Support for Toshiba MeP and for complex relocations.
[binutils.git] / bfd / elf.c
blob460502c2e49bd2659c306332294474c4d7531968
1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23 SECTION
24 ELF backends
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
70 /* Swap out a Verdef structure. */
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
86 /* Swap in a Verdaux structure. */
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
97 /* Swap out a Verdaux structure. */
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
108 /* Swap in a Verneed structure. */
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
122 /* Swap out a Verneed structure. */
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
136 /* Swap in a Vernaux structure. */
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
150 /* Swap out a Vernaux structure. */
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
164 /* Swap in a Versym structure. */
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
174 /* Swap out a Versym structure. */
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
187 unsigned long
188 bfd_elf_hash (const char *namearg)
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
195 while ((ch = *name++) != '\0')
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
206 return h & 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
227 if (abfd->tdata.any == NULL)
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
236 return TRUE;
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
281 return (char *) shstrtab;
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
289 Elf_Internal_Shdr *hdr;
291 if (strindex == 0)
292 return "";
294 hdr = elf_elfsections (abfd)[shindex];
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
300 if (strindex >= hdr->sh_size)
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
312 return ((char *) hdr->contents) + strindex;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
342 if (symcount == 0)
343 return intsym_buf;
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
366 intsym_buf = NULL;
367 goto out;
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
386 intsym_buf = NULL;
387 goto out;
391 if (intsym_buf == NULL)
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
419 return intsym_buf;
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
448 return name;
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
492 unsigned int num_group = elf_tdata (abfd)->num_group;
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
498 unsigned int i, shnum;
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
511 if (num_group == 0)
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
516 else
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
534 unsigned char *src;
535 Elf_Internal_Group *dest;
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
560 unsigned int idx;
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
573 if (idx >= shnum)
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
579 dest->shdr = elf_elfsections (abfd)[idx];
586 if (num_group != (unsigned) -1)
588 unsigned int i;
590 for (i = 0; i < num_group; i++)
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
601 asection *s = NULL;
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
620 else
622 const char *gname;
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
638 i = num_group - 1;
639 break;
644 if (elf_group_name (newsect) == NULL)
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
649 return TRUE;
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
679 else
681 asection *link;
683 this_hdr = elf_elfsections (abfd)[elfsec];
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
697 elf_linked_to_section (s) = link;
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
706 for (i = 0; i < num_group; i++)
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
738 return result;
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
744 return elf_next_in_group (sec) != NULL;
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
760 if (hdr->bfd_section != NULL)
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
779 newsect->filepos = hdr->sh_offset;
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
817 if ((flags & SEC_ALLOC) == 0)
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
823 const char *name;
824 int len;
825 } debug_sections [] =
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
845 if (name [0] == '.')
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
875 if ((flags & SEC_ALLOC) != 0)
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
886 if (phdr->p_paddr != 0)
887 break;
889 if (i < elf_elfheader (abfd)->e_phnum)
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
941 return TRUE;
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
980 return 0;
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1017 return bfd_reloc_continue;
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1030 /* Finish SHF_MERGE section merging. */
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1035 bfd *ibfd;
1036 asection *sec;
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1047 struct bfd_elf_section_data *secdata;
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1075 /* Copy the program header and other data from one object module to
1076 another. */
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1098 const char *pt;
1099 switch (p_type)
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1114 return pt;
1117 /* Print out the program headers. */
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1130 unsigned int i, c;
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1139 if (pt == NULL)
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1174 fprintf (f, _("\nDynamic Section:\n"));
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1282 fprintf (f, "\n");
1285 free (dynbuf);
1286 dynbuf = NULL;
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1296 if (elf_dynverdef (abfd) != 0)
1298 Elf_Internal_Verdef *t;
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1308 Elf_Internal_Verdaux *a;
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1321 if (elf_dynverref (abfd) != 0)
1323 Elf_Internal_Verneed *t;
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1328 Elf_Internal_Vernaux *a;
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1339 return TRUE;
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1347 /* Display ELF-specific fields of a symbol. */
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1355 FILE *file = filep;
1356 switch (how)
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1380 if (name == NULL)
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1402 unsigned int vernum;
1403 const char *version_string;
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1416 Elf_Internal_Verneed *t;
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1423 Elf_Internal_Vernaux *a;
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1427 if (a->vna_other == vernum)
1429 version_string = a->vna_nodename;
1430 break;
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1440 int i;
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1451 switch (st_other)
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1463 fprintf (file, " %s", name);
1465 break;
1469 /* Create an entry in an ELF linker hash table. */
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1506 return entry;
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1517 struct elf_link_hash_table *htab;
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1551 if (ind->dynindx != -1)
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1581 /* Initialize an ELF linker hash table. */
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1595 memset (table, 0, sizeof * table);
1596 table->init_got_refcount.refcount = can_refcount - 1;
1597 table->init_plt_refcount.refcount = can_refcount - 1;
1598 table->init_got_offset.offset = -(bfd_vma) 1;
1599 table->init_plt_offset.offset = -(bfd_vma) 1;
1600 /* The first dynamic symbol is a dummy. */
1601 table->dynsymcount = 1;
1603 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1604 table->root.type = bfd_link_elf_hash_table;
1606 return ret;
1609 /* Create an ELF linker hash table. */
1611 struct bfd_link_hash_table *
1612 _bfd_elf_link_hash_table_create (bfd *abfd)
1614 struct elf_link_hash_table *ret;
1615 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1617 ret = bfd_malloc (amt);
1618 if (ret == NULL)
1619 return NULL;
1621 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1622 sizeof (struct elf_link_hash_entry)))
1624 free (ret);
1625 return NULL;
1628 return &ret->root;
1631 /* This is a hook for the ELF emulation code in the generic linker to
1632 tell the backend linker what file name to use for the DT_NEEDED
1633 entry for a dynamic object. */
1635 void
1636 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1638 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1639 && bfd_get_format (abfd) == bfd_object)
1640 elf_dt_name (abfd) = name;
1644 bfd_elf_get_dyn_lib_class (bfd *abfd)
1646 int lib_class;
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 lib_class = elf_dyn_lib_class (abfd);
1650 else
1651 lib_class = 0;
1652 return lib_class;
1655 void
1656 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1658 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1659 && bfd_get_format (abfd) == bfd_object)
1660 elf_dyn_lib_class (abfd) = lib_class;
1663 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1664 the linker ELF emulation code. */
1666 struct bfd_link_needed_list *
1667 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1668 struct bfd_link_info *info)
1670 if (! is_elf_hash_table (info->hash))
1671 return NULL;
1672 return elf_hash_table (info)->needed;
1675 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1676 hook for the linker ELF emulation code. */
1678 struct bfd_link_needed_list *
1679 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1680 struct bfd_link_info *info)
1682 if (! is_elf_hash_table (info->hash))
1683 return NULL;
1684 return elf_hash_table (info)->runpath;
1687 /* Get the name actually used for a dynamic object for a link. This
1688 is the SONAME entry if there is one. Otherwise, it is the string
1689 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1691 const char *
1692 bfd_elf_get_dt_soname (bfd *abfd)
1694 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1695 && bfd_get_format (abfd) == bfd_object)
1696 return elf_dt_name (abfd);
1697 return NULL;
1700 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1701 the ELF linker emulation code. */
1703 bfd_boolean
1704 bfd_elf_get_bfd_needed_list (bfd *abfd,
1705 struct bfd_link_needed_list **pneeded)
1707 asection *s;
1708 bfd_byte *dynbuf = NULL;
1709 int elfsec;
1710 unsigned long shlink;
1711 bfd_byte *extdyn, *extdynend;
1712 size_t extdynsize;
1713 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1715 *pneeded = NULL;
1717 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1718 || bfd_get_format (abfd) != bfd_object)
1719 return TRUE;
1721 s = bfd_get_section_by_name (abfd, ".dynamic");
1722 if (s == NULL || s->size == 0)
1723 return TRUE;
1725 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1726 goto error_return;
1728 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1729 if (elfsec == -1)
1730 goto error_return;
1732 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1734 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1735 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1737 extdyn = dynbuf;
1738 extdynend = extdyn + s->size;
1739 for (; extdyn < extdynend; extdyn += extdynsize)
1741 Elf_Internal_Dyn dyn;
1743 (*swap_dyn_in) (abfd, extdyn, &dyn);
1745 if (dyn.d_tag == DT_NULL)
1746 break;
1748 if (dyn.d_tag == DT_NEEDED)
1750 const char *string;
1751 struct bfd_link_needed_list *l;
1752 unsigned int tagv = dyn.d_un.d_val;
1753 bfd_size_type amt;
1755 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1756 if (string == NULL)
1757 goto error_return;
1759 amt = sizeof *l;
1760 l = bfd_alloc (abfd, amt);
1761 if (l == NULL)
1762 goto error_return;
1764 l->by = abfd;
1765 l->name = string;
1766 l->next = *pneeded;
1767 *pneeded = l;
1771 free (dynbuf);
1773 return TRUE;
1775 error_return:
1776 if (dynbuf != NULL)
1777 free (dynbuf);
1778 return FALSE;
1781 /* Allocate an ELF string table--force the first byte to be zero. */
1783 struct bfd_strtab_hash *
1784 _bfd_elf_stringtab_init (void)
1786 struct bfd_strtab_hash *ret;
1788 ret = _bfd_stringtab_init ();
1789 if (ret != NULL)
1791 bfd_size_type loc;
1793 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1794 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1795 if (loc == (bfd_size_type) -1)
1797 _bfd_stringtab_free (ret);
1798 ret = NULL;
1801 return ret;
1804 /* ELF .o/exec file reading */
1806 /* Create a new bfd section from an ELF section header. */
1808 bfd_boolean
1809 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1811 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1812 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1814 const char *name;
1816 name = bfd_elf_string_from_elf_section (abfd,
1817 elf_elfheader (abfd)->e_shstrndx,
1818 hdr->sh_name);
1819 if (name == NULL)
1820 return FALSE;
1822 switch (hdr->sh_type)
1824 case SHT_NULL:
1825 /* Inactive section. Throw it away. */
1826 return TRUE;
1828 case SHT_PROGBITS: /* Normal section with contents. */
1829 case SHT_NOBITS: /* .bss section. */
1830 case SHT_HASH: /* .hash section. */
1831 case SHT_NOTE: /* .note section. */
1832 case SHT_INIT_ARRAY: /* .init_array section. */
1833 case SHT_FINI_ARRAY: /* .fini_array section. */
1834 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1835 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1836 case SHT_GNU_HASH: /* .gnu.hash section. */
1837 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1839 case SHT_DYNAMIC: /* Dynamic linking information. */
1840 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1841 return FALSE;
1842 if (hdr->sh_link > elf_numsections (abfd)
1843 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1844 return FALSE;
1845 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1847 Elf_Internal_Shdr *dynsymhdr;
1849 /* The shared libraries distributed with hpux11 have a bogus
1850 sh_link field for the ".dynamic" section. Find the
1851 string table for the ".dynsym" section instead. */
1852 if (elf_dynsymtab (abfd) != 0)
1854 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1855 hdr->sh_link = dynsymhdr->sh_link;
1857 else
1859 unsigned int i, num_sec;
1861 num_sec = elf_numsections (abfd);
1862 for (i = 1; i < num_sec; i++)
1864 dynsymhdr = elf_elfsections (abfd)[i];
1865 if (dynsymhdr->sh_type == SHT_DYNSYM)
1867 hdr->sh_link = dynsymhdr->sh_link;
1868 break;
1873 break;
1875 case SHT_SYMTAB: /* A symbol table */
1876 if (elf_onesymtab (abfd) == shindex)
1877 return TRUE;
1879 if (hdr->sh_entsize != bed->s->sizeof_sym)
1880 return FALSE;
1881 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1882 elf_onesymtab (abfd) = shindex;
1883 elf_tdata (abfd)->symtab_hdr = *hdr;
1884 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1885 abfd->flags |= HAS_SYMS;
1887 /* Sometimes a shared object will map in the symbol table. If
1888 SHF_ALLOC is set, and this is a shared object, then we also
1889 treat this section as a BFD section. We can not base the
1890 decision purely on SHF_ALLOC, because that flag is sometimes
1891 set in a relocatable object file, which would confuse the
1892 linker. */
1893 if ((hdr->sh_flags & SHF_ALLOC) != 0
1894 && (abfd->flags & DYNAMIC) != 0
1895 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1896 shindex))
1897 return FALSE;
1899 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1900 can't read symbols without that section loaded as well. It
1901 is most likely specified by the next section header. */
1902 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1904 unsigned int i, num_sec;
1906 num_sec = elf_numsections (abfd);
1907 for (i = shindex + 1; i < num_sec; i++)
1909 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1910 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1911 && hdr2->sh_link == shindex)
1912 break;
1914 if (i == num_sec)
1915 for (i = 1; i < shindex; i++)
1917 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1918 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1919 && hdr2->sh_link == shindex)
1920 break;
1922 if (i != shindex)
1923 return bfd_section_from_shdr (abfd, i);
1925 return TRUE;
1927 case SHT_DYNSYM: /* A dynamic symbol table */
1928 if (elf_dynsymtab (abfd) == shindex)
1929 return TRUE;
1931 if (hdr->sh_entsize != bed->s->sizeof_sym)
1932 return FALSE;
1933 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1934 elf_dynsymtab (abfd) = shindex;
1935 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1936 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1937 abfd->flags |= HAS_SYMS;
1939 /* Besides being a symbol table, we also treat this as a regular
1940 section, so that objcopy can handle it. */
1941 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1943 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1944 if (elf_symtab_shndx (abfd) == shindex)
1945 return TRUE;
1947 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1948 elf_symtab_shndx (abfd) = shindex;
1949 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1950 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1951 return TRUE;
1953 case SHT_STRTAB: /* A string table */
1954 if (hdr->bfd_section != NULL)
1955 return TRUE;
1956 if (ehdr->e_shstrndx == shindex)
1958 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1959 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1960 return TRUE;
1962 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1964 symtab_strtab:
1965 elf_tdata (abfd)->strtab_hdr = *hdr;
1966 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1967 return TRUE;
1969 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1971 dynsymtab_strtab:
1972 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1973 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1974 elf_elfsections (abfd)[shindex] = hdr;
1975 /* We also treat this as a regular section, so that objcopy
1976 can handle it. */
1977 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1978 shindex);
1981 /* If the string table isn't one of the above, then treat it as a
1982 regular section. We need to scan all the headers to be sure,
1983 just in case this strtab section appeared before the above. */
1984 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1986 unsigned int i, num_sec;
1988 num_sec = elf_numsections (abfd);
1989 for (i = 1; i < num_sec; i++)
1991 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1992 if (hdr2->sh_link == shindex)
1994 /* Prevent endless recursion on broken objects. */
1995 if (i == shindex)
1996 return FALSE;
1997 if (! bfd_section_from_shdr (abfd, i))
1998 return FALSE;
1999 if (elf_onesymtab (abfd) == i)
2000 goto symtab_strtab;
2001 if (elf_dynsymtab (abfd) == i)
2002 goto dynsymtab_strtab;
2006 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2008 case SHT_REL:
2009 case SHT_RELA:
2010 /* *These* do a lot of work -- but build no sections! */
2012 asection *target_sect;
2013 Elf_Internal_Shdr *hdr2;
2014 unsigned int num_sec = elf_numsections (abfd);
2016 if (hdr->sh_entsize
2017 != (bfd_size_type) (hdr->sh_type == SHT_REL
2018 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2019 return FALSE;
2021 /* Check for a bogus link to avoid crashing. */
2022 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2023 || hdr->sh_link >= num_sec)
2025 ((*_bfd_error_handler)
2026 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2027 abfd, hdr->sh_link, name, shindex));
2028 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2029 shindex);
2032 /* For some incomprehensible reason Oracle distributes
2033 libraries for Solaris in which some of the objects have
2034 bogus sh_link fields. It would be nice if we could just
2035 reject them, but, unfortunately, some people need to use
2036 them. We scan through the section headers; if we find only
2037 one suitable symbol table, we clobber the sh_link to point
2038 to it. I hope this doesn't break anything. */
2039 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2040 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2042 unsigned int scan;
2043 int found;
2045 found = 0;
2046 for (scan = 1; scan < num_sec; scan++)
2048 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2049 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2051 if (found != 0)
2053 found = 0;
2054 break;
2056 found = scan;
2059 if (found != 0)
2060 hdr->sh_link = found;
2063 /* Get the symbol table. */
2064 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2065 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2066 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2067 return FALSE;
2069 /* If this reloc section does not use the main symbol table we
2070 don't treat it as a reloc section. BFD can't adequately
2071 represent such a section, so at least for now, we don't
2072 try. We just present it as a normal section. We also
2073 can't use it as a reloc section if it points to the null
2074 section, an invalid section, or another reloc section. */
2075 if (hdr->sh_link != elf_onesymtab (abfd)
2076 || hdr->sh_info == SHN_UNDEF
2077 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2078 || hdr->sh_info >= num_sec
2079 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2080 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2081 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2082 shindex);
2084 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2085 return FALSE;
2086 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2087 if (target_sect == NULL)
2088 return FALSE;
2090 if ((target_sect->flags & SEC_RELOC) == 0
2091 || target_sect->reloc_count == 0)
2092 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2093 else
2095 bfd_size_type amt;
2096 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2097 amt = sizeof (*hdr2);
2098 hdr2 = bfd_alloc (abfd, amt);
2099 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2101 *hdr2 = *hdr;
2102 elf_elfsections (abfd)[shindex] = hdr2;
2103 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2104 target_sect->flags |= SEC_RELOC;
2105 target_sect->relocation = NULL;
2106 target_sect->rel_filepos = hdr->sh_offset;
2107 /* In the section to which the relocations apply, mark whether
2108 its relocations are of the REL or RELA variety. */
2109 if (hdr->sh_size != 0)
2110 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2111 abfd->flags |= HAS_RELOC;
2112 return TRUE;
2115 case SHT_GNU_verdef:
2116 elf_dynverdef (abfd) = shindex;
2117 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2118 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2120 case SHT_GNU_versym:
2121 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2122 return FALSE;
2123 elf_dynversym (abfd) = shindex;
2124 elf_tdata (abfd)->dynversym_hdr = *hdr;
2125 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2127 case SHT_GNU_verneed:
2128 elf_dynverref (abfd) = shindex;
2129 elf_tdata (abfd)->dynverref_hdr = *hdr;
2130 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2132 case SHT_SHLIB:
2133 return TRUE;
2135 case SHT_GROUP:
2136 /* We need a BFD section for objcopy and relocatable linking,
2137 and it's handy to have the signature available as the section
2138 name. */
2139 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2140 return FALSE;
2141 name = group_signature (abfd, hdr);
2142 if (name == NULL)
2143 return FALSE;
2144 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2145 return FALSE;
2146 if (hdr->contents != NULL)
2148 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2149 unsigned int n_elt = hdr->sh_size / 4;
2150 asection *s;
2152 if (idx->flags & GRP_COMDAT)
2153 hdr->bfd_section->flags
2154 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2156 /* We try to keep the same section order as it comes in. */
2157 idx += n_elt;
2158 while (--n_elt != 0)
2159 if ((s = (--idx)->shdr->bfd_section) != NULL
2160 && elf_next_in_group (s) != NULL)
2162 elf_next_in_group (hdr->bfd_section) = s;
2163 break;
2166 break;
2168 default:
2169 /* Check for any processor-specific section types. */
2170 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2171 return TRUE;
2173 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2175 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2176 /* FIXME: How to properly handle allocated section reserved
2177 for applications? */
2178 (*_bfd_error_handler)
2179 (_("%B: don't know how to handle allocated, application "
2180 "specific section `%s' [0x%8x]"),
2181 abfd, name, hdr->sh_type);
2182 else
2183 /* Allow sections reserved for applications. */
2184 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2185 shindex);
2187 else if (hdr->sh_type >= SHT_LOPROC
2188 && hdr->sh_type <= SHT_HIPROC)
2189 /* FIXME: We should handle this section. */
2190 (*_bfd_error_handler)
2191 (_("%B: don't know how to handle processor specific section "
2192 "`%s' [0x%8x]"),
2193 abfd, name, hdr->sh_type);
2194 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2196 /* Unrecognised OS-specific sections. */
2197 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2198 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2199 required to correctly process the section and the file should
2200 be rejected with an error message. */
2201 (*_bfd_error_handler)
2202 (_("%B: don't know how to handle OS specific section "
2203 "`%s' [0x%8x]"),
2204 abfd, name, hdr->sh_type);
2205 else
2206 /* Otherwise it should be processed. */
2207 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2209 else
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd, name, hdr->sh_type);
2215 return FALSE;
2218 return TRUE;
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2224 asection *
2225 bfd_section_from_r_symndx (bfd *abfd,
2226 struct sym_sec_cache *cache,
2227 asection *sec,
2228 unsigned long r_symndx)
2230 Elf_Internal_Shdr *symtab_hdr;
2231 unsigned char esym[sizeof (Elf64_External_Sym)];
2232 Elf_External_Sym_Shndx eshndx;
2233 Elf_Internal_Sym isym;
2234 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2236 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2237 return cache->sec[ent];
2239 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2240 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2241 &isym, esym, &eshndx) == NULL)
2242 return NULL;
2244 if (cache->abfd != abfd)
2246 memset (cache->indx, -1, sizeof (cache->indx));
2247 cache->abfd = abfd;
2249 cache->indx[ent] = r_symndx;
2250 cache->sec[ent] = sec;
2251 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2252 || isym.st_shndx > SHN_HIRESERVE)
2254 asection *s;
2255 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2256 if (s != NULL)
2257 cache->sec[ent] = s;
2259 return cache->sec[ent];
2262 /* Given an ELF section number, retrieve the corresponding BFD
2263 section. */
2265 asection *
2266 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2268 if (index >= elf_numsections (abfd))
2269 return NULL;
2270 return elf_elfsections (abfd)[index]->bfd_section;
2273 static const struct bfd_elf_special_section special_sections_b[] =
2275 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2276 { NULL, 0, 0, 0, 0 }
2279 static const struct bfd_elf_special_section special_sections_c[] =
2281 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2282 { NULL, 0, 0, 0, 0 }
2285 static const struct bfd_elf_special_section special_sections_d[] =
2287 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2288 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2289 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2290 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2291 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2292 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2293 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2294 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2295 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2296 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_f[] =
2302 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2303 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2304 { NULL, 0, 0, 0, 0 }
2307 static const struct bfd_elf_special_section special_sections_g[] =
2309 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2310 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2311 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2312 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2313 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2314 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2315 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2316 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2317 { NULL, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_h[] =
2322 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2323 { NULL, 0, 0, 0, 0 }
2326 static const struct bfd_elf_special_section special_sections_i[] =
2328 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2329 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2331 { NULL, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_l[] =
2336 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2337 { NULL, 0, 0, 0, 0 }
2340 static const struct bfd_elf_special_section special_sections_n[] =
2342 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2343 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2344 { NULL, 0, 0, 0, 0 }
2347 static const struct bfd_elf_special_section special_sections_p[] =
2349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2350 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2351 { NULL, 0, 0, 0, 0 }
2354 static const struct bfd_elf_special_section special_sections_r[] =
2356 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2357 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2358 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2359 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2360 { NULL, 0, 0, 0, 0 }
2363 static const struct bfd_elf_special_section special_sections_s[] =
2365 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2366 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2367 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2368 /* See struct bfd_elf_special_section declaration for the semantics of
2369 this special case where .prefix_length != strlen (.prefix). */
2370 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2371 { NULL, 0, 0, 0, 0 }
2374 static const struct bfd_elf_special_section special_sections_t[] =
2376 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2377 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2378 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2379 { NULL, 0, 0, 0, 0 }
2382 static const struct bfd_elf_special_section *special_sections[] =
2384 special_sections_b, /* 'b' */
2385 special_sections_c, /* 'b' */
2386 special_sections_d, /* 'd' */
2387 NULL, /* 'e' */
2388 special_sections_f, /* 'f' */
2389 special_sections_g, /* 'g' */
2390 special_sections_h, /* 'h' */
2391 special_sections_i, /* 'i' */
2392 NULL, /* 'j' */
2393 NULL, /* 'k' */
2394 special_sections_l, /* 'l' */
2395 NULL, /* 'm' */
2396 special_sections_n, /* 'n' */
2397 NULL, /* 'o' */
2398 special_sections_p, /* 'p' */
2399 NULL, /* 'q' */
2400 special_sections_r, /* 'r' */
2401 special_sections_s, /* 's' */
2402 special_sections_t, /* 't' */
2405 const struct bfd_elf_special_section *
2406 _bfd_elf_get_special_section (const char *name,
2407 const struct bfd_elf_special_section *spec,
2408 unsigned int rela)
2410 int i;
2411 int len;
2413 len = strlen (name);
2415 for (i = 0; spec[i].prefix != NULL; i++)
2417 int suffix_len;
2418 int prefix_len = spec[i].prefix_length;
2420 if (len < prefix_len)
2421 continue;
2422 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2423 continue;
2425 suffix_len = spec[i].suffix_length;
2426 if (suffix_len <= 0)
2428 if (name[prefix_len] != 0)
2430 if (suffix_len == 0)
2431 continue;
2432 if (name[prefix_len] != '.'
