Support for Toshiba MeP and for complex relocations.
[binutils.git] / bfd / syms.c
blob17c4ce80400e51f48d2d28473af35113c3023ae3
1 /* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
24 SECTION
25 Symbols
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50 @menu
51 @* Reading Symbols::
52 @* Writing Symbols::
53 @* Mini Symbols::
54 @* typedef asymbol::
55 @* symbol handling functions::
56 @end menu
58 INODE
59 Reading Symbols, Writing Symbols, Symbols, Symbols
60 SUBSECTION
61 Reading symbols
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
67 | long storage_needed;
68 | asymbol **symbol_table;
69 | long number_of_symbols;
70 | long i;
72 | storage_needed = bfd_get_symtab_upper_bound (abfd);
74 | if (storage_needed < 0)
75 | FAIL
77 | if (storage_needed == 0)
78 | return;
80 | symbol_table = xmalloc (storage_needed);
81 | ...
82 | number_of_symbols =
83 | bfd_canonicalize_symtab (abfd, symbol_table);
85 | if (number_of_symbols < 0)
86 | FAIL
88 | for (i = 0; i < number_of_symbols; i++)
89 | process_symbol (symbol_table[i]);
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
94 INODE
95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96 SUBSECTION
97 Writing symbols
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
109 | #include "bfd.h"
110 | int main (void)
112 | bfd *abfd;
113 | asymbol *ptrs[2];
114 | asymbol *new;
116 | abfd = bfd_openw ("foo","a.out-sunos-big");
117 | bfd_set_format (abfd, bfd_object);
118 | new = bfd_make_empty_symbol (abfd);
119 | new->name = "dummy_symbol";
120 | new->section = bfd_make_section_old_way (abfd, ".text");
121 | new->flags = BSF_GLOBAL;
122 | new->value = 0x12345;
124 | ptrs[0] = new;
125 | ptrs[1] = 0;
127 | bfd_set_symtab (abfd, ptrs, 1);
128 | bfd_close (abfd);
129 | return 0;
132 | ./makesym
133 | nm foo
134 | 00012345 A dummy_symbol
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 Mini Symbols
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
173 SUBSECTION
174 typedef asymbol
176 An <<asymbol>> has the form:
181 CODE_FRAGMENT
184 .typedef struct bfd_symbol
186 . {* A pointer to the BFD which owns the symbol. This information
187 . is necessary so that a back end can work out what additional
188 . information (invisible to the application writer) is carried
189 . with the symbol.
191 . This field is *almost* redundant, since you can use section->owner
192 . instead, except that some symbols point to the global sections
193 . bfd_{abs,com,und}_section. This could be fixed by making
194 . these globals be per-bfd (or per-target-flavor). FIXME. *}
195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
197 . {* The text of the symbol. The name is left alone, and not copied; the
198 . application may not alter it. *}
199 . const char *name;
201 . {* The value of the symbol. This really should be a union of a
202 . numeric value with a pointer, since some flags indicate that
203 . a pointer to another symbol is stored here. *}
204 . symvalue value;
206 . {* Attributes of a symbol. *}
207 .#define BSF_NO_FLAGS 0x00
209 . {* The symbol has local scope; <<static>> in <<C>>. The value
210 . is the offset into the section of the data. *}
211 .#define BSF_LOCAL 0x01
213 . {* The symbol has global scope; initialized data in <<C>>. The
214 . value is the offset into the section of the data. *}
215 .#define BSF_GLOBAL 0x02
217 . {* The symbol has global scope and is exported. The value is
218 . the offset into the section of the data. *}
219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
221 . {* A normal C symbol would be one of:
222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223 . <<BSF_GLOBAL>>. *}
225 . {* The symbol is a debugging record. The value has an arbitrary
226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227 .#define BSF_DEBUGGING 0x08
229 . {* The symbol denotes a function entry point. Used in ELF,
230 . perhaps others someday. *}
231 .#define BSF_FUNCTION 0x10
233 . {* Used by the linker. *}
234 .#define BSF_KEEP 0x20
235 .#define BSF_KEEP_G 0x40
237 . {* A weak global symbol, overridable without warnings by
238 . a regular global symbol of the same name. *}
239 .#define BSF_WEAK 0x80
241 . {* This symbol was created to point to a section, e.g. ELF's
242 . STT_SECTION symbols. *}
243 .#define BSF_SECTION_SYM 0x100
245 . {* The symbol used to be a common symbol, but now it is
246 . allocated. *}
247 .#define BSF_OLD_COMMON 0x200
