER_INVALID, false);
707 else
709 const char* n = this->namepool_.add(name.c_str(), true, NULL);
710 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
711 ORDER_INVALID, false);
714 os->set_should_link_to_symtab();
715 os->set_info_section(data_section);
717 Output_section_data* posd;
718 if (sh_type == elfcpp::SHT_REL)
720 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
721 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
722 size,
723 big_endian>(rr);
725 else if (sh_type == elfcpp::SHT_RELA)
727 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
728 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
729 size,
730 big_endian>(rr);
732 else
733 gold_unreachable();
735 os->add_output_section_data(posd);
736 rr->set_output_data(posd);
738 return os;
741 // Handle a group section when doing a relocatable link.
743 template<int size, bool big_endian>
744 void
745 Layout::layout_group(Symbol_table* symtab,
746 Sized_relobj<size, big_endian>* object,
747 unsigned int,
748 const char* group_section_name,
749 const char* signature,
750 const elfcpp::Shdr<size, big_endian>& shdr,
751 elfcpp::Elf_Word flags,
752 std::vector<unsigned int>* shndxes)
754 gold_assert(parameters->options().relocatable());
755 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
756 group_section_name = this->namepool_.add(group_section_name, true, NULL);
757 Output_section* os = this->make_output_section(group_section_name,
758 elfcpp::SHT_GROUP,
759 shdr.get_sh_flags(),
760 ORDER_INVALID, false);
762 // We need to find a symbol with the signature in the symbol table.
763 // If we don't find one now, we need to look again later.
764 Symbol* sym = symtab->lookup(signature, NULL);
765 if (sym != NULL)
766 os->set_info_symndx(sym);
767 else
769 // Reserve some space to minimize reallocations.
770 if (this->group_signatures_.empty())
771 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
773 // We will wind up using a symbol whose name is the signature.
774 // So just put the signature in the symbol name pool to save it.
775 signature = symtab->canonicalize_name(signature);
776 this->group_signatures_.push_back(Group_signature(os, signature));
779 os->set_should_link_to_symtab();
780 os->set_entsize(4);
782 section_size_type entry_count =
783 convert_to_section_size_type(shdr.get_sh_size() / 4);
784 Output_section_data* posd =
785 new Output_data_group<size, big_endian>(object, entry_count, flags,
786 shndxes);
787 os->add_output_section_data(posd);
790 // Special GNU handling of sections name .eh_frame. They will
791 // normally hold exception frame data as defined by the C++ ABI
792 // (http://codesourcery.com/cxx-abi/).
794 template<int size, bool big_endian>
795 Output_section*
796 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
797 const unsigned char* symbols,
798 off_t symbols_size,
799 const unsigned char* symbol_names,
800 off_t symbol_names_size,
801 unsigned int shndx,
802 const elfcpp::Shdr<size, big_endian>& shdr,
803 unsigned int reloc_shndx, unsigned int reloc_type,
804 off_t* off)
806 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
807 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
809 const char* const name = ".eh_frame";
810 Output_section* os = this->choose_output_section(object, name,
811 elfcpp::SHT_PROGBITS,
812 elfcpp::SHF_ALLOC, false,
813 ORDER_EHFRAME, false);
814 if (os == NULL)
815 return NULL;
817 if (this->eh_frame_section_ == NULL)
819 this->eh_frame_section_ = os;
820 this->eh_frame_data_ = new Eh_frame();
822 if (parameters->options().eh_frame_hdr())
824 Output_section* hdr_os =
825 this->choose_output_section(NULL, ".eh_frame_hdr",
826 elfcpp::SHT_PROGBITS,
827 elfcpp::SHF_ALLOC, false,
828 ORDER_EHFRAME, false);
830 if (hdr_os != NULL)
832 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
833 this->eh_frame_data_);
834 hdr_os->add_output_section_data(hdr_posd);
836 hdr_os->set_after_input_sections();
838 if (!this->script_options_->saw_phdrs_clause())
840 Output_segment* hdr_oseg;
841 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
842 elfcpp::PF_R);
843 hdr_oseg->add_output_section_to_nonload(hdr_os,
844 elfcpp::PF_R);
847 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
852 gold_assert(this->eh_frame_section_ == os);
854 if (this->eh_frame_data_->add_ehframe_input_section(object,
855 symbols,
856 symbols_size,
857 symbol_names,
858 symbol_names_size,
859 shndx,
860 reloc_shndx,
861 reloc_type))
863 os->update_flags_for_input_section(shdr.get_sh_flags());
865 // We found a .eh_frame section we are going to optimize, so now
866 // we can add the set of optimized sections to the output
867 // section. We need to postpone adding this until we've found a
868 // section we can optimize so that the .eh_frame section in
869 // crtbegin.o winds up at the start of the output section.
870 if (!this->added_eh_frame_data_)
872 os->add_output_section_data(this->eh_frame_data_);
873 this->added_eh_frame_data_ = true;
875 *off = -1;
877 else
879 // We couldn't handle this .eh_frame section for some reason.
880 // Add it as a normal section.
881 bool saw_sections_clause = this->script_options_->saw_sections_clause();
882 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
883 saw_sections_clause);
884 this->have_added_input_section_ = true;
887 return os;
890 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
891 // the output section.
893 Output_section*
894 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
895 elfcpp::Elf_Xword flags,
896 Output_section_data* posd,
897 Output_section_order order, bool is_relro)
899 Output_section* os = this->choose_output_section(NULL, name, type, flags,
900 false, order, is_relro);
901 if (os != NULL)
902 os->add_output_section_data(posd);
903 return os;
906 // Map section flags to segment flags.
908 elfcpp::Elf_Word
909 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
911 elfcpp::Elf_Word ret = elfcpp::PF_R;
912 if ((flags & elfcpp::SHF_WRITE) != 0)
913 ret |= elfcpp::PF_W;
914 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
915 ret |= elfcpp::PF_X;
916 return ret;
919 // Sometimes we compress sections. This is typically done for
920 // sections that are not part of normal program execution (such as
921 // .debug_* sections), and where the readers of these sections know
922 // how to deal with compressed sections. This routine doesn't say for
923 // certain whether we'll compress -- it depends on commandline options
924 // as well -- just whether this section is a candidate for compression.
925 // (The Output_compressed_section class decides whether to compress
926 // a given section, and picks the name of the compressed section.)
928 static bool
929 is_compressible_debug_section(const char* secname)
931 return (is_prefix_of(".debug", secname));
934 // We may see compressed debug sections in input files. Return TRUE
935 // if this is the name of a compressed debug section.
937 bool
938 is_compressed_debug_section(const char* secname)
940 return (is_prefix_of(".zdebug", secname));
943 // Make a new Output_section, and attach it to segments as
944 // appropriate. ORDER is the order in which this section should
945 // appear in the output segment. IS_RELRO is true if this is a relro
946 // (read-only after relocations) section.
948 Output_section*
949 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
950 elfcpp::Elf_Xword flags,
951 Output_section_order order, bool is_relro)
953 Output_section* os;
954 if ((flags & elfcpp::SHF_ALLOC) == 0
955 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
956 && is_compressible_debug_section(name))
957 os = new Output_compressed_section(&parameters->options(), name, type,
958 flags);
959 else if ((flags & elfcpp::SHF_ALLOC) == 0
960 && parameters->options().strip_debug_non_line()
961 && strcmp(".debug_abbrev", name) == 0)
963 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
964 name, type, flags);
965 if (this->debug_info_)
966 this->debug_info_->set_abbreviations(this->debug_abbrev_);
968 else if ((flags & elfcpp::SHF_ALLOC) == 0
969 && parameters->options().strip_debug_non_line()
970 && strcmp(".debug_info", name) == 0)
972 os = this->debug_info_ = new Output_reduced_debug_info_section(
973 name, type, flags);
974 if (this->debug_abbrev_)
975 this->debug_info_->set_abbreviations(this->debug_abbrev_);
977 else
979 // FIXME: const_cast is ugly.
980 Target* target = const_cast<Target*>(&parameters->target());
981 os = target->make_output_section(name, type, flags);
984 // With -z relro, we have to recognize the special sections by name.
985 // There is no other way.
986 bool is_relro_local = false;
987 if (!this->script_options_->saw_sections_clause()
988 && parameters->options().relro()
989 && type == elfcpp::SHT_PROGBITS
990 && (flags & elfcpp::SHF_ALLOC) != 0
991 && (flags & elfcpp::SHF_WRITE) != 0)
993 if (strcmp(name, ".data.rel.ro") == 0)
994 is_relro = true;
995 else if (strcmp(name, ".data.rel.ro.local") == 0)
997 is_relro = true;
998 is_relro_local = true;
1000 else if (type == elfcpp::SHT_INIT_ARRAY
1001 || type == elfcpp::SHT_FINI_ARRAY
1002 || type == elfcpp::SHT_PREINIT_ARRAY)
1003 is_relro = true;
1004 else if (strcmp(name, ".ctors") == 0
1005 || strcmp(name, ".dtors") == 0
1006 || strcmp(name, ".jcr") == 0)
1007 is_relro = true;
1010 if (is_relro)
1011 os->set_is_relro();
1013 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1014 order = this->default_section_order(os, is_relro_local);
1016 os->set_order(order);
1018 parameters->target().new_output_section(os);
1020 this->section_list_.push_back(os);
1022 // The GNU linker by default sorts some sections by priority, so we
1023 // do the same. We need to know that this might happen before we
1024 // attach any input sections.
1025 if (!this->script_options_->saw_sections_clause()
1026 && (strcmp(name, ".ctors") == 0
1027 || strcmp(name, ".dtors") == 0
1028 || strcmp(name, ".init_array") == 0
1029 || strcmp(name, ".fini_array") == 0))
1030 os->set_may_sort_attached_input_sections();
1032 // Check for .stab*str sections, as .stab* sections need to link to
1033 // them.
1034 if (type == elfcpp::SHT_STRTAB
1035 && !this->have_stabstr_section_
1036 && strncmp(name, ".stab", 5) == 0
1037 && strcmp(name + strlen(name) - 3, "str") == 0)
1038 this->have_stabstr_section_ = true;
1040 // If we have already attached the sections to segments, then we
1041 // need to attach this one now. This happens for sections created
1042 // directly by the linker.
1043 if (this->sections_are_attached_)
1044 this->attach_section_to_segment(os);
1046 return os;
1049 // Return the default order in which a section should be placed in an
1050 // output segment. This function captures a lot of the ideas in
1051 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1052 // linker created section is normally set when the section is created;
1053 // this function is used for input sections.
1055 Output_section_order
1056 Layout::default_section_order(Output_section* os, bool is_relro_local)
1058 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1059 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1060 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1061 bool is_bss = false;
1063 switch (os->type())
1065 default:
1066 case elfcpp::SHT_PROGBITS:
1067 break;
1068 case elfcpp::SHT_NOBITS:
1069 is_bss = true;
1070 break;
1071 case elfcpp::SHT_RELA:
1072 case elfcpp::SHT_REL:
1073 if (!is_write)
1074 return ORDER_DYNAMIC_RELOCS;
1075 break;
1076 case elfcpp::SHT_HASH:
1077 case elfcpp::SHT_DYNAMIC:
1078 case elfcpp::SHT_SHLIB:
1079 case elfcpp::SHT_DYNSYM:
1080 case elfcpp::SHT_GNU_HASH:
1081 case elfcpp::SHT_GNU_verdef:
1082 case elfcpp::SHT_GNU_verneed:
1083 case elfcpp::SHT_GNU_versym:
1084 if (!is_write)
1085 return ORDER_DYNAMIC_LINKER;
1086 break;
1087 case elfcpp::SHT_NOTE:
1088 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1091 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1092 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1094 if (!is_bss && !is_write)
1096 if (is_execinstr)
1098 if (strcmp(os->name(), ".init") == 0)
1099 return ORDER_INIT;
1100 else if (strcmp(os->name(), ".fini") == 0)
1101 return ORDER_FINI;
1103 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1106 if (os->is_relro())
1107 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1109 if (os->is_small_section())
1110 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1111 if (os->is_large_section())
1112 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1114 return is_bss ? ORDER_BSS : ORDER_DATA;
1117 // Attach output sections to segments. This is called after we have
1118 // seen all the input sections.
1120 void
1121 Layout::attach_sections_to_segments()
1123 for (Section_list::iterator p = this->section_list_.begin();
1124 p != this->section_list_.end();
1125 ++p)
1126 this->attach_section_to_segment(*p);
1128 this->sections_are_attached_ = true;
1131 // Attach an output section to a segment.
1133 void
1134 Layout::attach_section_to_segment(Output_section* os)
1136 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1137 this->unattached_section_list_.push_back(os);
1138 else
1139 this->attach_allocated_section_to_segment(os);
1142 // Attach an allocated output section to a segment.
1144 void
1145 Layout::attach_allocated_section_to_segment(Output_section* os)
1147 elfcpp::Elf_Xword flags = os->flags();
1148 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1150 if (parameters->options().relocatable())
1151 return;
1153 // If we have a SECTIONS clause, we can't handle the attachment to
1154 // segments until after we've seen all the sections.
1155 if (this->script_options_->saw_sections_clause())
1156 return;
1158 gold_assert(!this->script_options_->saw_phdrs_clause());
1160 // This output section goes into a PT_LOAD segment.
1162 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1164 // Check for --section-start.
1165 uint64_t addr;
1166 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1168 // In general the only thing we really care about for PT_LOAD
1169 // segments is whether or not they are writable, so that is how we
1170 // search for them. Large data sections also go into their own
1171 // PT_LOAD segment. People who need segments sorted on some other
1172 // basis will have to use a linker script.
1174 Segment_list::const_iterator p;
1175 for (p = this->segment_list_.begin();
1176 p != this->segment_list_.end();
1177 ++p)
1179 if ((*p)->type() != elfcpp::PT_LOAD)
1180 continue;
1181 if (!parameters->options().omagic()
1182 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1183 continue;
1184 // If -Tbss was specified, we need to separate the data and BSS
1185 // segments.
