bfd/
[binutils.git] / bfd / elflink.h
blobd175223ffa97ae3c07421496459c740d83a929c4
1 /* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 /* ELF linker code. */
23 /* This struct is used to pass information to routines called via
24 elf_link_hash_traverse which must return failure. */
26 struct elf_info_failed
28 boolean failed;
29 struct bfd_link_info *info;
32 static boolean elf_link_add_object_symbols
33 PARAMS ((bfd *, struct bfd_link_info *));
34 static boolean elf_link_add_archive_symbols
35 PARAMS ((bfd *, struct bfd_link_info *));
36 static boolean elf_merge_symbol
37 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
38 asection **, bfd_vma *, struct elf_link_hash_entry **,
39 boolean *, boolean *, boolean *, boolean));
40 static boolean elf_export_symbol
41 PARAMS ((struct elf_link_hash_entry *, PTR));
42 static boolean elf_fix_symbol_flags
43 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
44 static boolean elf_adjust_dynamic_symbol
45 PARAMS ((struct elf_link_hash_entry *, PTR));
46 static boolean elf_link_find_version_dependencies
47 PARAMS ((struct elf_link_hash_entry *, PTR));
48 static boolean elf_link_find_version_dependencies
49 PARAMS ((struct elf_link_hash_entry *, PTR));
50 static boolean elf_link_assign_sym_version
51 PARAMS ((struct elf_link_hash_entry *, PTR));
52 static boolean elf_collect_hash_codes
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_link_read_relocs_from_section
55 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
56 static void elf_link_output_relocs
57 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
58 static boolean elf_link_size_reloc_section
59 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
60 static void elf_link_adjust_relocs
61 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
62 struct elf_link_hash_entry **));
64 /* Given an ELF BFD, add symbols to the global hash table as
65 appropriate. */
67 boolean
68 elf_bfd_link_add_symbols (abfd, info)
69 bfd *abfd;
70 struct bfd_link_info *info;
72 switch (bfd_get_format (abfd))
74 case bfd_object:
75 return elf_link_add_object_symbols (abfd, info);
76 case bfd_archive:
77 return elf_link_add_archive_symbols (abfd, info);
78 default:
79 bfd_set_error (bfd_error_wrong_format);
80 return false;
84 /* Return true iff this is a non-common, definition of a non-function symbol. */
85 static boolean
86 is_global_data_symbol_definition (abfd, sym)
87 bfd * abfd ATTRIBUTE_UNUSED;
88 Elf_Internal_Sym * sym;
90 /* Local symbols do not count, but target specific ones might. */
91 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
92 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
93 return false;
95 /* Function symbols do not count. */
96 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC)
97 return false;
99 /* If the section is undefined, then so is the symbol. */
100 if (sym->st_shndx == SHN_UNDEF)
101 return false;
103 /* If the symbol is defined in the common section, then
104 it is a common definition and so does not count. */
105 if (sym->st_shndx == SHN_COMMON)
106 return false;
108 /* If the symbol is in a target specific section then we
109 must rely upon the backend to tell us what it is. */
110 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
111 /* FIXME - this function is not coded yet:
113 return _bfd_is_global_symbol_definition (abfd, sym);
115 Instead for now assume that the definition is not global,
116 Even if this is wrong, at least the linker will behave
117 in the same way that it used to do. */
118 return false;
120 return true;
123 /* Search the symbol table of the archive element of the archive ABFD
124 whoes archive map contains a mention of SYMDEF, and determine if
125 the symbol is defined in this element. */
126 static boolean
127 elf_link_is_defined_archive_symbol (abfd, symdef)
128 bfd * abfd;
129 carsym * symdef;
131 Elf_Internal_Shdr * hdr;
132 Elf_External_Sym * esym;
133 Elf_External_Sym * esymend;
134 Elf_External_Sym * buf = NULL;
135 size_t symcount;
136 size_t extsymcount;
137 size_t extsymoff;
138 boolean result = false;
140 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
141 if (abfd == (bfd *) NULL)
142 return false;
144 if (! bfd_check_format (abfd, bfd_object))
145 return false;
147 /* If we have already included the element containing this symbol in the
148 link then we do not need to include it again. Just claim that any symbol
149 it contains is not a definition, so that our caller will not decide to
150 (re)include this element. */
151 if (abfd->archive_pass)
152 return false;
154 /* Select the appropriate symbol table. */
155 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
156 hdr = &elf_tdata (abfd)->symtab_hdr;
157 else
158 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
160 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
162 /* The sh_info field of the symtab header tells us where the
163 external symbols start. We don't care about the local symbols. */
164 if (elf_bad_symtab (abfd))
166 extsymcount = symcount;
167 extsymoff = 0;
169 else
171 extsymcount = symcount - hdr->sh_info;
172 extsymoff = hdr->sh_info;
175 buf = ((Elf_External_Sym *)
176 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
177 if (buf == NULL && extsymcount != 0)
178 return false;
180 /* Read in the symbol table.
181 FIXME: This ought to be cached somewhere. */
182 if (bfd_seek (abfd,
183 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
184 SEEK_SET) != 0
185 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
186 != extsymcount * sizeof (Elf_External_Sym)))
188 free (buf);
189 return false;
192 /* Scan the symbol table looking for SYMDEF. */
193 esymend = buf + extsymcount;
194 for (esym = buf;
195 esym < esymend;
196 esym++)
198 Elf_Internal_Sym sym;
199 const char * name;
201 elf_swap_symbol_in (abfd, esym, & sym);
203 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
204 if (name == (const char *) NULL)
205 break;
207 if (strcmp (name, symdef->name) == 0)
209 result = is_global_data_symbol_definition (abfd, & sym);
210 break;
214 free (buf);
216 return result;
219 /* Add symbols from an ELF archive file to the linker hash table. We
220 don't use _bfd_generic_link_add_archive_symbols because of a
221 problem which arises on UnixWare. The UnixWare libc.so is an
222 archive which includes an entry libc.so.1 which defines a bunch of
223 symbols. The libc.so archive also includes a number of other
224 object files, which also define symbols, some of which are the same
225 as those defined in libc.so.1. Correct linking requires that we
226 consider each object file in turn, and include it if it defines any
227 symbols we need. _bfd_generic_link_add_archive_symbols does not do
228 this; it looks through the list of undefined symbols, and includes
229 any object file which defines them. When this algorithm is used on
230 UnixWare, it winds up pulling in libc.so.1 early and defining a
231 bunch of symbols. This means that some of the other objects in the
232 archive are not included in the link, which is incorrect since they
233 precede libc.so.1 in the archive.
235 Fortunately, ELF archive handling is simpler than that done by
236 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
237 oddities. In ELF, if we find a symbol in the archive map, and the
238 symbol is currently undefined, we know that we must pull in that
239 object file.