2433 && (suffix_len == -2
2434 || (rela && spec[i].type == SHT_REL)))
2435 continue;
2438 else
2440 if (len < prefix_len + suffix_len)
2441 continue;
2442 if (memcmp (name + len - suffix_len,
2443 spec[i].prefix + prefix_len,
2444 suffix_len) != 0)
2445 continue;
2447 return &spec[i];
2450 return NULL;
2453 const struct bfd_elf_special_section *
2454 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2456 int i;
2457 const struct bfd_elf_special_section *spec;
2458 const struct elf_backend_data *bed;
2460 /* See if this is one of the special sections. */
2461 if (sec->name == NULL)
2462 return NULL;
2464 bed = get_elf_backend_data (abfd);
2465 spec = bed->special_sections;
2466 if (spec)
2468 spec = _bfd_elf_get_special_section (sec->name,
2469 bed->special_sections,
2470 sec->use_rela_p);
2471 if (spec != NULL)
2472 return spec;
2475 if (sec->name[0] != '.')
2476 return NULL;
2478 i = sec->name[1] - 'b';
2479 if (i < 0 || i > 't' - 'b')
2480 return NULL;
2482 spec = special_sections[i];
2484 if (spec == NULL)
2485 return NULL;
2487 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2490 bfd_boolean
2491 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2493 struct bfd_elf_section_data *sdata;
2494 const struct elf_backend_data *bed;
2495 const struct bfd_elf_special_section *ssect;
2497 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2498 if (sdata == NULL)
2500 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2501 if (sdata == NULL)
2502 return FALSE;
2503 sec->used_by_bfd = sdata;
2506 /* Indicate whether or not this section should use RELA relocations. */
2507 bed = get_elf_backend_data (abfd);
2508 sec->use_rela_p = bed->default_use_rela_p;
2510 /* When we read a file, we don't need to set ELF section type and
2511 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2512 anyway. We will set ELF section type and flags for all linker
2513 created sections. If user specifies BFD section flags, we will
2514 set ELF section type and flags based on BFD section flags in
2515 elf_fake_sections. */
2516 if ((!sec->flags && abfd->direction != read_direction)
2517 || (sec->flags & SEC_LINKER_CREATED) != 0)
2519 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2520 if (ssect != NULL)
2522 elf_section_type (sec) = ssect->type;
2523 elf_section_flags (sec) = ssect->attr;
2527 return _bfd_generic_new_section_hook (abfd, sec);
2530 /* Create a new bfd section from an ELF program header.
2532 Since program segments have no names, we generate a synthetic name
2533 of the form segment<NUM>, where NUM is generally the index in the
2534 program header table. For segments that are split (see below) we
2535 generate the names segment<NUM>a and segment<NUM>b.
2537 Note that some program segments may have a file size that is different than
2538 (less than) the memory size. All this means is that at execution the
2539 system must allocate the amount of memory specified by the memory size,
2540 but only initialize it with the first "file size" bytes read from the
2541 file. This would occur for example, with program segments consisting
2542 of combined data+bss.
2544 To handle the above situation, this routine generates TWO bfd sections
2545 for the single program segment. The first has the length specified by
2546 the file size of the segment, and the second has the length specified
2547 by the difference between the two sizes. In effect, the segment is split
2548 into it's initialized and uninitialized parts.
2552 bfd_boolean
2553 _bfd_elf_make_section_from_phdr (bfd *abfd,
2554 Elf_Internal_Phdr *hdr,
2555 int index,
2556 const char *typename)
2558 asection *newsect;
2559 char *name;
2560 char namebuf[64];
2561 size_t len;
2562 int split;
2564 split = ((hdr->p_memsz > 0)
2565 && (hdr->p_filesz > 0)
2566 && (hdr->p_memsz > hdr->p_filesz));
2567 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2568 len = strlen (namebuf) + 1;
2569 name = bfd_alloc (abfd, len);
2570 if (!name)
2571 return FALSE;
2572 memcpy (name, namebuf, len);
2573 newsect = bfd_make_section (abfd, name);
2574 if (newsect == NULL)
2575 return FALSE;
2576 newsect->vma = hdr->p_vaddr;
2577 newsect->lma = hdr->p_paddr;
2578 newsect->size = hdr->p_filesz;
2579 newsect->filepos = hdr->p_offset;
2580 newsect->flags |= SEC_HAS_CONTENTS;
2581 newsect->alignment_power = bfd_log2 (hdr->p_align);
2582 if (hdr->p_type == PT_LOAD)
2584 newsect->flags |= SEC_ALLOC;
2585 newsect->flags |= SEC_LOAD;
2586 if (hdr->p_flags & PF_X)
2588 /* FIXME: all we known is that it has execute PERMISSION,
2589 may be data. */
2590 newsect->flags |= SEC_CODE;
2593 if (!(hdr->p_flags & PF_W))
2595 newsect->flags |= SEC_READONLY;
2598 if (split)
2600 sprintf (namebuf, "%s%db", typename, index);
2601 len = strlen (namebuf) + 1;
2602 name = bfd_alloc (abfd, len);
2603 if (!name)
2604 return FALSE;
2605 memcpy (name, namebuf, len);
2606 newsect = bfd_make_section (abfd, name);
2607 if (newsect == NULL)
2608 return FALSE;
2609 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2610 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2611 newsect->size = hdr->p_memsz - hdr->p_filesz;
2612 if (hdr->p_type == PT_LOAD)
2614 newsect->flags |= SEC_ALLOC;
2615 if (hdr->p_flags & PF_X)
2616 newsect->flags |= SEC_CODE;
2618 if (!(hdr->p_flags & PF_W))
2619 newsect->flags |= SEC_READONLY;
2622 return TRUE;
2625 bfd_boolean
2626 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2628 const struct elf_backend_data *bed;
2630 switch (hdr->p_type)
2632 case PT_NULL:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2635 case PT_LOAD:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2638 case PT_DYNAMIC:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2641 case PT_INTERP:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2644 case PT_NOTE:
2645 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2646 return FALSE;
2647 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2648 return FALSE;
2649 return TRUE;
2651 case PT_SHLIB:
2652 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2654 case PT_PHDR:
2655 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2657 case PT_GNU_EH_FRAME:
2658 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2659 "eh_frame_hdr");
2661 case PT_GNU_STACK:
2662 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2664 case PT_GNU_RELRO:
2665 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2667 default:
2668 /* Check for any processor-specific program segment types. */
2669 bed = get_elf_backend_data (abfd);
2670 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2674 /* Initialize REL_HDR, the section-header for new section, containing
2675 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2676 relocations; otherwise, we use REL relocations. */
2678 bfd_boolean
2679 _bfd_elf_init_reloc_shdr (bfd *abfd,
2680 Elf_Internal_Shdr *rel_hdr,
2681 asection *asect,
2682 bfd_boolean use_rela_p)
2684 char *name;
2685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2686 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2688 name = bfd_alloc (abfd, amt);
2689 if (name == NULL)
2690 return FALSE;
2691 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2692 rel_hdr->sh_name =
2693 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2694 FALSE);
2695 if (rel_hdr->sh_name == (unsigned int) -1)
2696 return FALSE;
2697 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2698 rel_hdr->sh_entsize = (use_rela_p
2699 ? bed->s->sizeof_rela
2700 : bed->s->sizeof_rel);
2701 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2702 rel_hdr->sh_flags = 0;
2703 rel_hdr->sh_addr = 0;
2704 rel_hdr->sh_size = 0;
2705 rel_hdr->sh_offset = 0;
2707 return TRUE;
2710 /* Set up an ELF internal section header for a section. */
2712 static void
2713 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2715 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2716 bfd_boolean *failedptr = failedptrarg;
2717 Elf_Internal_Shdr *this_hdr;
2719 if (*failedptr)
2721 /* We already failed; just get out of the bfd_map_over_sections
2722 loop. */
2723 return;
2726 this_hdr = &elf_section_data (asect)->this_hdr;
2728 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2729 asect->name, FALSE);
2730 if (this_hdr->sh_name == (unsigned int) -1)
2732 *failedptr = TRUE;
2733 return;
2736 /* Don't clear sh_flags. Assembler may set additional bits. */
2738 if ((asect->flags & SEC_ALLOC) != 0
2739 || asect->user_set_vma)
2740 this_hdr->sh_addr = asect->vma;
2741 else
2742 this_hdr->sh_addr = 0;
2744 this_hdr->sh_offset = 0;
2745 this_hdr->sh_size = asect->size;
2746 this_hdr->sh_link = 0;
2747 this_hdr->sh_addralign = 1 << asect->alignment_power;
2748 /* The sh_entsize and sh_info fields may have been set already by
2749 copy_private_section_data. */
2751 this_hdr->bfd_section = asect;
2752 this_hdr->contents = NULL;
2754 /* If the section type is unspecified, we set it based on
2755 asect->flags. */
2756 if (this_hdr->sh_type == SHT_NULL)
2758 if ((asect->flags & SEC_GROUP) != 0)
2759 this_hdr->sh_type = SHT_GROUP;
2760 else if ((asect->flags & SEC_ALLOC) != 0
2761 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2762 || (asect->flags & SEC_NEVER_LOAD) != 0))
2763 this_hdr->sh_type = SHT_NOBITS;
2764 else
2765 this_hdr->sh_type = SHT_PROGBITS;
2768 switch (this_hdr->sh_type)
2770 default:
2771 break;
2773 case SHT_STRTAB:
2774 case SHT_INIT_ARRAY:
2775 case SHT_FINI_ARRAY:
2776 case SHT_PREINIT_ARRAY:
2777 case SHT_NOTE:
2778 case SHT_NOBITS:
2779 case SHT_PROGBITS:
2780 break;
2782 case SHT_HASH:
2783 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2784 break;
2786 case SHT_DYNSYM:
2787 this_hdr->sh_entsize = bed->s->sizeof_sym;
2788 break;
2790 case SHT_DYNAMIC:
2791 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2792 break;
2794 case SHT_RELA:
2795 if (get_elf_backend_data (abfd)->may_use_rela_p)
2796 this_hdr->sh_entsize = bed->s->sizeof_rela;
2797 break;
2799 case SHT_REL:
2800 if (get_elf_backend_data (abfd)->may_use_rel_p)
2801 this_hdr->sh_entsize = bed->s->sizeof_rel;
2802 break;
2804 case SHT_GNU_versym:
2805 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2806 break;
2808 case SHT_GNU_verdef:
2809 this_hdr->sh_entsize = 0;
2810 /* objcopy or strip will copy over sh_info, but may not set
2811 cverdefs. The linker will set cverdefs, but sh_info will be
2812 zero. */
2813 if (this_hdr->sh_info == 0)
2814 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2815 else
2816 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2817 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2818 break;
2820 case SHT_GNU_verneed:
2821 this_hdr->sh_entsize = 0;
2822 /* objcopy or strip will copy over sh_info, but may not set
2823 cverrefs. The linker will set cverrefs, but sh_info will be
2824 zero. */
2825 if (this_hdr->sh_info == 0)
2826 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2827 else
2828 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2829 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2830 break;
2832 case SHT_GROUP:
2833 this_hdr->sh_entsize = 4;
2834 break;
2836 case SHT_GNU_HASH:
2837 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2838 break;
2841 if ((asect->flags & SEC_ALLOC) != 0)
2842 this_hdr->sh_flags |= SHF_ALLOC;
2843 if ((asect->flags & SEC_READONLY) == 0)
2844 this_hdr->sh_flags |= SHF_WRITE;
2845 if ((asect->flags & SEC_CODE) != 0)
2846 this_hdr->sh_flags |= SHF_EXECINSTR;
2847 if ((asect->flags & SEC_MERGE) != 0)
2849 this_hdr->sh_flags |= SHF_MERGE;
2850 this_hdr->sh_entsize = asect->entsize;
2851 if ((asect->flags & SEC_STRINGS) != 0)
2852 this_hdr->sh_flags |= SHF_STRINGS;
2854 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2855 this_hdr->sh_flags |= SHF_GROUP;
2856 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2858 this_hdr->sh_flags |= SHF_TLS;
2859 if (asect->size == 0
2860 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2862 struct bfd_link_order *o = asect->map_tail.link_order;
2864 this_hdr->sh_size = 0;
2865 if (o != NULL)
2867 this_hdr->sh_size = o->offset + o->size;
2868 if (this_hdr->sh_size != 0)
2869 this_hdr->sh_type = SHT_NOBITS;
2874 /* Check for processor-specific section types. */
2875 if (bed->elf_backend_fake_sections
2876 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2877 *failedptr = TRUE;
2879 /* If the section has relocs, set up a section header for the
2880 SHT_REL[A] section. If two relocation sections are required for
2881 this section, it is up to the processor-specific back-end to
2882 create the other. */
2883 if ((asect->flags & SEC_RELOC) != 0
2884 && !_bfd_elf_init_reloc_shdr (abfd,
2885 &elf_section_data (asect)->rel_hdr,
2886 asect,
2887 asect->use_rela_p))
2888 *failedptr = TRUE;
2891 /* Fill in the contents of a SHT_GROUP section. */
2893 void
2894 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2896 bfd_boolean *failedptr = failedptrarg;
2897 unsigned long symindx;
2898 asection *elt, *first;
2899 unsigned char *loc;
2900 bfd_boolean gas;
2902 /* Ignore linker created group section. See elfNN_ia64_object_p in
2903 elfxx-ia64.c. */
2904 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2905 || *failedptr)
2906 return;
2908 symindx = 0;
2909 if (elf_group_id (sec) != NULL)
2910 symindx = elf_group_id (sec)->udata.i;
2912 if (symindx == 0)
2914 /* If called from the assembler, swap_out_syms will have set up
2915 elf_section_syms; If called for "ld -r", use target_index. */
2916 if (elf_section_syms (abfd) != NULL)
2917 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2918 else
2919 symindx = sec->target_index;
2921 elf_section_data (sec)->this_hdr.sh_info = symindx;
2923 /* The contents won't be allocated for "ld -r" or objcopy. */
2924 gas = TRUE;
2925 if (sec->contents == NULL)
2927 gas = FALSE;
2928 sec->contents = bfd_alloc (abfd, sec->size);
2930 /* Arrange for the section to be written out. */
2931 elf_section_data (sec)->this_hdr.contents = sec->contents;
2932 if (sec->contents == NULL)
2934 *failedptr = TRUE;
2935 return;
2939 loc = sec->contents + sec->size;
2941 /* Get the pointer to the first section in the group that gas
2942 squirreled away here. objcopy arranges for this to be set to the
2943 start of the input section group. */
2944 first = elt = elf_next_in_group (sec);
2946 /* First element is a flag word. Rest of section is elf section
2947 indices for all the sections of the group. Write them backwards
2948 just to keep the group in the same order as given in .section
2949 directives, not that it matters. */
2950 while (elt != NULL)
2952 asection *s;
2953 unsigned int idx;
2955 loc -= 4;
2956 s = elt;
2957 if (!gas)
2958 s = s->output_section;
2959 idx = 0;
2960 if (s != NULL)
2961 idx = elf_section_data (s)->this_idx;
2962 H_PUT_32 (abfd, idx, loc);
2963 elt = elf_next_in_group (elt);
2964 if (elt == first)
2965 break;
2968 if ((loc -= 4) != sec->contents)
2969 abort ();
2971 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2974 /* Assign all ELF section numbers. The dummy first section is handled here
2975 too. The link/info pointers for the standard section types are filled
2976 in here too, while we're at it. */
2978 static bfd_boolean
2979 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2981 struct elf_obj_tdata *t = elf_tdata (abfd);
2982 asection *sec;
2983 unsigned int section_number, secn;
2984 Elf_Internal_Shdr **i_shdrp;
2985 struct bfd_elf_section_data *d;
2987 section_number = 1;
2989 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2991 /* SHT_GROUP sections are in relocatable files only. */
2992 if (link_info == NULL || link_info->relocatable)
2994 /* Put SHT_GROUP sections first. */
2995 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2997 d = elf_section_data (sec);
2999 if (d->this_hdr.sh_type == SHT_GROUP)
3001 if (sec->flags & SEC_LINKER_CREATED)
3003 /* Remove the linker created SHT_GROUP sections. */
3004 bfd_section_list_remove (abfd, sec);
3005 abfd->section_count--;
3007 else
3009 if (section_number == SHN_LORESERVE)
3010 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3011 d->this_idx = section_number++;
3017 for (sec = abfd->sections; sec; sec = sec->next)
3019 d = elf_section_data (sec);
3021 if (d->this_hdr.sh_type != SHT_GROUP)
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 d->this_idx = section_number++;
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3028 if ((sec->flags & SEC_RELOC) == 0)
3029 d->rel_idx = 0;
3030 else
3032 if (section_number == SHN_LORESERVE)
3033 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3034 d->rel_idx = section_number++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3038 if (d->rel_hdr2)
3040 if (section_number == SHN_LORESERVE)
3041 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3042 d->rel_idx2 = section_number++;
3043 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3045 else
3046 d->rel_idx2 = 0;
3049 if (section_number == SHN_LORESERVE)
3050 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3051 t->shstrtab_section = section_number++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3053 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3055 if (bfd_get_symcount (abfd) > 0)
3057 if (section_number == SHN_LORESERVE)
3058 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3059 t->symtab_section = section_number++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3061 if (section_number > SHN_LORESERVE - 2)
3063 if (section_number == SHN_LORESERVE)
3064 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3065 t->symtab_shndx_section = section_number++;
3066 t->symtab_shndx_hdr.sh_name
3067 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3068 ".symtab_shndx", FALSE);
3069 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3070 return FALSE;
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->strtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3078 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3079 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3081 elf_numsections (abfd) = section_number;
3082 elf_elfheader (abfd)->e_shnum = section_number;
3083 if (section_number > SHN_LORESERVE)
3084 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3086 /* Set up the list of section header pointers, in agreement with the
3087 indices. */
3088 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3089 if (i_shdrp == NULL)
3090 return FALSE;
3092 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3093 if (i_shdrp[0] == NULL)
3095 bfd_release (abfd, i_shdrp);
3096 return FALSE;
3099 elf_elfsections (abfd) = i_shdrp;
3101 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3102 if (bfd_get_symcount (abfd) > 0)
3104 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3105 if (elf_numsections (abfd) > SHN_LORESERVE)
3107 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3108 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3110 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3111 t->symtab_hdr.sh_link = t->strtab_section;
3114 for (sec = abfd->sections; sec; sec = sec->next)
3116 struct bfd_elf_section_data *d = elf_section_data (sec);
3117 asection *s;
3118 const char *name;
3120 i_shdrp[d->this_idx] = &d->this_hdr;
3121 if (d->rel_idx != 0)
3122 i_shdrp[d->rel_idx] = &d->rel_hdr;
3123 if (d->rel_idx2 != 0)
3124 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3126 /* Fill in the sh_link and sh_info fields while we're at it. */
3128 /* sh_link of a reloc section is the section index of the symbol
3129 table. sh_info is the section index of the section to which
3130 the relocation entries apply. */
3131 if (d->rel_idx != 0)
3133 d->rel_hdr.sh_link = t->symtab_section;
3134 d->rel_hdr.sh_info = d->this_idx;
3136 if (d->rel_idx2 != 0)
3138 d->rel_hdr2->sh_link = t->symtab_section;
3139 d->rel_hdr2->sh_info = d->this_idx;
3142 /* We need to set up sh_link for SHF_LINK_ORDER. */
3143 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3145 s = elf_linked_to_section (sec);
3146 if (s)
3148 /* elf_linked_to_section points to the input section. */
3149 if (link_info != NULL)
3151 /* Check discarded linkonce section. */
3152 if (elf_discarded_section (s))
3154 asection *kept;
3155 (*_bfd_error_handler)
3156 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3157 abfd, d->this_hdr.bfd_section,
3158 s, s->owner);
3159 /* Point to the kept section if it has the same
3160 size as the discarded one. */
3161 kept = _bfd_elf_check_kept_section (s, link_info);
3162 if (kept == NULL)
3164 bfd_set_error (bfd_error_bad_value);
3165 return FALSE;
3167 s = kept;
3170 s = s->output_section;
3171 BFD_ASSERT (s != NULL);
3173 else
3175 /* Handle objcopy. */
3176 if (s->output_section == NULL)
3178 (*_bfd_error_handler)
3179 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3180 abfd, d->this_hdr.bfd_section, s, s->owner);
3181 bfd_set_error (bfd_error_bad_value);
3182 return FALSE;
3184 s = s->output_section;
3186 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3188 else
3190 /* PR 290:
3191 The Intel C compiler generates SHT_IA_64_UNWIND with
3192 SHF_LINK_ORDER. But it doesn't set the sh_link or
3193 sh_info fields. Hence we could get the situation
3194 where s is NULL. */
3195 const struct elf_backend_data *bed
3196 = get_elf_backend_data (abfd);
3197 if (bed->link_order_error_handler)
3198 bed->link_order_error_handler
3199 (_("%B: warning: sh_link not set for section `%A'"),
3200 abfd, sec);
3204 switch (d->this_hdr.sh_type)
3206 case SHT_REL:
3207 case SHT_RELA:
3208 /* A reloc section which we are treating as a normal BFD
3209 section. sh_link is the section index of the symbol
3210 table. sh_info is the section index of the section to
3211 which the relocation entries apply. We assume that an
3212 allocated reloc section uses the dynamic symbol table.