1186 if (parameters->options().user_set_Tbss())
1188 if ((os->type() == elfcpp::SHT_NOBITS)
1189 == (*p)->has_any_data_sections())
1190 continue;
1192 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1193 continue;
1195 if (is_address_set)
1197 if ((*p)->are_addresses_set())
1198 continue;
1200 (*p)->add_initial_output_data(os);
1201 (*p)->update_flags_for_output_section(seg_flags);
1202 (*p)->set_addresses(addr, addr);
1203 break;
1206 (*p)->add_output_section_to_load(this, os, seg_flags);
1207 break;
1210 if (p == this->segment_list_.end())
1212 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1213 seg_flags);
1214 if (os->is_large_data_section())
1215 oseg->set_is_large_data_segment();
1216 oseg->add_output_section_to_load(this, os, seg_flags);
1217 if (is_address_set)
1218 oseg->set_addresses(addr, addr);
1221 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1222 // segment.
1223 if (os->type() == elfcpp::SHT_NOTE)
1225 // See if we already have an equivalent PT_NOTE segment.
1226 for (p = this->segment_list_.begin();
1227 p != segment_list_.end();
1228 ++p)
1230 if ((*p)->type() == elfcpp::PT_NOTE
1231 && (((*p)->flags() & elfcpp::PF_W)
1232 == (seg_flags & elfcpp::PF_W)))
1234 (*p)->add_output_section_to_nonload(os, seg_flags);
1235 break;
1239 if (p == this->segment_list_.end())
1241 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1242 seg_flags);
1243 oseg->add_output_section_to_nonload(os, seg_flags);
1247 // If we see a loadable SHF_TLS section, we create a PT_TLS
1248 // segment. There can only be one such segment.
1249 if ((flags & elfcpp::SHF_TLS) != 0)
1251 if (this->tls_segment_ == NULL)
1252 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1253 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1256 // If -z relro is in effect, and we see a relro section, we create a
1257 // PT_GNU_RELRO segment. There can only be one such segment.
1258 if (os->is_relro() && parameters->options().relro())
1260 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1261 if (this->relro_segment_ == NULL)
1262 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1263 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1267 // Make an output section for a script.
1269 Output_section*
1270 Layout::make_output_section_for_script(
1271 const char* name,
1272 Script_sections::Section_type section_type)
1274 name = this->namepool_.add(name, false, NULL);
1275 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1276 if (section_type == Script_sections::ST_NOLOAD)
1277 sh_flags = 0;
1278 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1279 sh_flags, ORDER_INVALID,
1280 false);
1281 os->set_found_in_sections_clause();
1282 if (section_type == Script_sections::ST_NOLOAD)
1283 os->set_is_noload();
1284 return os;
1287 // Return the number of segments we expect to see.
1289 size_t
1290 Layout::expected_segment_count() const
1292 size_t ret = this->segment_list_.size();
1294 // If we didn't see a SECTIONS clause in a linker script, we should
1295 // already have the complete list of segments. Otherwise we ask the
1296 // SECTIONS clause how many segments it expects, and add in the ones
1297 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1299 if (!this->script_options_->saw_sections_clause())
1300 return ret;
1301 else
1303 const Script_sections* ss = this->script_options_->script_sections();
1304 return ret + ss->expected_segment_count(this);
1308 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1309 // is whether we saw a .note.GNU-stack section in the object file.
1310 // GNU_STACK_FLAGS is the section flags. The flags give the
1311 // protection required for stack memory. We record this in an
1312 // executable as a PT_GNU_STACK segment. If an object file does not
1313 // have a .note.GNU-stack segment, we must assume that it is an old
1314 // object. On some targets that will force an executable stack.
1316 void
1317 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1319 if (!seen_gnu_stack)
1320 this->input_without_gnu_stack_note_ = true;
1321 else
1323 this->input_with_gnu_stack_note_ = true;
1324 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1325 this->input_requires_executable_stack_ = true;
1329 // Create automatic note sections.
1331 void
1332 Layout::create_notes()
1334 this->create_gold_note();
1335 this->create_executable_stack_info();
1336 this->create_build_id();
1339 // Create the dynamic sections which are needed before we read the
1340 // relocs.
1342 void
1343 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1345 if (parameters->doing_static_link())
1346 return;
1348 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1349 elfcpp::SHT_DYNAMIC,
1350 (elfcpp::SHF_ALLOC
1351 | elfcpp::SHF_WRITE),
1352 false, ORDER_RELRO,
1353 true);
1355 this->dynamic_symbol_ =
1356 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1357 this->dynamic_section_, 0, 0,
1358 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1359 elfcpp::STV_HIDDEN, 0, false, false);
1361 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1363 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1366 // For each output section whose name can be represented as C symbol,
1367 // define __start and __stop symbols for the section. This is a GNU
1368 // extension.
1370 void
1371 Layout::define_section_symbols(Symbol_table* symtab)
1373 for (Section_list::const_iterator p = this->section_list_.begin();
1374 p != this->section_list_.end();
1375 ++p)
1377 const char* const name = (*p)->name();
1378 if (is_cident(name))
1380 const std::string name_string(name);
1381 const std::string start_name(cident_section_start_prefix
1382 + name_string);
1383 const std::string stop_name(cident_section_stop_prefix
1384 + name_string);
1386 symtab->define_in_output_data(start_name.c_str(),
1387 NULL, // version
1388 Symbol_table::PREDEFINED,
1390 0, // value
1391 0, // symsize
1392 elfcpp::STT_NOTYPE,
1393 elfcpp::STB_GLOBAL,
1394 elfcpp::STV_DEFAULT,
1395 0, // nonvis
1396 false, // offset_is_from_end
1397 true); // only_if_ref
1399 symtab->define_in_output_data(stop_name.c_str(),
1400 NULL, // version
1401 Symbol_table::PREDEFINED,
1403 0, // value
1404 0, // symsize
1405 elfcpp::STT_NOTYPE,
1406 elfcpp::STB_GLOBAL,
1407 elfcpp::STV_DEFAULT,
1408 0, // nonvis
1409 true, // offset_is_from_end
1410 true); // only_if_ref
1415 // Define symbols for group signatures.
1417 void
1418 Layout::define_group_signatures(Symbol_table* symtab)
1420 for (Group_signatures::iterator p = this->group_signatures_.begin();
1421 p != this->group_signatures_.end();
1422 ++p)
1424 Symbol* sym = symtab->lookup(p->signature, NULL);
1425 if (sym != NULL)
1426 p->section->set_info_symndx(sym);
1427 else
1429 // Force the name of the group section to the group
1430 // signature, and use the group's section symbol as the
1431 // signature symbol.
1432 if (strcmp(p->section->name(), p->signature) != 0)
1434 const char* name = this->namepool_.add(p->signature,
1435 true, NULL);
1436 p->section->set_name(name);
1438 p->section->set_needs_symtab_index();
1439 p->section->set_info_section_symndx(p->section);
1443 this->group_signatures_.clear();
1446 // Find the first read-only PT_LOAD segment, creating one if
1447 // necessary.
1449 Output_segment*
1450 Layout::find_first_load_seg()
1452 for (Segment_list::const_iterator p = this->segment_list_.begin();
1453 p != this->segment_list_.end();
1454 ++p)
1456 if ((*p)->type() == elfcpp::PT_LOAD
1457 && ((*p)->flags() & elfcpp::PF_R) != 0
1458 && (parameters->options().omagic()
1459 || ((*p)->flags() & elfcpp::PF_W) == 0))
1460 return *p;
1463 gold_assert(!this->script_options_->saw_phdrs_clause());
1465 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1466 elfcpp::PF_R);
1467 return load_seg;
1470 // Save states of all current output segments. Store saved states
1471 // in SEGMENT_STATES.
1473 void
1474 Layout::save_segments(Segment_states* segment_states)
1476 for (Segment_list::const_iterator p = this->segment_list_.begin();
1477 p != this->segment_list_.end();
1478 ++p)
1480 Output_segment* segment = *p;
1481 // Shallow copy.
1482 Output_segment* copy = new Output_segment(*segment);
1483 (*segment_states)[segment] = copy;
1487 // Restore states of output segments and delete any segment not found in
1488 // SEGMENT_STATES.
1490 void
1491 Layout::restore_segments(const Segment_states* segment_states)
1493 // Go through the segment list and remove any segment added in the
1494 // relaxation loop.
1495 this->tls_segment_ = NULL;
1496 this->relro_segment_ = NULL;
1497 Segment_list::iterator list_iter = this->segment_list_.begin();
1498 while (list_iter != this->segment_list_.end())
1500 Output_segment* segment = *list_iter;
1501 Segment_states::const_iterator states_iter =
1502 segment_states->find(segment);
1503 if (states_iter != segment_states->end())
1505 const Output_segment* copy = states_iter->second;
1506 // Shallow copy to restore states.
1507 *segment = *copy;
1509 // Also fix up TLS and RELRO segment pointers as appropriate.
1510 if (segment->type() == elfcpp::PT_TLS)
1511 this->tls_segment_ = segment;
1512 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1513 this->relro_segment_ = segment;
1515 ++list_iter;
1517 else
1519 list_iter = this->segment_list_.erase(list_iter);
1520 // This is a segment created during section layout. It should be
1521 // safe to remove it since we should have removed all pointers to it.
1522 delete segment;
1527 // Clean up after relaxation so that sections can be laid out again.
1529 void
1530 Layout::clean_up_after_relaxation()
1532 // Restore the segments to point state just prior to the relaxation loop.
1533 Script_sections* script_section = this->script_options_->script_sections();
1534 script_section->release_segments();
1535 this->restore_segments(this->segment_states_);
1537 // Reset section addresses and file offsets
1538 for (Section_list::iterator p = this->section_list_.begin();
1539 p != this->section_list_.end();
1540 ++p)
1542 (*p)->restore_states();
1544 // If an input section changes size because of relaxation,
1545 // we need to adjust the section offsets of all input sections.
1546 // after such a section.
1547 if ((*p)->section_offsets_need_adjustment())
1548 (*p)->adjust_section_offsets();
1550 (*p)->reset_address_and_file_offset();
1553 // Reset special output object address and file offsets.
1554 for (Data_list::iterator p = this->special_output_list_.begin();
1555 p != this->special_output_list_.end();
1556 ++p)
1557 (*p)->reset_address_and_file_offset();
1559 // A linker script may have created some output section data objects.
1560 // They are useless now.
1561 for (Output_section_data_list::const_iterator p =
1562 this->script_output_section_data_list_.begin();
1563 p != this->script_output_section_data_list_.end();
1564 ++p)
1565 delete *p;
1566 this->script_output_section_data_list_.clear();
1569 // Prepare for relaxation.
1571 void
1572 Layout::prepare_for_relaxation()
1574 // Create an relaxation debug check if in debugging mode.
1575 if (is_debugging_enabled(DEBUG_RELAXATION))
1576 this->relaxation_debug_check_ = new Relaxation_debug_check();
1578 // Save segment states.
1579 this->segment_states_ = new Segment_states();
1580 this->save_segments(this->segment_states_);
1582 for(Section_list::const_iterator p = this->section_list_.begin();
1583 p != this->section_list_.end();
1584 ++p)
1585 (*p)->save_states();
1587 if (is_debugging_enabled(DEBUG_RELAXATION))
1588 this->relaxation_debug_check_->check_output_data_for_reset_values(
1589 this->section_list_, this->special_output_list_);
1591 // Also enable recording of output section data from scripts.
1592 this->record_output_section_data_from_script_ = true;
1595 // Relaxation loop body: If target has no relaxation, this runs only once
1596 // Otherwise, the target relaxation hook is called at the end of
1597 // each iteration. If the hook returns true, it means re-layout of
1598 // section is required.
1600 // The number of segments created by a linking script without a PHDRS
1601 // clause may be affected by section sizes and alignments. There is
1602 // a remote chance that relaxation causes different number of PT_LOAD
1603 // segments are created and sections are attached to different segments.
1604 // Therefore, we always throw away all segments created during section
1605 // layout. In order to be able to restart the section layout, we keep
1606 // a copy of the segment list right before the relaxation loop and use
1607 // that to restore the segments.
1609 // PASS is the current relaxation pass number.
1610 // SYMTAB is a symbol table.
1611 // PLOAD_SEG is the address of a pointer for the load segment.
1612 // PHDR_SEG is a pointer to the PHDR segment.
1613 // SEGMENT_HEADERS points to the output segment header.
1614 // FILE_HEADER points to the output file header.
1615 // PSHNDX is the address to store the output section index.
1617 off_t inline
1618 Layout::relaxation_loop_body(
1619 int pass,
1620 Target* target,
1621 Symbol_table* symtab,
1622 Output_segment** pload_seg,
1623 Output_segment* phdr_seg,
1624 Output_segment_headers* segment_headers,
1625 Output_file_header* file_header,
1626 unsigned int* pshndx)
1628 // If this is not the first iteration, we need to clean up after
1629 // relaxation so that we can lay out the sections again.
1630 if (pass != 0)
1631 this->clean_up_after_relaxation();
1633 // If there is a SECTIONS clause, put all the input sections into
1634 // the required order.
1635 Output_segment* load_seg;
1636 if (this->script_options_->saw_sections_clause())
1637 load_seg = this->set_section_addresses_from_script(symtab);
1638 else if (parameters->options().relocatable())
1639 load_seg = NULL;
1640 else
1641 load_seg = this->find_first_load_seg();
1643 if (parameters->options().oformat_enum()
1644 != General_options::OBJECT_FORMAT_ELF)
1645 load_seg = NULL;
1647 // If the user set the address of the text segment, that may not be
1648 // compatible with putting the segment headers and file headers into
1649 // that segment.