241 Unfortunately, we do have to make multiple passes over the symbol
242 table until nothing further is resolved. */
244 static boolean
245 elf_link_add_archive_symbols (abfd, info)
246 bfd *abfd;
247 struct bfd_link_info *info;
249 symindex c;
250 boolean *defined = NULL;
251 boolean *included = NULL;
252 carsym *symdefs;
253 boolean loop;
255 if (! bfd_has_map (abfd))
257 /* An empty archive is a special case. */
258 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
259 return true;
260 bfd_set_error (bfd_error_no_armap);
261 return false;
264 /* Keep track of all symbols we know to be already defined, and all
265 files we know to be already included. This is to speed up the
266 second and subsequent passes. */
267 c = bfd_ardata (abfd)->symdef_count;
268 if (c == 0)
269 return true;
270 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
271 included = (boolean *) bfd_malloc (c * sizeof (boolean));
272 if (defined == (boolean *) NULL || included == (boolean *) NULL)
273 goto error_return;
274 memset (defined, 0, c * sizeof (boolean));
275 memset (included, 0, c * sizeof (boolean));
277 symdefs = bfd_ardata (abfd)->symdefs;
281 file_ptr last;
282 symindex i;
283 carsym *symdef;
284 carsym *symdefend;
286 loop = false;
287 last = -1;
289 symdef = symdefs;
290 symdefend = symdef + c;
291 for (i = 0; symdef < symdefend; symdef++, i++)
293 struct elf_link_hash_entry *h;
294 bfd *element;
295 struct bfd_link_hash_entry *undefs_tail;
296 symindex mark;
298 if (defined[i] || included[i])
299 continue;
300 if (symdef->file_offset == last)
302 included[i] = true;
303 continue;
306 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
307 false, false, false);
309 if (h == NULL)
311 char *p, *copy;
313 /* If this is a default version (the name contains @@),
314 look up the symbol again without the version. The
315 effect is that references to the symbol without the
316 version will be matched by the default symbol in the
317 archive. */
319 p = strchr (symdef->name, ELF_VER_CHR);
320 if (p == NULL || p[1] != ELF_VER_CHR)
321 continue;
323 copy = bfd_alloc (abfd, p - symdef->name + 1);
324 if (copy == NULL)
325 goto error_return;
326 memcpy (copy, symdef->name, p - symdef->name);
327 copy[p - symdef->name] = '\0';
329 h = elf_link_hash_lookup (elf_hash_table (info), copy,
330 false, false, false);
332 bfd_release (abfd, copy);
335 if (h == NULL)
336 continue;
338 if (h->root.type == bfd_link_hash_common)
340 /* We currently have a common symbol. The archive map contains
341 a reference to this symbol, so we may want to include it. We
342 only want to include it however, if this archive element
343 contains a definition of the symbol, not just another common
344 declaration of it.
346 Unfortunately some archivers (including GNU ar) will put
347 declarations of common symbols into their archive maps, as
348 well as real definitions, so we cannot just go by the archive
349 map alone. Instead we must read in the element's symbol
350 table and check that to see what kind of symbol definition
351 this is. */
352 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
353 continue;
355 else if (h->root.type != bfd_link_hash_undefined)
357 if (h->root.type != bfd_link_hash_undefweak)
358 defined[i] = true;
359 continue;
362 /* We need to include this archive member. */
363 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
364 if (element == (bfd *) NULL)
365 goto error_return;
367 if (! bfd_check_format (element, bfd_object))
368 goto error_return;
370 /* Doublecheck that we have not included this object
371 already--it should be impossible, but there may be
372 something wrong with the archive. */
373 if (element->archive_pass != 0)
375 bfd_set_error (bfd_error_bad_value);
376 goto error_return;
378 element->archive_pass = 1;
380 undefs_tail = info->hash->undefs_tail;
382 if (! (*info->callbacks->add_archive_element) (info, element,
383 symdef->name))
384 goto error_return;
385 if (! elf_link_add_object_symbols (element, info))
386 goto error_return;
388 /* If there are any new undefined symbols, we need to make
389 another pass through the archive in order to see whether
390 they can be defined. FIXME: This isn't perfect, because
391 common symbols wind up on undefs_tail and because an
392 undefined symbol which is defined later on in this pass
393 does not require another pass. This isn't a bug, but it
394 does make the code less efficient than it could be. */
395 if (undefs_tail != info->hash->undefs_tail)
396 loop = true;
398 /* Look backward to mark all symbols from this object file
399 which we have already seen in this pass. */
400 mark = i;
403 included[mark] = true;
404 if (mark == 0)
405 break;
406 --mark;
408 while (symdefs[mark].file_offset == symdef->file_offset);
410 /* We mark subsequent symbols from this object file as we go
411 on through the loop. */
412 last = symdef->file_offset;
415 while (loop);
417 free (defined);
418 free (included);
420 return true;
422 error_return:
423 if (defined != (boolean *) NULL)
424 free (defined);
425 if (included != (boolean *) NULL)
426 free (included);
427 return false;
430 /* This function is called when we want to define a new symbol. It
431 handles the various cases which arise when we find a definition in
432 a dynamic object, or when there is already a definition in a
433 dynamic object. The new symbol is described by NAME, SYM, PSEC,
434 and PVALUE. We set SYM_HASH to the hash table entry. We set
435 OVERRIDE if the old symbol is overriding a new definition. We set
436 TYPE_CHANGE_OK if it is OK for the type to change. We set
437 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
438 change, we mean that we shouldn't warn if the type or size does
439 change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
440 a shared object. */
442 static boolean
443 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
444 override, type_change_ok, size_change_ok, dt_needed)
445 bfd *abfd;
446 struct bfd_link_info *info;
447 const char *name;
448 Elf_Internal_Sym *sym;
449 asection **psec;
450 bfd_vma *pvalue;
451 struct elf_link_hash_entry **sym_hash;
452 boolean *override;
453 boolean *type_change_ok;
454 boolean *size_change_ok;
455 boolean dt_needed;
457 asection *sec;
458 struct elf_link_hash_entry *h;
459 int bind;
460 bfd *oldbfd;
461 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
463 *override = false;
465 sec = *psec;
466 bind = ELF_ST_BIND (sym->st_info);
468 if (! bfd_is_und_section (sec))
469 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
470 else
471 h = ((struct elf_link_hash_entry *)
472 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
473 if (h == NULL)
474 return false;
475 *sym_hash = h;
477 /* This code is for coping with dynamic objects, and is only useful
478 if we are doing an ELF link. */
479 if (info->hash->creator != abfd->xvec)
480 return true;
482 /* For merging, we only care about real symbols. */
484 while (h->root.type == bfd_link_hash_indirect
485 || h->root.type == bfd_link_hash_warning)
486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
488 /* If we just created the symbol, mark it as being an ELF symbol.
489 Other than that, there is nothing to do--there is no merge issue
490 with a newly defined symbol--so we just return. */
492 if (h->root.type == bfd_link_hash_new)
494 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
495 return true;
498 /* OLDBFD is a BFD associated with the existing symbol. */
500 switch (h->root.type)
502 default:
503 oldbfd = NULL;
504 break;
506 case bfd_link_hash_undefined:
507 case bfd_link_hash_undefweak:
508 oldbfd = h->root.u.undef.abfd;
509 break;
511 case bfd_link_hash_defined:
512 case bfd_link_hash_defweak:
513 oldbfd = h->root.u.def.section->owner;
514 break;
516 case bfd_link_hash_common:
517 oldbfd = h->root.u.c.p->section->owner;
518 break;
521 /* In cases involving weak versioned symbols, we may wind up trying
522 to merge a symbol with itself. Catch that here, to avoid the
523 confusion that results if we try to override a symbol with
524 itself. The additional tests catch cases like
525 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
526 dynamic object, which we do want to handle here. */
527 if (abfd == oldbfd
528 && ((abfd->flags & DYNAMIC) == 0
529 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
530 return true;
532 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
533 respectively, is from a dynamic object. */
535 if ((abfd->flags & DYNAMIC) != 0)
536 newdyn = true;
537 else
538 newdyn = false;
540 if (oldbfd != NULL)
541 olddyn = (oldbfd->flags & DYNAMIC) != 0;
542 else
544 asection *hsec;
546 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
547 indices used by MIPS ELF. */
548 switch (h->root.type)
550 default:
551 hsec = NULL;
552 break;
554 case bfd_link_hash_defined:
555 case bfd_link_hash_defweak:
556 hsec = h->root.u.def.section;
557 break;
559 case bfd_link_hash_common:
560 hsec = h->root.u.c.p->section;
561 break;
564 if (hsec == NULL)
565 olddyn = false;
566 else
567 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
570 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
571 respectively, appear to be a definition rather than reference. */
573 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
574 newdef = false;
575 else
576 newdef = true;
578 if (h->root.type == bfd_link_hash_undefined
579 || h->root.type == bfd_link_hash_undefweak
580 || h->root.type == bfd_link_hash_common)
581 olddef = false;
582 else
583 olddef = true;
585 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
586 symbol, respectively, appears to be a common symbol in a dynamic
587 object. If a symbol appears in an uninitialized section, and is
588 not weak, and is not a function, then it may be a common symbol
589 which was resolved when the dynamic object was created. We want
590 to treat such symbols specially, because they raise special
591 considerations when setting the symbol size: if the symbol
592 appears as a common symbol in a regular object, and the size in
593 the regular object is larger, we must make sure that we use the
594 larger size. This problematic case can always be avoided in C,
595 but it must be handled correctly when using Fortran shared
596 libraries.