249 . {* The default value for common data. *}
250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0
252 . {* In some files the type of a symbol sometimes alters its
253 . location in an output file - ie in coff a <<ISFCN>> symbol
254 . which is also <<C_EXT>> symbol appears where it was
255 . declared and not at the end of a section. This bit is set
256 . by the target BFD part to convey this information. *}
257 .#define BSF_NOT_AT_END 0x400
259 . {* Signal that the symbol is the label of constructor section. *}
260 .#define BSF_CONSTRUCTOR 0x800
262 . {* Signal that the symbol is a warning symbol. The name is a
263 . warning. The name of the next symbol is the one to warn about;
264 . if a reference is made to a symbol with the same name as the next
265 . symbol, a warning is issued by the linker. *}
266 .#define BSF_WARNING 0x1000
268 . {* Signal that the symbol is indirect. This symbol is an indirect
269 . pointer to the symbol with the same name as the next symbol. *}
270 .#define BSF_INDIRECT 0x2000
272 . {* BSF_FILE marks symbols that contain a file name. This is used
273 . for ELF STT_FILE symbols. *}
274 .#define BSF_FILE 0x4000
276 . {* Symbol is from dynamic linking information. *}
277 .#define BSF_DYNAMIC 0x8000
279 . {* The symbol denotes a data object. Used in ELF, and perhaps
280 . others someday. *}
281 .#define BSF_OBJECT 0x10000
283 . {* This symbol is a debugging symbol. The value is the offset
284 . into the section of the data. BSF_DEBUGGING should be set
285 . as well. *}
286 .#define BSF_DEBUGGING_RELOC 0x20000
288 . {* This symbol is thread local. Used in ELF. *}
289 .#define BSF_THREAD_LOCAL 0x40000
291 . {* This symbol represents a complex relocation expression,
292 . with the expression tree serialized in the symbol name. *}
293 .#define BSF_RELC 0x80000
295 . {* This symbol represents a signed complex relocation expression,
296 . with the expression tree serialized in the symbol name. *}
297 .#define BSF_SRELC 0x100000
299 . flagword flags;
301 . {* A pointer to the section to which this symbol is
302 . relative. This will always be non NULL, there are special
303 . sections for undefined and absolute symbols. *}
304 . struct bfd_section *section;
306 . {* Back end special data. *}
307 . union
309 . void *p;
310 . bfd_vma i;
312 . udata;
314 .asymbol;
318 #include "bfd.h"
319 #include "sysdep.h"
320 #include "libbfd.h"
321 #include "safe-ctype.h"
322 #include "bfdlink.h"
323 #include "aout/stab_gnu.h"
326 DOCDD
327 INODE
328 symbol handling functions, , typedef asymbol, Symbols
329 SUBSECTION
330 Symbol handling functions
334 FUNCTION
335 bfd_get_symtab_upper_bound
337 DESCRIPTION
338 Return the number of bytes required to store a vector of pointers
339 to <<asymbols>> for all the symbols in the BFD @var{abfd},
340 including a terminal NULL pointer. If there are no symbols in
341 the BFD, then return 0. If an error occurs, return -1.
343 .#define bfd_get_symtab_upper_bound(abfd) \
344 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
349 FUNCTION
350 bfd_is_local_label
352 SYNOPSIS
353 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
355 DESCRIPTION
356 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
357 a compiler generated local label, else return FALSE.
360 bfd_boolean
361 bfd_is_local_label (bfd *abfd, asymbol *sym)
363 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
364 starts with '.' is local. This would accidentally catch section names
365 if we didn't reject them here. */
366 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
367 return FALSE;
368 if (sym->name == NULL)
369 return FALSE;
370 return bfd_is_local_label_name (abfd, sym->name);
374 FUNCTION
375 bfd_is_local_label_name
377 SYNOPSIS
378 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
380 DESCRIPTION
381 Return TRUE if a symbol with the name @var{name} in the BFD
382 @var{abfd} is a compiler generated local label, else return
383 FALSE. This just checks whether the name has the form of a
384 local label.
386 .#define bfd_is_local_label_name(abfd, name) \
387 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
392 FUNCTION
393 bfd_is_target_special_symbol
395 SYNOPSIS
396 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
398 DESCRIPTION
399 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
400 special to the particular target represented by the BFD. Such symbols
401 should normally not be mentioned to the user.