1650 if (parameters->options().user_set_Ttext())
1651 load_seg = NULL;
1653 gold_assert(phdr_seg == NULL
1654 || load_seg != NULL
1655 || this->script_options_->saw_sections_clause());
1657 // If the address of the load segment we found has been set by
1658 // --section-start rather than by a script, then adjust the VMA and
1659 // LMA downward if possible to include the file and section headers.
1660 uint64_t header_gap = 0;
1661 if (load_seg != NULL
1662 && load_seg->are_addresses_set()
1663 && !this->script_options_->saw_sections_clause()
1664 && !parameters->options().relocatable())
1666 file_header->finalize_data_size();
1667 segment_headers->finalize_data_size();
1668 size_t sizeof_headers = (file_header->data_size()
1669 + segment_headers->data_size());
1670 const uint64_t abi_pagesize = target->abi_pagesize();
1671 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1672 hdr_paddr &= ~(abi_pagesize - 1);
1673 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1674 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1675 load_seg = NULL;
1676 else
1678 load_seg->set_addresses(load_seg->vaddr() - subtract,
1679 load_seg->paddr() - subtract);
1680 header_gap = subtract - sizeof_headers;
1684 // Lay out the segment headers.
1685 if (!parameters->options().relocatable())
1687 gold_assert(segment_headers != NULL);
1688 if (header_gap != 0 && load_seg != NULL)
1690 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
1691 load_seg->add_initial_output_data(z);
1693 if (load_seg != NULL)
1694 load_seg->add_initial_output_data(segment_headers);
1695 if (phdr_seg != NULL)
1696 phdr_seg->add_initial_output_data(segment_headers);
1699 // Lay out the file header.
1700 if (load_seg != NULL)
1701 load_seg->add_initial_output_data(file_header);
1703 if (this->script_options_->saw_phdrs_clause()
1704 && !parameters->options().relocatable())
1706 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1707 // clause in a linker script.
1708 Script_sections* ss = this->script_options_->script_sections();
1709 ss->put_headers_in_phdrs(file_header, segment_headers);
1712 // We set the output section indexes in set_segment_offsets and
1713 // set_section_indexes.
1714 *pshndx = 1;
1716 // Set the file offsets of all the segments, and all the sections
1717 // they contain.
1718 off_t off;
1719 if (!parameters->options().relocatable())
1720 off = this->set_segment_offsets(target, load_seg, pshndx);
1721 else
1722 off = this->set_relocatable_section_offsets(file_header, pshndx);
1724 // Verify that the dummy relaxation does not change anything.
1725 if (is_debugging_enabled(DEBUG_RELAXATION))
1727 if (pass == 0)
1728 this->relaxation_debug_check_->read_sections(this->section_list_);
1729 else
1730 this->relaxation_debug_check_->verify_sections(this->section_list_);
1733 *pload_seg = load_seg;
1734 return off;
1737 // Search the list of patterns and find the postion of the given section
1738 // name in the output section. If the section name matches a glob
1739 // pattern and a non-glob name, then the non-glob position takes
1740 // precedence. Return 0 if no match is found.
1742 unsigned int
1743 Layout::find_section_order_index(const std::string& section_name)
1745 Unordered_map<std::string, unsigned int>::iterator map_it;
1746 map_it = this->input_section_position_.find(section_name);
1747 if (map_it != this->input_section_position_.end())
1748 return map_it->second;
1750 // Absolute match failed. Linear search the glob patterns.
1751 std::vector<std::string>::iterator it;
1752 for (it = this->input_section_glob_.begin();
1753 it != this->input_section_glob_.end();
1754 ++it)
1756 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
1758 map_it = this->input_section_position_.find(*it);
1759 gold_assert(map_it != this->input_section_position_.end());
1760 return map_it->second;
1763 return 0;
1766 // Read the sequence of input sections from the file specified with
1767 // --section-ordering-file.
1769 void
1770 Layout::read_layout_from_file()
1772 const char* filename = parameters->options().section_ordering_file();
1773 std::ifstream in;
1774 std::string line;
1776 in.open(filename);
1777 if (!in)
1778 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
1779 filename, strerror(errno));
1781 std::getline(in, line); // this chops off the trailing \n, if any
1782 unsigned int position = 1;
1784 while (in)
1786 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
1787 line.resize(line.length() - 1);
1788 // Ignore comments, beginning with '#'
1789 if (line[0] == '#')
1791 std::getline(in, line);
1792 continue;
1794 this->input_section_position_[line] = position;
1795 // Store all glob patterns in a vector.
1796 if (is_wildcard_string(line.c_str()))
1797 this->input_section_glob_.push_back(line);
1798 position++;
1799 std::getline(in, line);
1803 // Finalize the layout. When this is called, we have created all the
1804 // output sections and all the output segments which are based on
1805 // input sections. We have several things to do, and we have to do
1806 // them in the right order, so that we get the right results correctly
1807 // and efficiently.
1809 // 1) Finalize the list of output segments and create the segment
1810 // table header.
1812 // 2) Finalize the dynamic symbol table and associated sections.
1814 // 3) Determine the final file offset of all the output segments.
1816 // 4) Determine the final file offset of all the SHF_ALLOC output
1817 // sections.
1819 // 5) Create the symbol table sections and the section name table
1820 // section.
1822 // 6) Finalize the symbol table: set symbol values to their final
1823 // value and make a final determination of which symbols are going
1824 // into the output symbol table.
1826 // 7) Create the section table header.
1828 // 8) Determine the final file offset of all the output sections which
1829 // are not SHF_ALLOC, including the section table header.
1831 // 9) Finalize the ELF file header.
1833 // This function returns the size of the output file.
1835 off_t
1836 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1837 Target* target, const Task* task)
1839 target->finalize_sections(this, input_objects, symtab);
1841 this->count_local_symbols(task, input_objects);
1843 this->link_stabs_sections();
1845 Output_segment* phdr_seg = NULL;
1846 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1848 // There was a dynamic object in the link. We need to create
1849 // some information for the dynamic linker.
1851 // Create the PT_PHDR segment which will hold the program
1852 // headers.
1853 if (!this->script_options_->saw_phdrs_clause())
1854 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1856 // Create the dynamic symbol table, including the hash table.
1857 Output_section* dynstr;
1858 std::vector<Symbol*> dynamic_symbols;
1859 unsigned int local_dynamic_count;
1860 Versions versions(*this->script_options()->version_script_info(),
1861 &this->dynpool_);
1862 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1863 &local_dynamic_count, &dynamic_symbols,
1864 &versions);
1866 // Create the .interp section to hold the name of the
1867 // interpreter, and put it in a PT_INTERP segment.
1868 if (!parameters->options().shared())
1869 this->create_interp(target);
1871 // Finish the .dynamic section to hold the dynamic data, and put
1872 // it in a PT_DYNAMIC segment.
1873 this->finish_dynamic_section(input_objects, symtab);
1875 // We should have added everything we need to the dynamic string
1876 // table.
1877 this->dynpool_.set_string_offsets();
1879 // Create the version sections. We can't do this until the
1880 // dynamic string table is complete.
1881 this->create_version_sections(&versions, symtab, local_dynamic_count,
1882 dynamic_symbols, dynstr);
1884 // Set the size of the _DYNAMIC symbol. We can't do this until
1885 // after we call create_version_sections.
1886 this->set_dynamic_symbol_size(symtab);
1889 // Create segment headers.
1890 Output_segment_headers* segment_headers =
1891 (parameters->options().relocatable()
1892 ? NULL
1893 : new Output_segment_headers(this->segment_list_));
1895 // Lay out the file header.
1896 Output_file_header* file_header
1897 = new Output_file_header(target, symtab, segment_headers,
1898 parameters->options().entry());
1900 this->special_output_list_.push_back(file_header);
1901 if (segment_headers != NULL)
1902 this->special_output_list_.push_back(segment_headers);
1904 // Find approriate places for orphan output sections if we are using
1905 // a linker script.
1906 if (this->script_options_->saw_sections_clause())
1907 this->place_orphan_sections_in_script();
1909 Output_segment* load_seg;
1910 off_t off;
1911 unsigned int shndx;
1912 int pass = 0;
1914 // Take a snapshot of the section layout as needed.
1915 if (target->may_relax())
1916 this->prepare_for_relaxation();
1918 // Run the relaxation loop to lay out sections.
1921 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1922 phdr_seg, segment_headers, file_header,
1923 &shndx);
1924 pass++;
1926 while (target->may_relax()
1927 && target->relax(pass, input_objects, symtab, this));
1929 // Set the file offsets of all the non-data sections we've seen so
1930 // far which don't have to wait for the input sections. We need
1931 // this in order to finalize local symbols in non-allocated
1932 // sections.
1933 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1935 // Set the section indexes of all unallocated sections seen so far,
1936 // in case any of them are somehow referenced by a symbol.
1937 shndx = this->set_section_indexes(shndx);
1939 // Create the symbol table sections.
1940 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1941 if (!parameters->doing_static_link())
1942 this->assign_local_dynsym_offsets(input_objects);
1944 // Process any symbol assignments from a linker script. This must
1945 // be called after the symbol table has been finalized.
1946 this->script_options_->finalize_symbols(symtab, this);
1948 // Create the incremental inputs sections.
1949 if (this->incremental_inputs_)
1951 this->incremental_inputs_->finalize();
1952 this->create_incremental_info_sections(symtab);
1955 // Create the .shstrtab section.
1956 Output_section* shstrtab_section = this->create_shstrtab();
1958 // Set the file offsets of the rest of the non-data sections which
1959 // don't have to wait for the input sections.
1960 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1962 // Now that all sections have been created, set the section indexes
1963 // for any sections which haven't been done yet.
1964 shndx = this->set_section_indexes(shndx);
1966 // Create the section table header.
1967 this->create_shdrs(shstrtab_section, &off);
1969 // If there are no sections which require postprocessing, we can
1970 // handle the section names now, and avoid a resize later.
1971 if (!this->any_postprocessing_sections_)
1973 off = this->set_section_offsets(off,
1974 POSTPROCESSING_SECTIONS_PASS);
1975 off =
1976 this->set_section_offsets(off,
1977 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1980 file_header->set_section_info(this->section_headers_, shstrtab_section);
1982 // Now we know exactly where everything goes in the output file
1983 // (except for non-allocated sections which require postprocessing).
1984 Output_data::layout_complete();
1986 this->output_file_size_ = off;
1988 return off;
1991 // Create a note header following the format defined in the ELF ABI.
1992 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1993 // of the section to create, DESCSZ is the size of the descriptor.
1994 // ALLOCATE is true if the section should be allocated in memory.
1995 // This returns the new note section. It sets *TRAILING_PADDING to
1996 // the number of trailing zero bytes required.
1998 Output_section*
1999 Layout::create_note(const char* name, int note_type,
2000 const char* section_name, size_t descsz,
2001 bool allocate, size_t* trailing_padding)
2003 // Authorities all agree that the values in a .note field should
2004 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2005 // they differ on what the alignment is for 64-bit binaries.
2006 // The GABI says unambiguously they take 8-byte alignment:
2007 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2008 // Other documentation says alignment should always be 4 bytes:
2009 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2010 // GNU ld and GNU readelf both support the latter (at least as of
2011 // version 2.16.91), and glibc always generates the latter for
2012 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2013 // here.
2014 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2015 const int size = parameters->target().get_size();
2016 #else
2017 const int size = 32;
2018 #endif
2020 // The contents of the .note section.
2021 size_t namesz = strlen(name) + 1;
2022 size_t aligned_namesz = align_address(namesz, size / 8);
2023 size_t aligned_descsz = align_address(descsz, size / 8);
2025 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2027 unsigned char* buffer = new unsigned char[notehdrsz];
2028 memset(buffer, 0, notehdrsz);
2030 bool is_big_endian = parameters->target().is_big_endian();
2032 if (size == 32)
2034 if (!is_big_endian)
2036 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2037 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2038 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2040 else
2042 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2043 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2044 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2047 else if (size == 64)
2049 if (!is_big_endian)
2051 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2052 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2053 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2055 else
2057 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2058 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2059 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2062 else
2063 gold_unreachable();
2065 memcpy(buffer + 3 * (size / 8), name, namesz);
2067 elfcpp::Elf_Xword flags = 0;
2068 Output_section_order order = ORDER_INVALID;
2069 if (allocate)
2071 flags = elfcpp::SHF_ALLOC;
2072 order = ORDER_RO_NOTE;
2074 Output_section* os = this->choose_output_section(NULL, section_name,
2075 elfcpp::SHT_NOTE,
2076 flags, false, order, false);
2077 if (os == NULL)
2078 return NULL;
2080 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2081 size / 8,
2082 "** note header");
2083 os->add_output_section_data(posd);
2085 *trailing_padding = aligned_descsz - descsz;
2087 return os;
2090 // For an executable or shared library, create a note to record the
2091 // version of gold used to create the binary.
2093 void
2094 Layout::create_gold_note()
2096 if (parameters->options().relocatable())
2097 return;
2099 std::string desc = std::string("gold ") + gold::get_version_string();
2101 size_t trailing_padding;
2102 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2103 ".note.gnu.gold-version", desc.size(),
2104 false, &trailing_padding);
2105 if (os == NULL)
2106 return;
2108 Output_section_data* posd = new Output_data_const(desc, 4);
2109 os->add_output_section_data(posd);
2111 if (trailing_padding > 0)
2113 posd = new Output_data_zero_fill(trailing_padding, 0);
2114 os->add_output_section_data(posd);
2118 // Record whether the stack should be executable. This can be set
2119 // from the command line using the -z execstack or -z noexecstack
2120 // options. Otherwise, if any input file has a .note.GNU-stack
2121 // section with the SHF_EXECINSTR flag set, the stack should be
2122 // executable. Otherwise, if at least one input file a
2123 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2124 // section, we use the target default for whether the stack should be
2125 // executable. Otherwise, we don't generate a stack note. When
2126 // generating a object file, we create a .note.GNU-stack section with
2127 // the appropriate marking. When generating an executable or shared
2128 // library, we create a PT_GNU_STACK segment.