598 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
599 likewise for OLDDYNCOMMON and OLDDEF.
601 Note that this test is just a heuristic, and that it is quite
602 possible to have an uninitialized symbol in a shared object which
603 is really a definition, rather than a common symbol. This could
604 lead to some minor confusion when the symbol really is a common
605 symbol in some regular object. However, I think it will be
606 harmless. */
608 if (newdyn
609 && newdef
610 && (sec->flags & SEC_ALLOC) != 0
611 && (sec->flags & SEC_LOAD) == 0
612 && sym->st_size > 0
613 && bind != STB_WEAK
614 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
615 newdyncommon = true;
616 else
617 newdyncommon = false;
619 if (olddyn
620 && olddef
621 && h->root.type == bfd_link_hash_defined
622 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
623 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
624 && (h->root.u.def.section->flags & SEC_LOAD) == 0
625 && h->size > 0
626 && h->type != STT_FUNC)
627 olddyncommon = true;
628 else
629 olddyncommon = false;
631 /* It's OK to change the type if either the existing symbol or the
632 new symbol is weak unless it comes from a DT_NEEDED entry of
633 a shared object, in which case, the DT_NEEDED entry may not be
634 required at the run time. */
636 if ((! dt_needed && h->root.type == bfd_link_hash_defweak)
637 || h->root.type == bfd_link_hash_undefweak
638 || bind == STB_WEAK)
639 *type_change_ok = true;
641 /* It's OK to change the size if either the existing symbol or the
642 new symbol is weak, or if the old symbol is undefined. */
644 if (*type_change_ok
645 || h->root.type == bfd_link_hash_undefined)
646 *size_change_ok = true;
648 /* If both the old and the new symbols look like common symbols in a
649 dynamic object, set the size of the symbol to the larger of the
650 two. */
652 if (olddyncommon
653 && newdyncommon
654 && sym->st_size != h->size)
656 /* Since we think we have two common symbols, issue a multiple
657 common warning if desired. Note that we only warn if the
658 size is different. If the size is the same, we simply let
659 the old symbol override the new one as normally happens with
660 symbols defined in dynamic objects. */
662 if (! ((*info->callbacks->multiple_common)
663 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
664 h->size, abfd, bfd_link_hash_common, sym->st_size)))
665 return false;
667 if (sym->st_size > h->size)
668 h->size = sym->st_size;
670 *size_change_ok = true;
673 /* If we are looking at a dynamic object, and we have found a
674 definition, we need to see if the symbol was already defined by
675 some other object. If so, we want to use the existing
676 definition, and we do not want to report a multiple symbol
677 definition error; we do this by clobbering *PSEC to be
678 bfd_und_section_ptr.
680 We treat a common symbol as a definition if the symbol in the
681 shared library is a function, since common symbols always
682 represent variables; this can cause confusion in principle, but
683 any such confusion would seem to indicate an erroneous program or
684 shared library. We also permit a common symbol in a regular
685 object to override a weak symbol in a shared object.
687 We prefer a non-weak definition in a shared library to a weak
688 definition in the executable unless it comes from a DT_NEEDED
689 entry of a shared object, in which case, the DT_NEEDED entry
690 may not be required at the run time. */
692 if (newdyn
693 && newdef
694 && (olddef
695 || (h->root.type == bfd_link_hash_common
696 && (bind == STB_WEAK
697 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
698 && (h->root.type != bfd_link_hash_defweak
699 || dt_needed
700 || bind == STB_WEAK))
702 *override = true;
703 newdef = false;
704 newdyncommon = false;
706 *psec = sec = bfd_und_section_ptr;
707 *size_change_ok = true;
709 /* If we get here when the old symbol is a common symbol, then
710 we are explicitly letting it override a weak symbol or
711 function in a dynamic object, and we don't want to warn about
712 a type change. If the old symbol is a defined symbol, a type
713 change warning may still be appropriate. */
715 if (h->root.type == bfd_link_hash_common)
716 *type_change_ok = true;
719 /* Handle the special case of an old common symbol merging with a
720 new symbol which looks like a common symbol in a shared object.
721 We change *PSEC and *PVALUE to make the new symbol look like a
722 common symbol, and let _bfd_generic_link_add_one_symbol will do
723 the right thing. */
725 if (newdyncommon
726 && h->root.type == bfd_link_hash_common)
728 *override = true;
729 newdef = false;
730 newdyncommon = false;
731 *pvalue = sym->st_size;
732 *psec = sec = bfd_com_section_ptr;
733 *size_change_ok = true;
736 /* If the old symbol is from a dynamic object, and the new symbol is
737 a definition which is not from a dynamic object, then the new
738 symbol overrides the old symbol. Symbols from regular files
739 always take precedence over symbols from dynamic objects, even if
740 they are defined after the dynamic object in the link.
742 As above, we again permit a common symbol in a regular object to
743 override a definition in a shared object if the shared object
744 symbol is a function or is weak.
746 As above, we permit a non-weak definition in a shared object to
747 override a weak definition in a regular object. */
749 if (! newdyn
750 && (newdef
751 || (bfd_is_com_section (sec)
752 && (h->root.type == bfd_link_hash_defweak
753 || h->type == STT_FUNC)))
754 && olddyn
755 && olddef
756 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
757 && (bind != STB_WEAK
758 || h->root.type == bfd_link_hash_defweak))
760 /* Change the hash table entry to undefined, and let
761 _bfd_generic_link_add_one_symbol do the right thing with the
762 new definition. */
764 h->root.type = bfd_link_hash_undefined;
765 h->root.u.undef.abfd = h->root.u.def.section->owner;
766 *size_change_ok = true;
768 olddef = false;
769 olddyncommon = false;
771 /* We again permit a type change when a common symbol may be
772 overriding a function. */
774 if (bfd_is_com_section (sec))
775 *type_change_ok = true;
777 /* This union may have been set to be non-NULL when this symbol
778 was seen in a dynamic object. We must force the union to be
779 NULL, so that it is correct for a regular symbol. */
781 h->verinfo.vertree = NULL;
783 /* In this special case, if H is the target of an indirection,
784 we want the caller to frob with H rather than with the
785 indirect symbol. That will permit the caller to redefine the
786 target of the indirection, rather than the indirect symbol
787 itself. FIXME: This will break the -y option if we store a
788 symbol with a different name. */
789 *sym_hash = h;
792 /* Handle the special case of a new common symbol merging with an
793 old symbol that looks like it might be a common symbol defined in
794 a shared object. Note that we have already handled the case in
795 which a new common symbol should simply override the definition
796 in the shared library. */
798 if (! newdyn
799 && bfd_is_com_section (sec)
800 && olddyncommon)
802 /* It would be best if we could set the hash table entry to a
803 common symbol, but we don't know what to use for the section
804 or the alignment. */
805 if (! ((*info->callbacks->multiple_common)
806 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
807 h->size, abfd, bfd_link_hash_common, sym->st_size)))
808 return false;
810 /* If the predumed common symbol in the dynamic object is
811 larger, pretend that the new symbol has its size. */
813 if (h->size > *pvalue)
814 *pvalue = h->size;
816 /* FIXME: We no longer know the alignment required by the symbol
817 in the dynamic object, so we just wind up using the one from
818 the regular object. */
820 olddef = false;
821 olddyncommon = false;
823 h->root.type = bfd_link_hash_undefined;
824 h->root.u.undef.abfd = h->root.u.def.section->owner;
826 *size_change_ok = true;