403 .#define bfd_is_target_special_symbol(abfd, sym) \
404 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
409 FUNCTION
410 bfd_canonicalize_symtab
412 DESCRIPTION
413 Read the symbols from the BFD @var{abfd}, and fills in
414 the vector @var{location} with pointers to the symbols and
415 a trailing NULL.
416 Return the actual number of symbol pointers, not
417 including the NULL.
419 .#define bfd_canonicalize_symtab(abfd, location) \
420 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
425 FUNCTION
426 bfd_set_symtab
428 SYNOPSIS
429 bfd_boolean bfd_set_symtab
430 (bfd *abfd, asymbol **location, unsigned int count);
432 DESCRIPTION
433 Arrange that when the output BFD @var{abfd} is closed,
434 the table @var{location} of @var{count} pointers to symbols
435 will be written.
438 bfd_boolean
439 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
441 if (abfd->format != bfd_object || bfd_read_p (abfd))
443 bfd_set_error (bfd_error_invalid_operation);
444 return FALSE;
447 bfd_get_outsymbols (abfd) = location;
448 bfd_get_symcount (abfd) = symcount;
449 return TRUE;
453 FUNCTION
454 bfd_print_symbol_vandf
456 SYNOPSIS
457 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
459 DESCRIPTION
460 Print the value and flags of the @var{symbol} supplied to the
461 stream @var{file}.
463 void
464 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
466 FILE *file = arg;
468 flagword type = symbol->flags;
470 if (symbol->section != NULL)
471 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
472 else
473 bfd_fprintf_vma (abfd, file, symbol->value);
475 /* This presumes that a symbol can not be both BSF_DEBUGGING and
476 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
477 BSF_OBJECT. */
478 fprintf (file, " %c%c%c%c%c%c%c",
479 ((type & BSF_LOCAL)
480 ? (type & BSF_GLOBAL) ? '!' : 'l'
481 : (type & BSF_GLOBAL) ? 'g' : ' '),
482 (type & BSF_WEAK) ? 'w' : ' ',
483 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
484 (type & BSF_WARNING) ? 'W' : ' ',
485 (type & BSF_INDIRECT) ? 'I' : ' ',
486 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
487 ((type & BSF_FUNCTION)
488 ? 'F'
489 : ((type & BSF_FILE)
490 ? 'f'
491 : ((type & BSF_OBJECT) ? 'O' : ' '))));
495 FUNCTION
496 bfd_make_empty_symbol
498 DESCRIPTION
499 Create a new <<asymbol>> structure for the BFD @var{abfd}
500 and return a pointer to it.
502 This routine is necessary because each back end has private
503 information surrounding the <<asymbol>>. Building your own
504 <<asymbol>> and pointing to it will not create the private
505 information, and will cause problems later on.
507 .#define bfd_make_empty_symbol(abfd) \
508 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
513 FUNCTION
514 _bfd_generic_make_empty_symbol
516 SYNOPSIS
517 asymbol *_bfd_generic_make_empty_symbol (bfd *);
519 DESCRIPTION
520 Create a new <<asymbol>> structure for the BFD @var{abfd}
521 and return a pointer to it. Used by core file routines,
522 binary back-end and anywhere else where no private info
523 is needed.
526 asymbol *
527 _bfd_generic_make_empty_symbol (bfd *abfd)
529 bfd_size_type amt = sizeof (asymbol);
530 asymbol *new = bfd_zalloc (abfd, amt);
531 if (new)
532 new->the_bfd = abfd;
533 return new;
537 FUNCTION
538 bfd_make_debug_symbol
540 DESCRIPTION
541 Create a new <<asymbol>> structure for the BFD @var{abfd},
542 to be used as a debugging symbol. Further details of its use have
543 yet to be worked out.
545 .#define bfd_make_debug_symbol(abfd,ptr,size) \
546 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
550 struct section_to_type
552 const char *section;
553 char type;
556 /* Map section names to POSIX/BSD single-character symbol types.