2130 void
2131 Layout::create_executable_stack_info()
2133 bool is_stack_executable;
2134 if (parameters->options().is_execstack_set())
2135 is_stack_executable = parameters->options().is_stack_executable();
2136 else if (!this->input_with_gnu_stack_note_)
2137 return;
2138 else
2140 if (this->input_requires_executable_stack_)
2141 is_stack_executable = true;
2142 else if (this->input_without_gnu_stack_note_)
2143 is_stack_executable =
2144 parameters->target().is_default_stack_executable();
2145 else
2146 is_stack_executable = false;
2149 if (parameters->options().relocatable())
2151 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2152 elfcpp::Elf_Xword flags = 0;
2153 if (is_stack_executable)
2154 flags |= elfcpp::SHF_EXECINSTR;
2155 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2156 ORDER_INVALID, false);
2158 else
2160 if (this->script_options_->saw_phdrs_clause())
2161 return;
2162 int flags = elfcpp::PF_R | elfcpp::PF_W;
2163 if (is_stack_executable)
2164 flags |= elfcpp::PF_X;
2165 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2169 // If --build-id was used, set up the build ID note.
2171 void
2172 Layout::create_build_id()
2174 if (!parameters->options().user_set_build_id())
2175 return;
2177 const char* style = parameters->options().build_id();
2178 if (strcmp(style, "none") == 0)
2179 return;
2181 // Set DESCSZ to the size of the note descriptor. When possible,
2182 // set DESC to the note descriptor contents.
2183 size_t descsz;
2184 std::string desc;
2185 if (strcmp(style, "md5") == 0)
2186 descsz = 128 / 8;
2187 else if (strcmp(style, "sha1") == 0)
2188 descsz = 160 / 8;
2189 else if (strcmp(style, "uuid") == 0)
2191 const size_t uuidsz = 128 / 8;
2193 char buffer[uuidsz];
2194 memset(buffer, 0, uuidsz);
2196 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2197 if (descriptor < 0)
2198 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2199 strerror(errno));
2200 else
2202 ssize_t got = ::read(descriptor, buffer, uuidsz);
2203 release_descriptor(descriptor, true);
2204 if (got < 0)
2205 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2206 else if (static_cast<size_t>(got) != uuidsz)
2207 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2208 uuidsz, got);
2211 desc.assign(buffer, uuidsz);
2212 descsz = uuidsz;
2214 else if (strncmp(style, "0x", 2) == 0)
2216 hex_init();
2217 const char* p = style + 2;
2218 while (*p != '\0')
2220 if (hex_p(p[0]) && hex_p(p[1]))
2222 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2223 desc += c;
2224 p += 2;
2226 else if (*p == '-' || *p == ':')
2227 ++p;
2228 else
2229 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2230 style);
2232 descsz = desc.size();
2234 else
2235 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2237 // Create the note.
2238 size_t trailing_padding;
2239 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2240 ".note.gnu.build-id", descsz, true,
2241 &trailing_padding);
2242 if (os == NULL)
2243 return;
2245 if (!desc.empty())
2247 // We know the value already, so we fill it in now.
2248 gold_assert(desc.size() == descsz);
2250 Output_section_data* posd = new Output_data_const(desc, 4);
2251 os->add_output_section_data(posd);
2253 if (trailing_padding != 0)
2255 posd = new Output_data_zero_fill(trailing_padding, 0);
2256 os->add_output_section_data(posd);
2259 else
2261 // We need to compute a checksum after we have completed the
2262 // link.
2263 gold_assert(trailing_padding == 0);
2264 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2265 os->add_output_section_data(this->build_id_note_);
2269 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2270 // field of the former should point to the latter. I'm not sure who
2271 // started this, but the GNU linker does it, and some tools depend
2272 // upon it.
2274 void
2275 Layout::link_stabs_sections()
2277 if (!this->have_stabstr_section_)
2278 return;
2280 for (Section_list::iterator p = this->section_list_.begin();
2281 p != this->section_list_.end();
2282 ++p)
2284 if ((*p)->type() != elfcpp::SHT_STRTAB)
2285 continue;
2287 const char* name = (*p)->name();
2288 if (strncmp(name, ".stab", 5) != 0)
2289 continue;
2291 size_t len = strlen(name);
2292 if (strcmp(name + len - 3, "str") != 0)
2293 continue;
2295 std::string stab_name(name, len - 3);
2296 Output_section* stab_sec;
2297 stab_sec = this->find_output_section(stab_name.c_str());
2298 if (stab_sec != NULL)
2299 stab_sec->set_link_section(*p);
2303 // Create .gnu_incremental_inputs and related sections needed
2304 // for the next run of incremental linking to check what has changed.
2306 void
2307 Layout::create_incremental_info_sections(Symbol_table* symtab)
2309 Incremental_inputs* incr = this->incremental_inputs_;
2311 gold_assert(incr != NULL);
2313 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2314 incr->create_data_sections(symtab);
2316 // Add the .gnu_incremental_inputs section.
2317 const char *incremental_inputs_name =
2318 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2319 Output_section* incremental_inputs_os =
2320 this->make_output_section(incremental_inputs_name,
2321 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2322 ORDER_INVALID, false);
2323 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2325 // Add the .gnu_incremental_symtab section.
2326 const char *incremental_symtab_name =
2327 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2328 Output_section* incremental_symtab_os =
2329 this->make_output_section(incremental_symtab_name,
2330 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2331 ORDER_INVALID, false);
2332 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2333 incremental_symtab_os->set_entsize(4);
2335 // Add the .gnu_incremental_relocs section.
2336 const char *incremental_relocs_name =
2337 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2338 Output_section* incremental_relocs_os =
2339 this->make_output_section(incremental_relocs_name,
2340 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2341 ORDER_INVALID, false);
2342 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2343 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2345 // Add the .gnu_incremental_got_plt section.
2346 const char *incremental_got_plt_name =
2347 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2348 Output_section* incremental_got_plt_os =
2349 this->make_output_section(incremental_got_plt_name,
2350 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2351 ORDER_INVALID, false);
2352 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2354 // Add the .gnu_incremental_strtab section.
2355 const char *incremental_strtab_name =
2356 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2357 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2358 elfcpp::SHT_STRTAB, 0,
2359 ORDER_INVALID, false);
2360 Output_data_strtab* strtab_data =
2361 new Output_data_strtab(incr->get_stringpool());
2362 incremental_strtab_os->add_output_section_data(strtab_data);
2364 incremental_inputs_os->set_after_input_sections();
2365 incremental_symtab_os->set_after_input_sections();
2366 incremental_relocs_os->set_after_input_sections();
2367 incremental_got_plt_os->set_after_input_sections();
2369 incremental_inputs_os->set_link_section(incremental_strtab_os);
2370 incremental_symtab_os->set_link_section(incremental_inputs_os);
2371 incremental_relocs_os->set_link_section(incremental_inputs_os);
2372 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2375 // Return whether SEG1 should be before SEG2 in the output file. This
2376 // is based entirely on the segment type and flags. When this is
2377 // called the segment addresses has normally not yet been set.
2379 bool
2380 Layout::segment_precedes(const Output_segment* seg1,
2381 const Output_segment* seg2)
2383 elfcpp::Elf_Word type1 = seg1->type();
2384 elfcpp::Elf_Word type2 = seg2->type();
2386 // The single PT_PHDR segment is required to precede any loadable
2387 // segment. We simply make it always first.
2388 if (type1 == elfcpp::PT_PHDR)
2390 gold_assert(type2 != elfcpp::PT_PHDR);
2391 return true;
2393 if (type2 == elfcpp::PT_PHDR)
2394 return false;
2396 // The single PT_INTERP segment is required to precede any loadable
2397 // segment. We simply make it always second.
2398 if (type1 == elfcpp::PT_INTERP)
2400 gold_assert(type2 != elfcpp::PT_INTERP);
2401 return true;
2403 if (type2 == elfcpp::PT_INTERP)
2404 return false;
2406 // We then put PT_LOAD segments before any other segments.
2407 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2408 return true;
2409 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2410 return false;
2412 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2413 // segment, because that is where the dynamic linker expects to find
2414 // it (this is just for efficiency; other positions would also work
2415 // correctly).
2416 if (type1 == elfcpp::PT_TLS
2417 && type2 != elfcpp::PT_TLS
2418 && type2 != elfcpp::PT_GNU_RELRO)
2419 return false;
2420 if (type2 == elfcpp::PT_TLS
2421 && type1 != elfcpp::PT_TLS
2422 && type1 != elfcpp::PT_GNU_RELRO)
2423 return true;
2425 // We put the PT_GNU_RELRO segment last, because that is where the
2426 // dynamic linker expects to find it (as with PT_TLS, this is just
2427 // for efficiency).
2428 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2429 return false;
2430 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2431 return true;
2433 const elfcpp::Elf_Word flags1 = seg1->flags();
2434 const elfcpp::Elf_Word flags2 = seg2->flags();
2436 // The order of non-PT_LOAD segments is unimportant. We simply sort
2437 // by the numeric segment type and flags values. There should not
2438 // be more than one segment with the same type and flags.
2439 if (type1 != elfcpp::PT_LOAD)
2441 if (type1 != type2)
2442 return type1 < type2;
2443 gold_assert(flags1 != flags2);
2444 return flags1 < flags2;
2447 // If the addresses are set already, sort by load address.
2448 if (seg1->are_addresses_set())
2450 if (!seg2->are_addresses_set())
2451 return true;
2453 unsigned int section_count1 = seg1->output_section_count();
2454 unsigned int section_count2 = seg2->output_section_count();
2455 if (section_count1 == 0 && section_count2 > 0)
2456 return true;
2457 if (section_count1 > 0 && section_count2 == 0)
2458 return false;
2460 uint64_t paddr1 = seg1->first_section_load_address();
2461 uint64_t paddr2 = seg2->first_section_load_address();
2462 if (paddr1 != paddr2)
2463 return paddr1 < paddr2;
2465 else if (seg2->are_addresses_set())
2466 return false;
2468 // A segment which holds large data comes after a segment which does
2469 // not hold large data.
2470 if (seg1->is_large_data_segment())
2472 if (!seg2->is_large_data_segment())
2473 return false;
2475 else if (seg2->is_large_data_segment())
2476 return true;
2478 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2479 // segments come before writable segments. Then writable segments
2480 // with data come before writable segments without data. Then
2481 // executable segments come before non-executable segments. Then
2482 // the unlikely case of a non-readable segment comes before the
2483 // normal case of a readable segment. If there are multiple
2484 // segments with the same type and flags, we require that the
2485 // address be set, and we sort by virtual address and then physical
2486 // address.
2487 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2488 return (flags1 & elfcpp::PF_W) == 0;
2489 if ((flags1 & elfcpp::PF_W) != 0
2490 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2491 return seg1->has_any_data_sections();
2492 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2493 return (flags1 & elfcpp::PF_X) != 0;
2494 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2495 return (flags1 & elfcpp::PF_R) == 0;
2497 // We shouldn't get here--we shouldn't create segments which we
2498 // can't distinguish.
2499 gold_unreachable();
2502 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2504 static off_t
2505 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2507 uint64_t unsigned_off = off;
2508 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2509 | (addr & (abi_pagesize - 1)));
2510 if (aligned_off < unsigned_off)
2511 aligned_off += abi_pagesize;
2512 return aligned_off;
2515 // Set the file offsets of all the segments, and all the sections they
2516 // contain. They have all been created. LOAD_SEG must be be laid out
2517 // first. Return the offset of the data to follow.
2519 off_t
2520 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2521 unsigned int *pshndx)
2523 // Sort them into the final order.
2524 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2525 Layout::Compare_segments());
2527 // Find the PT_LOAD segments, and set their addresses and offsets
2528 // and their section's addresses and offsets.
2529 uint64_t addr;
2530 if (parameters->options().user_set_Ttext())
2531 addr = parameters->options().Ttext();
2532 else if (parameters->options().output_is_position_independent())
2533 addr = 0;
2534 else
2535 addr = target->default_text_segment_address();
2536 off_t off = 0;
2538 // If LOAD_SEG is NULL, then the file header and segment headers
2539 // will not be loadable. But they still need to be at offset 0 in
2540 // the file. Set their offsets now.
2541 if (load_seg == NULL)
2543 for (Data_list::iterator p = this->special_output_list_.begin();
2544 p != this->special_output_list_.end();
2545 ++p)
2547 off = align_address(off, (*p)->addralign());
2548 (*p)->set_address_and_file_offset(0, off);
2549 off += (*p)->data_size();
2553 unsigned int increase_relro = this->increase_relro_;
2554 if (this->script_options_->saw_sections_clause())
2555 increase_relro = 0;
2557 const bool check_sections = parameters->options().check_sections();
2558 Output_segment* last_load_segment = NULL;
2560 bool was_readonly = false;
2561 for (Segment_list::iterator p = this->segment_list_.begin();
2562 p != this->segment_list_.end();
2563 ++p)
2565 if ((*p)->type() == elfcpp::PT_LOAD)
2567 if (load_seg != NULL && load_seg != *p)
2568 gold_unreachable();
2569 load_seg = NULL;
2571 bool are_addresses_set = (*p)->are_addresses_set();
2572 if (are_addresses_set)
2574 // When it comes to setting file offsets, we care about
2575 // the physical address.