827 *type_change_ok = true;
829 h->verinfo.vertree = NULL;
832 /* Handle the special case of a weak definition in a regular object
833 followed by a non-weak definition in a shared object. In this
834 case, we prefer the definition in the shared object unless it
835 comes from a DT_NEEDED entry of a shared object, in which case,
836 the DT_NEEDED entry may not be required at the run time. */
837 if (olddef
838 && ! dt_needed
839 && h->root.type == bfd_link_hash_defweak
840 && newdef
841 && newdyn
842 && bind != STB_WEAK)
844 /* To make this work we have to frob the flags so that the rest
845 of the code does not think we are using the regular
846 definition. */
847 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
848 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
849 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
850 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
851 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
852 | ELF_LINK_HASH_DEF_DYNAMIC);
854 /* If H is the target of an indirection, we want the caller to
855 use H rather than the indirect symbol. Otherwise if we are
856 defining a new indirect symbol we will wind up attaching it
857 to the entry we are overriding. */
858 *sym_hash = h;
861 /* Handle the special case of a non-weak definition in a shared
862 object followed by a weak definition in a regular object. In
863 this case we prefer to definition in the shared object. To make
864 this work we have to tell the caller to not treat the new symbol
865 as a definition. */
866 if (olddef
867 && olddyn
868 && h->root.type != bfd_link_hash_defweak
869 && newdef
870 && ! newdyn
871 && bind == STB_WEAK)
872 *override = true;
874 return true;
877 /* Add symbols from an ELF object file to the linker hash table. */
879 static boolean
880 elf_link_add_object_symbols (abfd, info)
881 bfd *abfd;
882 struct bfd_link_info *info;
884 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
885 const Elf_Internal_Sym *,
886 const char **, flagword *,
887 asection **, bfd_vma *));
888 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
889 asection *, const Elf_Internal_Rela *));
890 boolean collect;
891 Elf_Internal_Shdr *hdr;
892 size_t symcount;
893 size_t extsymcount;
894 size_t extsymoff;
895 Elf_External_Sym *buf = NULL;
896 struct elf_link_hash_entry **sym_hash;
897 boolean dynamic;
898 bfd_byte *dynver = NULL;
899 Elf_External_Versym *extversym = NULL;
900 Elf_External_Versym *ever;
901 Elf_External_Dyn *dynbuf = NULL;
902 struct elf_link_hash_entry *weaks;
903 Elf_External_Sym *esym;
904 Elf_External_Sym *esymend;
905 struct elf_backend_data *bed;
906 boolean dt_needed;
908 bed = get_elf_backend_data (abfd);
909 add_symbol_hook = bed->elf_add_symbol_hook;
910 collect = bed->collect;
912 if ((abfd->flags & DYNAMIC) == 0)
913 dynamic = false;
914 else
916 dynamic = true;
918 /* You can't use -r against a dynamic object. Also, there's no
919 hope of using a dynamic object which does not exactly match
920 the format of the output file. */
921 if (info->relocateable || info->hash->creator != abfd->xvec)
923 bfd_set_error (bfd_error_invalid_operation);
924 goto error_return;
928 /* As a GNU extension, any input sections which are named
929 .gnu.warning.SYMBOL are treated as warning symbols for the given
930 symbol. This differs from .gnu.warning sections, which generate
931 warnings when they are included in an output file. */
932 if (! info->shared)
934 asection *s;
936 for (s = abfd->sections; s != NULL; s = s->next)
938 const char *name;
940 name = bfd_get_section_name (abfd, s);
941 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
943 char *msg;
944 bfd_size_type sz;
946 name += sizeof ".gnu.warning." - 1;
948 /* If this is a shared object, then look up the symbol
949 in the hash table. If it is there, and it is already
950 been defined, then we will not be using the entry
951 from this shared object, so we don't need to warn.
952 FIXME: If we see the definition in a regular object
953 later on, we will warn, but we shouldn't. The only
954 fix is to keep track of what warnings we are supposed
955 to emit, and then handle them all at the end of the
956 link. */
957 if (dynamic && abfd->xvec == info->hash->creator)
959 struct elf_link_hash_entry *h;
961 h = elf_link_hash_lookup (elf_hash_table (info), name,
962 false, false, true);
964 /* FIXME: What about bfd_link_hash_common? */
965 if (h != NULL
966 && (h->root.type == bfd_link_hash_defined
967 || h->root.type == bfd_link_hash_defweak))
969 /* We don't want to issue this warning. Clobber
970 the section size so that the warning does not
971 get copied into the output file. */
972 s->_raw_size = 0;
973 continue;
977 sz = bfd_section_size (abfd, s);
978 msg = (char *) bfd_alloc (abfd, sz + 1);
979 if (msg == NULL)
980 goto error_return;
982 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
983 goto error_return;
985 msg[sz] = '\0';
987 if (! (_bfd_generic_link_add_one_symbol
988 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
989 false, collect, (struct bfd_link_hash_entry **) NULL)))
990 goto error_return;
992 if (! info->relocateable)
994 /* Clobber the section size so that the warning does
995 not get copied into the output file. */
996 s->_raw_size = 0;
1002 /* If this is a dynamic object, we always link against the .dynsym
1003 symbol table, not the .symtab symbol table. The dynamic linker
1004 will only see the .dynsym symbol table, so there is no reason to
1005 look at .symtab for a dynamic object. */
1007 if (! dynamic || elf_dynsymtab (abfd) == 0)
1008 hdr = &elf_tdata (abfd)->symtab_hdr;
1009 else
1010 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1012 if (dynamic)
1014 /* Read in any version definitions. */
1016 if (! _bfd_elf_slurp_version_tables (abfd))
1017 goto error_return;
1019 /* Read in the symbol versions, but don't bother to convert them
1020 to internal format. */
1021 if (elf_dynversym (abfd) != 0)
1023 Elf_Internal_Shdr *versymhdr;
1025 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
1026 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
1027 if (extversym == NULL)
1028 goto error_return;
1029 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
1030 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
1031 != versymhdr->sh_size))
1032 goto error_return;
1036 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
1038 /* The sh_info field of the symtab header tells us where the
1039 external symbols start. We don't care about the local symbols at
1040 this point. */
1041 if (elf_bad_symtab (abfd))
1043 extsymcount = symcount;
1044 extsymoff = 0;
1046 else
1048 extsymcount = symcount - hdr->sh_info;
1049 extsymoff = hdr->sh_info;
1052 buf = ((Elf_External_Sym *)
1053 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
1054 if (buf == NULL && extsymcount != 0)
1055 goto error_return;
1057 /* We store a pointer to the hash table entry for each external
1058 symbol. */
1059 sym_hash = ((struct elf_link_hash_entry **)
1060 bfd_alloc (abfd,
1061 extsymcount * sizeof (struct elf_link_hash_entry *)));
1062 if (sym_hash == NULL)
1063 goto error_return;
1064 elf_sym_hashes (abfd) = sym_hash;
1066 dt_needed = false;
1068 if (! dynamic)
1070 /* If we are creating a shared library, create all the dynamic
1071 sections immediately. We need to attach them to something,
1072 so we attach them to this BFD, provided it is the right
1073 format. FIXME: If there are no input BFD's of the same
1074 format as the output, we can't make a shared library. */
1075 if (info->shared
1076 && ! elf_hash_table (info)->dynamic_sections_created
1077 && abfd->xvec == info->hash->creator)
1079 if (! elf_link_create_dynamic_sections (abfd, info))
1080 goto error_return;
1083 else
1085 asection *s;
1086 boolean add_needed;
1087 const char *name;
1088 bfd_size_type oldsize;
1089 bfd_size_type strindex;
1091 /* Find the name to use in a DT_NEEDED entry that refers to this
1092 object. If the object has a DT_SONAME entry, we use it.