557 This table is probably incomplete. It is sorted for convenience of
558 adding entries. Since it is so short, a linear search is used. */
559 static const struct section_to_type stt[] =
561 {".bss", 'b'},
562 {"code", 't'}, /* MRI .text */
563 {".data", 'd'},
564 {"*DEBUG*", 'N'},
565 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
566 {".drectve", 'i'}, /* MSVC's .drective section */
567 {".edata", 'e'}, /* MSVC's .edata (export) section */
568 {".fini", 't'}, /* ELF fini section */
569 {".idata", 'i'}, /* MSVC's .idata (import) section */
570 {".init", 't'}, /* ELF init section */
571 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
572 {".rdata", 'r'}, /* Read only data. */
573 {".rodata", 'r'}, /* Read only data. */
574 {".sbss", 's'}, /* Small BSS (uninitialized data). */
575 {".scommon", 'c'}, /* Small common. */
576 {".sdata", 'g'}, /* Small initialized data. */
577 {".text", 't'},
578 {"vars", 'd'}, /* MRI .data */
579 {"zerovars", 'b'}, /* MRI .bss */
580 {0, 0}
583 /* Return the single-character symbol type corresponding to
584 section S, or '?' for an unknown COFF section.
586 Check for any leading string which matches, so .text5 returns
587 't' as well as .text */
589 static char
590 coff_section_type (const char *s)
592 const struct section_to_type *t;
594 for (t = &stt[0]; t->section; t++)
595 if (!strncmp (s, t->section, strlen (t->section)))
596 return t->type;
598 return '?';
601 /* Return the single-character symbol type corresponding to section
602 SECTION, or '?' for an unknown section. This uses section flags to
603 identify sections.
605 FIXME These types are unhandled: c, i, e, p. If we handled these also,
606 we could perhaps obsolete coff_section_type. */
608 static char
609 decode_section_type (const struct bfd_section *section)
611 if (section->flags & SEC_CODE)
612 return 't';
613 if (section->flags & SEC_DATA)
615 if (section->flags & SEC_READONLY)
616 return 'r';
617 else if (section->flags & SEC_SMALL_DATA)
618 return 'g';
619 else
620 return 'd';
622 if ((section->flags & SEC_HAS_CONTENTS) == 0)
624 if (section->flags & SEC_SMALL_DATA)
625 return 's';
626 else
627 return 'b';
629 if (section->flags & SEC_DEBUGGING)
630 return 'N';
631 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
632 return 'n';
634 return '?';
638 FUNCTION
639 bfd_decode_symclass
641 DESCRIPTION
642 Return a character corresponding to the symbol
643 class of @var{symbol}, or '?' for an unknown class.
645 SYNOPSIS
646 int bfd_decode_symclass (asymbol *symbol);
649 bfd_decode_symclass (asymbol *symbol)
651 char c;
653 if (bfd_is_com_section (symbol->section))
654 return 'C';
655 if (bfd_is_und_section (symbol->section))
657 if (symbol->flags & BSF_WEAK)
659 /* If weak, determine if it's specifically an object
660 or non-object weak. */
661 if (symbol->flags & BSF_OBJECT)
662 return 'v';
663 else
664 return 'w';
666 else
667 return 'U';
669 if (bfd_is_ind_section (symbol->section))
670 return 'I';
671 if (symbol->flags & BSF_WEAK)
673 /* If weak, determine if it's specifically an object
674 or non-object weak. */
675 if (symbol->flags & BSF_OBJECT)
676 return 'V';
677 else
678 return 'W';
680 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
681 return '?';
683 if (bfd_is_abs_section (symbol->section))
684 c = 'a';
685 else if (symbol->section)
687 c = coff_section_type (symbol->section->name);
688 if (c == '?')
689 c = decode_section_type (symbol->section);
691 else
692 return '?';
693 if (symbol->flags & BSF_GLOBAL)
694 c = TOUPPER (c);
695 return c;
697 /* We don't have to handle these cases just yet, but we will soon:
698 N_SETV: 'v';
699 N_SETA: 'l';
700 N_SETT: 'x';
701 N_SETD: 'z';
702 N_SETB: 's';
703 N_INDR: 'i';
708 FUNCTION
709 bfd_is_undefined_symclass
711 DESCRIPTION
712 Returns non-zero if the class symbol returned by
713 bfd_decode_symclass represents an undefined symbol.
714 Returns zero otherwise.
716 SYNOPSIS
717 bfd_boolean bfd_is_undefined_symclass (int symclass);
720 bfd_boolean
721 bfd_is_undefined_symclass (int symclass)
723 return symclass == 'U' || symclass == 'w' || symclass == 'v';
727 FUNCTION
728 bfd_symbol_info
730 DESCRIPTION
731 Fill in the basic info about symbol that nm needs.
732 Additional info may be added by the back-ends after
733 calling this function.