2576 addr = (*p)->paddr();
2578 else if (parameters->options().user_set_Tdata()
2579 && ((*p)->flags() & elfcpp::PF_W) != 0
2580 && (!parameters->options().user_set_Tbss()
2581 || (*p)->has_any_data_sections()))
2583 addr = parameters->options().Tdata();
2584 are_addresses_set = true;
2586 else if (parameters->options().user_set_Tbss()
2587 && ((*p)->flags() & elfcpp::PF_W) != 0
2588 && !(*p)->has_any_data_sections())
2590 addr = parameters->options().Tbss();
2591 are_addresses_set = true;
2594 uint64_t orig_addr = addr;
2595 uint64_t orig_off = off;
2597 uint64_t aligned_addr = 0;
2598 uint64_t abi_pagesize = target->abi_pagesize();
2599 uint64_t common_pagesize = target->common_pagesize();
2601 if (!parameters->options().nmagic()
2602 && !parameters->options().omagic())
2603 (*p)->set_minimum_p_align(common_pagesize);
2605 if (!are_addresses_set)
2607 // If the last segment was readonly, and this one is
2608 // not, then skip the address forward one page,
2609 // maintaining the same position within the page. This
2610 // lets us store both segments overlapping on a single
2611 // page in the file, but the loader will put them on
2612 // different pages in memory.
2614 addr = align_address(addr, (*p)->maximum_alignment());
2615 aligned_addr = addr;
2617 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2619 if ((addr & (abi_pagesize - 1)) != 0)
2620 addr = addr + abi_pagesize;
2623 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2626 if (!parameters->options().nmagic()
2627 && !parameters->options().omagic())
2628 off = align_file_offset(off, addr, abi_pagesize);
2629 else if (load_seg == NULL)
2631 // This is -N or -n with a section script which prevents
2632 // us from using a load segment. We need to ensure that
2633 // the file offset is aligned to the alignment of the
2634 // segment. This is because the linker script
2635 // implicitly assumed a zero offset. If we don't align
2636 // here, then the alignment of the sections in the
2637 // linker script may not match the alignment of the
2638 // sections in the set_section_addresses call below,
2639 // causing an error about dot moving backward.
2640 off = align_address(off, (*p)->maximum_alignment());
2643 unsigned int shndx_hold = *pshndx;
2644 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2645 increase_relro,
2646 &off, pshndx);
2648 // Now that we know the size of this segment, we may be able
2649 // to save a page in memory, at the cost of wasting some
2650 // file space, by instead aligning to the start of a new
2651 // page. Here we use the real machine page size rather than
2652 // the ABI mandated page size.
2654 if (!are_addresses_set && aligned_addr != addr)
2656 uint64_t first_off = (common_pagesize
2657 - (aligned_addr
2658 & (common_pagesize - 1)));
2659 uint64_t last_off = new_addr & (common_pagesize - 1);
2660 if (first_off > 0
2661 && last_off > 0
2662 && ((aligned_addr & ~ (common_pagesize - 1))
2663 != (new_addr & ~ (common_pagesize - 1)))
2664 && first_off + last_off <= common_pagesize)
2666 *pshndx = shndx_hold;
2667 addr = align_address(aligned_addr, common_pagesize);
2668 addr = align_address(addr, (*p)->maximum_alignment());
2669 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2670 off = align_file_offset(off, addr, abi_pagesize);
2671 new_addr = (*p)->set_section_addresses(this, true, addr,
2672 increase_relro,
2673 &off, pshndx);
2677 addr = new_addr;
2679 if (((*p)->flags() & elfcpp::PF_W) == 0)
2680 was_readonly = true;
2682 // Implement --check-sections. We know that the segments
2683 // are sorted by LMA.
2684 if (check_sections && last_load_segment != NULL)
2686 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2687 if (last_load_segment->paddr() + last_load_segment->memsz()
2688 > (*p)->paddr())
2690 unsigned long long lb1 = last_load_segment->paddr();
2691 unsigned long long le1 = lb1 + last_load_segment->memsz();
2692 unsigned long long lb2 = (*p)->paddr();
2693 unsigned long long le2 = lb2 + (*p)->memsz();
2694 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2695 "[0x%llx -> 0x%llx]"),
2696 lb1, le1, lb2, le2);
2699 last_load_segment = *p;
2703 // Handle the non-PT_LOAD segments, setting their offsets from their
2704 // section's offsets.
2705 for (Segment_list::iterator p = this->segment_list_.begin();
2706 p != this->segment_list_.end();
2707 ++p)
2709 if ((*p)->type() != elfcpp::PT_LOAD)
2710 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
2711 ? increase_relro
2712 : 0);
2715 // Set the TLS offsets for each section in the PT_TLS segment.
2716 if (this->tls_segment_ != NULL)
2717 this->tls_segment_->set_tls_offsets();
2719 return off;
2722 // Set the offsets of all the allocated sections when doing a
2723 // relocatable link. This does the same jobs as set_segment_offsets,
2724 // only for a relocatable link.
2726 off_t
2727 Layout::set_relocatable_section_offsets(Output_data* file_header,
2728 unsigned int *pshndx)
2730 off_t off = 0;
2732 file_header->set_address_and_file_offset(0, 0);
2733 off += file_header->data_size();
2735 for (Section_list::iterator p = this->section_list_.begin();
2736 p != this->section_list_.end();
2737 ++p)
2739 // We skip unallocated sections here, except that group sections
2740 // have to come first.
2741 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2742 && (*p)->type() != elfcpp::SHT_GROUP)
2743 continue;
2745 off = align_address(off, (*p)->addralign());
2747 // The linker script might have set the address.
2748 if (!(*p)->is_address_valid())
2749 (*p)->set_address(0);
2750 (*p)->set_file_offset(off);
2751 (*p)->finalize_data_size();
2752 off += (*p)->data_size();
2754 (*p)->set_out_shndx(*pshndx);
2755 ++*pshndx;
2758 return off;
2761 // Set the file offset of all the sections not associated with a
2762 // segment.
2764 off_t
2765 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2767 for (Section_list::iterator p = this->unattached_section_list_.begin();
2768 p != this->unattached_section_list_.end();
2769 ++p)
2771 // The symtab section is handled in create_symtab_sections.
2772 if (*p == this->symtab_section_)
2773 continue;
2775 // If we've already set the data size, don't set it again.
2776 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2777 continue;
2779 if (pass == BEFORE_INPUT_SECTIONS_PASS
2780 && (*p)->requires_postprocessing())
2782 (*p)->create_postprocessing_buffer();
2783 this->any_postprocessing_sections_ = true;
2786 if (pass == BEFORE_INPUT_SECTIONS_PASS
2787 && (*p)->after_input_sections())
2788 continue;
2789 else if (pass == POSTPROCESSING_SECTIONS_PASS
2790 && (!(*p)->after_input_sections()
2791 || (*p)->type() == elfcpp::SHT_STRTAB))
2792 continue;
2793 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2794 && (!(*p)->after_input_sections()
2795 || (*p)->type() != elfcpp::SHT_STRTAB))
2796 continue;
2798 off = align_address(off, (*p)->addralign());
2799 (*p)->set_file_offset(off);
2800 (*p)->finalize_data_size();
2801 off += (*p)->data_size();
2803 // At this point the name must be set.
2804 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2805 this->namepool_.add((*p)->name(), false, NULL);
2807 return off;
2810 // Set the section indexes of all the sections not associated with a
2811 // segment.
2813 unsigned int
2814 Layout::set_section_indexes(unsigned int shndx)
2816 for (Section_list::iterator p = this->unattached_section_list_.begin();
2817 p != this->unattached_section_list_.end();
2818 ++p)
2820 if (!(*p)->has_out_shndx())
2822 (*p)->set_out_shndx(shndx);
2823 ++shndx;
2826 return shndx;
2829 // Set the section addresses according to the linker script. This is
2830 // only called when we see a SECTIONS clause. This returns the
2831 // program segment which should hold the file header and segment
2832 // headers, if any. It will return NULL if they should not be in a
2833 // segment.
2835 Output_segment*
2836 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2838 Script_sections* ss = this->script_options_->script_sections();
2839 gold_assert(ss->saw_sections_clause());
2840 return this->script_options_->set_section_addresses(symtab, this);
2843 // Place the orphan sections in the linker script.
2845 void
2846 Layout::place_orphan_sections_in_script()
2848 Script_sections* ss = this->script_options_->script_sections();
2849 gold_assert(ss->saw_sections_clause());
2851 // Place each orphaned output section in the script.
2852 for (Section_list::iterator p = this->section_list_.begin();
2853 p != this->section_list_.end();
2854 ++p)
2856 if (!(*p)->found_in_sections_clause())
2857 ss->place_orphan(*p);
2861 // Count the local symbols in the regular symbol table and the dynamic
2862 // symbol table, and build the respective string pools.
2864 void
2865 Layout::count_local_symbols(const Task* task,
2866 const Input_objects* input_objects)
2868 // First, figure out an upper bound on the number of symbols we'll
2869 // be inserting into each pool. This helps us create the pools with
2870 // the right size, to avoid unnecessary hashtable resizing.
2871 unsigned int symbol_count = 0;
2872 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2873 p != input_objects->relobj_end();
2874 ++p)
2875 symbol_count += (*p)->local_symbol_count();
2877 // Go from "upper bound" to "estimate." We overcount for two
2878 // reasons: we double-count symbols that occur in more than one
2879 // object file, and we count symbols that are dropped from the
2880 // output. Add it all together and assume we overcount by 100%.
2881 symbol_count /= 2;
2883 // We assume all symbols will go into both the sympool and dynpool.
2884 this->sympool_.reserve(symbol_count);
2885 this->dynpool_.reserve(symbol_count);
2887 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2888 p != input_objects->relobj_end();
2889 ++p)
2891 Task_lock_obj<Object> tlo(task, *p);
2892 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2896 // Create the symbol table sections. Here we also set the final
2897 // values of the symbols. At this point all the loadable sections are
2898 // fully laid out. SHNUM is the number of sections so far.
2900 void
2901 Layout::create_symtab_sections(const Input_objects* input_objects,
2902 Symbol_table* symtab,
2903 unsigned int shnum,
2904 off_t* poff)
2906 int symsize;
2907 unsigned int align;
2908 if (parameters->target().get_size() == 32)
2910 symsize = elfcpp::Elf_sizes<32>::sym_size;
2911 align = 4;
2913 else if (parameters->target().get_size() == 64)
2915 symsize = elfcpp::Elf_sizes<64>::sym_size;
2916 align = 8;
2918 else
2919 gold_unreachable();
2921 off_t off = *poff;
2922 off = align_address(off, align);
2923 off_t startoff = off;
2925 // Save space for the dummy symbol at the start of the section. We
2926 // never bother to write this out--it will just be left as zero.
2927 off += symsize;
2928 unsigned int local_symbol_index = 1;
2930 // Add STT_SECTION symbols for each Output section which needs one.
2931 for (Section_list::iterator p = this->section_list_.begin();
2932 p != this->section_list_.end();
2933 ++p)
2935 if (!(*p)->needs_symtab_index())
2936 (*p)->set_symtab_index(-1U);
2937 else
2939 (*p)->set_symtab_index(local_symbol_index);
2940 ++local_symbol_index;
2941 off += symsize;
2945 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2946 p != input_objects->relobj_end();
2947 ++p)
2949 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2950 off, symtab);
2951 off += (index - local_symbol_index) * symsize;
2952 local_symbol_index = index;
2955 unsigned int local_symcount = local_symbol_index;
2956 gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2958 off_t dynoff;
2959 size_t dyn_global_index;
2960 size_t dyncount;
2961 if (this->dynsym_section_ == NULL)
2963 dynoff = 0;
2964 dyn_global_index = 0;
2965 dyncount = 0;
2967 else
2969 dyn_global_index = this->dynsym_section_->info();
2970 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2971 dynoff = this->dynsym_section_->offset() + locsize;
2972 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2973 gold_assert(static_cast<off_t>(dyncount * symsize)
2974 == this->dynsym_section_->data_size() - locsize);
2977 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2978 &this->sympool_, &local_symcount);
2980 if (!parameters->options().strip_all())
2982 this->sympool_.set_string_offsets();
2984 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2985 Output_section* osymtab = this->make_output_section(symtab_name,
2986 elfcpp::SHT_SYMTAB,
2987 0, ORDER_INVALID,
2988 false);
2989 this->symtab_section_ = osymtab;
2991 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2992 align,
2993 "** symtab");
2994 osymtab->add_output_section_data(pos);
2996 // We generate a .symtab_shndx section if we have more than
2997 // SHN_LORESERVE sections. Technically it is possible that we
2998 // don't need one, because it is possible that there are no
2999 // symbols in any of sections with indexes larger than
3000 // SHN_LORESERVE. That is probably unusual, though, and it is
3001 // easier to always create one than to compute section indexes
3002 // twice (once here, once when writing out the symbols).
3003 if (shnum >= elfcpp::SHN_LORESERVE)
3005 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3006 false, NULL);
3007 Output_section* osymtab_xindex =
3008 this->make_output_section(symtab_xindex_name,
3009 elfcpp::SHT_SYMTAB_SHNDX, 0,
3010 ORDER_INVALID, false);
3012 size_t symcount = (off - startoff) / symsize;
3013 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3015 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3017 osymtab_xindex->set_link_section(osymtab);
3018 osymtab_xindex->set_addralign(4);
3019 osymtab_xindex->set_entsize(4);
3021 osymtab_xindex->set_after_input_sections();
3023 // This tells the driver code to wait until the symbol table
3024 // has written out before writing out the postprocessing
3025 // sections, including the .symtab_shndx section.
3026 this->any_postprocessing_sections_ = true;
3029 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3030 Output_section* ostrtab = this->make_output_section(strtab_name,
3031 elfcpp::SHT_STRTAB,
3032 0, ORDER_INVALID,
3033 false);
3035 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3036 ostrtab->add_output_section_data(pstr);
3038 osymtab->set_file_offset(startoff);
3039 osymtab->finalize_data_size();
3040 osymtab->set_link_section(ostrtab);
3041 osymtab->set_info(local_symcount);
3042 osymtab->set_entsize(symsize);
3044 *poff = off;
3048 // Create the .shstrtab section, which holds the names of the
3049 // sections. At the time this is called, we have created all the
3050 // output sections except .shstrtab itself.
3052 Output_section*
3053 Layout::create_shstrtab()
3055 // FIXME: We don't need to create a .shstrtab section if we are
3056 // stripping everything.