1093 Otherwise, if the generic linker stuck something in
1094 elf_dt_name, we use that. Otherwise, we just use the file
1095 name. If the generic linker put a null string into
1096 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1097 there is a DT_SONAME entry. */
1098 add_needed = true;
1099 name = bfd_get_filename (abfd);
1100 if (elf_dt_name (abfd) != NULL)
1102 name = elf_dt_name (abfd);
1103 if (*name == '\0')
1105 if (elf_dt_soname (abfd) != NULL)
1106 dt_needed = true;
1108 add_needed = false;
1111 s = bfd_get_section_by_name (abfd, ".dynamic");
1112 if (s != NULL)
1114 Elf_External_Dyn *extdyn;
1115 Elf_External_Dyn *extdynend;
1116 int elfsec;
1117 unsigned long link;
1118 int rpath;
1119 int runpath;
1121 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1122 if (dynbuf == NULL)
1123 goto error_return;
1125 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1126 (file_ptr) 0, s->_raw_size))
1127 goto error_return;
1129 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1130 if (elfsec == -1)
1131 goto error_return;
1132 link = elf_elfsections (abfd)[elfsec]->sh_link;
1135 /* The shared libraries distributed with hpux11 have a bogus
1136 sh_link field for the ".dynamic" section. This code detects
1137 when LINK refers to a section that is not a string table and
1138 tries to find the string table for the ".dynsym" section
1139 instead. */
1140 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1141 if (hdr->sh_type != SHT_STRTAB)
1143 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1144 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1145 if (elfsec == -1)
1146 goto error_return;
1147 link = elf_elfsections (abfd)[elfsec]->sh_link;
1151 extdyn = dynbuf;
1152 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1153 rpath = 0;
1154 runpath = 0;
1155 for (; extdyn < extdynend; extdyn++)
1157 Elf_Internal_Dyn dyn;
1159 elf_swap_dyn_in (abfd, extdyn, &dyn);
1160 if (dyn.d_tag == DT_SONAME)
1162 name = bfd_elf_string_from_elf_section (abfd, link,
1163 dyn.d_un.d_val);
1164 if (name == NULL)
1165 goto error_return;
1167 if (dyn.d_tag == DT_NEEDED)
1169 struct bfd_link_needed_list *n, **pn;
1170 char *fnm, *anm;
1172 n = ((struct bfd_link_needed_list *)
1173 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1174 fnm = bfd_elf_string_from_elf_section (abfd, link,
1175 dyn.d_un.d_val);
1176 if (n == NULL || fnm == NULL)
1177 goto error_return;
1178 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1179 if (anm == NULL)
1180 goto error_return;
1181 strcpy (anm, fnm);
1182 n->name = anm;
1183 n->by = abfd;
1184 n->next = NULL;
1185 for (pn = &elf_hash_table (info)->needed;
1186 *pn != NULL;
1187 pn = &(*pn)->next)
1189 *pn = n;
1191 if (dyn.d_tag == DT_RUNPATH)
1193 struct bfd_link_needed_list *n, **pn;
1194 char *fnm, *anm;
1196 /* When we see DT_RPATH before DT_RUNPATH, we have
1197 to clear runpath. Do _NOT_ bfd_release, as that
1198 frees all more recently bfd_alloc'd blocks as
1199 well. */
1200 if (rpath && elf_hash_table (info)->runpath)
1201 elf_hash_table (info)->runpath = NULL;
1203 n = ((struct bfd_link_needed_list *)
1204 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1205 fnm = bfd_elf_string_from_elf_section (abfd, link,
1206 dyn.d_un.d_val);
1207 if (n == NULL || fnm == NULL)
1208 goto error_return;
1209 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1210 if (anm == NULL)
1211 goto error_return;
1212 strcpy (anm, fnm);
1213 n->name = anm;
1214 n->by = abfd;
1215 n->next = NULL;
1216 for (pn = &elf_hash_table (info)->runpath;
1217 *pn != NULL;
1218 pn = &(*pn)->next)
1220 *pn = n;
1221 runpath = 1;
1222 rpath = 0;
1224 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
1225 if (!runpath && dyn.d_tag == DT_RPATH)
1227 struct bfd_link_needed_list *n, **pn;
1228 char *fnm, *anm;
1230 n = ((struct bfd_link_needed_list *)
1231 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1232 fnm = bfd_elf_string_from_elf_section (abfd, link,
1233 dyn.d_un.d_val);
1234 if (n == NULL || fnm == NULL)
1235 goto error_return;
1236 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1237 if (anm == NULL)
1238 goto error_return;
1239 strcpy (anm, fnm);
1240 n->name = anm;
1241 n->by = abfd;
1242 n->next = NULL;
1243 for (pn = &elf_hash_table (info)->runpath;
1244 *pn != NULL;
1245 pn = &(*pn)->next)
1247 *pn = n;
1248 rpath = 1;
1252 free (dynbuf);
1253 dynbuf = NULL;
1256 /* We do not want to include any of the sections in a dynamic
1257 object in the output file. We hack by simply clobbering the
1258 list of sections in the BFD. This could be handled more
1259 cleanly by, say, a new section flag; the existing
1260 SEC_NEVER_LOAD flag is not the one we want, because that one
1261 still implies that the section takes up space in the output
1262 file. */
1263 abfd->sections = NULL;
1264 abfd->section_count = 0;
1266 /* If this is the first dynamic object found in the link, create
1267 the special sections required for dynamic linking. */
1268 if (! elf_hash_table (info)->dynamic_sections_created)
1270 if (! elf_link_create_dynamic_sections (abfd, info))
1271 goto error_return;
1274 if (add_needed)
1276 /* Add a DT_NEEDED entry for this dynamic object. */
1277 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1278 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1279 true, false);
1280 if (strindex == (bfd_size_type) -1)
1281 goto error_return;
1283 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1285 asection *sdyn;
1286 Elf_External_Dyn *dyncon, *dynconend;
1288 /* The hash table size did not change, which means that
1289 the dynamic object name was already entered. If we
1290 have already included this dynamic object in the
1291 link, just ignore it. There is no reason to include
1292 a particular dynamic object more than once. */
1293 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1294 ".dynamic");
1295 BFD_ASSERT (sdyn != NULL);
1297 dyncon = (Elf_External_Dyn *) sdyn->contents;
1298 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1299 sdyn->_raw_size);
1300 for (; dyncon < dynconend; dyncon++)
1302 Elf_Internal_Dyn dyn;
1304 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1305 &dyn);
1306 if (dyn.d_tag == DT_NEEDED
1307 && dyn.d_un.d_val == strindex)
1309 if (buf != NULL)
1310 free (buf);
1311 if (extversym != NULL)
1312 free (extversym);
1313 return true;
1318 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1319 goto error_return;
1322 /* Save the SONAME, if there is one, because sometimes the
1323 linker emulation code will need to know it. */
1324 if (*name == '\0')
1325 name = bfd_get_filename (abfd);
1326 elf_dt_name (abfd) = name;
1329 if (bfd_seek (abfd,
1330 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1331 SEEK_SET) != 0
1332 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1333 != extsymcount * sizeof (Elf_External_Sym)))
1334 goto error_return;
1336 weaks = NULL;
1338 ever = extversym != NULL ? extversym + extsymoff : NULL;
1339 esymend = buf + extsymcount;
1340 for (esym = buf;
1341 esym < esymend;
1342 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1344 Elf_Internal_Sym sym;
1345 int bind;
1346 bfd_vma value;
1347 asection *sec;
1348 flagword flags;
1349 const char *name;
1350 struct elf_link_hash_entry *h;
1351 boolean definition;
1352 boolean size_change_ok, type_change_ok;
1353 boolean new_weakdef;
1354 unsigned int old_alignment;
1356 elf_swap_symbol_in (abfd, esym, &sym);
1358 flags = BSF_NO_FLAGS;
1359 sec = NULL;
1360 value = sym.st_value;
1361 *sym_hash = NULL;
1363 bind = ELF_ST_BIND (sym.st_info);
1364 if (bind == STB_LOCAL)
1366 /* This should be impossible, since ELF requires that all
1367 global symbols follow all local symbols, and that sh_info
1368 point to the first global symbol. Unfortunatealy, Irix 5
1369 screws this up. */
1370 continue;
1372 else if (bind == STB_GLOBAL)
1374 if (sym.st_shndx != SHN_UNDEF
1375 && sym.st_shndx != SHN_COMMON)
1376 flags = BSF_GLOBAL;
1378 else if (bind == STB_WEAK)
1379 flags = BSF_WEAK;
1380 else
1382 /* Leave it up to the processor backend. */
1385 if (sym.st_shndx == SHN_UNDEF)
1386 sec = bfd_und_section_ptr;
1387 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1389 sec = section_from_elf_index (abfd, sym.st_shndx);
1390 if (sec == NULL)
1391 sec = bfd_abs_section_ptr;
1392 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1393 value -= sec->vma;
1395 else if (sym.st_shndx == SHN_ABS)
1396 sec = bfd_abs_section_ptr;
1397 else if (sym.st_shndx == SHN_COMMON)
1399 sec = bfd_com_section_ptr;
1400 /* What ELF calls the size we call the value. What ELF
1401 calls the value we call the alignment. */
1402 value = sym.st_size;
1404 else
1406 /* Leave it up to the processor backend. */
1409 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1410 if (name == (const char *) NULL)
1411 goto error_return;
1413 if (add_symbol_hook)
1415 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1416 &value))
1417 goto error_return;
1419 /* The hook function sets the name to NULL if this symbol
1420 should be skipped for some reason. */
1421 if (name == (const char *) NULL)
1422 continue;
1425 /* Sanity check that all possibilities were handled. */
1426 if (sec == (asection *) NULL)
1428 bfd_set_error (bfd_error_bad_value);
1429 goto error_return;
1432 if (bfd_is_und_section (sec)
1433 || bfd_is_com_section (sec))
1434 definition = false;
1435 else
1436 definition = true;
1438 size_change_ok = false;
1439 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1440 old_alignment = 0;
1441 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1443 Elf_Internal_Versym iver;
1444 unsigned int vernum = 0;
1445 boolean override;
1447 if (ever != NULL)
1449 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1450 vernum = iver.vs_vers & VERSYM_VERSION;
1452 /* If this is a hidden symbol, or if it is not version
1453 1, we append the version name to the symbol name.