3213 FIXME: How can we be sure? */
3214 s = bfd_get_section_by_name (abfd, ".dynsym");
3215 if (s != NULL)
3216 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3218 /* We look up the section the relocs apply to by name. */
3219 name = sec->name;
3220 if (d->this_hdr.sh_type == SHT_REL)
3221 name += 4;
3222 else
3223 name += 5;
3224 s = bfd_get_section_by_name (abfd, name);
3225 if (s != NULL)
3226 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3227 break;
3229 case SHT_STRTAB:
3230 /* We assume that a section named .stab*str is a stabs
3231 string section. We look for a section with the same name
3232 but without the trailing ``str'', and set its sh_link
3233 field to point to this section. */
3234 if (CONST_STRNEQ (sec->name, ".stab")
3235 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3237 size_t len;
3238 char *alc;
3240 len = strlen (sec->name);
3241 alc = bfd_malloc (len - 2);
3242 if (alc == NULL)
3243 return FALSE;
3244 memcpy (alc, sec->name, len - 3);
3245 alc[len - 3] = '\0';
3246 s = bfd_get_section_by_name (abfd, alc);
3247 free (alc);
3248 if (s != NULL)
3250 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3252 /* This is a .stab section. */
3253 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3254 elf_section_data (s)->this_hdr.sh_entsize
3255 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3258 break;
3260 case SHT_DYNAMIC:
3261 case SHT_DYNSYM:
3262 case SHT_GNU_verneed:
3263 case SHT_GNU_verdef:
3264 /* sh_link is the section header index of the string table
3265 used for the dynamic entries, or the symbol table, or the
3266 version strings. */
3267 s = bfd_get_section_by_name (abfd, ".dynstr");
3268 if (s != NULL)
3269 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3270 break;
3272 case SHT_GNU_LIBLIST:
3273 /* sh_link is the section header index of the prelink library
3274 list
3275 used for the dynamic entries, or the symbol table, or the
3276 version strings. */
3277 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3278 ? ".dynstr" : ".gnu.libstr");
3279 if (s != NULL)
3280 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3281 break;
3283 case SHT_HASH:
3284 case SHT_GNU_HASH:
3285 case SHT_GNU_versym:
3286 /* sh_link is the section header index of the symbol table
3287 this hash table or version table is for. */
3288 s = bfd_get_section_by_name (abfd, ".dynsym");
3289 if (s != NULL)
3290 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3291 break;
3293 case SHT_GROUP:
3294 d->this_hdr.sh_link = t->symtab_section;
3298 for (secn = 1; secn < section_number; ++secn)
3299 if (i_shdrp[secn] == NULL)
3300 i_shdrp[secn] = i_shdrp[0];
3301 else
3302 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3303 i_shdrp[secn]->sh_name);
3304 return TRUE;
3307 /* Map symbol from it's internal number to the external number, moving
3308 all local symbols to be at the head of the list. */
3310 static bfd_boolean
3311 sym_is_global (bfd *abfd, asymbol *sym)
3313 /* If the backend has a special mapping, use it. */
3314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3315 if (bed->elf_backend_sym_is_global)
3316 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3318 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3319 || bfd_is_und_section (bfd_get_section (sym))
3320 || bfd_is_com_section (bfd_get_section (sym)));
3323 /* Don't output section symbols for sections that are not going to be
3324 output. Also, don't output section symbols for reloc and other
3325 special sections. */
3327 static bfd_boolean
3328 ignore_section_sym (bfd *abfd, asymbol *sym)
3330 return ((sym->flags & BSF_SECTION_SYM) != 0
3331 && (sym->value != 0
3332 || (sym->section->owner != abfd
3333 && (sym->section->output_section->owner != abfd
3334 || sym->section->output_offset != 0))));
3337 static bfd_boolean
3338 elf_map_symbols (bfd *abfd)
3340 unsigned int symcount = bfd_get_symcount (abfd);
3341 asymbol **syms = bfd_get_outsymbols (abfd);
3342 asymbol **sect_syms;
3343 unsigned int num_locals = 0;
3344 unsigned int num_globals = 0;
3345 unsigned int num_locals2 = 0;
3346 unsigned int num_globals2 = 0;
3347 int max_index = 0;
3348 unsigned int idx;
3349 asection *asect;
3350 asymbol **new_syms;
3352 #ifdef DEBUG
3353 fprintf (stderr, "elf_map_symbols\n");
3354 fflush (stderr);
3355 #endif
3357 for (asect = abfd->sections; asect; asect = asect->next)
3359 if (max_index < asect->index)
3360 max_index = asect->index;
3363 max_index++;
3364 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3365 if (sect_syms == NULL)
3366 return FALSE;
3367 elf_section_syms (abfd) = sect_syms;
3368 elf_num_section_syms (abfd) = max_index;
3370 /* Init sect_syms entries for any section symbols we have already
3371 decided to output. */
3372 for (idx = 0; idx < symcount; idx++)
3374 asymbol *sym = syms[idx];
3376 if ((sym->flags & BSF_SECTION_SYM) != 0
3377 && !ignore_section_sym (abfd, sym))
3379 asection *sec = sym->section;
3381 if (sec->owner != abfd)
3382 sec = sec->output_section;
3384 sect_syms[sec->index] = syms[idx];
3388 /* Classify all of the symbols. */
3389 for (idx = 0; idx < symcount; idx++)
3391 if (ignore_section_sym (abfd, syms[idx]))
3392 continue;
3393 if (!sym_is_global (abfd, syms[idx]))
3394 num_locals++;
3395 else
3396 num_globals++;
3399 /* We will be adding a section symbol for each normal BFD section. Most
3400 sections will already have a section symbol in outsymbols, but
3401 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3402 at least in that case. */
3403 for (asect = abfd->sections; asect; asect = asect->next)
3405 if (sect_syms[asect->index] == NULL)
3407 if (!sym_is_global (abfd, asect->symbol))
3408 num_locals++;
3409 else
3410 num_globals++;
3414 /* Now sort the symbols so the local symbols are first. */
3415 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3417 if (new_syms == NULL)
3418 return FALSE;
3420 for (idx = 0; idx < symcount; idx++)
3422 asymbol *sym = syms[idx];
3423 unsigned int i;
3425 if (ignore_section_sym (abfd, sym))
3426 continue;
3427 if (!sym_is_global (abfd, sym))
3428 i = num_locals2++;
3429 else
3430 i = num_locals + num_globals2++;
3431 new_syms[i] = sym;
3432 sym->udata.i = i + 1;
3434 for (asect = abfd->sections; asect; asect = asect->next)
3436 if (sect_syms[asect->index] == NULL)
3438 asymbol *sym = asect->symbol;
3439 unsigned int i;
3441 sect_syms[asect->index] = sym;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3451 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3453 elf_num_locals (abfd) = num_locals;
3454 elf_num_globals (abfd) = num_globals;
3455 return TRUE;
3458 /* Align to the maximum file alignment that could be required for any
3459 ELF data structure. */
3461 static inline file_ptr
3462 align_file_position (file_ptr off, int align)
3464 return (off + align - 1) & ~(align - 1);
3467 /* Assign a file position to a section, optionally aligning to the
3468 required section alignment. */
3470 file_ptr
3471 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3472 file_ptr offset,
3473 bfd_boolean align)
3475 if (align)
3477 unsigned int al;
3479 al = i_shdrp->sh_addralign;
3480 if (al > 1)
3481 offset = BFD_ALIGN (offset, al);
3483 i_shdrp->sh_offset = offset;
3484 if (i_shdrp->bfd_section != NULL)
3485 i_shdrp->bfd_section->filepos = offset;
3486 if (i_shdrp->sh_type != SHT_NOBITS)
3487 offset += i_shdrp->sh_size;
3488 return offset;
3491 /* Compute the file positions we are going to put the sections at, and
3492 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3493 is not NULL, this is being called by the ELF backend linker. */
3495 bfd_boolean
3496 _bfd_elf_compute_section_file_positions (bfd *abfd,
3497 struct bfd_link_info *link_info)
3499 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3500 bfd_boolean failed;
3501 struct bfd_strtab_hash *strtab = NULL;
3502 Elf_Internal_Shdr *shstrtab_hdr;
3504 if (abfd->output_has_begun)
3505 return TRUE;
3507 /* Do any elf backend specific processing first. */
3508 if (bed->elf_backend_begin_write_processing)
3509 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3511 if (! prep_headers (abfd))
3512 return FALSE;
3514 /* Post process the headers if necessary. */
3515 if (bed->elf_backend_post_process_headers)
3516 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3518 failed = FALSE;
3519 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3520 if (failed)
3521 return FALSE;
3523 if (!assign_section_numbers (abfd, link_info))
3524 return FALSE;
3526 /* The backend linker builds symbol table information itself. */
3527 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3529 /* Non-zero if doing a relocatable link. */
3530 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3532 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3533 return FALSE;
3536 if (link_info == NULL)
3538 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3539 if (failed)
3540 return FALSE;
3543 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3544 /* sh_name was set in prep_headers. */
3545 shstrtab_hdr->sh_type = SHT_STRTAB;
3546 shstrtab_hdr->sh_flags = 0;
3547 shstrtab_hdr->sh_addr = 0;
3548 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3549 shstrtab_hdr->sh_entsize = 0;
3550 shstrtab_hdr->sh_link = 0;
3551 shstrtab_hdr->sh_info = 0;
3552 /* sh_offset is set in assign_file_positions_except_relocs. */
3553 shstrtab_hdr->sh_addralign = 1;
3555 if (!assign_file_positions_except_relocs (abfd, link_info))
3556 return FALSE;
3558 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3560 file_ptr off;
3561 Elf_Internal_Shdr *hdr;
3563 off = elf_tdata (abfd)->next_file_pos;
3565 hdr = &elf_tdata (abfd)->symtab_hdr;
3566 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3568 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3569 if (hdr->sh_size != 0)
3570 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3572 hdr = &elf_tdata (abfd)->strtab_hdr;
3573 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3575 elf_tdata (abfd)->next_file_pos = off;
3577 /* Now that we know where the .strtab section goes, write it
3578 out. */
3579 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3580 || ! _bfd_stringtab_emit (abfd, strtab))
3581 return FALSE;
3582 _bfd_stringtab_free (strtab);
3585 abfd->output_has_begun = TRUE;
3587 return TRUE;
3590 /* Make an initial estimate of the size of the program header. If we
3591 get the number wrong here, we'll redo section placement. */
3593 static bfd_size_type
3594 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3596 size_t segs;
3597 asection *s;
3598 const struct elf_backend_data *bed;
3600 /* Assume we will need exactly two PT_LOAD segments: one for text
3601 and one for data. */
3602 segs = 2;
3604 s = bfd_get_section_by_name (abfd, ".interp");
3605 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3607 /* If we have a loadable interpreter section, we need a
3608 PT_INTERP segment. In this case, assume we also need a
3609 PT_PHDR segment, although that may not be true for all
3610 targets. */
3611 segs += 2;
3614 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3616 /* We need a PT_DYNAMIC segment. */
3617 ++segs;
3619 if (elf_tdata (abfd)->relro)
3621 /* We need a PT_GNU_RELRO segment only when there is a
3622 PT_DYNAMIC segment. */
3623 ++segs;
3627 if (elf_tdata (abfd)->eh_frame_hdr)
3629 /* We need a PT_GNU_EH_FRAME segment. */
3630 ++segs;
3633 if (elf_tdata (abfd)->stack_flags)
3635 /* We need a PT_GNU_STACK segment. */
3636 ++segs;
3639 for (s = abfd->sections; s != NULL; s = s->next)
3641 if ((s->flags & SEC_LOAD) != 0
3642 && CONST_STRNEQ (s->name, ".note"))
3644 /* We need a PT_NOTE segment. */
3645 ++segs;
3649 for (s = abfd->sections; s != NULL; s = s->next)
3651 if (s->flags & SEC_THREAD_LOCAL)
3653 /* We need a PT_TLS segment. */
3654 ++segs;
3655 break;
3659 /* Let the backend count up any program headers it might need. */
3660 bed = get_elf_backend_data (abfd);
3661 if (bed->elf_backend_additional_program_headers)
3663 int a;
3665 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3666 if (a == -1)
3667 abort ();
3668 segs += a;
3671 return segs * bed->s->sizeof_phdr;
3674 /* Create a mapping from a set of sections to a program segment. */
3676 static struct elf_segment_map *
3677 make_mapping (bfd *abfd,
3678 asection **sections,
3679 unsigned int from,
3680 unsigned int to,
3681 bfd_boolean phdr)
3683 struct elf_segment_map *m;
3684 unsigned int i;
3685 asection **hdrpp;
3686 bfd_size_type amt;
3688 amt = sizeof (struct elf_segment_map);
3689 amt += (to - from - 1) * sizeof (asection *);
3690 m = bfd_zalloc (abfd, amt);
3691 if (m == NULL)
3692 return NULL;
3693 m->next = NULL;
3694 m->p_type = PT_LOAD;
3695 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3696 m->sections[i - from] = *hdrpp;
3697 m->count = to - from;
3699 if (from == 0 && phdr)
3701 /* Include the headers in the first PT_LOAD segment. */
3702 m->includes_filehdr = 1;
3703 m->includes_phdrs = 1;
3706 return m;
3709 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3710 on failure. */
3712 struct elf_segment_map *
3713 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3715 struct elf_segment_map *m;
3717 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3718 if (m == NULL)
3719 return NULL;
3720 m->next = NULL;
3721 m->p_type = PT_DYNAMIC;
3722 m->count = 1;
3723 m->sections[0] = dynsec;
3725 return m;
3728 /* Possibly add or remove segments from the segment map. */
3730 static bfd_boolean
3731 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3733 struct elf_segment_map **m;
3734 const struct elf_backend_data *bed;
3736 /* The placement algorithm assumes that non allocated sections are
3737 not in PT_LOAD segments. We ensure this here by removing such
3738 sections from the segment map. We also remove excluded
3739 sections. Finally, any PT_LOAD segment without sections is
3740 removed. */
3741 m = &elf_tdata (abfd)->segment_map;
3742 while (*m)
3744 unsigned int i, new_count;
3746 for (new_count = 0, i = 0; i < (*m)->count; i++)
3748 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3749 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3750 || (*m)->p_type != PT_LOAD))
3752 (*m)->sections[new_count] = (*m)->sections[i];
3753 new_count++;
3756 (*m)->count = new_count;
3758 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3759 *m = (*m)->next;
3760 else
3761 m = &(*m)->next;
3764 bed = get_elf_backend_data (abfd);
3765 if (bed->elf_backend_modify_segment_map != NULL)
3767 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3768 return FALSE;
3771 return TRUE;
3774 /* Set up a mapping from BFD sections to program segments. */
3776 bfd_boolean
3777 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3779 unsigned int count;
3780 struct elf_segment_map *m;
3781 asection **sections = NULL;
3782 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3784 if (elf_tdata (abfd)->segment_map == NULL
3785 && bfd_count_sections (abfd) != 0)
3787 asection *s;
3788 unsigned int i;
3789 struct elf_segment_map *mfirst;
3790 struct elf_segment_map **pm;
3791 asection *last_hdr;
3792 bfd_vma last_size;
3793 unsigned int phdr_index;
3794 bfd_vma maxpagesize;
3795 asection **hdrpp;
3796 bfd_boolean phdr_in_segment = TRUE;
3797 bfd_boolean writable;
3798 int tls_count = 0;
3799 asection *first_tls = NULL;
3800 asection *dynsec, *eh_frame_hdr;
3801 bfd_size_type amt;
3803 /* Select the allocated sections, and sort them. */
3805 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3806 if (sections == NULL)
3807 goto error_return;
3809 i = 0;
3810 for (s = abfd->sections; s != NULL; s = s->next)
3812 if ((s->flags & SEC_ALLOC) != 0)
3814 sections[i] = s;
3815 ++i;
3818 BFD_ASSERT (i <= bfd_count_sections (abfd));
3819 count = i;
3821 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3823 /* Build the mapping. */
3825 mfirst = NULL;
3826 pm = &mfirst;
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3830 section. */
3831 s = bfd_get_section_by_name (abfd, ".interp");
3832 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3834 amt = sizeof (struct elf_segment_map);
3835 m = bfd_zalloc (abfd, amt);
3836 if (m == NULL)
3837 goto error_return;
3838 m->next = NULL;
3839 m->p_type = PT_PHDR;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m->p_flags = PF_R | PF_X;
3842 m->p_flags_valid = 1;
3843 m->includes_phdrs = 1;
3845 *pm = m;
3846 pm = &m->next;
3848 amt = sizeof (struct elf_segment_map);
3849 m = bfd_zalloc (abfd, amt);
3850 if (m == NULL)
3851 goto error_return;
3852 m->next = NULL;
3853 m->p_type = PT_INTERP;
3854 m->count = 1;
3855 m->sections[0] = s;
3857 *pm = m;
3858 pm = &m->next;
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3864 last_hdr = NULL;
3865 last_size = 0;
3866 phdr_index = 0;
3867 maxpagesize = bed->maxpagesize;
3868 writable = FALSE;
3869 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3870 if (dynsec != NULL
3871 && (dynsec->flags & SEC_LOAD) == 0)
3872 dynsec = NULL;
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3878 if (count > 0)
3880 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3882 if (phdr_size == (bfd_size_type) -1)
3883 phdr_size = get_program_header_size (abfd, info);
3884 if ((abfd->flags & D_PAGED) == 0
3885 || sections[0]->lma < phdr_size
3886 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3887 phdr_in_segment = FALSE;
3890 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3892 asection *hdr;
3893 bfd_boolean new_segment;
3895 hdr = *hdrpp;
3897 /* See if this section and the last one will fit in the same
3898 segment. */
3900 if (last_hdr == NULL)
3902 /* If we don't have a segment yet, then we don't need a new
3903 one (we build the last one after this loop). */
3904 new_segment = FALSE;
3906 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3908 /* If this section has a different relation between the
3909 virtual address and the load address, then we need a new
3910 segment. */
3911 new_segment = TRUE;
3913 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3914 < BFD_ALIGN (hdr->lma, maxpagesize))
3916 /* If putting this section in this segment would force us to
3917 skip a page in the segment, then we need a new segment. */
3918 new_segment = TRUE;
3920 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3921 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3923 /* We don't want to put a loadable section after a
3924 nonloadable section in the same segment.
3925 Consider .tbss sections as loadable for this purpose. */
3926 new_segment = TRUE;
3928 else if ((abfd->flags & D_PAGED) == 0)
3930 /* If the file is not demand paged, which means that we
3931 don't require the sections to be correctly aligned in the
3932 file, then there is no other reason for a new segment. */
3933 new_segment = FALSE;
3935 else if (! writable
3936 && (hdr->flags & SEC_READONLY) == 0
3937 && (((last_hdr->lma + last_size - 1)
3938 & ~(maxpagesize - 1))
3939 != (hdr->lma & ~(maxpagesize - 1))))
3941 /* We don't want to put a writable section in a read only
3942 segment, unless they are on the same page in memory
3943 anyhow. We already know that the last section does not
3944 bring us past the current section on the page, so the
3945 only case in which the new section is not on the same
3946 page as the previous section is when the previous section
3947 ends precisely on a page boundary. */
3948 new_segment = TRUE;
3950 else
3952 /* Otherwise, we can use the same segment. */
3953 new_segment = FALSE;
3956 if (! new_segment)
3958 if ((hdr->flags & SEC_READONLY) == 0)
3959 writable = TRUE;
3960 last_hdr = hdr;
3961 /* .tbss sections effectively have zero size. */
3962 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3963 != SEC_THREAD_LOCAL)
3964 last_size = hdr->size;
3965 else
3966 last_size = 0;
3967 continue;
3970 /* We need a new program segment. We must create a new program
3971 header holding all the sections from phdr_index until hdr. */
3973 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3974 if (m == NULL)
3975 goto error_return;
3977 *pm = m;
3978 pm = &m->next;
3980 if ((hdr->flags & SEC_READONLY) == 0)
3981 writable = TRUE;
3982 else
3983 writable = FALSE;
3985 last_hdr = hdr;
3986 /* .tbss sections effectively have zero size. */
3987 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3988 last_size = hdr->size;
3989 else
3990 last_size = 0;
3991 phdr_index = i;
3992 phdr_in_segment = FALSE;
3995 /* Create a final PT_LOAD program segment. */
3996 if (last_hdr != NULL)
3998 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3999 if (m == NULL)
4000 goto error_return;
4002 *pm = m;
4003 pm = &m->next;
4006 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4007 if (dynsec != NULL)
4009 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4010 if (m == NULL)
4011 goto error_return;
4012 *pm = m;
4013 pm = &m->next;
4016 /* For each loadable .note section, add a PT_NOTE segment. We don't
4017 use bfd_get_section_by_name, because if we link together
4018 nonloadable .note sections and loadable .note sections, we will
4019 generate two .note sections in the output file. FIXME: Using
4020 names for section types is bogus anyhow. */
4021 for (s = abfd->sections; s != NULL; s = s->next)
4023 if ((s->flags & SEC_LOAD) != 0
4024 && CONST_STRNEQ (s->name, ".note"))
4026 amt = sizeof (struct elf_segment_map);
4027 m = bfd_zalloc (abfd, amt);
4028 if (m == NULL)
4029 goto error_return;
4030 m->next = NULL;
4031 m->p_type = PT_NOTE;
4032 m->count = 1;
4033 m->sections[0] = s;
4035 *pm = m;
4036 pm = &m->next;
4038 if (s->flags & SEC_THREAD_LOCAL)
4040 if (! tls_count)
4041 first_tls = s;
4042 tls_count++;
4046 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4047 if (tls_count > 0)
4049 int i;
4051 amt = sizeof (struct elf_segment_map);
4052 amt += (tls_count - 1) * sizeof (asection *);
4053 m = bfd_zalloc (abfd, amt);
4054 if (m == NULL)
4055 goto error_return;
4056 m->next = NULL;
4057 m->p_type = PT_TLS;
4058 m->count = tls_count;
4059 /* Mandated PF_R. */
4060 m->p_flags = PF_R;
4061 m->p_flags_valid = 1;
4062 for (i = 0; i < tls_count; ++i)
4064 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4065 m->sections[i] = first_tls;
4066 first_tls = first_tls->next;
4069 *pm = m;
4070 pm = &m->next;
4073 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4074 segment. */
4075 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4076 if (eh_frame_hdr != NULL
4077 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4079 amt = sizeof (struct elf_segment_map);
4080 m = bfd_zalloc (abfd, amt);
4081 if (m == NULL)
4082 goto error_return;
4083 m->next = NULL;
4084 m->p_type = PT_GNU_EH_FRAME;
4085 m->count = 1;
4086 m->sections[0] = eh_frame_hdr->output_section;
4088 *pm = m;
4089 pm = &m->next;
4092 if (elf_tdata (abfd)->stack_flags)
4094 amt = sizeof (struct elf_segment_map);
4095 m = bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_GNU_STACK;
4100 m->p_flags = elf_tdata (abfd)->stack_flags;
4101 m->p_flags_valid = 1;
4103 *pm = m;
4104 pm = &m->next;
4107 if (dynsec != NULL && elf_tdata (abfd)->relro)
4109 /* We make a PT_GNU_RELRO segment only when there is a
4110 PT_DYNAMIC segment. */
4111 amt = sizeof (struct elf_segment_map);
4112 m = bfd_zalloc (abfd, amt);
4113 if (m == NULL)
4114 goto error_return;
4115 m->next = NULL;
4116 m->p_type = PT_GNU_RELRO;
4117 m->p_flags = PF_R;
4118 m->p_flags_valid = 1;
4120 *pm = m;
4121 pm = &m->next;
4124 free (sections);
4125 elf_tdata (abfd)->segment_map = mfirst;
4128 if (!elf_modify_segment_map (abfd, info))
4129 return FALSE;
4131 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4132 ++count;
4133 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4135 return TRUE;
4137 error_return:
4138 if (sections != NULL)
4139 free (sections);
4140 return FALSE;
4143 /* Sort sections by address. */
4145 static int
4146 elf_sort_sections (const void *arg1, const void *arg2)
4148 const asection *sec1 = *(const asection **) arg1;
4149 const asection *sec2 = *(const asection **) arg2;
4150 bfd_size_type size1, size2;
4152 /* Sort by LMA first, since this is the address used to
4153 place the section into a segment. */
4154 if (sec1->lma < sec2->lma)
4155 return -1;
4156 else if (sec1->lma > sec2->lma)
4157 return 1;
4159 /* Then sort by VMA. Normally the LMA and the VMA will be
4160 the same, and this will do nothing. */
4161 if (sec1->vma < sec2->vma)
4162 return -1;
4163 else if (sec1->vma > sec2->vma)
4164 return 1;
4166 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4168 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4170 if (TOEND (sec1))
4172 if (TOEND (sec2))
4174 /* If the indicies are the same, do not return 0
4175 here, but continue to try the next comparison. */
4176 if (sec1->target_index - sec2->target_index != 0)
4177 return sec1->target_index - sec2->target_index;
4179 else
4180 return 1;
4182 else if (TOEND (sec2))
4183 return -1;
4185 #undef TOEND
4187 /* Sort by size, to put zero sized sections
4188 before others at the same address. */
4190 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4191 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4193 if (size1 < size2)
4194 return -1;
4195 if (size1 > size2)
4196 return 1;
4198 return sec1->target_index - sec2->target_index;
4201 /* Ian Lance Taylor writes:
4203 We shouldn't be using % with a negative signed number. That's just
4204 not good. We have to make sure either that the number is not
4205 negative, or that the number has an unsigned type. When the types
4206 are all the same size they wind up as unsigned. When file_ptr is a
4207 larger signed type, the arithmetic winds up as signed long long,
4208 which is wrong.
4210 What we're trying to say here is something like ``increase OFF by
4211 the least amount that will cause it to be equal to the VMA modulo
4212 the page size.'' */
4213 /* In other words, something like:
4215 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4216 off_offset = off % bed->maxpagesize;
4217 if (vma_offset < off_offset)
4218 adjustment = vma_offset + bed->maxpagesize - off_offset;
4219 else
4220 adjustment = vma_offset - off_offset;
4222 which can can be collapsed into the expression below. */
4224 static file_ptr
4225 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4227 return ((vma - off) % maxpagesize);
4230 /* Assign file positions to the sections based on the mapping from
4231 sections to segments. This function also sets up some fields in
4232 the file header. */
4234 static bfd_boolean
4235 assign_file_positions_for_load_sections (bfd *abfd,
4236 struct bfd_link_info *link_info)
4238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4239 struct elf_segment_map *m;
4240 Elf_Internal_Phdr *phdrs;
4241 Elf_Internal_Phdr *p;
4242 file_ptr off, voff;
4243 bfd_size_type maxpagesize;
4244 unsigned int alloc;
4245 unsigned int i;
4247 if (link_info == NULL
4248 && !elf_modify_segment_map (abfd, link_info))
4249 return FALSE;
4251 alloc = 0;
4252 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4253 ++alloc;
4255 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4256 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4257 elf_elfheader (abfd)->e_phnum = alloc;
4259 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4260 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4261 else
4262 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4263 >= alloc * bed->s->sizeof_phdr);
4265 if (alloc == 0)
4267 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4268 return TRUE;
4271 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4272 elf_tdata (abfd)->phdr = phdrs;
4273 if (phdrs == NULL)
4274 return FALSE;
4276 maxpagesize = 1;
4277 if ((abfd->flags & D_PAGED) != 0)
4278 maxpagesize = bed->maxpagesize;
4280 off = bed->s->sizeof_ehdr;
4281 off += alloc * bed->s->sizeof_phdr;
4283 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4284 m != NULL;
4285 m = m->next, p++)
4287 asection **secpp;
4289 /* If elf_segment_map is not from map_sections_to_segments, the
4290 sections may not be correctly ordered. NOTE: sorting should
4291 not be done to the PT_NOTE section of a corefile, which may
4292 contain several pseudo-sections artificially created by bfd.
4293 Sorting these pseudo-sections breaks things badly. */
4294 if (m->count > 1
4295 && !(elf_elfheader (abfd)->e_type == ET_CORE
4296 && m->p_type == PT_NOTE))
4297 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4298 elf_sort_sections);
4300 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4301 number of sections with contents contributing to both p_filesz
4302 and p_memsz, followed by a number of sections with no contents
4303 that just contribute to p_memsz. In this loop, OFF tracks next
4304 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4305 an adjustment we use for segments that have no file contents
4306 but need zero filled memory allocation. */
4307 voff = 0;
4308 p->p_type = m->p_type;
4309 p->p_flags = m->p_flags;
4311 if (m->count == 0)
4312 p->p_vaddr = 0;
4313 else
4314 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4316 if (m->p_paddr_valid)
4317 p->p_paddr = m->p_paddr;
4318 else if (m->count == 0)
4319 p->p_paddr = 0;
4320 else
4321 p->p_paddr = m->sections[0]->lma;
4323 if (p->p_type == PT_LOAD
4324 && (abfd->flags & D_PAGED) != 0)
4326 /* p_align in demand paged PT_LOAD segments effectively stores
4327 the maximum page size. When copying an executable with
4328 objcopy, we set m->p_align from the input file. Use this
4329 value for maxpagesize rather than bed->maxpagesize, which
4330 may be different. Note that we use maxpagesize for PT_TLS
4331 segment alignment later in this function, so we are relying
4332 on at least one PT_LOAD segment appearing before a PT_TLS
4333 segment. */
4334 if (m->p_align_valid)
4335 maxpagesize = m->p_align;
4337 p->p_align = maxpagesize;
4339 else if (m->count == 0)
4340 p->p_align = 1 << bed->s->log_file_align;
4341 else if (m->p_align_valid)
4342 p->p_align = m->p_align;
4343 else
4344 p->p_align = 0;
4346 if (p->p_type == PT_LOAD
4347 && m->count > 0)
4349 bfd_size_type align;
4350 bfd_vma adjust;
4351 unsigned int align_power = 0;
4353 if (m->p_align_valid)
4354 align = p->p_align;
4355 else
4357 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4359 unsigned int secalign;
4361 secalign = bfd_get_section_alignment (abfd, *secpp);
4362 if (secalign > align_power)
4363 align_power = secalign;
4365 align = (bfd_size_type) 1 << align_power;
4366 if (align < maxpagesize)
4367 align = maxpagesize;
4370 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4371 off += adjust;
4372 if (adjust != 0
4373 && !m->includes_filehdr
4374 && !m->includes_phdrs
4375 && (ufile_ptr) off >= align)
4377 /* If the first section isn't loadable, the same holds for
4378 any other sections. Since the segment won't need file
4379 space, we can make p_offset overlap some prior segment.