3058 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3060 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3061 ORDER_INVALID, false);
3063 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3065 // We can't write out this section until we've set all the
3066 // section names, and we don't set the names of compressed
3067 // output sections until relocations are complete. FIXME: With
3068 // the current names we use, this is unnecessary.
3069 os->set_after_input_sections();
3072 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3073 os->add_output_section_data(posd);
3075 return os;
3078 // Create the section headers. SIZE is 32 or 64. OFF is the file
3079 // offset.
3081 void
3082 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3084 Output_section_headers* oshdrs;
3085 oshdrs = new Output_section_headers(this,
3086 &this->segment_list_,
3087 &this->section_list_,
3088 &this->unattached_section_list_,
3089 &this->namepool_,
3090 shstrtab_section);
3091 off_t off = align_address(*poff, oshdrs->addralign());
3092 oshdrs->set_address_and_file_offset(0, off);
3093 off += oshdrs->data_size();
3094 *poff = off;
3095 this->section_headers_ = oshdrs;
3098 // Count the allocated sections.
3100 size_t
3101 Layout::allocated_output_section_count() const
3103 size_t section_count = 0;
3104 for (Segment_list::const_iterator p = this->segment_list_.begin();
3105 p != this->segment_list_.end();
3106 ++p)
3107 section_count += (*p)->output_section_count();
3108 return section_count;
3111 // Create the dynamic symbol table.
3113 void
3114 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3115 Symbol_table* symtab,
3116 Output_section **pdynstr,
3117 unsigned int* plocal_dynamic_count,
3118 std::vector<Symbol*>* pdynamic_symbols,
3119 Versions* pversions)
3121 // Count all the symbols in the dynamic symbol table, and set the
3122 // dynamic symbol indexes.
3124 // Skip symbol 0, which is always all zeroes.
3125 unsigned int index = 1;
3127 // Add STT_SECTION symbols for each Output section which needs one.
3128 for (Section_list::iterator p = this->section_list_.begin();
3129 p != this->section_list_.end();
3130 ++p)
3132 if (!(*p)->needs_dynsym_index())
3133 (*p)->set_dynsym_index(-1U);
3134 else
3136 (*p)->set_dynsym_index(index);
3137 ++index;
3141 // Count the local symbols that need to go in the dynamic symbol table,
3142 // and set the dynamic symbol indexes.
3143 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3144 p != input_objects->relobj_end();
3145 ++p)
3147 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3148 index = new_index;
3151 unsigned int local_symcount = index;
3152 *plocal_dynamic_count = local_symcount;
3154 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3155 &this->dynpool_, pversions);
3157 int symsize;
3158 unsigned int align;
3159 const int size = parameters->target().get_size();
3160 if (size == 32)
3162 symsize = elfcpp::Elf_sizes<32>::sym_size;
3163 align = 4;
3165 else if (size == 64)
3167 symsize = elfcpp::Elf_sizes<64>::sym_size;
3168 align = 8;
3170 else
3171 gold_unreachable();
3173 // Create the dynamic symbol table section.
3175 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3176 elfcpp::SHT_DYNSYM,
3177 elfcpp::SHF_ALLOC,
3178 false,
3179 ORDER_DYNAMIC_LINKER,
3180 false);
3182 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3183 align,
3184 "** dynsym");
3185 dynsym->add_output_section_data(odata);
3187 dynsym->set_info(local_symcount);
3188 dynsym->set_entsize(symsize);
3189 dynsym->set_addralign(align);
3191 this->dynsym_section_ = dynsym;
3193 Output_data_dynamic* const odyn = this->dynamic_data_;
3194 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3195 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3197 // If there are more than SHN_LORESERVE allocated sections, we
3198 // create a .dynsym_shndx section. It is possible that we don't
3199 // need one, because it is possible that there are no dynamic
3200 // symbols in any of the sections with indexes larger than
3201 // SHN_LORESERVE. This is probably unusual, though, and at this
3202 // time we don't know the actual section indexes so it is
3203 // inconvenient to check.
3204 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3206 Output_section* dynsym_xindex =
3207 this->choose_output_section(NULL, ".dynsym_shndx",
3208 elfcpp::SHT_SYMTAB_SHNDX,
3209 elfcpp::SHF_ALLOC,
3210 false, ORDER_DYNAMIC_LINKER, false);
3212 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3214 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3216 dynsym_xindex->set_link_section(dynsym);
3217 dynsym_xindex->set_addralign(4);
3218 dynsym_xindex->set_entsize(4);
3220 dynsym_xindex->set_after_input_sections();
3222 // This tells the driver code to wait until the symbol table has
3223 // written out before writing out the postprocessing sections,
3224 // including the .dynsym_shndx section.
3225 this->any_postprocessing_sections_ = true;
3228 // Create the dynamic string table section.
3230 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3231 elfcpp::SHT_STRTAB,
3232 elfcpp::SHF_ALLOC,
3233 false,
3234 ORDER_DYNAMIC_LINKER,
3235 false);
3237 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3238 dynstr->add_output_section_data(strdata);
3240 dynsym->set_link_section(dynstr);
3241 this->dynamic_section_->set_link_section(dynstr);
3243 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3244 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3246 *pdynstr = dynstr;
3248 // Create the hash tables.
3250 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3251 || strcmp(parameters->options().hash_style(), "both") == 0)
3253 unsigned char* phash;
3254 unsigned int hashlen;
3255 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3256 &phash, &hashlen);
3258 Output_section* hashsec =
3259 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3260 elfcpp::SHF_ALLOC, false,
3261 ORDER_DYNAMIC_LINKER, false);
3263 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3264 hashlen,
3265 align,
3266 "** hash");
3267 hashsec->add_output_section_data(hashdata);
3269 hashsec->set_link_section(dynsym);
3270 hashsec->set_entsize(4);
3272 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3275 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3276 || strcmp(parameters->options().hash_style(), "both") == 0)
3278 unsigned char* phash;
3279 unsigned int hashlen;
3280 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3281 &phash, &hashlen);
3283 Output_section* hashsec =
3284 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3285 elfcpp::SHF_ALLOC, false,
3286 ORDER_DYNAMIC_LINKER, false);
3288 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3289 hashlen,
3290 align,
3291 "** hash");
3292 hashsec->add_output_section_data(hashdata);
3294 hashsec->set_link_section(dynsym);
3296 // For a 64-bit target, the entries in .gnu.hash do not have a
3297 // uniform size, so we only set the entry size for a 32-bit
3298 // target.
3299 if (parameters->target().get_size() == 32)
3300 hashsec->set_entsize(4);
3302 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3306 // Assign offsets to each local portion of the dynamic symbol table.
3308 void
3309 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3311 Output_section* dynsym = this->dynsym_section_;
3312 gold_assert(dynsym != NULL);
3314 off_t off = dynsym->offset();
3316 // Skip the dummy symbol at the start of the section.
3317 off += dynsym->entsize();
3319 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3320 p != input_objects->relobj_end();
3321 ++p)
3323 unsigned int count = (*p)->set_local_dynsym_offset(off);
3324 off += count * dynsym->entsize();
3328 // Create the version sections.
3330 void
3331 Layout::create_version_sections(const Versions* versions,
3332 const Symbol_table* symtab,
3333 unsigned int local_symcount,
3334 const std::vector<Symbol*>& dynamic_symbols,
3335 const Output_section* dynstr)
3337 if (!versions->any_defs() && !versions->any_needs())
3338 return;
3340 switch (parameters->size_and_endianness())
3342 #ifdef HAVE_TARGET_32_LITTLE
3343 case Parameters::TARGET_32_LITTLE:
3344 this->sized_create_version_sections<32, false>(versions, symtab,
3345 local_symcount,
3346 dynamic_symbols, dynstr);
3347 break;
3348 #endif
3349 #ifdef HAVE_TARGET_32_BIG
3350 case Parameters::TARGET_32_BIG:
3351 this->sized_create_version_sections<32, true>(versions, symtab,
3352 local_symcount,
3353 dynamic_symbols, dynstr);
3354 break;
3355 #endif
3356 #ifdef HAVE_TARGET_64_LITTLE
3357 case Parameters::TARGET_64_LITTLE:
3358 this->sized_create_version_sections<64, false>(versions, symtab,
3359 local_symcount,
3360 dynamic_symbols, dynstr);
3361 break;
3362 #endif
3363 #ifdef HAVE_TARGET_64_BIG
3364 case Parameters::TARGET_64_BIG:
3365 this->sized_create_version_sections<64, true>(versions, symtab,
3366 local_symcount,
3367 dynamic_symbols, dynstr);
3368 break;
3369 #endif
3370 default:
3371 gold_unreachable();
3375 // Create the version sections, sized version.
3377 template<int size, bool big_endian>
3378 void
3379 Layout::sized_create_version_sections(
3380 const Versions* versions,
3381 const Symbol_table* symtab,
3382 unsigned int local_symcount,
3383 const std::vector<Symbol*>& dynamic_symbols,
3384 const Output_section* dynstr)
3386 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3387 elfcpp::SHT_GNU_versym,
3388 elfcpp::SHF_ALLOC,
3389 false,
3390 ORDER_DYNAMIC_LINKER,
3391 false);
3393 unsigned char* vbuf;
3394 unsigned int vsize;
3395 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3396 local_symcount,
3397 dynamic_symbols,
3398 &vbuf, &vsize);
3400 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3401 "** versions");
3403 vsec->add_output_section_data(vdata);
3404 vsec->set_entsize(2);
3405 vsec->set_link_section(this->dynsym_section_);
3407 Output_data_dynamic* const odyn = this->dynamic_data_;
3408 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3410 if (versions->any_defs())
3412 Output_section* vdsec;
3413 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3414 elfcpp::SHT_GNU_verdef,
3415 elfcpp::SHF_ALLOC,
3416 false, ORDER_DYNAMIC_LINKER, false);
3418 unsigned char* vdbuf;
3419 unsigned int vdsize;
3420 unsigned int vdentries;
3421 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3422 &vdsize, &vdentries);
3424 Output_section_data* vddata =
3425 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3427 vdsec->add_output_section_data(vddata);
3428 vdsec->set_link_section(dynstr);
3429 vdsec->set_info(vdentries);
3431 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3432 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3435 if (versions->any_needs())
3437 Output_section* vnsec;
3438 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3439 elfcpp::SHT_GNU_verneed,
3440 elfcpp::SHF_ALLOC,
3441 false, ORDER_DYNAMIC_LINKER, false);
3443 unsigned char* vnbuf;
3444 unsigned int vnsize;
3445 unsigned int vnentries;
3446 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3447 &vnbuf, &vnsize,
3448 &vnentries);
3450 Output_section_data* vndata =
3451 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3453 vnsec->add_output_section_data(vndata);
3454 vnsec->set_link_section(dynstr);
3455 vnsec->set_info(vnentries);
3457 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3458 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3462 // Create the .interp section and PT_INTERP segment.
3464 void
3465 Layout::create_interp(const Target* target)
3467 const char* interp = parameters->options().dynamic_linker();
3468 if (interp == NULL)
3470 interp = target->dynamic_linker();
3471 gold_assert(interp != NULL);
3474 size_t len = strlen(interp) + 1;
3476 Output_section_data* odata = new Output_data_const(interp, len, 1);
3478 Output_section* osec = this->choose_output_section(NULL, ".interp",
3479 elfcpp::SHT_PROGBITS,
3480 elfcpp::SHF_ALLOC,
3481 false, ORDER_INTERP,
3482 false);
3483 osec->add_output_section_data(odata);
3485 if (!this->script_options_->saw_phdrs_clause())
3487 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3488 elfcpp::PF_R);
3489 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3493 // Add dynamic tags for the PLT and the dynamic relocs. This is
3494 // called by the target-specific code. This does nothing if not doing
3495 // a dynamic link.
3497 // USE_REL is true for REL relocs rather than RELA relocs.
3499 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3501 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3502 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3503 // some targets have multiple reloc sections in PLT_REL.
3505 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3506 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3508 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3509 // executable.
3511 void
3512 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3513 const Output_data* plt_rel,
3514 const Output_data_reloc_generic* dyn_rel,
3515 bool add_debug, bool dynrel_includes_plt)
3517 Output_data_dynamic* odyn = this->dynamic_data_;
3518 if (odyn == NULL)
3519 return;
3521 if (plt_got != NULL && plt_got->output_section() != NULL)
3522 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3524 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3526 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3527 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3528 odyn->add_constant(elfcpp::DT_PLTREL,
3529 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3532 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3534 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3535 dyn_rel);
3536 if (plt_rel != NULL && dynrel_includes_plt)
3537 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3538 dyn_rel, plt_rel);
3539 else
3540 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3541 dyn_rel);
3542 const int size = parameters->target().get_size();
3543 elfcpp::DT rel_tag;
3544 int rel_size;
3545 if (use_rel)
3547 rel_tag = elfcpp::DT_RELENT;
3548 if (size == 32)
3549 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3550 else if (size == 64)
3551 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3552 else
3553 gold_unreachable();
3555 else
3557 rel_tag = elfcpp::DT_RELAENT;
3558 if (size == 32)
3559 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3560 else if (size == 64)
3561 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3562 else
3563 gold_unreachable();
3565 odyn->add_constant(rel_tag, rel_size);
3567 if (parameters->options().combreloc())
3569 size_t c = dyn_rel->relative_reloc_count();
3570 if (c > 0)
3571 odyn->add_constant((use_rel
3572 ? elfcpp::DT_RELCOUNT
3573 : elfcpp::DT_RELACOUNT),
3578 if (add_debug && !parameters->options().shared())
3580 // The value of the DT_DEBUG tag is filled in by the dynamic
3581 // linker at run time, and used by the debugger.
3582 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3586 // Finish the .dynamic section and PT_DYNAMIC segment.