1454 However, we do not modify a non-hidden absolute
1455 symbol, because it might be the version symbol
1456 itself. FIXME: What if it isn't? */
1457 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1458 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1460 const char *verstr;
1461 int namelen, newlen;
1462 char *newname, *p;
1464 if (sym.st_shndx != SHN_UNDEF)
1466 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1468 (*_bfd_error_handler)
1469 (_("%s: %s: invalid version %u (max %d)"),
1470 bfd_get_filename (abfd), name, vernum,
1471 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1472 bfd_set_error (bfd_error_bad_value);
1473 goto error_return;
1475 else if (vernum > 1)
1476 verstr =
1477 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1478 else
1479 verstr = "";
1481 else
1483 /* We cannot simply test for the number of
1484 entries in the VERNEED section since the
1485 numbers for the needed versions do not start
1486 at 0. */
1487 Elf_Internal_Verneed *t;
1489 verstr = NULL;
1490 for (t = elf_tdata (abfd)->verref;
1491 t != NULL;
1492 t = t->vn_nextref)
1494 Elf_Internal_Vernaux *a;
1496 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1498 if (a->vna_other == vernum)
1500 verstr = a->vna_nodename;
1501 break;
1504 if (a != NULL)
1505 break;
1507 if (verstr == NULL)
1509 (*_bfd_error_handler)
1510 (_("%s: %s: invalid needed version %d"),
1511 bfd_get_filename (abfd), name, vernum);
1512 bfd_set_error (bfd_error_bad_value);
1513 goto error_return;
1517 namelen = strlen (name);
1518 newlen = namelen + strlen (verstr) + 2;
1519 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1520 ++newlen;
1522 newname = (char *) bfd_alloc (abfd, newlen);
1523 if (newname == NULL)
1524 goto error_return;
1525 strcpy (newname, name);
1526 p = newname + namelen;
1527 *p++ = ELF_VER_CHR;
1528 /* If this is a defined non-hidden version symbol,
1529 we add another @ to the name. This indicates the
1530 default version of the symbol. */
1531 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
1532 && sym.st_shndx != SHN_UNDEF)
1533 *p++ = ELF_VER_CHR;
1534 strcpy (p, verstr);
1536 name = newname;
1540 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1541 sym_hash, &override, &type_change_ok,
1542 &size_change_ok, dt_needed))
1543 goto error_return;
1545 if (override)
1546 definition = false;
1548 h = *sym_hash;
1549 while (h->root.type == bfd_link_hash_indirect
1550 || h->root.type == bfd_link_hash_warning)
1551 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1553 /* Remember the old alignment if this is a common symbol, so
1554 that we don't reduce the alignment later on. We can't
1555 check later, because _bfd_generic_link_add_one_symbol
1556 will set a default for the alignment which we want to
1557 override. */
1558 if (h->root.type == bfd_link_hash_common)
1559 old_alignment = h->root.u.c.p->alignment_power;
1561 if (elf_tdata (abfd)->verdef != NULL
1562 && ! override
1563 && vernum > 1
1564 && definition)
1565 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1568 if (! (_bfd_generic_link_add_one_symbol
1569 (info, abfd, name, flags, sec, value, (const char *) NULL,
1570 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1571 goto error_return;
1573 h = *sym_hash;
1574 while (h->root.type == bfd_link_hash_indirect
1575 || h->root.type == bfd_link_hash_warning)
1576 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1577 *sym_hash = h;
1579 new_weakdef = false;
1580 if (dynamic
1581 && definition
1582 && (flags & BSF_WEAK) != 0
1583 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1584 && info->hash->creator->flavour == bfd_target_elf_flavour
1585 && h->weakdef == NULL)
1587 /* Keep a list of all weak defined non function symbols from
1588 a dynamic object, using the weakdef field. Later in this
1589 function we will set the weakdef field to the correct
1590 value. We only put non-function symbols from dynamic
1591 objects on this list, because that happens to be the only
1592 time we need to know the normal symbol corresponding to a
1593 weak symbol, and the information is time consuming to
1594 figure out. If the weakdef field is not already NULL,
1595 then this symbol was already defined by some previous
1596 dynamic object, and we will be using that previous
1597 definition anyhow. */
1599 h->weakdef = weaks;
1600 weaks = h;
1601 new_weakdef = true;
1604 /* Set the alignment of a common symbol. */
1605 if (sym.st_shndx == SHN_COMMON
1606 && h->root.type == bfd_link_hash_common)
1608 unsigned int align;
1610 align = bfd_log2 (sym.st_value);
1611 if (align > old_alignment
1612 /* Permit an alignment power of zero if an alignment of one
1613 is specified and no other alignments have been specified. */
1614 || (sym.st_value == 1 && old_alignment == 0))
1615 h->root.u.c.p->alignment_power = align;
1618 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1620 int old_flags;
1621 boolean dynsym;
1622 int new_flag;
1624 /* Remember the symbol size and type. */
1625 if (sym.st_size != 0
1626 && (definition || h->size == 0))
1628 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1629 (*_bfd_error_handler)
1630 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1631 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1632 bfd_get_filename (abfd));
1634 h->size = sym.st_size;
1637 /* If this is a common symbol, then we always want H->SIZE
1638 to be the size of the common symbol. The code just above
1639 won't fix the size if a common symbol becomes larger. We
1640 don't warn about a size change here, because that is
1641 covered by --warn-common. */
1642 if (h->root.type == bfd_link_hash_common)
1643 h->size = h->root.u.c.size;
1645 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1646 && (definition || h->type == STT_NOTYPE))
1648 if (h->type != STT_NOTYPE
1649 && h->type != ELF_ST_TYPE (sym.st_info)
1650 && ! type_change_ok)
1651 (*_bfd_error_handler)
1652 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1653 name, h->type, ELF_ST_TYPE (sym.st_info),
1654 bfd_get_filename (abfd));
1656 h->type = ELF_ST_TYPE (sym.st_info);
1659 /* If st_other has a processor-specific meaning, specific code
1660 might be needed here. */
1661 if (sym.st_other != 0)
1663 /* Combine visibilities, using the most constraining one. */
1664 unsigned char hvis = ELF_ST_VISIBILITY (h->other);
1665 unsigned char symvis = ELF_ST_VISIBILITY (sym.st_other);
1667 if (symvis && (hvis > symvis || hvis == 0))
1668 h->other = sym.st_other;
1670 /* If neither has visibility, use the st_other of the
1671 definition. This is an arbitrary choice, since the