4380 However, .tbss is special. If a segment starts with
4381 .tbss, we need to look at the next section to decide
4382 whether the segment has any loadable sections. */
4383 i = 0;
4384 while ((m->sections[i]->flags & SEC_LOAD) == 0
4385 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4387 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4388 || ++i >= m->count)
4390 off -= adjust;
4391 voff = adjust - align;
4392 break;
4397 /* Make sure the .dynamic section is the first section in the
4398 PT_DYNAMIC segment. */
4399 else if (p->p_type == PT_DYNAMIC
4400 && m->count > 1
4401 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4403 _bfd_error_handler
4404 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4405 abfd);
4406 bfd_set_error (bfd_error_bad_value);
4407 return FALSE;
4410 p->p_offset = 0;
4411 p->p_filesz = 0;
4412 p->p_memsz = 0;
4414 if (m->includes_filehdr)
4416 if (! m->p_flags_valid)
4417 p->p_flags |= PF_R;
4418 p->p_offset = 0;
4419 p->p_filesz = bed->s->sizeof_ehdr;
4420 p->p_memsz = bed->s->sizeof_ehdr;
4421 if (m->count > 0)
4423 BFD_ASSERT (p->p_type == PT_LOAD);
4425 if (p->p_vaddr < (bfd_vma) off)
4427 (*_bfd_error_handler)
4428 (_("%B: Not enough room for program headers, try linking with -N"),
4429 abfd);
4430 bfd_set_error (bfd_error_bad_value);
4431 return FALSE;
4434 p->p_vaddr -= off;
4435 if (! m->p_paddr_valid)
4436 p->p_paddr -= off;
4440 if (m->includes_phdrs)
4442 if (! m->p_flags_valid)
4443 p->p_flags |= PF_R;
4445 if (!m->includes_filehdr)
4447 p->p_offset = bed->s->sizeof_ehdr;
4449 if (m->count > 0)
4451 BFD_ASSERT (p->p_type == PT_LOAD);
4452 p->p_vaddr -= off - p->p_offset;
4453 if (! m->p_paddr_valid)
4454 p->p_paddr -= off - p->p_offset;
4458 p->p_filesz += alloc * bed->s->sizeof_phdr;
4459 p->p_memsz += alloc * bed->s->sizeof_phdr;
4462 if (p->p_type == PT_LOAD
4463 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4465 if (! m->includes_filehdr && ! m->includes_phdrs)
4466 p->p_offset = off + voff;
4467 else
4469 file_ptr adjust;
4471 adjust = off - (p->p_offset + p->p_filesz);
4472 p->p_filesz += adjust;
4473 p->p_memsz += adjust;
4477 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4478 maps. Set filepos for sections in PT_LOAD segments, and in
4479 core files, for sections in PT_NOTE segments.
4480 assign_file_positions_for_non_load_sections will set filepos
4481 for other sections and update p_filesz for other segments. */
4482 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4484 asection *sec;
4485 flagword flags;
4486 bfd_size_type align;
4488 sec = *secpp;
4489 flags = sec->flags;
4490 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4492 if (p->p_type == PT_LOAD
4493 || p->p_type == PT_TLS)
4495 bfd_signed_vma adjust;
4497 if ((flags & SEC_LOAD) != 0)
4499 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4500 if (adjust < 0)
4502 (*_bfd_error_handler)
4503 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4504 abfd, sec, (unsigned long) sec->lma);
4505 adjust = 0;
4507 off += adjust;
4508 p->p_filesz += adjust;
4509 p->p_memsz += adjust;
4511 /* .tbss is special. It doesn't contribute to p_memsz of
4512 normal segments. */
4513 else if ((flags & SEC_ALLOC) != 0
4514 && ((flags & SEC_THREAD_LOCAL) == 0
4515 || p->p_type == PT_TLS))
4517 /* The section VMA must equal the file position
4518 modulo the page size. */
4519 bfd_size_type page = align;
4520 if (page < maxpagesize)
4521 page = maxpagesize;
4522 adjust = vma_page_aligned_bias (sec->vma,
4523 p->p_vaddr + p->p_memsz,
4524 page);
4525 p->p_memsz += adjust;
4529 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4531 /* The section at i == 0 is the one that actually contains
4532 everything. */
4533 if (i == 0)
4535 sec->filepos = off;
4536 off += sec->size;
4537 p->p_filesz = sec->size;
4538 p->p_memsz = 0;
4539 p->p_align = 1;
4541 else
4543 /* The rest are fake sections that shouldn't be written. */
4544 sec->filepos = 0;
4545 sec->size = 0;
4546 sec->flags = 0;
4547 continue;
4550 else
4552 if (p->p_type == PT_LOAD)
4554 sec->filepos = off + voff;
4555 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4556 1997, and the exact reason for it isn't clear. One
4557 plausible explanation is that it is to work around
4558 a problem we have with linker scripts using data
4559 statements in NOLOAD sections. I don't think it
4560 makes a great deal of sense to have such a section
4561 assigned to a PT_LOAD segment, but apparently
4562 people do this. The data statement results in a
4563 bfd_data_link_order being built, and these need
4564 section contents to write into. Eventually, we get
4565 to _bfd_elf_write_object_contents which writes any
4566 section with contents to the output. Make room
4567 here for the write, so that following segments are
4568 not trashed. */
4569 if ((flags & SEC_LOAD) != 0
4570 || (flags & SEC_HAS_CONTENTS) != 0)
4571 off += sec->size;
4574 if ((flags & SEC_LOAD) != 0)
4576 p->p_filesz += sec->size;
4577 p->p_memsz += sec->size;
4580 /* .tbss is special. It doesn't contribute to p_memsz of
4581 normal segments. */
4582 else if ((flags & SEC_ALLOC) != 0
4583 && ((flags & SEC_THREAD_LOCAL) == 0
4584 || p->p_type == PT_TLS))
4585 p->p_memsz += sec->size;
4587 if (p->p_type == PT_TLS
4588 && sec->size == 0
4589 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4591 struct bfd_link_order *o = sec->map_tail.link_order;
4592 if (o != NULL)
4593 p->p_memsz += o->offset + o->size;
4596 if (p->p_type == PT_GNU_RELRO)
4597 p->p_align = 1;
4598 else if (align > p->p_align
4599 && !m->p_align_valid
4600 && (p->p_type != PT_LOAD
4601 || (abfd->flags & D_PAGED) == 0))
4602 p->p_align = align;
4605 if (! m->p_flags_valid)
4607 p->p_flags |= PF_R;
4608 if ((flags & SEC_CODE) != 0)
4609 p->p_flags |= PF_X;
4610 if ((flags & SEC_READONLY) == 0)
4611 p->p_flags |= PF_W;
4616 elf_tdata (abfd)->next_file_pos = off;
4617 return TRUE;
4620 /* Assign file positions for the other sections. */
4622 static bfd_boolean
4623 assign_file_positions_for_non_load_sections (bfd *abfd,
4624 struct bfd_link_info *link_info)
4626 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4627 Elf_Internal_Shdr **i_shdrpp;
4628 Elf_Internal_Shdr **hdrpp;
4629 Elf_Internal_Phdr *phdrs;
4630 Elf_Internal_Phdr *p;
4631 struct elf_segment_map *m;
4632 bfd_vma filehdr_vaddr, filehdr_paddr;
4633 bfd_vma phdrs_vaddr, phdrs_paddr;
4634 file_ptr off;
4635 unsigned int num_sec;
4636 unsigned int i;
4637 unsigned int count;
4639 i_shdrpp = elf_elfsections (abfd);
4640 num_sec = elf_numsections (abfd);
4641 off = elf_tdata (abfd)->next_file_pos;
4642 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4644 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4645 Elf_Internal_Shdr *hdr;
4647 hdr = *hdrpp;
4648 if (hdr->bfd_section != NULL
4649 && (hdr->bfd_section->filepos != 0
4650 || (hdr->sh_type == SHT_NOBITS
4651 && hdr->contents == NULL)))
4652 hdr->sh_offset = hdr->bfd_section->filepos;
4653 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4655 if (hdr->sh_size != 0)
4656 ((*_bfd_error_handler)
4657 (_("%B: warning: allocated section `%s' not in segment"),
4658 abfd,
4659 (hdr->bfd_section == NULL
4660 ? "*unknown*"
4661 : hdr->bfd_section->name)));
4662 /* We don't need to page align empty sections. */
4663 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4664 off += vma_page_aligned_bias (hdr->sh_addr, off,
4665 bed->maxpagesize);
4666 else
4667 off += vma_page_aligned_bias (hdr->sh_addr, off,
4668 hdr->sh_addralign);
4669 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4670 FALSE);
4672 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4673 && hdr->bfd_section == NULL)
4674 || hdr == i_shdrpp[tdata->symtab_section]
4675 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4676 || hdr == i_shdrpp[tdata->strtab_section])
4677 hdr->sh_offset = -1;
4678 else
4679 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4681 if (i == SHN_LORESERVE - 1)
4683 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4684 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4688 /* Now that we have set the section file positions, we can set up
4689 the file positions for the non PT_LOAD segments. */
4690 count = 0;
4691 filehdr_vaddr = 0;
4692 filehdr_paddr = 0;
4693 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4694 phdrs_paddr = 0;
4695 phdrs = elf_tdata (abfd)->phdr;
4696 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4697 m != NULL;
4698 m = m->next, p++)
4700 ++count;
4701 if (p->p_type != PT_LOAD)
4702 continue;
4704 if (m->includes_filehdr)
4706 filehdr_vaddr = p->p_vaddr;
4707 filehdr_paddr = p->p_paddr;
4709 if (m->includes_phdrs)
4711 phdrs_vaddr = p->p_vaddr;
4712 phdrs_paddr = p->p_paddr;
4713 if (m->includes_filehdr)
4715 phdrs_vaddr += bed->s->sizeof_ehdr;
4716 phdrs_paddr += bed->s->sizeof_ehdr;
4721 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4722 m != NULL;
4723 m = m->next, p++)
4725 if (m->count != 0)
4727 if (p->p_type != PT_LOAD
4728 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4730 Elf_Internal_Shdr *hdr;
4731 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4733 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4734 p->p_filesz = (m->sections[m->count - 1]->filepos
4735 - m->sections[0]->filepos);
4736 if (hdr->sh_type != SHT_NOBITS)
4737 p->p_filesz += hdr->sh_size;
4739 p->p_offset = m->sections[0]->filepos;
4742 else
4744 if (m->includes_filehdr)
4746 p->p_vaddr = filehdr_vaddr;
4747 if (! m->p_paddr_valid)
4748 p->p_paddr = filehdr_paddr;
4750 else if (m->includes_phdrs)
4752 p->p_vaddr = phdrs_vaddr;
4753 if (! m->p_paddr_valid)
4754 p->p_paddr = phdrs_paddr;
4756 else if (p->p_type == PT_GNU_RELRO)
4758 Elf_Internal_Phdr *lp;
4760 for (lp = phdrs; lp < phdrs + count; ++lp)
4762 if (lp->p_type == PT_LOAD
4763 && lp->p_vaddr <= link_info->relro_end
4764 && lp->p_vaddr >= link_info->relro_start
4765 && (lp->p_vaddr + lp->p_filesz
4766 >= link_info->relro_end))
4767 break;
4770 if (lp < phdrs + count
4771 && link_info->relro_end > lp->p_vaddr)
4773 p->p_vaddr = lp->p_vaddr;
4774 p->p_paddr = lp->p_paddr;
4775 p->p_offset = lp->p_offset;
4776 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4777 p->p_memsz = p->p_filesz;
4778 p->p_align = 1;
4779 p->p_flags = (lp->p_flags & ~PF_W);
4781 else
4783 memset (p, 0, sizeof *p);
4784 p->p_type = PT_NULL;
4790 elf_tdata (abfd)->next_file_pos = off;
4792 return TRUE;
4795 /* Work out the file positions of all the sections. This is called by
4796 _bfd_elf_compute_section_file_positions. All the section sizes and
4797 VMAs must be known before this is called.
4799 Reloc sections come in two flavours: Those processed specially as
4800 "side-channel" data attached to a section to which they apply, and
4801 those that bfd doesn't process as relocations. The latter sort are
4802 stored in a normal bfd section by bfd_section_from_shdr. We don't
4803 consider the former sort here, unless they form part of the loadable
4804 image. Reloc sections not assigned here will be handled later by
4805 assign_file_positions_for_relocs.
4807 We also don't set the positions of the .symtab and .strtab here. */
4809 static bfd_boolean
4810 assign_file_positions_except_relocs (bfd *abfd,
4811 struct bfd_link_info *link_info)
4813 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4814 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4815 file_ptr off;
4816 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4818 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4819 && bfd_get_format (abfd) != bfd_core)
4821 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4822 unsigned int num_sec = elf_numsections (abfd);
4823 Elf_Internal_Shdr **hdrpp;
4824 unsigned int i;
4826 /* Start after the ELF header. */
4827 off = i_ehdrp->e_ehsize;
4829 /* We are not creating an executable, which means that we are
4830 not creating a program header, and that the actual order of
4831 the sections in the file is unimportant. */
4832 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4834 Elf_Internal_Shdr *hdr;
4836 hdr = *hdrpp;
4837 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4838 && hdr->bfd_section == NULL)
4839 || i == tdata->symtab_section
4840 || i == tdata->symtab_shndx_section
4841 || i == tdata->strtab_section)
4843 hdr->sh_offset = -1;
4845 else
4846 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4848 if (i == SHN_LORESERVE - 1)
4850 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4851 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4855 else
4857 unsigned int alloc;
4859 /* Assign file positions for the loaded sections based on the
4860 assignment of sections to segments. */
4861 if (!assign_file_positions_for_load_sections (abfd, link_info))
4862 return FALSE;
4864 /* And for non-load sections. */
4865 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4866 return FALSE;
4868 if (bed->elf_backend_modify_program_headers != NULL)
4870 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4871 return FALSE;
4874 /* Write out the program headers. */
4875 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4876 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4877 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4878 return FALSE;
4880 off = tdata->next_file_pos;
4883 /* Place the section headers. */
4884 off = align_file_position (off, 1 << bed->s->log_file_align);
4885 i_ehdrp->e_shoff = off;
4886 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4888 tdata->next_file_pos = off;
4890 return TRUE;
4893 static bfd_boolean
4894 prep_headers (bfd *abfd)
4896 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4897 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4898 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4899 struct elf_strtab_hash *shstrtab;
4900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4902 i_ehdrp = elf_elfheader (abfd);
4903 i_shdrp = elf_elfsections (abfd);
4905 shstrtab = _bfd_elf_strtab_init ();
4906 if (shstrtab == NULL)
4907 return FALSE;
4909 elf_shstrtab (abfd) = shstrtab;
4911 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4912 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4913 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4914 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4916 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4917 i_ehdrp->e_ident[EI_DATA] =
4918 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4919 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4921 if ((abfd->flags & DYNAMIC) != 0)
4922 i_ehdrp->e_type = ET_DYN;
4923 else if ((abfd->flags & EXEC_P) != 0)
4924 i_ehdrp->e_type = ET_EXEC;
4925 else if (bfd_get_format (abfd) == bfd_core)
4926 i_ehdrp->e_type = ET_CORE;
4927 else
4928 i_ehdrp->e_type = ET_REL;
4930 switch (bfd_get_arch (abfd))
4932 case bfd_arch_unknown:
4933 i_ehdrp->e_machine = EM_NONE;
4934 break;
4936 /* There used to be a long list of cases here, each one setting
4937 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4938 in the corresponding bfd definition. To avoid duplication,
4939 the switch was removed. Machines that need special handling
4940 can generally do it in elf_backend_final_write_processing(),
4941 unless they need the information earlier than the final write.
4942 Such need can generally be supplied by replacing the tests for
4943 e_machine with the conditions used to determine it. */
4944 default:
4945 i_ehdrp->e_machine = bed->elf_machine_code;
4948 i_ehdrp->e_version = bed->s->ev_current;
4949 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4951 /* No program header, for now. */
4952 i_ehdrp->e_phoff = 0;
4953 i_ehdrp->e_phentsize = 0;
4954 i_ehdrp->e_phnum = 0;
4956 /* Each bfd section is section header entry. */
4957 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4958 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4960 /* If we're building an executable, we'll need a program header table. */
4961 if (abfd->flags & EXEC_P)
4962 /* It all happens later. */
4964 else
4966 i_ehdrp->e_phentsize = 0;
4967 i_phdrp = 0;
4968 i_ehdrp->e_phoff = 0;
4971 elf_tdata (abfd)->symtab_hdr.sh_name =
4972 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4973 elf_tdata (abfd)->strtab_hdr.sh_name =
4974 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4975 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4976 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4977 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4978 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4979 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4980 return FALSE;
4982 return TRUE;
4985 /* Assign file positions for all the reloc sections which are not part
4986 of the loadable file image. */
4988 void
4989 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4991 file_ptr off;
4992 unsigned int i, num_sec;
4993 Elf_Internal_Shdr **shdrpp;
4995 off = elf_tdata (abfd)->next_file_pos;
4997 num_sec = elf_numsections (abfd);
4998 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5000 Elf_Internal_Shdr *shdrp;
5002 shdrp = *shdrpp;
5003 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5004 && shdrp->sh_offset == -1)
5005 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5008 elf_tdata (abfd)->next_file_pos = off;
5011 bfd_boolean
5012 _bfd_elf_write_object_contents (bfd *abfd)
5014 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5015 Elf_Internal_Ehdr *i_ehdrp;
5016 Elf_Internal_Shdr **i_shdrp;
5017 bfd_boolean failed;
5018 unsigned int count, num_sec;
5020 if (! abfd->output_has_begun
5021 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5022 return FALSE;
5024 i_shdrp = elf_elfsections (abfd);
5025 i_ehdrp = elf_elfheader (abfd);
5027 failed = FALSE;
5028 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5029 if (failed)
5030 return FALSE;
5032 _bfd_elf_assign_file_positions_for_relocs (abfd);
5034 /* After writing the headers, we need to write the sections too... */
5035 num_sec = elf_numsections (abfd);
5036 for (count = 1; count < num_sec; count++)
5038 if (bed->elf_backend_section_processing)
5039 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5040 if (i_shdrp[count]->contents)
5042 bfd_size_type amt = i_shdrp[count]->sh_size;
5044 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5045 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5046 return FALSE;
5048 if (count == SHN_LORESERVE - 1)
5049 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5052 /* Write out the section header names. */
5053 if (elf_shstrtab (abfd) != NULL
5054 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5055 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5056 return FALSE;
5058 if (bed->elf_backend_final_write_processing)
5059 (*bed->elf_backend_final_write_processing) (abfd,
5060 elf_tdata (abfd)->linker);
5062 return bed->s->write_shdrs_and_ehdr (abfd);
5065 bfd_boolean
5066 _bfd_elf_write_corefile_contents (bfd *abfd)
5068 /* Hopefully this can be done just like an object file. */
5069 return _bfd_elf_write_object_contents (abfd);
5072 /* Given a section, search the header to find them. */
5075 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5077 const struct elf_backend_data *bed;
5078 int index;
5080 if (elf_section_data (asect) != NULL
5081 && elf_section_data (asect)->this_idx != 0)
5082 return elf_section_data (asect)->this_idx;
5084 if (bfd_is_abs_section (asect))
5085 index = SHN_ABS;
5086 else if (bfd_is_com_section (asect))
5087 index = SHN_COMMON;
5088 else if (bfd_is_und_section (asect))
5089 index = SHN_UNDEF;
5090 else
5091 index = -1;
5093 bed = get_elf_backend_data (abfd);
5094 if (bed->elf_backend_section_from_bfd_section)
5096 int retval = index;
5098 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5099 return retval;
5102 if (index == -1)
5103 bfd_set_error (bfd_error_nonrepresentable_section);
5105 return index;
5108 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5109 on error. */
5112 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5114 asymbol *asym_ptr = *asym_ptr_ptr;
5115 int idx;
5116 flagword flags = asym_ptr->flags;
5118 /* When gas creates relocations against local labels, it creates its
5119 own symbol for the section, but does put the symbol into the
5120 symbol chain, so udata is 0. When the linker is generating
5121 relocatable output, this section symbol may be for one of the
5122 input sections rather than the output section. */
5123 if (asym_ptr->udata.i == 0
5124 && (flags & BSF_SECTION_SYM)
5125 && asym_ptr->section)
5127 asection *sec;
5128 int indx;
5130 sec = asym_ptr->section;
5131 if (sec->owner != abfd && sec->output_section != NULL)
5132 sec = sec->output_section;
5133 if (sec->owner == abfd
5134 && (indx = sec->index) < elf_num_section_syms (abfd)
5135 && elf_section_syms (abfd)[indx] != NULL)
5136 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5139 idx = asym_ptr->udata.i;
5141 if (idx == 0)
5143 /* This case can occur when using --strip-symbol on a symbol
5144 which is used in a relocation entry. */
5145 (*_bfd_error_handler)
5146 (_("%B: symbol `%s' required but not present"),
5147 abfd, bfd_asymbol_name (asym_ptr));
5148 bfd_set_error (bfd_error_no_symbols);
5149 return -1;
5152 #if DEBUG & 4
5154 fprintf (stderr,
5155 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5156 (long) asym_ptr, asym_ptr->name, idx, flags,
5157 elf_symbol_flags (flags));
5158 fflush (stderr);
5160 #endif
5162 return idx;
5165 /* Rewrite program header information. */
5167 static bfd_boolean
5168 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5170 Elf_Internal_Ehdr *iehdr;
5171 struct elf_segment_map *map;
5172 struct elf_segment_map *map_first;
5173 struct elf_segment_map **pointer_to_map;
5174 Elf_Internal_Phdr *segment;
5175 asection *section;
5176 unsigned int i;
5177 unsigned int num_segments;
5178 bfd_boolean phdr_included = FALSE;
5179 bfd_vma maxpagesize;
5180 struct elf_segment_map *phdr_adjust_seg = NULL;
5181 unsigned int phdr_adjust_num = 0;
5182 const struct elf_backend_data *bed;
5184 bed = get_elf_backend_data (ibfd);
5185 iehdr = elf_elfheader (ibfd);
5187 map_first = NULL;
5188 pointer_to_map = &map_first;
5190 num_segments = elf_elfheader (ibfd)->e_phnum;
5191 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5193 /* Returns the end address of the segment + 1. */
5194 #define SEGMENT_END(segment, start) \
5195 (start + (segment->p_memsz > segment->p_filesz \
5196 ? segment->p_memsz : segment->p_filesz))
5198 #define SECTION_SIZE(section, segment) \
5199 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5200 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5201 ? section->size : 0)
5203 /* Returns TRUE if the given section is contained within
5204 the given segment. VMA addresses are compared. */
5205 #define IS_CONTAINED_BY_VMA(section, segment) \
5206 (section->vma >= segment->p_vaddr \
5207 && (section->vma + SECTION_SIZE (section, segment) \
5208 <= (SEGMENT_END (segment, segment->p_vaddr))))
5210 /* Returns TRUE if the given section is contained within
5211 the given segment. LMA addresses are compared. */
5212 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5213 (section->lma >= base \
5214 && (section->lma + SECTION_SIZE (section, segment) \
5215 <= SEGMENT_END (segment, base)))
5217 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5218 #define IS_COREFILE_NOTE(p, s) \
5219 (p->p_type == PT_NOTE \
5220 && bfd_get_format (ibfd) == bfd_core \
5221 && s->vma == 0 && s->lma == 0 \
5222 && (bfd_vma) s->filepos >= p->p_offset \
5223 && ((bfd_vma) s->filepos + s->size \
5224 <= p->p_offset + p->p_filesz))
5226 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5227 linker, which generates a PT_INTERP section with p_vaddr and
5228 p_memsz set to 0. */
5229 #define IS_SOLARIS_PT_INTERP(p, s) \
5230 (p->p_vaddr == 0 \
5231 && p->p_paddr == 0 \
5232 && p->p_memsz == 0 \
5233 && p->p_filesz > 0 \
5234 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5235 && s->size > 0 \
5236 && (bfd_vma) s->filepos >= p->p_offset \
5237 && ((bfd_vma) s->filepos + s->size \
5238 <= p->p_offset + p->p_filesz))
5240 /* Decide if the given section should be included in the given segment.
5241 A section will be included if:
5242 1. It is within the address space of the segment -- we use the LMA
5243 if that is set for the segment and the VMA otherwise,
5244 2. It is an allocated segment,
5245 3. There is an output section associated with it,
5246 4. The section has not already been allocated to a previous segment.
5247 5. PT_GNU_STACK segments do not include any sections.