735 SYNOPSIS
736 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
739 void
740 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
742 ret->type = bfd_decode_symclass (symbol);
744 if (bfd_is_undefined_symclass (ret->type))
745 ret->value = 0;
746 else
747 ret->value = symbol->value + symbol->section->vma;
749 ret->name = symbol->name;
753 FUNCTION
754 bfd_copy_private_symbol_data
756 SYNOPSIS
757 bfd_boolean bfd_copy_private_symbol_data
758 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
760 DESCRIPTION
761 Copy private symbol information from @var{isym} in the BFD
762 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
763 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
764 returns are:
766 o <<bfd_error_no_memory>> -
767 Not enough memory exists to create private data for @var{osec}.
769 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
770 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
771 . (ibfd, isymbol, obfd, osymbol))
775 /* The generic version of the function which returns mini symbols.
776 This is used when the backend does not provide a more efficient
777 version. It just uses BFD asymbol structures as mini symbols. */
779 long
780 _bfd_generic_read_minisymbols (bfd *abfd,
781 bfd_boolean dynamic,
782 void **minisymsp,
783 unsigned int *sizep)
785 long storage;
786 asymbol **syms = NULL;
787 long symcount;
789 if (dynamic)
790 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
791 else
792 storage = bfd_get_symtab_upper_bound (abfd);
793 if (storage < 0)
794 goto error_return;
795 if (storage == 0)
796 return 0;
798 syms = bfd_malloc (storage);
799 if (syms == NULL)
800 goto error_return;
802 if (dynamic)
803 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
804 else
805 symcount = bfd_canonicalize_symtab (abfd, syms);
806 if (symcount < 0)
807 goto error_return;
809 *minisymsp = syms;
810 *sizep = sizeof (asymbol *);
811 return symcount;
813 error_return:
814 bfd_set_error (bfd_error_no_symbols);
815 if (syms != NULL)
816 free (syms);
817 return -1;
820 /* The generic version of the function which converts a minisymbol to
821 an asymbol. We don't worry about the sym argument we are passed;
822 we just return the asymbol the minisymbol points to. */
824 asymbol *
825 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
826 bfd_boolean dynamic ATTRIBUTE_UNUSED,
827 const void *minisym,
828 asymbol *sym ATTRIBUTE_UNUSED)
830 return *(asymbol **) minisym;
833 /* Look through stabs debugging information in .stab and .stabstr
834 sections to find the source file and line closest to a desired
835 location. This is used by COFF and ELF targets. It sets *pfound
836 to TRUE if it finds some information. The *pinfo field is used to
837 pass cached information in and out of this routine; this first time
838 the routine is called for a BFD, *pinfo should be NULL. The value
839 placed in *pinfo should be saved with the BFD, and passed back each
840 time this function is called. */
842 /* We use a cache by default. */
844 #define ENABLE_CACHING
846 /* We keep an array of indexentry structures to record where in the
847 stabs section we should look to find line number information for a
848 particular address. */
850 struct indexentry
852 bfd_vma val;
853 bfd_byte *stab;
854 bfd_byte *str;
855 char *directory_name;
856 char *file_name;
857 char *function_name;
860 /* Compare two indexentry structures. This is called via qsort. */
862 static int
863 cmpindexentry (const void *a, const void *b)
865 const struct indexentry *contestantA = a;
866 const struct indexentry *contestantB = b;
868 if (contestantA->val < contestantB->val)
869 return -1;
870 else if (contestantA->val > contestantB->val)
871 return 1;
872 else
873 return 0;
876 /* A pointer to this structure is stored in *pinfo. */
878 struct stab_find_info
880 /* The .stab section. */
881 asection *stabsec;
882 /* The .stabstr section. */
883 asection *strsec;
884 /* The contents of the .stab section. */
885 bfd_byte *stabs;
886 /* The contents of the .stabstr section. */
887 bfd_byte *strs;
889 /* A table that indexes stabs by memory address. */
890 struct indexentry *indextable;
891 /* The number of entries in indextable. */
892 int indextablesize;
894 #ifdef ENABLE_CACHING
895 /* Cached values to restart quickly. */
896 struct indexentry *cached_indexentry;
897 bfd_vma cached_offset;
898 bfd_byte *cached_stab;
899 char *cached_file_name;
900 #endif
902 /* Saved ptr to malloc'ed filename. */
903 char *filename;
906 bfd_boolean
907 _bfd_stab_section_find_nearest_line (bfd *abfd,
908 asymbol **symbols,
909 asection *section,
910 bfd_vma offset,
911 bfd_boolean *pfound,
912 const char **pfilename,
913 const char **pfnname,
914 unsigned int *pline,
915 void **pinfo)
917 struct stab_find_info *info;
918 bfd_size_type stabsize, strsize;
919 bfd_byte *stab, *str;
920 bfd_byte *last_stab = NULL;
921 bfd_size_type stroff;
922 struct indexentry *indexentry;
923 char *file_name;
924 char *directory_name;
925 int saw_fun;
926 bfd_boolean saw_line, saw_func;
928 *pfound = FALSE;
929 *pfilename = bfd_get_filename (abfd);
930 *pfnname = NULL;
931 *pline = 0;
933 /* Stabs entries use a 12 byte format:
934 4 byte string table index
935 1 byte stab type
936 1 byte stab other field
937 2 byte stab desc field
938 4 byte stab value
939 FIXME: This will have to change for a 64 bit object format.
941 The stabs symbols are divided into compilation units. For the
942 first entry in each unit, the type of 0, the value is the length
943 of the string table for this unit, and the desc field is the
944 number of stabs symbols for this unit. */
946 #define STRDXOFF (0)
947 #define TYPEOFF (4)
948 #define OTHEROFF (5)
949 #define DESCOFF (6)
950 #define VALOFF (8)
951 #define STABSIZE (12)
953 info = *pinfo;
954 if (info != NULL)
956 if (info->stabsec == NULL || info->strsec == NULL)
958 /* No stabs debugging information. */
959 return TRUE;
962 stabsize = (info->stabsec->rawsize
963 ? info->stabsec->rawsize
964 : info->stabsec->size);
965 strsize = (info->strsec->rawsize
966 ? info->strsec->rawsize
967 : info->strsec->size);
969 else
971 long reloc_size, reloc_count;
972 arelent **reloc_vector;
973 int i;
974 char *name;
975 char *function_name;
976 bfd_size_type amt = sizeof *info;
978 info = bfd_zalloc (abfd, amt);
979 if (info == NULL)
980 return FALSE;
982 /* FIXME: When using the linker --split-by-file or
983 --split-by-reloc options, it is possible for the .stab and
984 .stabstr sections to be split. We should handle that. */
986 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
987 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
989 if (info->stabsec == NULL || info->strsec == NULL)
991 /* No stabs debugging information. Set *pinfo so that we
992 can return quickly in the info != NULL case above. */
993 *pinfo = info;
994 return TRUE;
997 stabsize = (info->stabsec->rawsize
998 ? info->stabsec->rawsize
999 : info->stabsec->size);
1000 strsize = (info->strsec->rawsize
1001 ? info->strsec->rawsize
1002 : info->strsec->size);
1004 info->stabs = bfd_alloc (abfd, stabsize);
1005 info->strs = bfd_alloc (abfd, strsize);
1006 if (info->stabs == NULL || info->strs == NULL)
1007 return FALSE;
1009 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1010 0, stabsize)
1011 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1012 0, strsize))
1013 return FALSE;
1015 /* If this is a relocatable object file, we have to relocate
1016 the entries in .stab. This should always be simple 32 bit
1017 relocations against symbols defined in this object file, so
1018 this should be no big deal. */
1019 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1020 if (reloc_size < 0)
1021 return FALSE;
1022 reloc_vector = bfd_malloc (reloc_size);
1023 if (reloc_vector == NULL && reloc_size != 0)
1024 return FALSE;
1025 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1026 symbols);
1027 if (reloc_count < 0)
1029 if (reloc_vector != NULL)
1030 free (reloc_vector);
1031 return FALSE;
1033 if (reloc_count > 0)
1035 arelent **pr;
1037 for (pr = reloc_vector; *pr != NULL; pr++)
1039 arelent *r;
1040 unsigned long val;
1041 asymbol *sym;
1043 r = *pr;
1044 /* Ignore R_*_NONE relocs. */
1045 if (r->howto->dst_mask == 0)
1046 continue;
1048 if (r->howto->rightshift != 0
1049 || r->howto->size != 2
1050 || r->howto->bitsize != 32
1051 || r->howto->pc_relative
1052 || r->howto->bitpos != 0
1053 || r->howto->dst_mask != 0xffffffff)
1055 (*_bfd_error_handler)
1056 (_("Unsupported .stab relocation"));
1057 bfd_set_error (bfd_error_invalid_operation);
1058 if (reloc_vector != NULL)
1059 free (reloc_vector);
1060 return FALSE;
1063 val = bfd_get_32 (abfd, info->stabs + r->address);
1064 val &= r->howto->src_mask;
1065 sym = *r->sym_ptr_ptr;
1066 val += sym->value + sym->section->vma + r->addend;
1067 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1071 if (reloc_vector != NULL)
1072 free (reloc_vector);
1074 /* First time through this function, build a table matching
1075 function VM addresses to stabs, then sort based on starting
1076 VM address. Do this in two passes: once to count how many