3588 void
3589 Layout::finish_dynamic_section(const Input_objects* input_objects,
3590 const Symbol_table* symtab)
3592 if (!this->script_options_->saw_phdrs_clause())
3594 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3595 (elfcpp::PF_R
3596 | elfcpp::PF_W));
3597 oseg->add_output_section_to_nonload(this->dynamic_section_,
3598 elfcpp::PF_R | elfcpp::PF_W);
3601 Output_data_dynamic* const odyn = this->dynamic_data_;
3603 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3604 p != input_objects->dynobj_end();
3605 ++p)
3607 if (!(*p)->is_needed()
3608 && (*p)->input_file()->options().as_needed())
3610 // This dynamic object was linked with --as-needed, but it
3611 // is not needed.
3612 continue;
3615 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3618 if (parameters->options().shared())
3620 const char* soname = parameters->options().soname();
3621 if (soname != NULL)
3622 odyn->add_string(elfcpp::DT_SONAME, soname);
3625 Symbol* sym = symtab->lookup(parameters->options().init());
3626 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3627 odyn->add_symbol(elfcpp::DT_INIT, sym);
3629 sym = symtab->lookup(parameters->options().fini());
3630 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3631 odyn->add_symbol(elfcpp::DT_FINI, sym);
3633 // Look for .init_array, .preinit_array and .fini_array by checking
3634 // section types.
3635 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3636 p != this->section_list_.end();
3637 ++p)
3638 switch((*p)->type())
3640 case elfcpp::SHT_FINI_ARRAY:
3641 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3642 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
3643 break;
3644 case elfcpp::SHT_INIT_ARRAY:
3645 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3646 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
3647 break;
3648 case elfcpp::SHT_PREINIT_ARRAY:
3649 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3650 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
3651 break;
3652 default:
3653 break;
3656 // Add a DT_RPATH entry if needed.
3657 const General_options::Dir_list& rpath(parameters->options().rpath());
3658 if (!rpath.empty())
3660 std::string rpath_val;
3661 for (General_options::Dir_list::const_iterator p = rpath.begin();
3662 p != rpath.end();
3663 ++p)
3665 if (rpath_val.empty())
3666 rpath_val = p->name();
3667 else
3669 // Eliminate duplicates.
3670 General_options::Dir_list::const_iterator q;
3671 for (q = rpath.begin(); q != p; ++q)
3672 if (q->name() == p->name())
3673 break;
3674 if (q == p)
3676 rpath_val += ':';
3677 rpath_val += p->name();
3682 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3683 if (parameters->options().enable_new_dtags())
3684 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3687 // Look for text segments that have dynamic relocations.
3688 bool have_textrel = false;
3689 if (!this->script_options_->saw_sections_clause())
3691 for (Segment_list::const_iterator p = this->segment_list_.begin();
3692 p != this->segment_list_.end();
3693 ++p)
3695 if (((*p)->flags() & elfcpp::PF_W) == 0
3696 && (*p)->has_dynamic_reloc())
3698 have_textrel = true;
3699 break;
3703 else
3705 // We don't know the section -> segment mapping, so we are
3706 // conservative and just look for readonly sections with
3707 // relocations. If those sections wind up in writable segments,
3708 // then we have created an unnecessary DT_TEXTREL entry.
3709 for (Section_list::const_iterator p = this->section_list_.begin();
3710 p != this->section_list_.end();
3711 ++p)
3713 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3714 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3715 && ((*p)->has_dynamic_reloc()))
3717 have_textrel = true;
3718 break;
3723 // Add a DT_FLAGS entry. We add it even if no flags are set so that
3724 // post-link tools can easily modify these flags if desired.
3725 unsigned int flags = 0;
3726 if (have_textrel)
3728 // Add a DT_TEXTREL for compatibility with older loaders.
3729 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3730 flags |= elfcpp::DF_TEXTREL;
3732 if (parameters->options().text())
3733 gold_error(_("read-only segment has dynamic relocations"));
3734 else if (parameters->options().warn_shared_textrel()
3735 && parameters->options().shared())
3736 gold_warning(_("shared library text segment is not shareable"));
3738 if (parameters->options().shared() && this->has_static_tls())
3739 flags |= elfcpp::DF_STATIC_TLS;
3740 if (parameters->options().origin())
3741 flags |= elfcpp::DF_ORIGIN;
3742 if (parameters->options().Bsymbolic())
3744 flags |= elfcpp::DF_SYMBOLIC;
3745 // Add DT_SYMBOLIC for compatibility with older loaders.
3746 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3748 if (parameters->options().now())
3749 flags |= elfcpp::DF_BIND_NOW;
3750 odyn->add_constant(elfcpp::DT_FLAGS, flags);
3752 flags = 0;
3753 if (parameters->options().initfirst())
3754 flags |= elfcpp::DF_1_INITFIRST;
3755 if (parameters->options().interpose())
3756 flags |= elfcpp::DF_1_INTERPOSE;
3757 if (parameters->options().loadfltr())
3758 flags |= elfcpp::DF_1_LOADFLTR;
3759 if (parameters->options().nodefaultlib())
3760 flags |= elfcpp::DF_1_NODEFLIB;
3761 if (parameters->options().nodelete())
3762 flags |= elfcpp::DF_1_NODELETE;
3763 if (parameters->options().nodlopen())
3764 flags |= elfcpp::DF_1_NOOPEN;
3765 if (parameters->options().nodump())
3766 flags |= elfcpp::DF_1_NODUMP;
3767 if (!parameters->options().shared())
3768 flags &= ~(elfcpp::DF_1_INITFIRST
3769 | elfcpp::DF_1_NODELETE
3770 | elfcpp::DF_1_NOOPEN);
3771 if (parameters->options().origin())
3772 flags |= elfcpp::DF_1_ORIGIN;
3773 if (parameters->options().now())
3774 flags |= elfcpp::DF_1_NOW;
3775 if (flags)
3776 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3779 // Set the size of the _DYNAMIC symbol table to be the size of the
3780 // dynamic data.
3782 void
3783 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
3785 Output_data_dynamic* const odyn = this->dynamic_data_;
3786 odyn->finalize_data_size();
3787 off_t data_size = odyn->data_size();
3788 const int size = parameters->target().get_size();
3789 if (size == 32)
3790 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
3791 else if (size == 64)
3792 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
3793 else
3794 gold_unreachable();
3797 // The mapping of input section name prefixes to output section names.
3798 // In some cases one prefix is itself a prefix of another prefix; in
3799 // such a case the longer prefix must come first. These prefixes are
3800 // based on the GNU linker default ELF linker script.
3802 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3803 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3805 MAPPING_INIT(".text.", ".text"),
3806 MAPPING_INIT(".ctors.", ".ctors"),
3807 MAPPING_INIT(".dtors.", ".dtors"),
3808 MAPPING_INIT(".rodata.", ".rodata"),
3809 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3810 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3811 MAPPING_INIT(".data.", ".data"),
3812 MAPPING_INIT(".bss.", ".bss"),
3813 MAPPING_INIT(".tdata.", ".tdata"),
3814 MAPPING_INIT(".tbss.", ".tbss"),
3815 MAPPING_INIT(".init_array.", ".init_array"),
3816 MAPPING_INIT(".fini_array.", ".fini_array"),
3817 MAPPING_INIT(".sdata.", ".sdata"),
3818 MAPPING_INIT(".sbss.", ".sbss"),
3819 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3820 // differently depending on whether it is creating a shared library.
3821 MAPPING_INIT(".sdata2.", ".sdata"),
3822 MAPPING_INIT(".sbss2.", ".sbss"),
3823 MAPPING_INIT(".lrodata.", ".lrodata"),
3824 MAPPING_INIT(".ldata.", ".ldata"),
3825 MAPPING_INIT(".lbss.", ".lbss"),
3826 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3827 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3828 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3829 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3830 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3831 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3832 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3833 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3834 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3835 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3836 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3837 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3838 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3839 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3840 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3841 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3842 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3843 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
3844 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3845 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
3846 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3848 #undef MAPPING_INIT
3850 const int Layout::section_name_mapping_count =
3851 (sizeof(Layout::section_name_mapping)
3852 / sizeof(Layout::section_name_mapping[0]));
3854 // Choose the output section name to use given an input section name.
3855 // Set *PLEN to the length of the name. *PLEN is initialized to the
3856 // length of NAME.
3858 const char*
3859 Layout::output_section_name(const char* name, size_t* plen)
3861 // gcc 4.3 generates the following sorts of section names when it
3862 // needs a section name specific to a function:
3863 // .text.FN
3864 // .rodata.FN
3865 // .sdata2.FN
3866 // .data.FN
3867 // .data.rel.FN
3868 // .data.rel.local.FN
3869 // .data.rel.ro.FN
3870 // .data.rel.ro.local.FN
3871 // .sdata.FN
3872 // .bss.FN
3873 // .sbss.FN
3874 // .tdata.FN
3875 // .tbss.FN
3877 // The GNU linker maps all of those to the part before the .FN,
3878 // except that .data.rel.local.FN is mapped to .data, and
3879 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
3880 // beginning with .data.rel.ro.local are grouped together.
3882 // For an anonymous namespace, the string FN can contain a '.'.
3884 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3885 // GNU linker maps to .rodata.
3887 // The .data.rel.ro sections are used with -z relro. The sections
3888 // are recognized by name. We use the same names that the GNU
3889 // linker does for these sections.
3891 // It is hard to handle this in a principled way, so we don't even
3892 // try. We use a table of mappings. If the input section name is
3893 // not found in the table, we simply use it as the output section
3894 // name.
3896 const Section_name_mapping* psnm = section_name_mapping;
3897 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3899 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3901 *plen = psnm->tolen;
3902 return psnm->to;
3906 // Compressed debug sections should be mapped to the corresponding
3907 // uncompressed section.
3908 if (is_compressed_debug_section(name))
3910 size_t len = strlen(name);
3911 char *uncompressed_name = new char[len];
3912 uncompressed_name[0] = '.';
3913 gold_assert(name[0] == '.' && name[1] == 'z');
3914 strncpy(&uncompressed_name[1], &name[2], len - 2);
3915 uncompressed_name[len - 1] = '\0';
3916 *plen = len - 1;
3917 return uncompressed_name;
3920 return name;
3923 // Check if a comdat group or .gnu.linkonce section with the given
3924 // NAME is selected for the link. If there is already a section,
3925 // *KEPT_SECTION is set to point to the existing section and the
3926 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3927 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3928 // *KEPT_SECTION is set to the internal copy and the function returns
3929 // true.
3931 bool
3932 Layout::find_or_add_kept_section(const std::string& name,
3933 Relobj* object,
3934 unsigned int shndx,
3935 bool is_comdat,
3936 bool is_group_name,
3937 Kept_section** kept_section)
3939 // It's normal to see a couple of entries here, for the x86 thunk
3940 // sections. If we see more than a few, we're linking a C++
3941 // program, and we resize to get more space to minimize rehashing.
3942 if (this->signatures_.size() > 4
3943 && !this->resized_signatures_)
3945 reserve_unordered_map(&this->signatures_,
3946 this->number_of_input_files_ * 64);
3947 this->resized_signatures_ = true;
3950 Kept_section candidate;
3951 std::pair<Signatures::iterator, bool> ins =
3952 this->signatures_.insert(std::make_pair(name, candidate));
3954 if (kept_section != NULL)
3955 *kept_section = &ins.first->second;
3956 if (ins.second)
3958 // This is the first time we've seen this signature.
3959 ins.first->second.set_object(object);
3960 ins.first->second.set_shndx(shndx);
3961 if (is_comdat)
3962 ins.first->second.set_is_comdat();
3963 if (is_group_name)
3964 ins.first->second.set_is_group_name();
3965 return true;
3968 // We have already seen this signature.
3970 if (ins.first->second.is_group_name())
3972 // We've already seen a real section group with this signature.
3973 // If the kept group is from a plugin object, and we're in the
3974 // replacement phase, accept the new one as a replacement.
3975 if (ins.first->second.object() == NULL
3976 && parameters->options().plugins()->in_replacement_phase())
3978 ins.first->second.set_object(object);
3979 ins.first->second.set_shndx(shndx);
3980 return true;
3982 return false;
3984 else if (is_group_name)
3986 // This is a real section group, and we've already seen a
3987 // linkonce section with this signature. Record that we've seen
3988 // a section group, and don't include this section group.
3989 ins.first->second.set_is_group_name();
3990 return false;
3992 else
3994 // We've already seen a linkonce section and this is a linkonce
3995 // section. These don't block each other--this may be the same
3996 // symbol name with different section types.
3997 return true;
4001 // Store the allocated sections into the section list.
4003 void
4004 Layout::get_allocated_sections(Section_list* section_list) const
4006 for (Section_list::const_iterator p = this->section_list_.begin();
4007 p != this->section_list_.end();
4008 ++p)
4009 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4010 section_list->push_back(*p);
4013 // Create an output segment.
4015 Output_segment*
4016 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4018 gold_assert(!parameters->options().relocatable());
4019 Output_segment* oseg = new Output_segment(type, flags);
4020 this->segment_list_.push_back(oseg);
4022 if (type == elfcpp::PT_TLS)
4023 this->tls_segment_ = oseg;
4024 else if (type == elfcpp::PT_GNU_RELRO)
4025 this->relro_segment_ = oseg;
4027 return oseg;
4030 // Write out the Output_sections. Most won't have anything to write,
4031 // since most of the data will come from input sections which are
4032 // handled elsewhere. But some Output_sections do have Output_data.
4034 void
4035 Layout::write_output_sections(Output_file* of) const
4037 for (Section_list::const_iterator p = this->section_list_.begin();
4038 p != this->section_list_.end();
4039 ++p)
4041 if (!(*p)->after_input_sections())
4042 (*p)->write(of);
4046 // Write out data not associated with a section or the symbol table.