5248 6. PT_TLS segment includes only SHF_TLS sections.
5249 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5250 8. PT_DYNAMIC should not contain empty sections at the beginning
5251 (with the possible exception of .dynamic). */
5252 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5253 ((((segment->p_paddr \
5254 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5255 : IS_CONTAINED_BY_VMA (section, segment)) \
5256 && (section->flags & SEC_ALLOC) != 0) \
5257 || IS_COREFILE_NOTE (segment, section)) \
5258 && segment->p_type != PT_GNU_STACK \
5259 && (segment->p_type != PT_TLS \
5260 || (section->flags & SEC_THREAD_LOCAL)) \
5261 && (segment->p_type == PT_LOAD \
5262 || segment->p_type == PT_TLS \
5263 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5264 && (segment->p_type != PT_DYNAMIC \
5265 || SECTION_SIZE (section, segment) > 0 \
5266 || (segment->p_paddr \
5267 ? segment->p_paddr != section->lma \
5268 : segment->p_vaddr != section->vma) \
5269 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5270 == 0)) \
5271 && ! section->segment_mark)
5273 /* If the output section of a section in the input segment is NULL,
5274 it is removed from the corresponding output segment. */
5275 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5276 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5277 && section->output_section != NULL)
5279 /* Returns TRUE iff seg1 starts after the end of seg2. */
5280 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5281 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5283 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5284 their VMA address ranges and their LMA address ranges overlap.
5285 It is possible to have overlapping VMA ranges without overlapping LMA
5286 ranges. RedBoot images for example can have both .data and .bss mapped
5287 to the same VMA range, but with the .data section mapped to a different
5288 LMA. */
5289 #define SEGMENT_OVERLAPS(seg1, seg2) \
5290 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5291 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5292 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5293 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5295 /* Initialise the segment mark field. */
5296 for (section = ibfd->sections; section != NULL; section = section->next)
5297 section->segment_mark = FALSE;
5299 /* Scan through the segments specified in the program header
5300 of the input BFD. For this first scan we look for overlaps
5301 in the loadable segments. These can be created by weird
5302 parameters to objcopy. Also, fix some solaris weirdness. */
5303 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5304 i < num_segments;
5305 i++, segment++)
5307 unsigned int j;
5308 Elf_Internal_Phdr *segment2;
5310 if (segment->p_type == PT_INTERP)
5311 for (section = ibfd->sections; section; section = section->next)
5312 if (IS_SOLARIS_PT_INTERP (segment, section))
5314 /* Mininal change so that the normal section to segment
5315 assignment code will work. */
5316 segment->p_vaddr = section->vma;
5317 break;
5320 if (segment->p_type != PT_LOAD)
5321 continue;
5323 /* Determine if this segment overlaps any previous segments. */
5324 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5326 bfd_signed_vma extra_length;
5328 if (segment2->p_type != PT_LOAD
5329 || ! SEGMENT_OVERLAPS (segment, segment2))
5330 continue;
5332 /* Merge the two segments together. */
5333 if (segment2->p_vaddr < segment->p_vaddr)
5335 /* Extend SEGMENT2 to include SEGMENT and then delete
5336 SEGMENT. */
5337 extra_length =
5338 SEGMENT_END (segment, segment->p_vaddr)
5339 - SEGMENT_END (segment2, segment2->p_vaddr);
5341 if (extra_length > 0)
5343 segment2->p_memsz += extra_length;
5344 segment2->p_filesz += extra_length;
5347 segment->p_type = PT_NULL;
5349 /* Since we have deleted P we must restart the outer loop. */
5350 i = 0;
5351 segment = elf_tdata (ibfd)->phdr;
5352 break;
5354 else
5356 /* Extend SEGMENT to include SEGMENT2 and then delete
5357 SEGMENT2. */
5358 extra_length =
5359 SEGMENT_END (segment2, segment2->p_vaddr)
5360 - SEGMENT_END (segment, segment->p_vaddr);
5362 if (extra_length > 0)
5364 segment->p_memsz += extra_length;
5365 segment->p_filesz += extra_length;
5368 segment2->p_type = PT_NULL;
5373 /* The second scan attempts to assign sections to segments. */
5374 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5375 i < num_segments;
5376 i ++, segment ++)
5378 unsigned int section_count;
5379 asection ** sections;
5380 asection * output_section;
5381 unsigned int isec;
5382 bfd_vma matching_lma;
5383 bfd_vma suggested_lma;
5384 unsigned int j;
5385 bfd_size_type amt;
5386 asection * first_section;
5388 if (segment->p_type == PT_NULL)
5389 continue;
5391 first_section = NULL;
5392 /* Compute how many sections might be placed into this segment. */
5393 for (section = ibfd->sections, section_count = 0;
5394 section != NULL;
5395 section = section->next)
5397 /* Find the first section in the input segment, which may be
5398 removed from the corresponding output segment. */
5399 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5401 if (first_section == NULL)
5402 first_section = section;
5403 if (section->output_section != NULL)
5404 ++section_count;
5408 /* Allocate a segment map big enough to contain
5409 all of the sections we have selected. */
5410 amt = sizeof (struct elf_segment_map);
5411 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5412 map = bfd_zalloc (obfd, amt);
5413 if (map == NULL)
5414 return FALSE;
5416 /* Initialise the fields of the segment map. Default to
5417 using the physical address of the segment in the input BFD. */
5418 map->next = NULL;
5419 map->p_type = segment->p_type;
5420 map->p_flags = segment->p_flags;
5421 map->p_flags_valid = 1;
5423 /* If the first section in the input segment is removed, there is
5424 no need to preserve segment physical address in the corresponding
5425 output segment. */
5426 if (!first_section || first_section->output_section != NULL)
5428 map->p_paddr = segment->p_paddr;
5429 map->p_paddr_valid = 1;
5432 /* Determine if this segment contains the ELF file header
5433 and if it contains the program headers themselves. */
5434 map->includes_filehdr = (segment->p_offset == 0
5435 && segment->p_filesz >= iehdr->e_ehsize);
5437 map->includes_phdrs = 0;
5439 if (! phdr_included || segment->p_type != PT_LOAD)
5441 map->includes_phdrs =
5442 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5443 && (segment->p_offset + segment->p_filesz
5444 >= ((bfd_vma) iehdr->e_phoff
5445 + iehdr->e_phnum * iehdr->e_phentsize)));
5447 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5448 phdr_included = TRUE;
5451 if (section_count == 0)
5453 /* Special segments, such as the PT_PHDR segment, may contain
5454 no sections, but ordinary, loadable segments should contain
5455 something. They are allowed by the ELF spec however, so only
5456 a warning is produced. */
5457 if (segment->p_type == PT_LOAD)
5458 (*_bfd_error_handler)
5459 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5460 ibfd);
5462 map->count = 0;
5463 *pointer_to_map = map;
5464 pointer_to_map = &map->next;
5466 continue;
5469 /* Now scan the sections in the input BFD again and attempt
5470 to add their corresponding output sections to the segment map.
5471 The problem here is how to handle an output section which has
5472 been moved (ie had its LMA changed). There are four possibilities:
5474 1. None of the sections have been moved.
5475 In this case we can continue to use the segment LMA from the
5476 input BFD.
5478 2. All of the sections have been moved by the same amount.
5479 In this case we can change the segment's LMA to match the LMA
5480 of the first section.
5482 3. Some of the sections have been moved, others have not.
5483 In this case those sections which have not been moved can be
5484 placed in the current segment which will have to have its size,
5485 and possibly its LMA changed, and a new segment or segments will
5486 have to be created to contain the other sections.
5488 4. The sections have been moved, but not by the same amount.
5489 In this case we can change the segment's LMA to match the LMA
5490 of the first section and we will have to create a new segment
5491 or segments to contain the other sections.
5493 In order to save time, we allocate an array to hold the section
5494 pointers that we are interested in. As these sections get assigned
5495 to a segment, they are removed from this array. */
5497 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5498 to work around this long long bug. */
5499 sections = bfd_malloc2 (section_count, sizeof (asection *));
5500 if (sections == NULL)
5501 return FALSE;
5503 /* Step One: Scan for segment vs section LMA conflicts.
5504 Also add the sections to the section array allocated above.
5505 Also add the sections to the current segment. In the common
5506 case, where the sections have not been moved, this means that
5507 we have completely filled the segment, and there is nothing
5508 more to do. */
5509 isec = 0;
5510 matching_lma = 0;
5511 suggested_lma = 0;
5513 for (j = 0, section = ibfd->sections;
5514 section != NULL;
5515 section = section->next)
5517 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5519 output_section = section->output_section;
5521 sections[j ++] = section;
5523 /* The Solaris native linker always sets p_paddr to 0.
5524 We try to catch that case here, and set it to the
5525 correct value. Note - some backends require that
5526 p_paddr be left as zero. */
5527 if (segment->p_paddr == 0
5528 && segment->p_vaddr != 0
5529 && (! bed->want_p_paddr_set_to_zero)
5530 && isec == 0
5531 && output_section->lma != 0
5532 && (output_section->vma == (segment->p_vaddr
5533 + (map->includes_filehdr
5534 ? iehdr->e_ehsize
5535 : 0)
5536 + (map->includes_phdrs
5537 ? (iehdr->e_phnum
5538 * iehdr->e_phentsize)
5539 : 0))))
5540 map->p_paddr = segment->p_vaddr;
5542 /* Match up the physical address of the segment with the
5543 LMA address of the output section. */
5544 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5545 || IS_COREFILE_NOTE (segment, section)
5546 || (bed->want_p_paddr_set_to_zero &&
5547 IS_CONTAINED_BY_VMA (output_section, segment))
5550 if (matching_lma == 0)
5551 matching_lma = output_section->lma;
5553 /* We assume that if the section fits within the segment
5554 then it does not overlap any other section within that
5555 segment. */
5556 map->sections[isec ++] = output_section;
5558 else if (suggested_lma == 0)
5559 suggested_lma = output_section->lma;
5563 BFD_ASSERT (j == section_count);
5565 /* Step Two: Adjust the physical address of the current segment,
5566 if necessary. */
5567 if (isec == section_count)
5569 /* All of the sections fitted within the segment as currently
5570 specified. This is the default case. Add the segment to
5571 the list of built segments and carry on to process the next
5572 program header in the input BFD. */
5573 map->count = section_count;
5574 *pointer_to_map = map;
5575 pointer_to_map = &map->next;
5577 if (matching_lma != map->p_paddr
5578 && !map->includes_filehdr && !map->includes_phdrs)
5579 /* There is some padding before the first section in the
5580 segment. So, we must account for that in the output
5581 segment's vma. */
5582 map->p_vaddr_offset = matching_lma - map->p_paddr;
5584 free (sections);
5585 continue;
5587 else
5589 if (matching_lma != 0)
5591 /* At least one section fits inside the current segment.
5592 Keep it, but modify its physical address to match the
5593 LMA of the first section that fitted. */
5594 map->p_paddr = matching_lma;
5596 else
5598 /* None of the sections fitted inside the current segment.
5599 Change the current segment's physical address to match
5600 the LMA of the first section. */
5601 map->p_paddr = suggested_lma;
5604 /* Offset the segment physical address from the lma
5605 to allow for space taken up by elf headers. */
5606 if (map->includes_filehdr)
5607 map->p_paddr -= iehdr->e_ehsize;
5609 if (map->includes_phdrs)
5611 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5613 /* iehdr->e_phnum is just an estimate of the number
5614 of program headers that we will need. Make a note
5615 here of the number we used and the segment we chose
5616 to hold these headers, so that we can adjust the
5617 offset when we know the correct value. */
5618 phdr_adjust_num = iehdr->e_phnum;
5619 phdr_adjust_seg = map;
5623 /* Step Three: Loop over the sections again, this time assigning
5624 those that fit to the current segment and removing them from the
5625 sections array; but making sure not to leave large gaps. Once all
5626 possible sections have been assigned to the current segment it is
5627 added to the list of built segments and if sections still remain
5628 to be assigned, a new segment is constructed before repeating
5629 the loop. */
5630 isec = 0;
5633 map->count = 0;
5634 suggested_lma = 0;
5636 /* Fill the current segment with sections that fit. */
5637 for (j = 0; j < section_count; j++)
5639 section = sections[j];
5641 if (section == NULL)
5642 continue;
5644 output_section = section->output_section;
5646 BFD_ASSERT (output_section != NULL);
5648 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5649 || IS_COREFILE_NOTE (segment, section))
5651 if (map->count == 0)
5653 /* If the first section in a segment does not start at
5654 the beginning of the segment, then something is
5655 wrong. */
5656 if (output_section->lma !=
5657 (map->p_paddr
5658 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5659 + (map->includes_phdrs
5660 ? iehdr->e_phnum * iehdr->e_phentsize
5661 : 0)))
5662 abort ();
5664 else
5666 asection * prev_sec;
5668 prev_sec = map->sections[map->count - 1];
5670 /* If the gap between the end of the previous section
5671 and the start of this section is more than
5672 maxpagesize then we need to start a new segment. */
5673 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5674 maxpagesize)
5675 < BFD_ALIGN (output_section->lma, maxpagesize))
5676 || ((prev_sec->lma + prev_sec->size)
5677 > output_section->lma))
5679 if (suggested_lma == 0)
5680 suggested_lma = output_section->lma;
5682 continue;
5686 map->sections[map->count++] = output_section;
5687 ++isec;
5688 sections[j] = NULL;
5689 section->segment_mark = TRUE;
5691 else if (suggested_lma == 0)
5692 suggested_lma = output_section->lma;
5695 BFD_ASSERT (map->count > 0);
5697 /* Add the current segment to the list of built segments. */
5698 *pointer_to_map = map;
5699 pointer_to_map = &map->next;
5701 if (isec < section_count)
5703 /* We still have not allocated all of the sections to
5704 segments. Create a new segment here, initialise it
5705 and carry on looping. */
5706 amt = sizeof (struct elf_segment_map);
5707 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5708 map = bfd_alloc (obfd, amt);
5709 if (map == NULL)
5711 free (sections);
5712 return FALSE;
5715 /* Initialise the fields of the segment map. Set the physical
5716 physical address to the LMA of the first section that has
5717 not yet been assigned. */
5718 map->next = NULL;
5719 map->p_type = segment->p_type;
5720 map->p_flags = segment->p_flags;
5721 map->p_flags_valid = 1;
5722 map->p_paddr = suggested_lma;
5723 map->p_paddr_valid = 1;
5724 map->includes_filehdr = 0;
5725 map->includes_phdrs = 0;
5728 while (isec < section_count);
5730 free (sections);
5733 /* The Solaris linker creates program headers in which all the
5734 p_paddr fields are zero. When we try to objcopy or strip such a
5735 file, we get confused. Check for this case, and if we find it
5736 reset the p_paddr_valid fields. */
5737 for (map = map_first; map != NULL; map = map->next)
5738 if (map->p_paddr != 0)
5739 break;
5740 if (map == NULL)
5741 for (map = map_first; map != NULL; map = map->next)
5742 map->p_paddr_valid = 0;
5744 elf_tdata (obfd)->segment_map = map_first;
5746 /* If we had to estimate the number of program headers that were
5747 going to be needed, then check our estimate now and adjust
5748 the offset if necessary. */
5749 if (phdr_adjust_seg != NULL)
5751 unsigned int count;
5753 for (count = 0, map = map_first; map != NULL; map = map->next)
5754 count++;
5756 if (count > phdr_adjust_num)
5757 phdr_adjust_seg->p_paddr
5758 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5761 #undef SEGMENT_END
5762 #undef SECTION_SIZE
5763 #undef IS_CONTAINED_BY_VMA
5764 #undef IS_CONTAINED_BY_LMA
5765 #undef IS_COREFILE_NOTE
5766 #undef IS_SOLARIS_PT_INTERP
5767 #undef IS_SECTION_IN_INPUT_SEGMENT
5768 #undef INCLUDE_SECTION_IN_SEGMENT
5769 #undef SEGMENT_AFTER_SEGMENT
5770 #undef SEGMENT_OVERLAPS
5771 return TRUE;
5774 /* Copy ELF program header information. */
5776 static bfd_boolean
5777 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5779 Elf_Internal_Ehdr *iehdr;
5780 struct elf_segment_map *map;
5781 struct elf_segment_map *map_first;
5782 struct elf_segment_map **pointer_to_map;
5783 Elf_Internal_Phdr *segment;
5784 unsigned int i;
5785 unsigned int num_segments;
5786 bfd_boolean phdr_included = FALSE;
5788 iehdr = elf_elfheader (ibfd);
5790 map_first = NULL;
5791 pointer_to_map = &map_first;
5793 num_segments = elf_elfheader (ibfd)->e_phnum;
5794 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5795 i < num_segments;
5796 i++, segment++)
5798 asection *section;
5799 unsigned int section_count;
5800 bfd_size_type amt;
5801 Elf_Internal_Shdr *this_hdr;
5802 asection *first_section = NULL;
5804 /* FIXME: Do we need to copy PT_NULL segment? */
5805 if (segment->p_type == PT_NULL)
5806 continue;
5808 /* Compute how many sections are in this segment. */
5809 for (section = ibfd->sections, section_count = 0;
5810 section != NULL;
5811 section = section->next)
5813 this_hdr = &(elf_section_data(section)->this_hdr);
5814 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5816 if (!first_section)
5817 first_section = section;
5818 section_count++;
5822 /* Allocate a segment map big enough to contain
5823 all of the sections we have selected. */
5824 amt = sizeof (struct elf_segment_map);
5825 if (section_count != 0)
5826 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5827 map = bfd_zalloc (obfd, amt);
5828 if (map == NULL)
5829 return FALSE;
5831 /* Initialize the fields of the output segment map with the
5832 input segment. */
5833 map->next = NULL;
5834 map->p_type = segment->p_type;
5835 map->p_flags = segment->p_flags;
5836 map->p_flags_valid = 1;
5837 map->p_paddr = segment->p_paddr;
5838 map->p_paddr_valid = 1;
5839 map->p_align = segment->p_align;
5840 map->p_align_valid = 1;
5841 map->p_vaddr_offset = 0;
5843 /* Determine if this segment contains the ELF file header
5844 and if it contains the program headers themselves. */
5845 map->includes_filehdr = (segment->p_offset == 0
5846 && segment->p_filesz >= iehdr->e_ehsize);
5848 map->includes_phdrs = 0;
5849 if (! phdr_included || segment->p_type != PT_LOAD)
5851 map->includes_phdrs =
5852 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5853 && (segment->p_offset + segment->p_filesz
5854 >= ((bfd_vma) iehdr->e_phoff
5855 + iehdr->e_phnum * iehdr->e_phentsize)));
5857 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5858 phdr_included = TRUE;
5861 if (!map->includes_phdrs && !map->includes_filehdr)
5862 /* There is some other padding before the first section. */
5863 map->p_vaddr_offset = ((first_section ? first_section->lma : 0)
5864 - segment->p_paddr);
5866 if (section_count != 0)
5868 unsigned int isec = 0;
5870 for (section = first_section;
5871 section != NULL;
5872 section = section->next)
5874 this_hdr = &(elf_section_data(section)->this_hdr);
5875 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5877 map->sections[isec++] = section->output_section;
5878 if (isec == section_count)
5879 break;
5884 map->count = section_count;
5885 *pointer_to_map = map;
5886 pointer_to_map = &map->next;
5889 elf_tdata (obfd)->segment_map = map_first;
5890 return TRUE;
5893 /* Copy private BFD data. This copies or rewrites ELF program header
5894 information. */
5896 static bfd_boolean
5897 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5899 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5900 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5901 return TRUE;
5903 if (elf_tdata (ibfd)->phdr == NULL)
5904 return TRUE;
5906 if (ibfd->xvec == obfd->xvec)
5908 /* Check if any sections in the input BFD covered by ELF program
5909 header are changed. */
5910 Elf_Internal_Phdr *segment;
5911 asection *section, *osec;
5912 unsigned int i, num_segments;
5913 Elf_Internal_Shdr *this_hdr;
5915 /* Initialize the segment mark field. */
5916 for (section = obfd->sections; section != NULL;
5917 section = section->next)
5918 section->segment_mark = FALSE;
5920 num_segments = elf_elfheader (ibfd)->e_phnum;
5921 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5922 i < num_segments;
5923 i++, segment++)
5925 for (section = ibfd->sections;
5926 section != NULL; section = section->next)
5928 /* We mark the output section so that we know it comes
5929 from the input BFD. */
5930 osec = section->output_section;
5931 if (osec)
5932 osec->segment_mark = TRUE;
5934 /* Check if this section is covered by the segment. */
5935 this_hdr = &(elf_section_data(section)->this_hdr);
5936 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5938 /* FIXME: Check if its output section is changed or
5939 removed. What else do we need to check? */
5940 if (osec == NULL
5941 || section->flags != osec->flags
5942 || section->lma != osec->lma
5943 || section->vma != osec->vma
5944 || section->size != osec->size
5945 || section->rawsize != osec->rawsize
5946 || section->alignment_power != osec->alignment_power)
5947 goto rewrite;
5952 /* Check to see if any output section doesn't come from the
5953 input BFD. */
5954 for (section = obfd->sections; section != NULL;
5955 section = section->next)
5957 if (section->segment_mark == FALSE)
5958 goto rewrite;
5959 else
5960 section->segment_mark = FALSE;
5963 return copy_elf_program_header (ibfd, obfd);
5966 rewrite:
5967 return rewrite_elf_program_header (ibfd, obfd);
5970 /* Initialize private output section information from input section. */
5972 bfd_boolean
5973 _bfd_elf_init_private_section_data (bfd *ibfd,
5974 asection *isec,
5975 bfd *obfd,
5976 asection *osec,
5977 struct bfd_link_info *link_info)
5980 Elf_Internal_Shdr *ihdr, *ohdr;
5981 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5983 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5984 || obfd->xvec->flavour != bfd_target_elf_flavour)
5985 return TRUE;
5987 /* Don't copy the output ELF section type from input if the
5988 output BFD section flags have been set to something different.
5989 elf_fake_sections will set ELF section type based on BFD
5990 section flags. */
5991 if (osec->flags == isec->flags || !osec->flags)
5993 BFD_ASSERT (osec->flags == isec->flags
5994 || (!osec->flags
5995 && elf_section_type (osec) == SHT_NULL));
5996 elf_section_type (osec) = elf_section_type (isec);
5999 /* FIXME: Is this correct for all OS/PROC specific flags? */
6000 elf_section_flags (osec) |= (elf_section_flags (isec)
6001 & (SHF_MASKOS | SHF_MASKPROC));
6003 /* Set things up for objcopy and relocatable link. The output
6004 SHT_GROUP section will have its elf_next_in_group pointing back
6005 to the input group members. Ignore linker created group section.
6006 See elfNN_ia64_object_p in elfxx-ia64.c. */
6007 if (need_group)
6009 if (elf_sec_group (isec) == NULL
6010 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6012 if (elf_section_flags (isec) & SHF_GROUP)
6013 elf_section_flags (osec) |= SHF_GROUP;
6014 elf_next_in_group (osec) = elf_next_in_group (isec);
6015 elf_group_name (osec) = elf_group_name (isec);
6019 ihdr = &elf_section_data (isec)->this_hdr;
6021 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6022 don't use the output section of the linked-to section since it
6023 may be NULL at this point. */
6024 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6026 ohdr = &elf_section_data (osec)->this_hdr;
6027 ohdr->sh_flags |= SHF_LINK_ORDER;
6028 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6031 osec->use_rela_p = isec->use_rela_p;
6033 return TRUE;
6036 /* Copy private section information. This copies over the entsize
6037 field, and sometimes the info field. */
6039 bfd_boolean
6040 _bfd_elf_copy_private_section_data (bfd *ibfd,
6041 asection *isec,
6042 bfd *obfd,
6043 asection *osec)
6045 Elf_Internal_Shdr *ihdr, *ohdr;
6047 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6048 || obfd->xvec->flavour != bfd_target_elf_flavour)
6049 return TRUE;
6051 ihdr = &elf_section_data (isec)->this_hdr;
6052 ohdr = &elf_section_data (osec)->this_hdr;
6054 ohdr->sh_entsize = ihdr->sh_entsize;
6056 if (ihdr->sh_type == SHT_SYMTAB
6057 || ihdr->sh_type == SHT_DYNSYM
6058 || ihdr->sh_type == SHT_GNU_verneed
6059 || ihdr->sh_type == SHT_GNU_verdef)
6060 ohdr->sh_info = ihdr->sh_info;
6062 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6063 NULL);
6066 /* Copy private header information. */
6068 bfd_boolean
6069 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6071 asection *isec;
6073 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6074 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6075 return TRUE;
6077 /* Copy over private BFD data if it has not already been copied.