1672 other bits have no general meaning. */
1673 if (!symvis && !hvis
1674 && (definition || h->other == 0))
1675 h->other = sym.st_other;
1678 /* Set a flag in the hash table entry indicating the type of
1679 reference or definition we just found. Keep a count of
1680 the number of dynamic symbols we find. A dynamic symbol
1681 is one which is referenced or defined by both a regular
1682 object and a shared object. */
1683 old_flags = h->elf_link_hash_flags;
1684 dynsym = false;
1685 if (! dynamic)
1687 if (! definition)
1689 new_flag = ELF_LINK_HASH_REF_REGULAR;
1690 if (bind != STB_WEAK)
1691 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1693 else
1694 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1695 if (info->shared
1696 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1697 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1698 dynsym = true;
1700 else
1702 if (! definition)
1703 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1704 else
1705 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1706 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1707 | ELF_LINK_HASH_REF_REGULAR)) != 0
1708 || (h->weakdef != NULL
1709 && ! new_weakdef
1710 && h->weakdef->dynindx != -1))
1711 dynsym = true;
1714 h->elf_link_hash_flags |= new_flag;
1716 /* If this symbol has a version, and it is the default
1717 version, we create an indirect symbol from the default
1718 name to the fully decorated name. This will cause
1719 external references which do not specify a version to be
1720 bound to this version of the symbol. */
1721 if (definition || h->root.type == bfd_link_hash_common)
1723 char *p;
1725 p = strchr (name, ELF_VER_CHR);
1726 if (p != NULL && p[1] == ELF_VER_CHR)
1728 char *shortname;
1729 struct elf_link_hash_entry *hi;
1730 boolean override;
1732 shortname = bfd_hash_allocate (&info->hash->table,
1733 p - name + 1);
1734 if (shortname == NULL)
1735 goto error_return;
1736 strncpy (shortname, name, p - name);
1737 shortname[p - name] = '\0';
1739 /* We are going to create a new symbol. Merge it
1740 with any existing symbol with this name. For the
1741 purposes of the merge, act as though we were
1742 defining the symbol we just defined, although we
1743 actually going to define an indirect symbol. */
1744 type_change_ok = false;
1745 size_change_ok = false;
1746 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1747 &value, &hi, &override,
1748 &type_change_ok,
1749 &size_change_ok, dt_needed))
1750 goto error_return;
1752 if (! override)
1754 if (! (_bfd_generic_link_add_one_symbol
1755 (info, abfd, shortname, BSF_INDIRECT,
1756 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1757 collect, (struct bfd_link_hash_entry **) &hi)))
1758 goto error_return;
1760 else
1762 /* In this case the symbol named SHORTNAME is
1763 overriding the indirect symbol we want to
1764 add. We were planning on making SHORTNAME an
1765 indirect symbol referring to NAME. SHORTNAME
1766 is the name without a version. NAME is the
1767 fully versioned name, and it is the default
1768 version.
1770 Overriding means that we already saw a
1771 definition for the symbol SHORTNAME in a
1772 regular object, and it is overriding the
1773 symbol defined in the dynamic object.
1775 When this happens, we actually want to change
1776 NAME, the symbol we just added, to refer to
1777 SHORTNAME. This will cause references to
1778 NAME in the shared object to become
1779 references to SHORTNAME in the regular
1780 object. This is what we expect when we
1781 override a function in a shared object: that
1782 the references in the shared object will be
1783 mapped to the definition in the regular
1784 object. */
1786 while (hi->root.type == bfd_link_hash_indirect
1787 || hi->root.type == bfd_link_hash_warning)
1788 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1790 h->root.type = bfd_link_hash_indirect;
1791 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1792 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1794 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1795 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1796 if (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_REGULAR
1798 | ELF_LINK_HASH_DEF_REGULAR))
1800 if (! _bfd_elf_link_record_dynamic_symbol (info,
1801 hi))
1802 goto error_return;
1806 /* Now set HI to H, so that the following code
1807 will set the other fields correctly. */
1808 hi = h;
1811 /* If there is a duplicate definition somewhere,
1812 then HI may not point to an indirect symbol. We
1813 will have reported an error to the user in that
1814 case. */
1816 if (hi->root.type == bfd_link_hash_indirect)
1818 struct elf_link_hash_entry *ht;
1820 /* If the symbol became indirect, then we assume
1821 that we have not seen a definition before. */
1822 BFD_ASSERT ((hi->elf_link_hash_flags
1823 & (ELF_LINK_HASH_DEF_DYNAMIC
1824 | ELF_LINK_HASH_DEF_REGULAR))
1825 == 0);
1827 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1828 (*bed->elf_backend_copy_indirect_symbol) (ht, hi);
1830 /* See if the new flags lead us to realize that
1831 the symbol must be dynamic. */
1832 if (! dynsym)
1834 if (! dynamic)
1836 if (info->shared
1837 || ((hi->elf_link_hash_flags
1838 & ELF_LINK_HASH_REF_DYNAMIC)
1839 != 0))
1840 dynsym = true;
1842 else
1844 if ((hi->elf_link_hash_flags
1845 & ELF_LINK_HASH_REF_REGULAR) != 0)
1846 dynsym = true;
1851 /* We also need to define an indirection from the
1852 nondefault version of the symbol. */
1854 shortname = bfd_hash_allocate (&info->hash->table,
1855 strlen (name));
1856 if (shortname == NULL)
1857 goto error_return;
1858 strncpy (shortname, name, p - name);
1859 strcpy (shortname + (p - name), p + 1);
1861 /* Once again, merge with any existing symbol. */
1862 type_change_ok = false;
1863 size_change_ok = false;
1864 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1865 &value, &hi, &override,
1866 &type_change_ok,
1867 &size_change_ok, dt_needed))
1868 goto error_return;
1870 if (override)
1872 /* Here SHORTNAME is a versioned name, so we
1873 don't expect to see the type of override we
1874 do in the case above. */
1875 (*_bfd_error_handler)
1876 (_("%s: warning: unexpected redefinition of `%s'"),
1877 bfd_get_filename (abfd), shortname);
1879 else
1881 if (! (_bfd_generic_link_add_one_symbol
1882 (info, abfd, shortname, BSF_INDIRECT,
1883 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1884 collect, (struct bfd_link_hash_entry **) &hi)))
1885 goto error_return;
1887 /* If there is a duplicate definition somewhere,
1888 then HI may not point to an indirect symbol.