4048 void
4049 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4051 if (!parameters->options().strip_all())
4053 const Output_section* symtab_section = this->symtab_section_;
4054 for (Section_list::const_iterator p = this->section_list_.begin();
4055 p != this->section_list_.end();
4056 ++p)
4058 if ((*p)->needs_symtab_index())
4060 gold_assert(symtab_section != NULL);
4061 unsigned int index = (*p)->symtab_index();
4062 gold_assert(index > 0 && index != -1U);
4063 off_t off = (symtab_section->offset()
4064 + index * symtab_section->entsize());
4065 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4070 const Output_section* dynsym_section = this->dynsym_section_;
4071 for (Section_list::const_iterator p = this->section_list_.begin();
4072 p != this->section_list_.end();
4073 ++p)
4075 if ((*p)->needs_dynsym_index())
4077 gold_assert(dynsym_section != NULL);
4078 unsigned int index = (*p)->dynsym_index();
4079 gold_assert(index > 0 && index != -1U);
4080 off_t off = (dynsym_section->offset()
4081 + index * dynsym_section->entsize());
4082 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4086 // Write out the Output_data which are not in an Output_section.
4087 for (Data_list::const_iterator p = this->special_output_list_.begin();
4088 p != this->special_output_list_.end();
4089 ++p)
4090 (*p)->write(of);
4093 // Write out the Output_sections which can only be written after the
4094 // input sections are complete.
4096 void
4097 Layout::write_sections_after_input_sections(Output_file* of)
4099 // Determine the final section offsets, and thus the final output
4100 // file size. Note we finalize the .shstrab last, to allow the
4101 // after_input_section sections to modify their section-names before
4102 // writing.
4103 if (this->any_postprocessing_sections_)
4105 off_t off = this->output_file_size_;
4106 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4108 // Now that we've finalized the names, we can finalize the shstrab.
4109 off =
4110 this->set_section_offsets(off,
4111 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4113 if (off > this->output_file_size_)
4115 of->resize(off);
4116 this->output_file_size_ = off;
4120 for (Section_list::const_iterator p = this->section_list_.begin();
4121 p != this->section_list_.end();
4122 ++p)
4124 if ((*p)->after_input_sections())
4125 (*p)->write(of);
4128 this->section_headers_->write(of);
4131 // If the build ID requires computing a checksum, do so here, and
4132 // write it out. We compute a checksum over the entire file because
4133 // that is simplest.
4135 void
4136 Layout::write_build_id(Output_file* of) const
4138 if (this->build_id_note_ == NULL)
4139 return;
4141 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4143 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4144 this->build_id_note_->data_size());
4146 const char* style = parameters->options().build_id();
4147 if (strcmp(style, "sha1") == 0)
4149 sha1_ctx ctx;
4150 sha1_init_ctx(&ctx);
4151 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4152 sha1_finish_ctx(&ctx, ov);
4154 else if (strcmp(style, "md5") == 0)
4156 md5_ctx ctx;
4157 md5_init_ctx(&ctx);
4158 md5_process_bytes(iv, this->output_file_size_, &ctx);
4159 md5_finish_ctx(&ctx, ov);
4161 else
4162 gold_unreachable();
4164 of->write_output_view(this->build_id_note_->offset(),
4165 this->build_id_note_->data_size(),
4166 ov);
4168 of->free_input_view(0, this->output_file_size_, iv);
4171 // Write out a binary file. This is called after the link is
4172 // complete. IN is the temporary output file we used to generate the
4173 // ELF code. We simply walk through the segments, read them from
4174 // their file offset in IN, and write them to their load address in
4175 // the output file. FIXME: with a bit more work, we could support
4176 // S-records and/or Intel hex format here.
4178 void
4179 Layout::write_binary(Output_file* in) const
4181 gold_assert(parameters->options().oformat_enum()
4182 == General_options::OBJECT_FORMAT_BINARY);
4184 // Get the size of the binary file.
4185 uint64_t max_load_address = 0;
4186 for (Segment_list::const_iterator p = this->segment_list_.begin();
4187 p != this->segment_list_.end();
4188 ++p)
4190 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4192 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4193 if (max_paddr > max_load_address)
4194 max_load_address = max_paddr;
4198 Output_file out(parameters->options().output_file_name());
4199 out.open(max_load_address);
4201 for (Segment_list::const_iterator p = this->segment_list_.begin();
4202 p != this->segment_list_.end();
4203 ++p)
4205 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4207 const unsigned char* vin = in->get_input_view((*p)->offset(),
4208 (*p)->filesz());
4209 unsigned char* vout = out.get_output_view((*p)->paddr(),
4210 (*p)->filesz());
4211 memcpy(vout, vin, (*p)->filesz());
4212 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4213 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4217 out.close();
4220 // Print the output sections to the map file.
4222 void
4223 Layout::print_to_mapfile(Mapfile* mapfile) const
4225 for (Segment_list::const_iterator p = this->segment_list_.begin();
4226 p != this->segment_list_.end();
4227 ++p)
4228 (*p)->print_sections_to_mapfile(mapfile);
4231 // Print statistical information to stderr. This is used for --stats.
4233 void
4234 Layout::print_stats() const
4236 this->namepool_.print_stats("section name pool");
4237 this->sympool_.print_stats("output symbol name pool");
4238 this->dynpool_.print_stats("dynamic name pool");
4240 for (Section_list::const_iterator p = this->section_list_.begin();
4241 p != this->section_list_.end();
4242 ++p)
4243 (*p)->print_merge_stats();
4246 // Write_sections_task methods.
4248 // We can always run this task.
4250 Task_token*
4251 Write_sections_task::is_runnable()
4253 return NULL;
4256 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4257 // when finished.
4259 void
4260 Write_sections_task::locks(Task_locker* tl)
4262 tl->add(this, this->output_sections_blocker_);
4263 tl->add(this, this->final_blocker_);
4266 // Run the task--write out the data.
4268 void
4269 Write_sections_task::run(Workqueue*)
4271 this->layout_->write_output_sections(this->of_);
4274 // Write_data_task methods.
4276 // We can always run this task.
4278 Task_token*
4279 Write_data_task::is_runnable()
4281 return NULL;
4284 // We need to unlock FINAL_BLOCKER when finished.
4286 void
4287 Write_data_task::locks(Task_locker* tl)
4289 tl->add(this, this->final_blocker_);
4292 // Run the task--write out the data.
4294 void
4295 Write_data_task::run(Workqueue*)
4297 this->layout_->write_data(this->symtab_, this->of_);
4300 // Write_symbols_task methods.
4302 // We can always run this task.
4304 Task_token*
4305 Write_symbols_task::is_runnable()
4307 return NULL;
4310 // We need to unlock FINAL_BLOCKER when finished.
4312 void
4313 Write_symbols_task::locks(Task_locker* tl)
4315 tl->add(this, this->final_blocker_);
4318 // Run the task--write out the symbols.
4320 void
4321 Write_symbols_task::run(Workqueue*)
4323 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4324 this->layout_->symtab_xindex(),
4325 this->layout_->dynsym_xindex(), this->of_);
4328 // Write_after_input_sections_task methods.
4330 // We can only run this task after the input sections have completed.
4332 Task_token*
4333 Write_after_input_sections_task::is_runnable()
4335 if (this->input_sections_blocker_->is_blocked())
4336 return this->input_sections_blocker_;
4337 return NULL;
4340 // We need to unlock FINAL_BLOCKER when finished.
4342 void
4343 Write_after_input_sections_task::locks(Task_locker* tl)
4345 tl->add(this, this->final_blocker_);
4348 // Run the task.
4350 void
4351 Write_after_input_sections_task::run(Workqueue*)
4353 this->layout_->write_sections_after_input_sections(this->of_);
4356 // Close_task_runner methods.
4358 // Run the task--close the file.
4360 void
4361 Close_task_runner::run(Workqueue*, const Task*)
4363 // If we need to compute a checksum for the BUILD if, we do so here.
4364 this->layout_->write_build_id(this->of_);
4366 // If we've been asked to create a binary file, we do so here.
4367 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4368 this->layout_->write_binary(this->of_);
4370 this->of_->close();
4373 // Instantiate the templates we need. We could use the configure
4374 // script to restrict this to only the ones for implemented targets.
4376 #ifdef HAVE_TARGET_32_LITTLE
4377 template
4378 Output_section*
4379 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
4380 const char* name,
4381 const elfcpp::Shdr<32, false>& shdr,
4382 unsigned int, unsigned int, off_t*);
4383 #endif
4385 #ifdef HAVE_TARGET_32_BIG
4386 template
4387 Output_section*
4388 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
4389 const char* name,
4390 const elfcpp::Shdr<32, true>& shdr,
4391 unsigned int, unsigned int, off_t*);
4392 #endif
4394 #ifdef HAVE_TARGET_64_LITTLE
4395 template
4396 Output_section*
4397 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
4398 const char* name,
4399 const elfcpp::Shdr<64, false>& shdr,
4400 unsigned int, unsigned int, off_t*);
4401 #endif
4403 #ifdef HAVE_TARGET_64_BIG
4404 template
4405 Output_section*
4406 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
4407 const char* name,
4408 const elfcpp::Shdr<64, true>& shdr,
4409 unsigned int, unsigned int, off_t*);
4410 #endif
4412 #ifdef HAVE_TARGET_32_LITTLE
4413 template
4414 Output_section*
4415 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
4416 unsigned int reloc_shndx,
4417 const elfcpp::Shdr<32, false>& shdr,
4418 Output_section* data_section,
4419 Relocatable_relocs* rr);
4420 #endif
4422 #ifdef HAVE_TARGET_32_BIG
4423 template
4424 Output_section*
4425 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
4426 unsigned int reloc_shndx,
4427 const elfcpp::Shdr<32, true>& shdr,
4428 Output_section* data_section,
4429 Relocatable_relocs* rr);
4430 #endif
4432 #ifdef HAVE_TARGET_64_LITTLE
4433 template
4434 Output_section*
4435 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
4436 unsigned int reloc_shndx,
4437 const elfcpp::Shdr<64, false>& shdr,
4438 Output_section* data_section,
4439 Relocatable_relocs* rr);
4440 #endif
4442 #ifdef HAVE_TARGET_64_BIG
4443 template
4444 Output_section*
4445 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
4446 unsigned int reloc_shndx,
4447 const elfcpp::Shdr<64, true>& shdr,
4448 Output_section* data_section,
4449 Relocatable_relocs* rr);
4450 #endif
4452 #ifdef HAVE_TARGET_32_LITTLE
4453 template
4454 void
4455 Layout::layout_group<32, false>(Symbol_table* symtab,
4456 Sized_relobj<32, false>* object,
4457 unsigned int,
4458 const char* group_section_name,
4459 const char* signature,
4460 const elfcpp::Shdr<32, false>& shdr,
4461 elfcpp::Elf_Word flags,
4462 std::vector<unsigned int>* shndxes);
4463 #endif
4465 #ifdef HAVE_TARGET_32_BIG
4466 template
4467 void
4468 Layout::layout_group<32, true>(Symbol_table* symtab,
4469 Sized_relobj<32, true>* object,
4470 unsigned int,
4471 const char* group_section_name,
4472 const char* signature,
4473 const elfcpp::Shdr<32, true>& shdr,
4474 elfcpp::Elf_Word flags,
4475 std::vector<unsigned int>* shndxes);
4476 #endif
4478 #ifdef HAVE_TARGET_64_LITTLE
4479 template
4480 void
4481 Layout::layout_group<64, false>(Symbol_table* symtab,
4482 Sized_relobj<64, false>* object,
4483 unsigned int,
4484 const char* group_section_name,
4485 const char* signature,
4486 const elfcpp::Shdr<64, false>& shdr,
4487 elfcpp::Elf_Word flags,
4488 std::vector<unsigned int>* shndxes);
4489 #endif
4491 #ifdef HAVE_TARGET_64_BIG
4492 template
4493 void
4494 Layout::layout_group<64, true>(Symbol_table* symtab,
4495 Sized_relobj<64, true>* object,
4496 unsigned int,
4497 const char* group_section_name,
4498 const char* signature,
4499 const elfcpp::Shdr<64, true>& shdr,
4500 elfcpp::Elf_Word flags,
4501 std::vector<unsigned int>* shndxes);
4502 #endif
4504 #ifdef HAVE_TARGET_32_LITTLE
4505 template
4506 Output_section*
4507 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4508 const unsigned char* symbols,
4509 off_t symbols_size,
4510 const unsigned char* symbol_names,
4511 off_t symbol_names_size,
4512 unsigned int shndx,
4513 const elfcpp::Shdr<32, false>& shdr,
4514 unsigned int reloc_shndx,
4515 unsigned int reloc_type,
4516 off_t* off);
4517 #endif
4519 #ifdef HAVE_TARGET_32_BIG
4520 template
4521 Output_section*
4522 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4523 const unsigned char* symbols,
4524 off_t symbols_size,
4525 const unsigned char* symbol_names,
4526 off_t symbol_names_size,
4527 unsigned int shndx,
4528 const elfcpp::Shdr<32, true>& shdr,
4529 unsigned int reloc_shndx,
4530 unsigned int reloc_type,
4531 off_t* off);
4532 #endif
4534 #ifdef HAVE_TARGET_64_LITTLE
4535 template
4536 Output_section*
4537 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4538 const unsigned char* symbols,
4539 off_t symbols_size,
4540 const unsigned char* symbol_names,
4541 off_t symbol_names_size,
4542 unsigned int shndx,
4543 const elfcpp::Shdr<64, false>& shdr,
4544 unsigned int reloc_shndx,
4545 unsigned int reloc_type,
4546 off_t* off);
4547 #endif
4549 #ifdef HAVE_TARGET_64_BIG
4550 template
4551 Output_section*
4552 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4553 const unsigned char* symbols,
4554 off_t symbols_size,
4555 const unsigned char* symbol_names,
4556 off_t symbol_names_size,
4557 unsigned int shndx,
4558 const elfcpp::Shdr<64, true>& shdr,
4559 unsigned int reloc_shndx,
4560 unsigned int reloc_type,
4561 off_t* off);
4562 #endif
4564 } // End namespace gold.