6078 This must be done here, rather than in the copy_private_bfd_data
6079 entry point, because the latter is called after the section
6080 contents have been set, which means that the program headers have
6081 already been worked out. */
6082 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6084 if (! copy_private_bfd_data (ibfd, obfd))
6085 return FALSE;
6088 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6089 but this might be wrong if we deleted the group section. */
6090 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6091 if (elf_section_type (isec) == SHT_GROUP
6092 && isec->output_section == NULL)
6094 asection *first = elf_next_in_group (isec);
6095 asection *s = first;
6096 while (s != NULL)
6098 if (s->output_section != NULL)
6100 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6101 elf_group_name (s->output_section) = NULL;
6103 s = elf_next_in_group (s);
6104 if (s == first)
6105 break;
6109 return TRUE;
6112 /* Copy private symbol information. If this symbol is in a section
6113 which we did not map into a BFD section, try to map the section
6114 index correctly. We use special macro definitions for the mapped
6115 section indices; these definitions are interpreted by the
6116 swap_out_syms function. */
6118 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6119 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6120 #define MAP_STRTAB (SHN_HIOS + 3)
6121 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6122 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6124 bfd_boolean
6125 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6126 asymbol *isymarg,
6127 bfd *obfd,
6128 asymbol *osymarg)
6130 elf_symbol_type *isym, *osym;
6132 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6133 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6134 return TRUE;
6136 isym = elf_symbol_from (ibfd, isymarg);
6137 osym = elf_symbol_from (obfd, osymarg);
6139 if (isym != NULL
6140 && osym != NULL
6141 && bfd_is_abs_section (isym->symbol.section))
6143 unsigned int shndx;
6145 shndx = isym->internal_elf_sym.st_shndx;
6146 if (shndx == elf_onesymtab (ibfd))
6147 shndx = MAP_ONESYMTAB;
6148 else if (shndx == elf_dynsymtab (ibfd))
6149 shndx = MAP_DYNSYMTAB;
6150 else if (shndx == elf_tdata (ibfd)->strtab_section)
6151 shndx = MAP_STRTAB;
6152 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6153 shndx = MAP_SHSTRTAB;
6154 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6155 shndx = MAP_SYM_SHNDX;
6156 osym->internal_elf_sym.st_shndx = shndx;
6159 return TRUE;
6162 /* Swap out the symbols. */
6164 static bfd_boolean
6165 swap_out_syms (bfd *abfd,
6166 struct bfd_strtab_hash **sttp,
6167 int relocatable_p)
6169 const struct elf_backend_data *bed;
6170 int symcount;
6171 asymbol **syms;
6172 struct bfd_strtab_hash *stt;
6173 Elf_Internal_Shdr *symtab_hdr;
6174 Elf_Internal_Shdr *symtab_shndx_hdr;
6175 Elf_Internal_Shdr *symstrtab_hdr;
6176 bfd_byte *outbound_syms;
6177 bfd_byte *outbound_shndx;
6178 int idx;
6179 bfd_size_type amt;
6180 bfd_boolean name_local_sections;
6182 if (!elf_map_symbols (abfd))
6183 return FALSE;
6185 /* Dump out the symtabs. */
6186 stt = _bfd_elf_stringtab_init ();
6187 if (stt == NULL)
6188 return FALSE;
6190 bed = get_elf_backend_data (abfd);
6191 symcount = bfd_get_symcount (abfd);
6192 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6193 symtab_hdr->sh_type = SHT_SYMTAB;
6194 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6195 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6196 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6197 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6199 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6200 symstrtab_hdr->sh_type = SHT_STRTAB;
6202 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6203 if (outbound_syms == NULL)
6205 _bfd_stringtab_free (stt);
6206 return FALSE;
6208 symtab_hdr->contents = outbound_syms;
6210 outbound_shndx = NULL;
6211 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6212 if (symtab_shndx_hdr->sh_name != 0)
6214 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6215 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6216 sizeof (Elf_External_Sym_Shndx));
6217 if (outbound_shndx == NULL)
6219 _bfd_stringtab_free (stt);
6220 return FALSE;
6223 symtab_shndx_hdr->contents = outbound_shndx;
6224 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6225 symtab_shndx_hdr->sh_size = amt;
6226 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6227 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6230 /* Now generate the data (for "contents"). */
6232 /* Fill in zeroth symbol and swap it out. */
6233 Elf_Internal_Sym sym;
6234 sym.st_name = 0;
6235 sym.st_value = 0;
6236 sym.st_size = 0;
6237 sym.st_info = 0;
6238 sym.st_other = 0;
6239 sym.st_shndx = SHN_UNDEF;
6240 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6241 outbound_syms += bed->s->sizeof_sym;
6242 if (outbound_shndx != NULL)
6243 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6246 name_local_sections
6247 = (bed->elf_backend_name_local_section_symbols
6248 && bed->elf_backend_name_local_section_symbols (abfd));
6250 syms = bfd_get_outsymbols (abfd);
6251 for (idx = 0; idx < symcount; idx++)
6253 Elf_Internal_Sym sym;
6254 bfd_vma value = syms[idx]->value;
6255 elf_symbol_type *type_ptr;
6256 flagword flags = syms[idx]->flags;
6257 int type;
6259 if (!name_local_sections
6260 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6262 /* Local section symbols have no name. */
6263 sym.st_name = 0;
6265 else
6267 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6268 syms[idx]->name,
6269 TRUE, FALSE);
6270 if (sym.st_name == (unsigned long) -1)
6272 _bfd_stringtab_free (stt);
6273 return FALSE;
6277 type_ptr = elf_symbol_from (abfd, syms[idx]);
6279 if ((flags & BSF_SECTION_SYM) == 0
6280 && bfd_is_com_section (syms[idx]->section))
6282 /* ELF common symbols put the alignment into the `value' field,
6283 and the size into the `size' field. This is backwards from
6284 how BFD handles it, so reverse it here. */
6285 sym.st_size = value;
6286 if (type_ptr == NULL
6287 || type_ptr->internal_elf_sym.st_value == 0)
6288 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6289 else
6290 sym.st_value = type_ptr->internal_elf_sym.st_value;
6291 sym.st_shndx = _bfd_elf_section_from_bfd_section
6292 (abfd, syms[idx]->section);
6294 else
6296 asection *sec = syms[idx]->section;
6297 int shndx;
6299 if (sec->output_section)
6301 value += sec->output_offset;
6302 sec = sec->output_section;
6305 /* Don't add in the section vma for relocatable output. */
6306 if (! relocatable_p)
6307 value += sec->vma;
6308 sym.st_value = value;
6309 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6311 if (bfd_is_abs_section (sec)
6312 && type_ptr != NULL
6313 && type_ptr->internal_elf_sym.st_shndx != 0)
6315 /* This symbol is in a real ELF section which we did
6316 not create as a BFD section. Undo the mapping done
6317 by copy_private_symbol_data. */
6318 shndx = type_ptr->internal_elf_sym.st_shndx;
6319 switch (shndx)
6321 case MAP_ONESYMTAB:
6322 shndx = elf_onesymtab (abfd);
6323 break;
6324 case MAP_DYNSYMTAB:
6325 shndx = elf_dynsymtab (abfd);
6326 break;
6327 case MAP_STRTAB:
6328 shndx = elf_tdata (abfd)->strtab_section;
6329 break;
6330 case MAP_SHSTRTAB:
6331 shndx = elf_tdata (abfd)->shstrtab_section;
6332 break;
6333 case MAP_SYM_SHNDX:
6334 shndx = elf_tdata (abfd)->symtab_shndx_section;
6335 break;
6336 default:
6337 break;
6340 else
6342 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6344 if (shndx == -1)
6346 asection *sec2;
6348 /* Writing this would be a hell of a lot easier if
6349 we had some decent documentation on bfd, and
6350 knew what to expect of the library, and what to
6351 demand of applications. For example, it
6352 appears that `objcopy' might not set the
6353 section of a symbol to be a section that is
6354 actually in the output file. */
6355 sec2 = bfd_get_section_by_name (abfd, sec->name);
6356 if (sec2 == NULL)
6358 _bfd_error_handler (_("\
6359 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6360 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6361 sec->name);
6362 bfd_set_error (bfd_error_invalid_operation);
6363 _bfd_stringtab_free (stt);
6364 return FALSE;
6367 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6368 BFD_ASSERT (shndx != -1);
6372 sym.st_shndx = shndx;
6375 if ((flags & BSF_THREAD_LOCAL) != 0)
6376 type = STT_TLS;
6377 else if ((flags & BSF_FUNCTION) != 0)
6378 type = STT_FUNC;
6379 else if ((flags & BSF_OBJECT) != 0)
6380 type = STT_OBJECT;
6381 else if ((flags & BSF_RELC) != 0)
6382 type = STT_RELC;
6383 else if ((flags & BSF_SRELC) != 0)
6384 type = STT_SRELC;
6385 else
6386 type = STT_NOTYPE;
6388 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6389 type = STT_TLS;
6391 /* Processor-specific types. */
6392 if (type_ptr != NULL
6393 && bed->elf_backend_get_symbol_type)
6394 type = ((*bed->elf_backend_get_symbol_type)
6395 (&type_ptr->internal_elf_sym, type));
6397 if (flags & BSF_SECTION_SYM)
6399 if (flags & BSF_GLOBAL)
6400 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6401 else
6402 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6404 else if (bfd_is_com_section (syms[idx]->section))
6405 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6406 else if (bfd_is_und_section (syms[idx]->section))
6407 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6408 ? STB_WEAK
6409 : STB_GLOBAL),
6410 type);
6411 else if (flags & BSF_FILE)
6412 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6413 else
6415 int bind = STB_LOCAL;
6417 if (flags & BSF_LOCAL)
6418 bind = STB_LOCAL;
6419 else if (flags & BSF_WEAK)
6420 bind = STB_WEAK;
6421 else if (flags & BSF_GLOBAL)
6422 bind = STB_GLOBAL;
6424 sym.st_info = ELF_ST_INFO (bind, type);
6427 if (type_ptr != NULL)
6428 sym.st_other = type_ptr->internal_elf_sym.st_other;
6429 else
6430 sym.st_other = 0;
6432 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6433 outbound_syms += bed->s->sizeof_sym;
6434 if (outbound_shndx != NULL)
6435 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6438 *sttp = stt;
6439 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6440 symstrtab_hdr->sh_type = SHT_STRTAB;
6442 symstrtab_hdr->sh_flags = 0;
6443 symstrtab_hdr->sh_addr = 0;
6444 symstrtab_hdr->sh_entsize = 0;
6445 symstrtab_hdr->sh_link = 0;
6446 symstrtab_hdr->sh_info = 0;
6447 symstrtab_hdr->sh_addralign = 1;
6449 return TRUE;
6452 /* Return the number of bytes required to hold the symtab vector.
6454 Note that we base it on the count plus 1, since we will null terminate
6455 the vector allocated based on this size. However, the ELF symbol table
6456 always has a dummy entry as symbol #0, so it ends up even. */
6458 long
6459 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6461 long symcount;
6462 long symtab_size;
6463 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6465 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6466 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6467 if (symcount > 0)
6468 symtab_size -= sizeof (asymbol *);
6470 return symtab_size;
6473 long
6474 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6476 long symcount;
6477 long symtab_size;
6478 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6480 if (elf_dynsymtab (abfd) == 0)
6482 bfd_set_error (bfd_error_invalid_operation);
6483 return -1;
6486 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6487 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6488 if (symcount > 0)
6489 symtab_size -= sizeof (asymbol *);
6491 return symtab_size;
6494 long
6495 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6496 sec_ptr asect)
6498 return (asect->reloc_count + 1) * sizeof (arelent *);
6501 /* Canonicalize the relocs. */
6503 long
6504 _bfd_elf_canonicalize_reloc (bfd *abfd,
6505 sec_ptr section,
6506 arelent **relptr,
6507 asymbol **symbols)
6509 arelent *tblptr;
6510 unsigned int i;
6511 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6513 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6514 return -1;
6516 tblptr = section->relocation;
6517 for (i = 0; i < section->reloc_count; i++)
6518 *relptr++ = tblptr++;
6520 *relptr = NULL;
6522 return section->reloc_count;
6525 long
6526 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6528 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6529 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6531 if (symcount >= 0)
6532 bfd_get_symcount (abfd) = symcount;
6533 return symcount;
6536 long
6537 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6538 asymbol **allocation)
6540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6541 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6543 if (symcount >= 0)
6544 bfd_get_dynamic_symcount (abfd) = symcount;
6545 return symcount;
6548 /* Return the size required for the dynamic reloc entries. Any loadable
6549 section that was actually installed in the BFD, and has type SHT_REL
6550 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6551 dynamic reloc section. */
6553 long
6554 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6556 long ret;
6557 asection *s;
6559 if (elf_dynsymtab (abfd) == 0)
6561 bfd_set_error (bfd_error_invalid_operation);
6562 return -1;
6565 ret = sizeof (arelent *);
6566 for (s = abfd->sections; s != NULL; s = s->next)
6567 if ((s->flags & SEC_LOAD) != 0
6568 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6569 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6570 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6571 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6572 * sizeof (arelent *));
6574 return ret;
6577 /* Canonicalize the dynamic relocation entries. Note that we return the
6578 dynamic relocations as a single block, although they are actually
6579 associated with particular sections; the interface, which was
6580 designed for SunOS style shared libraries, expects that there is only
6581 one set of dynamic relocs. Any loadable section that was actually
6582 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6583 dynamic symbol table, is considered to be a dynamic reloc section. */
6585 long
6586 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6587 arelent **storage,
6588 asymbol **syms)
6590 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6591 asection *s;
6592 long ret;
6594 if (elf_dynsymtab (abfd) == 0)
6596 bfd_set_error (bfd_error_invalid_operation);
6597 return -1;
6600 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6601 ret = 0;
6602 for (s = abfd->sections; s != NULL; s = s->next)
6604 if ((s->flags & SEC_LOAD) != 0
6605 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6606 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6607 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6609 arelent *p;
6610 long count, i;
6612 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6613 return -1;
6614 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6615 p = s->relocation;
6616 for (i = 0; i < count; i++)
6617 *storage++ = p++;
6618 ret += count;
6622 *storage = NULL;
6624 return ret;
6627 /* Read in the version information. */
6629 bfd_boolean
6630 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6632 bfd_byte *contents = NULL;
6633 unsigned int freeidx = 0;
6635 if (elf_dynverref (abfd) != 0)
6637 Elf_Internal_Shdr *hdr;
6638 Elf_External_Verneed *everneed;
6639 Elf_Internal_Verneed *iverneed;
6640 unsigned int i;
6641 bfd_byte *contents_end;
6643 hdr = &elf_tdata (abfd)->dynverref_hdr;
6645 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6646 sizeof (Elf_Internal_Verneed));
6647 if (elf_tdata (abfd)->verref == NULL)
6648 goto error_return;
6650 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6652 contents = bfd_malloc (hdr->sh_size);
6653 if (contents == NULL)
6655 error_return_verref:
6656 elf_tdata (abfd)->verref = NULL;
6657 elf_tdata (abfd)->cverrefs = 0;
6658 goto error_return;
6660 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6661 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6662 goto error_return_verref;
6664 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6665 goto error_return_verref;
6667 BFD_ASSERT (sizeof (Elf_External_Verneed)
6668 == sizeof (Elf_External_Vernaux));
6669 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6670 everneed = (Elf_External_Verneed *) contents;
6671 iverneed = elf_tdata (abfd)->verref;
6672 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6674 Elf_External_Vernaux *evernaux;
6675 Elf_Internal_Vernaux *ivernaux;
6676 unsigned int j;
6678 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6680 iverneed->vn_bfd = abfd;
6682 iverneed->vn_filename =
6683 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6684 iverneed->vn_file);
6685 if (iverneed->vn_filename == NULL)
6686 goto error_return_verref;
6688 if (iverneed->vn_cnt == 0)
6689 iverneed->vn_auxptr = NULL;
6690 else
6692 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6693 sizeof (Elf_Internal_Vernaux));
6694 if (iverneed->vn_auxptr == NULL)
6695 goto error_return_verref;
6698 if (iverneed->vn_aux
6699 > (size_t) (contents_end - (bfd_byte *) everneed))
6700 goto error_return_verref;
6702 evernaux = ((Elf_External_Vernaux *)
6703 ((bfd_byte *) everneed + iverneed->vn_aux));
6704 ivernaux = iverneed->vn_auxptr;
6705 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6707 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6709 ivernaux->vna_nodename =
6710 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6711 ivernaux->vna_name);
6712 if (ivernaux->vna_nodename == NULL)
6713 goto error_return_verref;
6715 if (j + 1 < iverneed->vn_cnt)
6716 ivernaux->vna_nextptr = ivernaux + 1;
6717 else
6718 ivernaux->vna_nextptr = NULL;
6720 if (ivernaux->vna_next
6721 > (size_t) (contents_end - (bfd_byte *) evernaux))
6722 goto error_return_verref;
6724 evernaux = ((Elf_External_Vernaux *)
6725 ((bfd_byte *) evernaux + ivernaux->vna_next));
6727 if (ivernaux->vna_other > freeidx)
6728 freeidx = ivernaux->vna_other;
6731 if (i + 1 < hdr->sh_info)
6732 iverneed->vn_nextref = iverneed + 1;
6733 else
6734 iverneed->vn_nextref = NULL;
6736 if (iverneed->vn_next
6737 > (size_t) (contents_end - (bfd_byte *) everneed))
6738 goto error_return_verref;
6740 everneed = ((Elf_External_Verneed *)
6741 ((bfd_byte *) everneed + iverneed->vn_next));
6744 free (contents);
6745 contents = NULL;
6748 if (elf_dynverdef (abfd) != 0)
6750 Elf_Internal_Shdr *hdr;
6751 Elf_External_Verdef *everdef;
6752 Elf_Internal_Verdef *iverdef;
6753 Elf_Internal_Verdef *iverdefarr;
6754 Elf_Internal_Verdef iverdefmem;
6755 unsigned int i;
6756 unsigned int maxidx;
6757 bfd_byte *contents_end_def, *contents_end_aux;
6759 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6761 contents = bfd_malloc (hdr->sh_size);
6762 if (contents == NULL)
6763 goto error_return;
6764 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6765 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6766 goto error_return;
6768 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6769 goto error_return;
6771 BFD_ASSERT (sizeof (Elf_External_Verdef)
6772 >= sizeof (Elf_External_Verdaux));
6773 contents_end_def = contents + hdr->sh_size
6774 - sizeof (Elf_External_Verdef);
6775 contents_end_aux = contents + hdr->sh_size
6776 - sizeof (Elf_External_Verdaux);
6778 /* We know the number of entries in the section but not the maximum
6779 index. Therefore we have to run through all entries and find
6780 the maximum. */
6781 everdef = (Elf_External_Verdef *) contents;
6782 maxidx = 0;
6783 for (i = 0; i < hdr->sh_info; ++i)
6785 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6787 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6788 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6790 if (iverdefmem.vd_next
6791 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6792 goto error_return;
6794 everdef = ((Elf_External_Verdef *)
6795 ((bfd_byte *) everdef + iverdefmem.vd_next));
6798 if (default_imported_symver)
6800 if (freeidx > maxidx)
6801 maxidx = ++freeidx;
6802 else
6803 freeidx = ++maxidx;
6805 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6806 sizeof (Elf_Internal_Verdef));
6807 if (elf_tdata (abfd)->verdef == NULL)
6808 goto error_return;
6810 elf_tdata (abfd)->cverdefs = maxidx;
6812 everdef = (Elf_External_Verdef *) contents;
6813 iverdefarr = elf_tdata (abfd)->verdef;
6814 for (i = 0; i < hdr->sh_info; i++)
6816 Elf_External_Verdaux *everdaux;
6817 Elf_Internal_Verdaux *iverdaux;
6818 unsigned int j;
6820 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6822 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6824 error_return_verdef:
6825 elf_tdata (abfd)->verdef = NULL;
6826 elf_tdata (abfd)->cverdefs = 0;
6827 goto error_return;
6830 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6831 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6833 iverdef->vd_bfd = abfd;
6835 if (iverdef->vd_cnt == 0)
6836 iverdef->vd_auxptr = NULL;
6837 else
6839 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6840 sizeof (Elf_Internal_Verdaux));
6841 if (iverdef->vd_auxptr == NULL)
6842 goto error_return_verdef;
6845 if (iverdef->vd_aux
6846 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6847 goto error_return_verdef;
6849 everdaux = ((Elf_External_Verdaux *)
6850 ((bfd_byte *) everdef + iverdef->vd_aux));
6851 iverdaux = iverdef->vd_auxptr;
6852 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6854 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6856 iverdaux->vda_nodename =
6857 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6858 iverdaux->vda_name);
6859 if (iverdaux->vda_nodename == NULL)
6860 goto error_return_verdef;
6862 if (j + 1 < iverdef->vd_cnt)
6863 iverdaux->vda_nextptr = iverdaux + 1;
6864 else
6865 iverdaux->vda_nextptr = NULL;
6867 if (iverdaux->vda_next
6868 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6869 goto error_return_verdef;
6871 everdaux = ((Elf_External_Verdaux *)
6872 ((bfd_byte *) everdaux + iverdaux->vda_next));
6875 if (iverdef->vd_cnt)
6876 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6878 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6879 iverdef->vd_nextdef = iverdef + 1;
6880 else
6881 iverdef->vd_nextdef = NULL;
6883 everdef = ((Elf_External_Verdef *)
6884 ((bfd_byte *) everdef + iverdef->vd_next));
6887 free (contents);
6888 contents = NULL;
6890 else if (default_imported_symver)
6892 if (freeidx < 3)
6893 freeidx = 3;
6894 else
6895 freeidx++;
6897 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6898 sizeof (Elf_Internal_Verdef));
6899 if (elf_tdata (abfd)->verdef == NULL)
6900 goto error_return;
6902 elf_tdata (abfd)->cverdefs = freeidx;
6905 /* Create a default version based on the soname. */
6906 if (default_imported_symver)
6908 Elf_Internal_Verdef *iverdef;
6909 Elf_Internal_Verdaux *iverdaux;
6911 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6913 iverdef->vd_version = VER_DEF_CURRENT;
6914 iverdef->vd_flags = 0;
6915 iverdef->vd_ndx = freeidx;
6916 iverdef->vd_cnt = 1;
6918 iverdef->vd_bfd = abfd;
6920 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6921 if (iverdef->vd_nodename == NULL)
6922 goto error_return_verdef;
6923 iverdef->vd_nextdef = NULL;
6924 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6925 if (iverdef->vd_auxptr == NULL)
6926 goto error_return_verdef;
6928 iverdaux = iverdef->vd_auxptr;
6929 iverdaux->vda_nodename = iverdef->vd_nodename;
6930 iverdaux->vda_nextptr = NULL;
6933 return TRUE;
6935 error_return:
6936 if (contents != NULL)
6937 free (contents);
6938 return FALSE;
6941 asymbol *
6942 _bfd_elf_make_empty_symbol (bfd *abfd)
6944 elf_symbol_type *newsym;
6945 bfd_size_type amt = sizeof (elf_symbol_type);
6947 newsym = bfd_zalloc (abfd, amt);
6948 if (!newsym)
6949 return NULL;
6950 else
6952 newsym->symbol.the_bfd = abfd;
6953 return &newsym->symbol;
6957 void
6958 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6959 asymbol *symbol,
6960 symbol_info *ret)
6962 bfd_symbol_info (symbol, ret);
6965 /* Return whether a symbol name implies a local symbol. Most targets
6966 use this function for the is_local_label_name entry point, but some
6967 override it. */
6969 bfd_boolean
6970 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6971 const char *name)
6973 /* Normal local symbols start with ``.L''. */
6974 if (name[0] == '.' && name[1] == 'L')
6975 return TRUE;
6977 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6978 DWARF debugging symbols starting with ``..''. */
6979 if (name[0] == '.' && name[1] == '.')