1077 table entries we'll need, and a second to actually build the
1078 table. */
1080 info->indextablesize = 0;
1081 saw_fun = 1;
1082 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1084 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1086 /* N_SO with null name indicates EOF */
1087 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1088 continue;
1090 /* if we did not see a function def, leave space for one. */
1091 if (saw_fun == 0)
1092 ++info->indextablesize;
1094 saw_fun = 0;
1096 /* two N_SO's in a row is a filename and directory. Skip */
1097 if (stab + STABSIZE < info->stabs + stabsize
1098 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1100 stab += STABSIZE;
1103 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1105 saw_fun = 1;
1106 ++info->indextablesize;
1110 if (saw_fun == 0)
1111 ++info->indextablesize;
1113 if (info->indextablesize == 0)
1114 return TRUE;
1115 ++info->indextablesize;
1117 amt = info->indextablesize;
1118 amt *= sizeof (struct indexentry);
1119 info->indextable = bfd_alloc (abfd, amt);
1120 if (info->indextable == NULL)
1121 return FALSE;
1123 file_name = NULL;
1124 directory_name = NULL;
1125 saw_fun = 1;
1127 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1128 i < info->indextablesize && stab < info->stabs + stabsize;
1129 stab += STABSIZE)
1131 switch (stab[TYPEOFF])
1133 case 0:
1134 /* This is the first entry in a compilation unit. */
1135 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1136 break;
1137 str += stroff;
1138 stroff = bfd_get_32 (abfd, stab + VALOFF);
1139 break;
1141 case N_SO:
1142 /* The main file name. */
1144 /* The following code creates a new indextable entry with
1145 a NULL function name if there were no N_FUNs in a file.
1146 Note that a N_SO without a file name is an EOF and
1147 there could be 2 N_SO following it with the new filename
1148 and directory. */
1149 if (saw_fun == 0)
1151 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1152 info->indextable[i].stab = last_stab;
1153 info->indextable[i].str = str;
1154 info->indextable[i].directory_name = directory_name;
1155 info->indextable[i].file_name = file_name;
1156 info->indextable[i].function_name = NULL;
1157 ++i;
1159 saw_fun = 0;
1161 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1162 if (*file_name == '\0')
1164 directory_name = NULL;
1165 file_name = NULL;
1166 saw_fun = 1;
1168 else
1170 last_stab = stab;
1171 if (stab + STABSIZE >= info->stabs + stabsize
1172 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1174 directory_name = NULL;
1176 else
1178 /* Two consecutive N_SOs are a directory and a
1179 file name. */
1180 stab += STABSIZE;
1181 directory_name = file_name;
1182 file_name = ((char *) str
1183 + bfd_get_32 (abfd, stab + STRDXOFF));
1186 break;
1188 case N_SOL:
1189 /* The name of an include file. */
1190 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1191 break;
1193 case N_FUN:
1194 /* A function name. */
1195 saw_fun = 1;
1196 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1198 if (*name == '\0')
1199 name = NULL;
1201 function_name = name;
1203 if (name == NULL)
1204 continue;
1206 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1207 info->indextable[i].stab = stab;
1208 info->indextable[i].str = str;
1209 info->indextable[i].directory_name = directory_name;
1210 info->indextable[i].file_name = file_name;
1211 info->indextable[i].function_name = function_name;
1212 ++i;
1213 break;
1217 if (saw_fun == 0)
1219 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1220 info->indextable[i].stab = last_stab;
1221 info->indextable[i].str = str;
1222 info->indextable[i].directory_name = directory_name;
1223 info->indextable[i].file_name = file_name;
1224 info->indextable[i].function_name = NULL;
1225 ++i;
1228 info->indextable[i].val = (bfd_vma) -1;
1229 info->indextable[i].stab = info->stabs + stabsize;
1230 info->indextable[i].str = str;
1231 info->indextable[i].directory_name = NULL;