6980 return TRUE;
6982 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6983 emitting DWARF debugging output. I suspect this is actually a
6984 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6985 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6986 underscore to be emitted on some ELF targets). For ease of use,
6987 we treat such symbols as local. */
6988 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6989 return TRUE;
6991 return FALSE;
6994 alent *
6995 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6996 asymbol *symbol ATTRIBUTE_UNUSED)
6998 abort ();
6999 return NULL;
7002 bfd_boolean
7003 _bfd_elf_set_arch_mach (bfd *abfd,
7004 enum bfd_architecture arch,
7005 unsigned long machine)
7007 /* If this isn't the right architecture for this backend, and this
7008 isn't the generic backend, fail. */
7009 if (arch != get_elf_backend_data (abfd)->arch
7010 && arch != bfd_arch_unknown
7011 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7012 return FALSE;
7014 return bfd_default_set_arch_mach (abfd, arch, machine);
7017 /* Find the function to a particular section and offset,
7018 for error reporting. */
7020 static bfd_boolean
7021 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7022 asection *section,
7023 asymbol **symbols,
7024 bfd_vma offset,
7025 const char **filename_ptr,
7026 const char **functionname_ptr)
7028 const char *filename;
7029 asymbol *func, *file;
7030 bfd_vma low_func;
7031 asymbol **p;
7032 /* ??? Given multiple file symbols, it is impossible to reliably
7033 choose the right file name for global symbols. File symbols are
7034 local symbols, and thus all file symbols must sort before any
7035 global symbols. The ELF spec may be interpreted to say that a
7036 file symbol must sort before other local symbols, but currently
7037 ld -r doesn't do this. So, for ld -r output, it is possible to
7038 make a better choice of file name for local symbols by ignoring
7039 file symbols appearing after a given local symbol. */
7040 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7042 filename = NULL;
7043 func = NULL;
7044 file = NULL;
7045 low_func = 0;
7046 state = nothing_seen;
7048 for (p = symbols; *p != NULL; p++)
7050 elf_symbol_type *q;
7052 q = (elf_symbol_type *) *p;
7054 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7056 default:
7057 break;
7058 case STT_FILE:
7059 file = &q->symbol;
7060 if (state == symbol_seen)
7061 state = file_after_symbol_seen;
7062 continue;
7063 case STT_NOTYPE:
7064 case STT_FUNC:
7065 if (bfd_get_section (&q->symbol) == section
7066 && q->symbol.value >= low_func
7067 && q->symbol.value <= offset)
7069 func = (asymbol *) q;
7070 low_func = q->symbol.value;
7071 filename = NULL;
7072 if (file != NULL
7073 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7074 || state != file_after_symbol_seen))
7075 filename = bfd_asymbol_name (file);
7077 break;
7079 if (state == nothing_seen)
7080 state = symbol_seen;
7083 if (func == NULL)
7084 return FALSE;
7086 if (filename_ptr)
7087 *filename_ptr = filename;
7088 if (functionname_ptr)
7089 *functionname_ptr = bfd_asymbol_name (func);
7091 return TRUE;
7094 /* Find the nearest line to a particular section and offset,
7095 for error reporting. */
7097 bfd_boolean
7098 _bfd_elf_find_nearest_line (bfd *abfd,
7099 asection *section,
7100 asymbol **symbols,
7101 bfd_vma offset,
7102 const char **filename_ptr,
7103 const char **functionname_ptr,
7104 unsigned int *line_ptr)
7106 bfd_boolean found;
7108 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7109 filename_ptr, functionname_ptr,
7110 line_ptr))
7112 if (!*functionname_ptr)
7113 elf_find_function (abfd, section, symbols, offset,
7114 *filename_ptr ? NULL : filename_ptr,
7115 functionname_ptr);
7117 return TRUE;
7120 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7121 filename_ptr, functionname_ptr,
7122 line_ptr, 0,
7123 &elf_tdata (abfd)->dwarf2_find_line_info))
7125 if (!*functionname_ptr)
7126 elf_find_function (abfd, section, symbols, offset,
7127 *filename_ptr ? NULL : filename_ptr,
7128 functionname_ptr);
7130 return TRUE;
7133 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7134 &found, filename_ptr,
7135 functionname_ptr, line_ptr,
7136 &elf_tdata (abfd)->line_info))
7137 return FALSE;
7138 if (found && (*functionname_ptr || *line_ptr))
7139 return TRUE;
7141 if (symbols == NULL)
7142 return FALSE;
7144 if (! elf_find_function (abfd, section, symbols, offset,
7145 filename_ptr, functionname_ptr))
7146 return FALSE;
7148 *line_ptr = 0;
7149 return TRUE;
7152 /* Find the line for a symbol. */
7154 bfd_boolean
7155 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7156 const char **filename_ptr, unsigned int *line_ptr)
7158 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7159 filename_ptr, line_ptr, 0,
7160 &elf_tdata (abfd)->dwarf2_find_line_info);
7163 /* After a call to bfd_find_nearest_line, successive calls to
7164 bfd_find_inliner_info can be used to get source information about
7165 each level of function inlining that terminated at the address
7166 passed to bfd_find_nearest_line. Currently this is only supported
7167 for DWARF2 with appropriate DWARF3 extensions. */
7169 bfd_boolean
7170 _bfd_elf_find_inliner_info (bfd *abfd,
7171 const char **filename_ptr,
7172 const char **functionname_ptr,
7173 unsigned int *line_ptr)
7175 bfd_boolean found;
7176 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7177 functionname_ptr, line_ptr,
7178 & elf_tdata (abfd)->dwarf2_find_line_info);
7179 return found;
7183 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7185 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7186 int ret = bed->s->sizeof_ehdr;
7188 if (!info->relocatable)
7190 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7192 if (phdr_size == (bfd_size_type) -1)
7194 struct elf_segment_map *m;
7196 phdr_size = 0;
7197 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7198 phdr_size += bed->s->sizeof_phdr;
7200 if (phdr_size == 0)
7201 phdr_size = get_program_header_size (abfd, info);
7204 elf_tdata (abfd)->program_header_size = phdr_size;
7205 ret += phdr_size;
7208 return ret;
7211 bfd_boolean
7212 _bfd_elf_set_section_contents (bfd *abfd,
7213 sec_ptr section,
7214 const void *location,
7215 file_ptr offset,
7216 bfd_size_type count)
7218 Elf_Internal_Shdr *hdr;
7219 bfd_signed_vma pos;
7221 if (! abfd->output_has_begun
7222 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7223 return FALSE;
7225 hdr = &elf_section_data (section)->this_hdr;
7226 pos = hdr->sh_offset + offset;
7227 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7228 || bfd_bwrite (location, count, abfd) != count)
7229 return FALSE;
7231 return TRUE;
7234 void
7235 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7236 arelent *cache_ptr ATTRIBUTE_UNUSED,
7237 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7239 abort ();
7242 /* Try to convert a non-ELF reloc into an ELF one. */
7244 bfd_boolean
7245 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7247 /* Check whether we really have an ELF howto. */
7249 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7251 bfd_reloc_code_real_type code;
7252 reloc_howto_type *howto;
7254 /* Alien reloc: Try to determine its type to replace it with an
7255 equivalent ELF reloc. */
7257 if (areloc->howto->pc_relative)
7259 switch (areloc->howto->bitsize)
7261 case 8:
7262 code = BFD_RELOC_8_PCREL;
7263 break;
7264 case 12:
7265 code = BFD_RELOC_12_PCREL;
7266 break;
7267 case 16:
7268 code = BFD_RELOC_16_PCREL;
7269 break;
7270 case 24:
7271 code = BFD_RELOC_24_PCREL;
7272 break;
7273 case 32:
7274 code = BFD_RELOC_32_PCREL;
7275 break;
7276 case 64:
7277 code = BFD_RELOC_64_PCREL;
7278 break;
7279 default:
7280 goto fail;
7283 howto = bfd_reloc_type_lookup (abfd, code);
7285 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7287 if (howto->pcrel_offset)
7288 areloc->addend += areloc->address;
7289 else
7290 areloc->addend -= areloc->address; /* addend is unsigned!! */
7293 else
7295 switch (areloc->howto->bitsize)
7297 case 8:
7298 code = BFD_RELOC_8;
7299 break;
7300 case 14:
7301 code = BFD_RELOC_14;
7302 break;
7303 case 16:
7304 code = BFD_RELOC_16;
7305 break;
7306 case 26:
7307 code = BFD_RELOC_26;
7308 break;
7309 case 32:
7310 code = BFD_RELOC_32;
7311 break;
7312 case 64:
7313 code = BFD_RELOC_64;
7314 break;
7315 default:
7316 goto fail;
7319 howto = bfd_reloc_type_lookup (abfd, code);
7322 if (howto)
7323 areloc->howto = howto;
7324 else
7325 goto fail;
7328 return TRUE;
7330 fail:
7331 (*_bfd_error_handler)
7332 (_("%B: unsupported relocation type %s"),
7333 abfd, areloc->howto->name);
7334 bfd_set_error (bfd_error_bad_value);
7335 return FALSE;
7338 bfd_boolean
7339 _bfd_elf_close_and_cleanup (bfd *abfd)
7341 if (bfd_get_format (abfd) == bfd_object)
7343 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7344 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7345 _bfd_dwarf2_cleanup_debug_info (abfd);
7348 return _bfd_generic_close_and_cleanup (abfd);
7351 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7352 in the relocation's offset. Thus we cannot allow any sort of sanity
7353 range-checking to interfere. There is nothing else to do in processing
7354 this reloc. */
7356 bfd_reloc_status_type
7357 _bfd_elf_rel_vtable_reloc_fn
7358 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7359 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7360 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7361 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7363 return bfd_reloc_ok;
7366 /* Elf core file support. Much of this only works on native
7367 toolchains, since we rely on knowing the
7368 machine-dependent procfs structure in order to pick
7369 out details about the corefile. */
7371 #ifdef HAVE_SYS_PROCFS_H
7372 # include <sys/procfs.h>
7373 #endif
7375 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7377 static int
7378 elfcore_make_pid (bfd *abfd)
7380 return ((elf_tdata (abfd)->core_lwpid << 16)
7381 + (elf_tdata (abfd)->core_pid));
7384 /* If there isn't a section called NAME, make one, using
7385 data from SECT. Note, this function will generate a
7386 reference to NAME, so you shouldn't deallocate or
7387 overwrite it. */
7389 static bfd_boolean
7390 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7392 asection *sect2;
7394 if (bfd_get_section_by_name (abfd, name) != NULL)
7395 return TRUE;
7397 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7398 if (sect2 == NULL)
7399 return FALSE;
7401 sect2->size = sect->size;
7402 sect2->filepos = sect->filepos;
7403 sect2->alignment_power = sect->alignment_power;
7404 return TRUE;
7407 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7408 actually creates up to two pseudosections:
7409 - For the single-threaded case, a section named NAME, unless
7410 such a section already exists.
7411 - For the multi-threaded case, a section named "NAME/PID", where
7412 PID is elfcore_make_pid (abfd).
7413 Both pseudosections have identical contents. */
7414 bfd_boolean
7415 _bfd_elfcore_make_pseudosection (bfd *abfd,
7416 char *name,
7417 size_t size,
7418 ufile_ptr filepos)
7420 char buf[100];
7421 char *threaded_name;
7422 size_t len;
7423 asection *sect;
7425 /* Build the section name. */
7427 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7428 len = strlen (buf) + 1;
7429 threaded_name = bfd_alloc (abfd, len);
7430 if (threaded_name == NULL)
7431 return FALSE;
7432 memcpy (threaded_name, buf, len);
7434 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7435 SEC_HAS_CONTENTS);
7436 if (sect == NULL)
7437 return FALSE;
7438 sect->size = size;
7439 sect->filepos = filepos;
7440 sect->alignment_power = 2;
7442 return elfcore_maybe_make_sect (abfd, name, sect);
7445 /* prstatus_t exists on:
7446 solaris 2.5+
7447 linux 2.[01] + glibc
7448 unixware 4.2
7451 #if defined (HAVE_PRSTATUS_T)
7453 static bfd_boolean
7454 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7456 size_t size;
7457 int offset;
7459 if (note->descsz == sizeof (prstatus_t))
7461 prstatus_t prstat;
7463 size = sizeof (prstat.pr_reg);
7464 offset = offsetof (prstatus_t, pr_reg);
7465 memcpy (&prstat, note->descdata, sizeof (prstat));
7467 /* Do not overwrite the core signal if it
7468 has already been set by another thread. */
7469 if (elf_tdata (abfd)->core_signal == 0)
7470 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7471 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7473 /* pr_who exists on:
7474 solaris 2.5+
7475 unixware 4.2
7476 pr_who doesn't exist on:
7477 linux 2.[01]
7479 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7480 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7481 #endif
7483 #if defined (HAVE_PRSTATUS32_T)
7484 else if (note->descsz == sizeof (prstatus32_t))
7486 /* 64-bit host, 32-bit corefile */
7487 prstatus32_t prstat;
7489 size = sizeof (prstat.pr_reg);
7490 offset = offsetof (prstatus32_t, pr_reg);
7491 memcpy (&prstat, note->descdata, sizeof (prstat));
7493 /* Do not overwrite the core signal if it
7494 has already been set by another thread. */
7495 if (elf_tdata (abfd)->core_signal == 0)
7496 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7497 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7499 /* pr_who exists on:
7500 solaris 2.5+
7501 unixware 4.2
7502 pr_who doesn't exist on:
7503 linux 2.[01]
7505 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7506 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7507 #endif
7509 #endif /* HAVE_PRSTATUS32_T */
7510 else
7512 /* Fail - we don't know how to handle any other
7513 note size (ie. data object type). */
7514 return TRUE;
7517 /* Make a ".reg/999" section and a ".reg" section. */
7518 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7519 size, note->descpos + offset);
7521 #endif /* defined (HAVE_PRSTATUS_T) */
7523 /* Create a pseudosection containing the exact contents of NOTE. */
7524 static bfd_boolean
7525 elfcore_make_note_pseudosection (bfd *abfd,
7526 char *name,
7527 Elf_Internal_Note *note)
7529 return _bfd_elfcore_make_pseudosection (abfd, name,
7530 note->descsz, note->descpos);
7533 /* There isn't a consistent prfpregset_t across platforms,
7534 but it doesn't matter, because we don't have to pick this
7535 data structure apart. */
7537 static bfd_boolean
7538 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7540 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7543 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7544 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7545 literally. */
7547 static bfd_boolean
7548 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7550 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7553 #if defined (HAVE_PRPSINFO_T)
7554 typedef prpsinfo_t elfcore_psinfo_t;
7555 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7556 typedef prpsinfo32_t elfcore_psinfo32_t;
7557 #endif
7558 #endif
7560 #if defined (HAVE_PSINFO_T)
7561 typedef psinfo_t elfcore_psinfo_t;
7562 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7563 typedef psinfo32_t elfcore_psinfo32_t;
7564 #endif
7565 #endif
7567 /* return a malloc'ed copy of a string at START which is at
7568 most MAX bytes long, possibly without a terminating '\0'.
7569 the copy will always have a terminating '\0'. */
7571 char *
7572 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7574 char *dups;
7575 char *end = memchr (start, '\0', max);
7576 size_t len;
7578 if (end == NULL)
7579 len = max;
7580 else
7581 len = end - start;
7583 dups = bfd_alloc (abfd, len + 1);
7584 if (dups == NULL)
7585 return NULL;
7587 memcpy (dups, start, len);
7588 dups[len] = '\0';
7590 return dups;
7593 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7594 static bfd_boolean
7595 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7597 if (note->descsz == sizeof (elfcore_psinfo_t))
7599 elfcore_psinfo_t psinfo;
7601 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7603 elf_tdata (abfd)->core_program
7604 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7605 sizeof (psinfo.pr_fname));
7607 elf_tdata (abfd)->core_command
7608 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7609 sizeof (psinfo.pr_psargs));
7611 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7612 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7614 /* 64-bit host, 32-bit corefile */
7615 elfcore_psinfo32_t psinfo;
7617 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7619 elf_tdata (abfd)->core_program
7620 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7621 sizeof (psinfo.pr_fname));
7623 elf_tdata (abfd)->core_command
7624 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7625 sizeof (psinfo.pr_psargs));
7627 #endif
7629 else
7631 /* Fail - we don't know how to handle any other
7632 note size (ie. data object type). */
7633 return TRUE;
7636 /* Note that for some reason, a spurious space is tacked
7637 onto the end of the args in some (at least one anyway)
7638 implementations, so strip it off if it exists. */
7641 char *command = elf_tdata (abfd)->core_command;
7642 int n = strlen (command);
7644 if (0 < n && command[n - 1] == ' ')
7645 command[n - 1] = '\0';
7648 return TRUE;
7650 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7652 #if defined (HAVE_PSTATUS_T)
7653 static bfd_boolean
7654 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7656 if (note->descsz == sizeof (pstatus_t)
7657 #if defined (HAVE_PXSTATUS_T)
7658 || note->descsz == sizeof (pxstatus_t)
7659 #endif
7662 pstatus_t pstat;
7664 memcpy (&pstat, note->descdata, sizeof (pstat));
7666 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7668 #if defined (HAVE_PSTATUS32_T)
7669 else if (note->descsz == sizeof (pstatus32_t))
7671 /* 64-bit host, 32-bit corefile */
7672 pstatus32_t pstat;
7674 memcpy (&pstat, note->descdata, sizeof (pstat));
7676 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7678 #endif
7679 /* Could grab some more details from the "representative"
7680 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7681 NT_LWPSTATUS note, presumably. */
7683 return TRUE;
7685 #endif /* defined (HAVE_PSTATUS_T) */
7687 #if defined (HAVE_LWPSTATUS_T)
7688 static bfd_boolean
7689 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7691 lwpstatus_t lwpstat;
7692 char buf[100];
7693 char *name;
7694 size_t len;
7695 asection *sect;
7697 if (note->descsz != sizeof (lwpstat)
7698 #if defined (HAVE_LWPXSTATUS_T)
7699 && note->descsz != sizeof (lwpxstatus_t)
7700 #endif
7702 return TRUE;
7704 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7706 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7707 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7709 /* Make a ".reg/999" section. */
7711 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7712 len = strlen (buf) + 1;
7713 name = bfd_alloc (abfd, len);
7714 if (name == NULL)
7715 return FALSE;
7716 memcpy (name, buf, len);
7718 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7719 if (sect == NULL)
7720 return FALSE;
7722 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7723 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7724 sect->filepos = note->descpos
7725 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7726 #endif
7728 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7729 sect->size = sizeof (lwpstat.pr_reg);
7730 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7731 #endif
7733 sect->alignment_power = 2;
7735 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7736 return FALSE;
7738 /* Make a ".reg2/999" section */
7740 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7741 len = strlen (buf) + 1;
7742 name = bfd_alloc (abfd, len);
7743 if (name == NULL)
7744 return FALSE;
7745 memcpy (name, buf, len);
7747 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7748 if (sect == NULL)
7749 return FALSE;
7751 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7752 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7753 sect->filepos = note->descpos
7754 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7755 #endif
7757 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7758 sect->size = sizeof (lwpstat.pr_fpreg);
7759 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7760 #endif
7762 sect->alignment_power = 2;
7764 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7766 #endif /* defined (HAVE_LWPSTATUS_T) */
7768 #if defined (HAVE_WIN32_PSTATUS_T)
7769 static bfd_boolean
7770 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7772 char buf[30];
7773 char *name;
7774 size_t len;
7775 asection *sect;
7776 win32_pstatus_t pstatus;
7778 if (note->descsz < sizeof (pstatus))
7779 return TRUE;
7781 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7783 switch (pstatus.data_type)
7785 case NOTE_INFO_PROCESS:
7786 /* FIXME: need to add ->core_command. */
7787 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7788 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7789 break;
7791 case NOTE_INFO_THREAD:
7792 /* Make a ".reg/999" section. */
7793 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7795 len = strlen (buf) + 1;
7796 name = bfd_alloc (abfd, len);
7797 if (name == NULL)
7798 return FALSE;
7800 memcpy (name, buf, len);
7802 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7803 if (sect == NULL)
7804 return FALSE;
7806 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7807 sect->filepos = (note->descpos
7808 + offsetof (struct win32_pstatus,
7809 data.thread_info.thread_context));
7810 sect->alignment_power = 2;
7812 if (pstatus.data.thread_info.is_active_thread)
7813 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7814 return FALSE;
7815 break;
7817 case NOTE_INFO_MODULE:
7818 /* Make a ".module/xxxxxxxx" section. */
7819 sprintf (buf, ".module/%08lx",
7820 (long) pstatus.data.module_info.base_address);
7822 len = strlen (buf) + 1;
7823 name = bfd_alloc (abfd, len);
7824 if (name == NULL)
7825 return FALSE;
7827 memcpy (name, buf, len);
7829 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7831 if (sect == NULL)
7832 return FALSE;
7834 sect->size = note->descsz;
7835 sect->filepos = note->descpos;
7836 sect->alignment_power = 2;
7837 break;
7839 default:
7840 return TRUE;
7843 return TRUE;
7845 #endif /* HAVE_WIN32_PSTATUS_T */
7847 static bfd_boolean
7848 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7850 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7852 switch (note->type)
7854 default:
7855 return TRUE;
7857 case NT_PRSTATUS:
7858 if (bed->elf_backend_grok_prstatus)
7859 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7860 return TRUE;
7861 #if defined (HAVE_PRSTATUS_T)
7862 return elfcore_grok_prstatus (abfd, note);
7863 #else
7864 return TRUE;
7865 #endif
7867 #if defined (HAVE_PSTATUS_T)
7868 case NT_PSTATUS:
7869 return elfcore_grok_pstatus (abfd, note);
7870 #endif
7872 #if defined (HAVE_LWPSTATUS_T)
7873 case NT_LWPSTATUS:
7874 return elfcore_grok_lwpstatus (abfd, note);
7875 #endif
7877 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7878 return elfcore_grok_prfpreg (abfd, note);
7880 #if defined (HAVE_WIN32_PSTATUS_T)
7881 case NT_WIN32PSTATUS:
7882 return elfcore_grok_win32pstatus (abfd, note);
7883 #endif
7885 case NT_PRXFPREG: /* Linux SSE extension */
7886 if (note->namesz == 6
7887 && strcmp (note->namedata, "LINUX") == 0)
7888 return elfcore_grok_prxfpreg (abfd, note);
7889 else
7890 return TRUE;
7892 case NT_PRPSINFO:
7893 case NT_PSINFO:
7894 if (bed->elf_backend_grok_psinfo)
7895 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7896 return TRUE;
7897 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7898 return elfcore_grok_psinfo (abfd, note);
7899 #else
7900 return TRUE;
7901 #endif
7903 case NT_AUXV:
7905 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7906 SEC_HAS_CONTENTS);
7908 if (sect == NULL)
7909 return FALSE;
7910 sect->size = note->descsz;
7911 sect->filepos = note->descpos;
7912 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7914 return TRUE;
7919 static bfd_boolean
7920 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7922 char *cp;
7924 cp = strchr (note->namedata, '@');
7925 if (cp != NULL)
7927 *lwpidp = atoi(cp + 1);
7928 return TRUE;
7930 return FALSE;
7933 static bfd_boolean
7934 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7937 /* Signal number at offset 0x08. */
7938 elf_tdata (abfd)->core_signal
7939 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7941 /* Process ID at offset 0x50. */
7942 elf_tdata (abfd)->core_pid
7943 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7945 /* Command name at 0x7c (max 32 bytes, including nul). */
7946 elf_tdata (abfd)->core_command
7947 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7949 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7950 note);
7953 static bfd_boolean
7954 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7956 int lwp;
7958 if (elfcore_netbsd_get_lwpid (note, &lwp))
7959 elf_tdata (abfd)->core_lwpid = lwp;
7961 if (note->type == NT_NETBSDCORE_PROCINFO)
7963 /* NetBSD-specific core "procinfo". Note that we expect to
7964 find this note before any of the others, which is fine,
7965 since the kernel writes this note out first when it
7966 creates a core file. */
7968 return elfcore_grok_netbsd_procinfo (abfd, note);
7971 /* As of Jan 2002 there are no other machine-independent notes
7972 defined for NetBSD core files. If the note type is less
7973 than the start of the machine-dependent note types, we don't
7974 understand it. */
7976 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7977 return TRUE;
7980 switch (bfd_get_arch (abfd))
7982 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7983 PT_GETFPREGS == mach+2. */
7985 case bfd_arch_alpha:
7986 case bfd_arch_sparc:
7987 switch (note->type)
7989 case NT_NETBSDCORE_FIRSTMACH+0:
7990 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7992 case NT_NETBSDCORE_FIRSTMACH+2:
7993 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7995 default:
7996 return TRUE;
7999 /* On all other arch's, PT_GETREGS == mach+1 and
8000 PT_GETFPREGS == mach+3. */
8002 default:
8003 switch (note->type)
8005 case NT_NETBSDCORE_FIRSTMACH+1:
8006 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8008 case NT_NETBSDCORE_FIRSTMACH+3:
8009 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8011 default:
8012 return TRUE;
8015 /* NOTREACHED */
8018 static bfd_boolean
8019 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8021 void *ddata = note->descdata;
8022 char buf[100];
8023 char *name;
8024 asection *sect;
8025 short sig;
8026 unsigned flags;
8028 /* nto_procfs_status 'pid' field is at offset 0. */
8029 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8031 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8032 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8034 /* nto_procfs_status 'flags' field is at offset 8. */
8035 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8037 /* nto_procfs_status 'what' field is at offset 14. */
8038 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8040 elf_tdata (abfd)->core_signal = sig;
8041 elf_tdata (abfd)->core_lwpid = *tid;
8044 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8045 do not come from signals so we make sure we set the current
8046 thread just in case. */
8047 if (flags & 0x00000080)
8048 elf_tdata (abfd)->core_lwpid = *tid;
8050 /* Make a ".qnx_core_status/%d" section. */
8051 sprintf (buf, ".qnx_core_status/%ld", *tid);
8053 name = bfd_alloc (abfd, strlen (buf) + 1);
8054 if (name == NULL)
8055 return FALSE;
8056 strcpy (name, buf);
8058 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8059 if (sect == NULL)
8060 return FALSE;
8062 sect->size = note->descsz;
8063 sect->filepos = note->descpos;
8064 sect->alignment_power = 2;
8066 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8069 static bfd_boolean
8070 elfcore_grok_nto_regs (bfd *abfd,
8071 Elf_Internal_Note *note,
8072 long tid,
8073 char *base)
8075 char buf[100];
8076 char *name;
8077 asection *sect;
8079 /* Make a "(base)/%d" section. */
8080 sprintf (buf, "%s/%ld", base, tid);
8082 name = bfd_alloc (abfd, strlen (buf) + 1);
8083 if (name == NULL)
8084 return FALSE;
8085 strcpy (name, buf);
8087 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8088 if (sect == NULL)
8089 return FALSE;
8091 sect->size = note->descsz;
8092 sect->filepos = note->descpos;
8093 sect->alignment_power = 2;
8095 /* This is the current thread. */
8096 if (elf_tdata (abfd)->core_lwpid == tid)
8097 return elfcore_maybe_make_sect (abfd, base, sect);
8099 return TRUE;
8102 #define BFD_QNT_CORE_INFO 7
8103 #define BFD_QNT_CORE_STATUS 8
8104 #define BFD_QNT_CORE_GREG 9
8105 #define BFD_QNT_CORE_FPREG 10
8107 static bfd_boolean
8108 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8110 /* Every GREG section has a STATUS section before it. Store the
8111 tid from the previous call to pass down to the next gregs
8112 function. */
8113 static long tid = 1;
8115 switch (note->type)
8117 case BFD_QNT_CORE_INFO:
8118 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8119 case BFD_QNT_CORE_STATUS:
8120 return elfcore_grok_nto_status (abfd, note, &tid);
8121 case BFD_QNT_CORE_GREG:
8122 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8123 case BFD_QNT_CORE_FPREG:
8124 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8125 default:
8126 return TRUE;
8130 /* Function: elfcore_write_note
8132 Inputs:
8133 buffer to hold note, and current size of buffer
8134 name of note
8135 type of note
8136 data for note
8137 size of data for note
8139 Writes note to end of buffer. ELF64 notes are written exactly as
8140 for ELF32, despite the current (as of 2006) ELF gabi specifying
8141 that they ought to have 8-byte namesz and descsz field, and have
8142 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8144 Return:
8145 Pointer to realloc'd buffer, *BUFSIZ updated. */
8147 char *
8148 elfcore_write_note (bfd *abfd,
8149 char *buf,
8150 int *bufsiz,
8151 const char *name,
8152 int type,
8153 const void *input,
8154 int size)
8156 Elf_External_Note *xnp;
8157 size_t namesz;
8158 size_t newspace;
8159 char *dest;
8161 namesz = 0;
8162 if (name != NULL)
8163 namesz = strlen (name) + 1;
8165 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8167 buf = realloc (buf, *bufsiz + newspace);
8168 dest = buf + *bufsiz;
8169 *bufsiz += newspace;
8170 xnp = (Elf_External_Note *) dest;
8171 H_PUT_32 (abfd, namesz, xnp->namesz);
8172 H_PUT_32 (abfd, size, xnp->descsz);
8173 H_PUT_32 (abfd, type, xnp->type);
8174 dest = xnp->name;
8175 if (name != NULL)
8177 memcpy (dest, name, namesz);
8178 dest += namesz;
8179 while (namesz & 3)
8181 *dest++ = '\0';
8182 ++namesz;
8185 memcpy (dest, input, size);
8186 dest += size;
8187 while (size & 3)
8189 *dest++ = '\0';
8190 ++size;
8192 return buf;
8195 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8196 char *
8197 elfcore_write_prpsinfo (bfd *abfd,
8198 char *buf,
8199 int *bufsiz,
8200 const char *fname,
8201 const char *psargs)
8203 const char *note_name = "CORE";
8204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8206 if (bed->elf_backend_write_core_note != NULL)
8208 char *ret;
8209 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8210 NT_PRPSINFO, fname, psargs);
8211 if (ret != NULL)
8212 return ret;
8215 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8216 if (bed->s->elfclass == ELFCLASS32)
8218 #if defined (HAVE_PSINFO32_T)
8219 psinfo32_t data;
8220 int note_type = NT_PSINFO;
8221 #else
8222 prpsinfo32_t data;
8223 int note_type = NT_PRPSINFO;
8224 #endif
8226 memset (&data, 0, sizeof (data));
8227 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8228 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8229 return elfcore_write_note (abfd, buf, bufsiz,
8230 note_name, note_type, &data, sizeof (data));
8232 else
8233 #endif
8235 #if defined (HAVE_PSINFO_T)
8236 psinfo_t data;
8237 int note_type = NT_PSINFO;
8238 #else
8239 prpsinfo_t data;
8240 int note_type = NT_PRPSINFO;
8241 #endif
8243 memset (&data, 0, sizeof (data));
8244 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8245 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8246 return elfcore_write_note (abfd, buf, bufsiz,
8247 note_name, note_type, &data, sizeof (data));
8250 #endif /* PSINFO_T or PRPSINFO_T */
8252 #if defined (HAVE_PRSTATUS_T)
8253 char *
8254 elfcore_write_prstatus (bfd *abfd,
8255 char *buf,
8256 int *bufsiz,
8257 long pid,
8258 int cursig,
8259 const void *gregs)
8261 const char *note_name = "CORE";
8262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8264 if (bed->elf_backend_write_core_note != NULL)
8266 char *ret;
8267 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8268 NT_PRSTATUS,
8269 pid, cursig, gregs);
8270 if (ret != NULL)
8271 return ret;
8274 #if defined (HAVE_PRSTATUS32_T)
8275 if (bed->s->elfclass == ELFCLASS32)
8277 prstatus32_t prstat;
8279 memset (&prstat, 0, sizeof (prstat));
8280 prstat.pr_pid = pid;
8281 prstat.pr_cursig = cursig;
8282 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8283 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8284 NT_PRSTATUS, &prstat, sizeof (prstat));
8286 else
8287 #endif
8289 prstatus_t prstat;
8291 memset (&prstat, 0, sizeof (prstat));
8292 prstat.pr_pid = pid;
8293 prstat.pr_cursig = cursig;
8294 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8295 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8296 NT_PRSTATUS, &prstat, sizeof (prstat));
8299 #endif /* HAVE_PRSTATUS_T */
8301 #if defined (HAVE_LWPSTATUS_T)
8302 char *
8303 elfcore_write_lwpstatus (bfd *abfd,
8304 char *buf,
8305 int *bufsiz,
8306 long pid,
8307 int cursig,
8308 const void *gregs)
8310 lwpstatus_t lwpstat;
8311 const char *note_name = "CORE";
8313 memset (&lwpstat, 0, sizeof (lwpstat));
8314 lwpstat.pr_lwpid = pid >> 16;
8315 lwpstat.pr_cursig = cursig;
8316 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8317 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8318 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8319 #if !defined(gregs)
8320 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8321 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8322 #else
8323 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8324 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8325 #endif
8326 #endif
8327 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8328 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8330 #endif /* HAVE_LWPSTATUS_T */
8332 #if defined (HAVE_PSTATUS_T)
8333 char *
8334 elfcore_write_pstatus (bfd *abfd,
8335 char *buf,
8336 int *bufsiz,
8337 long pid,
8338 int cursig ATTRIBUTE_UNUSED,
8339 const void *gregs ATTRIBUTE_UNUSED)
8341 const char *note_name = "CORE";
8342 #if defined (HAVE_PSTATUS32_T)
8343 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8345 if (bed->s->elfclass == ELFCLASS32)
8347 pstatus32_t pstat;
8349 memset (&pstat, 0, sizeof (pstat));
8350 pstat.pr_pid = pid & 0xffff;
8351 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8352 NT_PSTATUS, &pstat, sizeof (pstat));
8353 return buf;
8355 else
8356 #endif
8358 pstatus_t pstat;
8360 memset (&pstat, 0, sizeof (pstat));
8361 pstat.pr_pid = pid & 0xffff;
8362 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8363 NT_PSTATUS, &pstat, sizeof (pstat));
8364 return buf;
8367 #endif /* HAVE_PSTATUS_T */
8369 char *
8370 elfcore_write_prfpreg (bfd *abfd,
8371 char *buf,
8372 int *bufsiz,
8373 const void *fpregs,
8374 int size)
8376 const char *note_name = "CORE";
8377 return elfcore_write_note (abfd, buf, bufsiz,
8378 note_name, NT_FPREGSET, fpregs, size);
8381 char *
8382 elfcore_write_prxfpreg (bfd *abfd,
8383 char *buf,
8384 int *bufsiz,
8385 const void *xfpregs,
8386 int size)
8388 char *note_name = "LINUX";
8389 return elfcore_write_note (abfd, buf, bufsiz,
8390 note_name, NT_PRXFPREG, xfpregs, size);
8393 static bfd_boolean
8394 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8396 char *buf;
8397 char *p;
8399 if (size <= 0)
8400 return TRUE;
8402 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8403 return FALSE;
8405 buf = bfd_malloc (size);
8406 if (buf == NULL)
8407 return FALSE;
8409 if (bfd_bread (buf, size, abfd) != size)
8411 error:
8412 free (buf);
8413 return FALSE;
8416 p = buf;
8417 while (p < buf + size)
8419 /* FIXME: bad alignment assumption. */
8420 Elf_External_Note *xnp = (Elf_External_Note *) p;
8421 Elf_Internal_Note in;
8423 in.type = H_GET_32 (abfd, xnp->type);
8425 in.namesz = H_GET_32 (abfd, xnp->namesz);
8426 in.namedata = xnp->name;
8428 in.descsz = H_GET_32 (abfd, xnp->descsz);
8429 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8430 in.descpos = offset + (in.descdata - buf);
8432 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8434 if (! elfcore_grok_netbsd_note (abfd, &in))
8435 goto error;
8437 else if (CONST_STRNEQ (in.namedata, "QNX"))
8439 if (! elfcore_grok_nto_note (abfd, &in))
8440 goto error;
8442 else
8444 if (! elfcore_grok_note (abfd, &in))
8445 goto error;
8448 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8451 free (buf);
8452 return TRUE;
8455 /* Providing external access to the ELF program header table. */
8457 /* Return an upper bound on the number of bytes required to store a
8458 copy of ABFD's program header table entries. Return -1 if an error
8459 occurs; bfd_get_error will return an appropriate code. */
8461 long
8462 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8464 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8466 bfd_set_error (bfd_error_wrong_format);
8467 return -1;
8470 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8473 /* Copy ABFD's program header table entries to *PHDRS. The entries
8474 will be stored as an array of Elf_Internal_Phdr structures, as
8475 defined in include/elf/internal.h. To find out how large the
8476 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8478 Return the number of program header table entries read, or -1 if an
8479 error occurs; bfd_get_error will return an appropriate code. */
8482 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8484 int num_phdrs;
8486 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8488 bfd_set_error (bfd_error_wrong_format);
8489 return -1;
8492 num_phdrs = elf_elfheader (abfd)->e_phnum;
8493 memcpy (phdrs, elf_tdata (abfd)->phdr,
8494 num_phdrs * sizeof (Elf_Internal_Phdr));
8496 return num_phdrs;
8499 void
8500 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8502 #ifdef BFD64
8503 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8505 i_ehdrp = elf_elfheader (abfd);
8506 if (i_ehdrp == NULL)
8507 sprintf_vma (buf, value);
8508 else
8510 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8512 #if BFD_HOST_64BIT_LONG
8513 sprintf (buf, "%016lx", value);
8514 #else
8515 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8516 _bfd_int64_low (value));
8517 #endif
8519 else
8520 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8522 #else
8523 sprintf_vma (buf, value);
8524 #endif
8527 void
8528 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8530 #ifdef BFD64
8531 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8533 i_ehdrp = elf_elfheader (abfd);
8534 if (i_ehdrp == NULL)
8535 fprintf_vma ((FILE *) stream, value);
8536 else
8538 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8540 #if BFD_HOST_64BIT_LONG
8541 fprintf ((FILE *) stream, "%016lx", value);
8542 #else
8543 fprintf ((FILE *) stream, "%08lx%08lx",
8544 _bfd_int64_high (value), _bfd_int64_low (value));
8545 #endif
8547 else
8548 fprintf ((FILE *) stream, "%08lx",
8549 (unsigned long) (value & 0xffffffff));
8551 #else
8552 fprintf_vma ((FILE *) stream, value);
8553 #endif
8556 enum elf_reloc_type_class
8557 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8559 return reloc_class_normal;
8562 /* For RELA architectures, return the relocation value for a
8563 relocation against a local symbol. */
8565 bfd_vma
8566 _bfd_elf_rela_local_sym (bfd *abfd,
8567 Elf_Internal_Sym *sym,
8568 asection **psec,
8569 Elf_Internal_Rela *rel)
8571 asection *sec = *psec;
8572 bfd_vma relocation;
8574 relocation = (sec->output_section->vma
8575 + sec->output_offset
8576 + sym->st_value);
8577 if ((sec->flags & SEC_MERGE)
8578 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8579 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8581 rel->r_addend =
8582 _bfd_merged_section_offset (abfd, psec,
8583 elf_section_data (sec)->sec_info,
8584 sym->st_value + rel->r_addend);
8585 if (sec != *psec)
8587 /* If we have changed the section, and our original section is
8588 marked with SEC_EXCLUDE, it means that the original
8589 SEC_MERGE section has been completely subsumed in some
8590 other SEC_MERGE section. In this case, we need to leave
8591 some info around for --emit-relocs. */
8592 if ((sec->flags & SEC_EXCLUDE) != 0)
8593 sec->kept_section = *psec;
8594 sec = *psec;
8596 rel->r_addend -= relocation;
8597 rel->r_addend += sec->output_section->vma + sec->output_offset;
8599 return relocation;
8602 bfd_vma
8603 _bfd_elf_rel_local_sym (bfd *abfd,
8604 Elf_Internal_Sym *sym,
8605 asection **psec,
8606 bfd_vma addend)
8608 asection *sec = *psec;
8610 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8611 return sym->st_value + addend;
8613 return _bfd_merged_section_offset (abfd, psec,
8614 elf_section_data (sec)->sec_info,
8615 sym->st_value + addend);
8618 bfd_vma
8619 _bfd_elf_section_offset (bfd *abfd,
8620 struct bfd_link_info *info,
8621 asection *sec,
8622 bfd_vma offset)
8624 switch (sec->sec_info_type)
8626 case ELF_INFO_TYPE_STABS:
8627 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8628 offset);
8629 case ELF_INFO_TYPE_EH_FRAME:
8630 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8631 default:
8632 return offset;
8636 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8637 reconstruct an ELF file by reading the segments out of remote memory
8638 based on the ELF file header at EHDR_VMA and the ELF program headers it
8639 points to. If not null, *LOADBASEP is filled in with the difference
8640 between the VMAs from which the segments were read, and the VMAs the
8641 file headers (and hence BFD's idea of each section's VMA) put them at.
8643 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8644 remote memory at target address VMA into the local buffer at MYADDR; it
8645 should return zero on success or an `errno' code on failure. TEMPL must
8646 be a BFD for an ELF target with the word size and byte order found in
8647 the remote memory. */
8649 bfd *
8650 bfd_elf_bfd_from_remote_memory
8651 (bfd *templ,
8652 bfd_vma ehdr_vma,
8653 bfd_vma *loadbasep,
8654 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8656 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8657 (templ, ehdr_vma, loadbasep, target_read_memory);
8660 long
8661 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8662 long symcount ATTRIBUTE_UNUSED,
8663 asymbol **syms ATTRIBUTE_UNUSED,
8664 long dynsymcount,
8665 asymbol **dynsyms,
8666 asymbol **ret)
8668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8669 asection *relplt;
8670 asymbol *s;
8671 const char *relplt_name;
8672 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8673 arelent *p;
8674 long count, i, n;
8675 size_t size;
8676 Elf_Internal_Shdr *hdr;
8677 char *names;
8678 asection *plt;
8680 *ret = NULL;
8682 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8683 return 0;
8685 if (dynsymcount <= 0)
8686 return 0;
8688 if (!bed->plt_sym_val)
8689 return 0;
8691 relplt_name = bed->relplt_name;
8692 if (relplt_name == NULL)
8693 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8694 relplt = bfd_get_section_by_name (abfd, relplt_name);
8695 if (relplt == NULL)
8696 return 0;
8698 hdr = &elf_section_data (relplt)->this_hdr;
8699 if (hdr->sh_link != elf_dynsymtab (abfd)
8700 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8701 return 0;
8703 plt = bfd_get_section_by_name (abfd, ".plt");
8704 if (plt == NULL)
8705 return 0;
8707 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8708 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8709 return -1;
8711 count = relplt->size / hdr->sh_entsize;
8712 size = count * sizeof (asymbol);
8713 p = relplt->relocation;
8714 for (i = 0; i < count; i++, s++, p++)
8715 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8717 s = *ret = bfd_malloc (size);
8718 if (s == NULL)
8719 return -1;
8721 names = (char *) (s + count);
8722 p = relplt->relocation;
8723 n = 0;
8724 for (i = 0; i < count; i++, s++, p++)
8726 size_t len;
8727 bfd_vma addr;
8729 addr = bed->plt_sym_val (i, plt, p);
8730 if (addr == (bfd_vma) -1)
8731 continue;
8733 *s = **p->sym_ptr_ptr;
8734 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8735 we are defining a symbol, ensure one of them is set. */
8736 if ((s->flags & BSF_LOCAL) == 0)
8737 s->flags |= BSF_GLOBAL;
8738 s->section = plt;
8739 s->value = addr - plt->vma;
8740 s->name = names;
8741 len = strlen ((*p->sym_ptr_ptr)->name);
8742 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8743 names += len;
8744 memcpy (names, "@plt", sizeof ("@plt"));
8745 names += sizeof ("@plt");
8746 ++n;
8749 return n;
8752 struct elf_symbuf_symbol
8754 unsigned long st_name; /* Symbol name, index in string tbl */
8755 unsigned char st_info; /* Type and binding attributes */
8756 unsigned char st_other; /* Visibilty, and target specific */
8759 struct elf_symbuf_head
8761 struct elf_symbuf_symbol *ssym;
8762 bfd_size_type count;
8763 unsigned int st_shndx;
8766 struct elf_symbol
8768 union
8770 Elf_Internal_Sym *isym;
8771 struct elf_symbuf_symbol *ssym;
8772 } u;
8773 const char *name;
8776 /* Sort references to symbols by ascending section number. */
8778 static int
8779 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8781 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8782 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8784 return s1->st_shndx - s2->st_shndx;
8787 static int
8788 elf_sym_name_compare (const void *arg1, const void *arg2)
8790 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8791 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8792 return strcmp (s1->name, s2->name);
8795 static struct elf_symbuf_head *
8796 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
8798 Elf_Internal_Sym **ind, **indbufend, **indbuf
8799 = bfd_malloc2 (symcount, sizeof (*indbuf));
8800 struct elf_symbuf_symbol *ssym;
8801 struct elf_symbuf_head *ssymbuf, *ssymhead;
8802 bfd_size_type i, shndx_count;
8804 if (indbuf == NULL)
8805 return NULL;
8807 for (ind = indbuf, i = 0; i < symcount; i++)
8808 if (isymbuf[i].st_shndx != SHN_UNDEF)
8809 *ind++ = &isymbuf[i];
8810 indbufend = ind;
8812 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8813 elf_sort_elf_symbol);
8815 shndx_count = 0;
8816 if (indbufend > indbuf)
8817 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8818 if (ind[0]->st_shndx != ind[1]->st_shndx)
8819 shndx_count++;
8821 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
8822 + (indbufend - indbuf) * sizeof (*ssymbuf));
8823 if (ssymbuf == NULL)
8825 free (indbuf);
8826 return NULL;
8829 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
8830 ssymbuf->ssym = NULL;
8831 ssymbuf->count = shndx_count;
8832 ssymbuf->st_shndx = 0;
8833 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8835 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8837 ssymhead++;
8838 ssymhead->ssym = ssym;
8839 ssymhead->count = 0;
8840 ssymhead->st_shndx = (*ind)->st_shndx;
8842 ssym->st_name = (*ind)->st_name;
8843 ssym->st_info = (*ind)->st_info;
8844 ssym->st_other = (*ind)->st_other;
8845 ssymhead->count++;
8847 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
8849 free (indbuf);
8850 return ssymbuf;
8853 /* Check if 2 sections define the same set of local and global
8854 symbols. */
8856 bfd_boolean
8857 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8858 struct bfd_link_info *info)
8860 bfd *bfd1, *bfd2;
8861 const struct elf_backend_data *bed1, *bed2;
8862 Elf_Internal_Shdr *hdr1, *hdr2;
8863 bfd_size_type symcount1, symcount2;
8864 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8865 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8866 Elf_Internal_Sym *isym, *isymend;
8867 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8868 bfd_size_type count1, count2, i;
8869 int shndx1, shndx2;
8870 bfd_boolean result;
8872 bfd1 = sec1->owner;
8873 bfd2 = sec2->owner;
8875 /* If both are .gnu.linkonce sections, they have to have the same
8876 section name. */
8877 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8878 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8879 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8880 sec2->name + sizeof ".gnu.linkonce") == 0;
8882 /* Both sections have to be in ELF. */
8883 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8884 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8885 return FALSE;
8887 if (elf_section_type (sec1) != elf_section_type (sec2))
8888 return FALSE;
8890 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8891 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8893 /* If both are members of section groups, they have to have the
8894 same group name. */
8895 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8896 return FALSE;
8899 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8900 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8901 if (shndx1 == -1 || shndx2 == -1)
8902 return FALSE;
8904 bed1 = get_elf_backend_data (bfd1);
8905 bed2 = get_elf_backend_data (bfd2);
8906 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8907 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8908 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8909 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8911 if (symcount1 == 0 || symcount2 == 0)
8912 return FALSE;
8914 result = FALSE;
8915 isymbuf1 = NULL;
8916 isymbuf2 = NULL;
8917 ssymbuf1 = elf_tdata (bfd1)->symbuf;
8918 ssymbuf2 = elf_tdata (bfd2)->symbuf;
8920 if (ssymbuf1 == NULL)
8922 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8923 NULL, NULL, NULL);
8924 if (isymbuf1 == NULL)
8925 goto done;
8927 if (!info->reduce_memory_overheads)
8928 elf_tdata (bfd1)->symbuf = ssymbuf1
8929 = elf_create_symbuf (symcount1, isymbuf1);
8932 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8934 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8935 NULL, NULL, NULL);
8936 if (isymbuf2 == NULL)
8937 goto done;
8939 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8940 elf_tdata (bfd2)->symbuf = ssymbuf2
8941 = elf_create_symbuf (symcount2, isymbuf2);
8944 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8946 /* Optimized faster version. */
8947 bfd_size_type lo, hi, mid;
8948 struct elf_symbol *symp;
8949 struct elf_symbuf_symbol *ssym, *ssymend;
8951 lo = 0;
8952 hi = ssymbuf1->count;
8953 ssymbuf1++;
8954 count1 = 0;
8955 while (lo < hi)
8957 mid = (lo + hi) / 2;
8958 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
8959 hi = mid;
8960 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
8961 lo = mid + 1;
8962 else
8964 count1 = ssymbuf1[mid].count;
8965 ssymbuf1 += mid;
8966 break;
8970 lo = 0;
8971 hi = ssymbuf2->count;
8972 ssymbuf2++;
8973 count2 = 0;
8974 while (lo < hi)
8976 mid = (lo + hi) / 2;
8977 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
8978 hi = mid;
8979 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
8980 lo = mid + 1;
8981 else
8983 count2 = ssymbuf2[mid].count;
8984 ssymbuf2 += mid;
8985 break;
8989 if (count1 == 0 || count2 == 0 || count1 != count2)
8990 goto done;
8992 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8993 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
8994 if (symtable1 == NULL || symtable2 == NULL)
8995 goto done;
8997 symp = symtable1;
8998 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8999 ssym < ssymend; ssym++, symp++)
9001 symp->u.ssym = ssym;
9002 symp->name = bfd_elf_string_from_elf_section (bfd1,
9003 hdr1->sh_link,
9004 ssym->st_name);
9007 symp = symtable2;
9008 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
9009 ssym < ssymend; ssym++, symp++)
9011 symp->u.ssym = ssym;
9012 symp->name = bfd_elf_string_from_elf_section (bfd2,
9013 hdr2->sh_link,
9014 ssym->st_name);
9017 /* Sort symbol by name. */
9018 qsort (symtable1, count1, sizeof (struct elf_symbol),
9019 elf_sym_name_compare);
9020 qsort (symtable2, count1, sizeof (struct elf_symbol),
9021 elf_sym_name_compare);
9023 for (i = 0; i < count1; i++)
9024 /* Two symbols must have the same binding, type and name. */
9025 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
9026 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
9027 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9028 goto done;
9030 result = TRUE;
9031 goto done;
9034 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
9035 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
9036 if (symtable1 == NULL || symtable2 == NULL)
9037 goto done;
9039 /* Count definitions in the section. */
9040 count1 = 0;
9041 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
9042 if (isym->st_shndx == (unsigned int) shndx1)
9043 symtable1[count1++].u.isym = isym;
9045 count2 = 0;
9046 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
9047 if (isym->st_shndx == (unsigned int) shndx2)
9048 symtable2[count2++].u.isym = isym;
9050 if (count1 == 0 || count2 == 0 || count1 != count2)
9051 goto done;
9053 for (i = 0; i < count1; i++)
9054 symtable1[i].name
9055 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
9056 symtable1[i].u.isym->st_name);
9058 for (i = 0; i < count2; i++)
9059 symtable2[i].name
9060 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
9061 symtable2[i].u.isym->st_name);
9063 /* Sort symbol by name. */
9064 qsort (symtable1, count1, sizeof (struct elf_symbol),
9065 elf_sym_name_compare);
9066 qsort (symtable2, count1, sizeof (struct elf_symbol),
9067 elf_sym_name_compare);
9069 for (i = 0; i < count1; i++)
9070 /* Two symbols must have the same binding, type and name. */
9071 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
9072 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
9073 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
9074 goto done;
9076 result = TRUE;
9078 done:
9079 if (symtable1)
9080 free (symtable1);
9081 if (symtable2)
9082 free (symtable2);
9083 if (isymbuf1)
9084 free (isymbuf1);
9085 if (isymbuf2)
9086 free (isymbuf2);
9088 return result;
9091 /* It is only used by x86-64 so far. */
9092 asection _bfd_elf_large_com_section
9093 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9094 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9096 /* Return TRUE if 2 section types are compatible. */
9098 bfd_boolean
9099 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
9100 bfd *bbfd, const asection *bsec)
9102 if (asec == NULL
9103 || bsec == NULL
9104 || abfd->xvec->flavour != bfd_target_elf_flavour
9105 || bbfd->xvec->flavour != bfd_target_elf_flavour)
9106 return TRUE;
9108 return elf_section_type (asec) == elf_section_type (bsec);