1232 info->indextable[i].file_name = NULL;
1233 info->indextable[i].function_name = NULL;
1234 ++i;
1236 info->indextablesize = i;
1237 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1238 cmpindexentry);
1240 *pinfo = info;
1243 /* We are passed a section relative offset. The offsets in the
1244 stabs information are absolute. */
1245 offset += bfd_get_section_vma (abfd, section);
1247 #ifdef ENABLE_CACHING
1248 if (info->cached_indexentry != NULL
1249 && offset >= info->cached_offset
1250 && offset < (info->cached_indexentry + 1)->val)
1252 stab = info->cached_stab;
1253 indexentry = info->cached_indexentry;
1254 file_name = info->cached_file_name;
1256 else
1257 #endif
1259 long low, high;
1260 long mid = -1;
1262 /* Cache non-existent or invalid. Do binary search on
1263 indextable. */
1264 indexentry = NULL;
1266 low = 0;
1267 high = info->indextablesize - 1;
1268 while (low != high)
1270 mid = (high + low) / 2;
1271 if (offset >= info->indextable[mid].val
1272 && offset < info->indextable[mid + 1].val)
1274 indexentry = &info->indextable[mid];
1275 break;
1278 if (info->indextable[mid].val > offset)
1279 high = mid;
1280 else
1281 low = mid + 1;
1284 if (indexentry == NULL)
1285 return TRUE;
1287 stab = indexentry->stab + STABSIZE;
1288 file_name = indexentry->file_name;
1291 directory_name = indexentry->directory_name;
1292 str = indexentry->str;
1294 saw_line = FALSE;
1295 saw_func = FALSE;
1296 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1298 bfd_boolean done;
1299 bfd_vma val;
1301 done = FALSE;
1303 switch (stab[TYPEOFF])
1305 case N_SOL:
1306 /* The name of an include file. */
1307 val = bfd_get_32 (abfd, stab + VALOFF);
1308 if (val <= offset)
1310 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1311 *pline = 0;
1313 break;
1315 case N_SLINE:
1316 case N_DSLINE:
1317 case N_BSLINE:
1318 /* A line number. If the function was specified, then the value
1319 is relative to the start of the function. Otherwise, the
1320 value is an absolute address. */
1321 val = ((indexentry->function_name ? indexentry->val : 0)
1322 + bfd_get_32 (abfd, stab + VALOFF));
1323 /* If this line starts before our desired offset, or if it's
1324 the first line we've been able to find, use it. The
1325 !saw_line check works around a bug in GCC 2.95.3, which emits
1326 the first N_SLINE late. */
1327 if (!saw_line || val <= offset)
1329 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1331 #ifdef ENABLE_CACHING
1332 info->cached_stab = stab;
1333 info->cached_offset = val;
1334 info->cached_file_name = file_name;
1335 info->cached_indexentry = indexentry;
1336 #endif
1338 if (val > offset)
1339 done = TRUE;
1340 saw_line = TRUE;
1341 break;
1343 case N_FUN:
1344 case N_SO:
1345 if (saw_func || saw_line)
1346 done = TRUE;
1347 saw_func = TRUE;
1348 break;
1351 if (done)
1352 break;
1355 *pfound = TRUE;
1357 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1358 || directory_name == NULL)
1359 *pfilename = file_name;
1360 else
1362 size_t dirlen;
1364 dirlen = strlen (directory_name);
1365 if (info->filename == NULL
1366 || strncmp (info->filename, directory_name, dirlen) != 0
1367 || strcmp (info->filename + dirlen, file_name) != 0)
1369 size_t len;
1371 if (info->filename != NULL)
1372 free (info->filename);
1373 len = strlen (file_name) + 1;
1374 info->filename = bfd_malloc (dirlen + len);
1375 if (info->filename == NULL)
1376 return FALSE;
1377 memcpy (info->filename, directory_name, dirlen);
1378 memcpy (info->filename + dirlen, file_name, len);
1381 *pfilename = info->filename;
1384 if (indexentry->function_name != NULL)
1386 char *s;
1388 /* This will typically be something like main:F(0,1), so we want
1389 to clobber the colon. It's OK to change the name, since the
1390 string is in our own local storage anyhow. */
1391 s = strchr (indexentry->function_name, ':');
1392 if (s != NULL)
1393 *s = '\0';
1395 *pfnname = indexentry->function_name;
1398 return TRUE;