1889 We will have reported an error to the user in
1890 that case. */
1892 if (hi->root.type == bfd_link_hash_indirect)
1894 /* If the symbol became indirect, then we
1895 assume that we have not seen a definition
1896 before. */
1897 BFD_ASSERT ((hi->elf_link_hash_flags
1898 & (ELF_LINK_HASH_DEF_DYNAMIC
1899 | ELF_LINK_HASH_DEF_REGULAR))
1900 == 0);
1902 (*bed->elf_backend_copy_indirect_symbol) (h, hi);
1904 /* See if the new flags lead us to realize
1905 that the symbol must be dynamic. */
1906 if (! dynsym)
1908 if (! dynamic)
1910 if (info->shared
1911 || ((hi->elf_link_hash_flags
1912 & ELF_LINK_HASH_REF_DYNAMIC)
1913 != 0))
1914 dynsym = true;
1916 else
1918 if ((hi->elf_link_hash_flags
1919 & ELF_LINK_HASH_REF_REGULAR) != 0)
1920 dynsym = true;
1928 if (dynsym && h->dynindx == -1)
1930 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1931 goto error_return;
1932 if (h->weakdef != NULL
1933 && ! new_weakdef
1934 && h->weakdef->dynindx == -1)
1936 if (! _bfd_elf_link_record_dynamic_symbol (info,
1937 h->weakdef))
1938 goto error_return;
1941 else if (dynsym && h->dynindx != -1)
1942 /* If the symbol already has a dynamic index, but
1943 visibility says it should not be visible, turn it into
1944 a local symbol. */
1945 switch (ELF_ST_VISIBILITY (h->other))
1947 case STV_INTERNAL:
1948 case STV_HIDDEN:
1949 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1950 (*bed->elf_backend_hide_symbol) (info, h);
1951 break;
1954 if (dt_needed && definition
1955 && (h->elf_link_hash_flags
1956 & ELF_LINK_HASH_REF_REGULAR) != 0)
1958 bfd_size_type oldsize;
1959 bfd_size_type strindex;
1961 /* The symbol from a DT_NEEDED object is referenced from
1962 the regular object to create a dynamic executable. We
1963 have to make sure there is a DT_NEEDED entry for it. */
1965 dt_needed = false;
1966 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1967 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
1968 elf_dt_soname (abfd),
1969 true, false);
1970 if (strindex == (bfd_size_type) -1)
1971 goto error_return;
1973 if (oldsize
1974 == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1976 asection *sdyn;
1977 Elf_External_Dyn *dyncon, *dynconend;
1979 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1980 ".dynamic");
1981 BFD_ASSERT (sdyn != NULL);
1983 dyncon = (Elf_External_Dyn *) sdyn->contents;
1984 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1985 sdyn->_raw_size);
1986 for (; dyncon < dynconend; dyncon++)
1988 Elf_Internal_Dyn dyn;
1990 elf_swap_dyn_in (elf_hash_table (info)->dynobj,
1991 dyncon, &dyn);
1992 BFD_ASSERT (dyn.d_tag != DT_NEEDED ||
1993 dyn.d_un.d_val != strindex);
1997 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1998 goto error_return;
2003 /* Now set the weakdefs field correctly for all the weak defined
2004 symbols we found. The only way to do this is to search all the
2005 symbols. Since we only need the information for non functions in
2006 dynamic objects, that's the only time we actually put anything on
2007 the list WEAKS. We need this information so that if a regular
2008 object refers to a symbol defined weakly in a dynamic object, the
2009 real symbol in the dynamic object is also put in the dynamic
2010 symbols; we also must arrange for both symbols to point to the
2011 same memory location. We could handle the general case of symbol
2012 aliasing, but a general symbol alias can only be generated in
2013 assembler code, handling it correctly would be very time
2014 consuming, and other ELF linkers don't handle general aliasing
2015 either. */
2016 while (weaks != NULL)
2018 struct elf_link_hash_entry *hlook;
2019 asection *slook;
2020 bfd_vma vlook;
2021 struct elf_link_hash_entry **hpp;
2022 struct elf_link_hash_entry **hppend;
2024 hlook = weaks;
2025 weaks = hlook->weakdef;
2026 hlook->weakdef = NULL;
2028 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
2029 || hlook->root.type == bfd_link_hash_defweak
2030 || hlook->root.type == bfd_link_hash_common
2031 || hlook->root.type == bfd_link_hash_indirect);
2032 slook = hlook->root.u.def.section;
2033 vlook = hlook->root.u.def.value;
2035 hpp = elf_sym_hashes (abfd);
2036 hppend = hpp + extsymcount;
2037 for (; hpp < hppend; hpp++)
2039 struct elf_link_hash_entry *h;
2041 h = *hpp;
2042 if (h != NULL && h != hlook
2043 && h->root.type == bfd_link_hash_defined
2044 && h->root.u.def.section == slook
2045 && h->root.u.def.value == vlook)
2047 hlook->weakdef = h;
2049 /* If the weak definition is in the list of dynamic
2050 symbols, make sure the real definition is put there
2051 as well. */
2052 if (hlook->dynindx != -1
2053 && h->dynindx == -1)
2055 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2056 goto error_return;
2059 /* If the real definition is in the list of dynamic
2060 symbols, make sure the weak definition is put there
2061 as well. If we don't do this, then the dynamic
2062 loader might not merge the entries for the real
2063 definition and the weak definition. */
2064 if (h->dynindx != -1
2065 && hlook->dynindx == -1)
2067 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
2068 goto error_return;
2071 break;
2076 if (buf != NULL)
2078 free (buf);
2079 buf = NULL;
2082 if (extversym != NULL)
2084 free (extversym);
2085 extversym = NULL;
2088 /* If this object is the same format as the output object, and it is
2089 not a shared library, then let the backend look through the
2090 relocs.
2092 This is required to build global offset table entries and to
2093 arrange for dynamic relocs. It is not required for the
2094 particular common case of linking non PIC code, even when linking
2095 against shared libraries, but unfortunately there is no way of
2096 knowing whether an object file has been compiled PIC or not.
2097 Looking through the relocs is not particularly time consuming.
2098 The problem is that we must either (1) keep the relocs in memory,
2099 which causes the linker to require additional runtime memory or
2100 (2) read the relocs twice from the input file, which wastes time.
2101 This would be a good case for using mmap.
2103 I have no idea how to handle linking PIC code into a file of a
2104 different format. It probably can't be done. */
2105 check_relocs = get_elf_backend_data (abfd)->check_relocs;
2106 if (! dynamic
2107 && abfd->xvec == info->hash->creator
2108 && check_relocs != NULL)
2110 asection *o;
2112 for (o = abfd->sections; o != NULL; o = o->next)
2114 Elf_Internal_Rela *internal_relocs;
2115 boolean ok;
2117 if ((o->flags & SEC_RELOC) == 0
2118 || o->reloc_count == 0
2119 || ((info->strip == strip_all || info->strip == strip_debugger)
2120 && (o->flags & SEC_DEBUGGING) != 0)
2121 || bfd_is_abs_section (o->output_section))
2122 continue;
2124 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
2125 (abfd, o, (PTR) NULL,
2126 (Elf_Internal_Rela *) NULL,
2127 info->keep_memory));
2128 if (internal_relocs == NULL)
2129 goto error_return;
2131 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2133 if (! info->keep_memory)
2134 free (internal_relocs);
2136 if (! ok)
2137 goto error_return;
2141 /* If this is a non-traditional, non-relocateable link, try to
2142 optimize the handling of the .stab/.stabstr sections. */
2143 if (! dynamic
2144 && ! info->relocateable
2145 && ! info->traditional_format
2146 && info->hash->creator->flavour == bfd_target_elf_flavour
2147 && (info->strip != strip_all && info->strip != strip_debugger))
2149 asection *stab, *stabstr;
2151 stab = bfd_get_section_by_name (abfd, ".stab");
2152 if (stab != NULL)
2154 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2156 if (stabstr != NULL)
2158 struct bfd_elf_section_data *secdata;
2160 secdata = elf_section_data (stab);
2161 if (! _bfd_link_section_stabs (abfd,
2162 &elf_hash_table (info)->stab_info,
2163 stab, stabstr,
2164 &secdata->stab_info))
2165 goto error_return;
2170 if (! info->relocateable && ! dynamic)
2172 asection *s;
2174 for (s = abfd->sections; s != NULL; s = s->next)
2175 if ((s->flags & SEC_MERGE)
2176 && ! _bfd_merge_section (abfd,
2177 &elf_hash_table (info)->merge_info,
2178 s, &elf_section_data (s)->merge_info))
2179 goto error_return;
2182 return true;
2184 error_return:
2185 if (buf != NULL)
2186 free (buf);
2187 if (dynbuf != NULL)
2188 free (dynbuf);
2189 if (dynver != NULL)
2190 free (dynver);
2191 if (extversym != NULL)
2192 free (extversym);
2193 return false;
2196 /* Create some sections which will be filled in with dynamic linking
2197 information. ABFD is an input file which requires dynamic sections
2198 to be created. The dynamic sections take up virtual memory space
2199 when the final executable is run, so we need to create them before
2200 addresses are assigned to the output sections. We work out the
2201 actual contents and size of these sections later. */
2203 boolean
2204 elf_link_create_dynamic_sections (abfd, info)
2205 bfd *abfd;
2206 struct bfd_link_info *info;
2208 flagword flags;
2209 register asection *s;
2210 struct elf_link_hash_entry *h;
2211 struct elf_backend_data *bed;
2213 if (elf_hash_table (info)->dynamic_sections_created)
2214 return true;
2216 /* Make sure that all dynamic sections use the same input BFD. */
2217 if (elf_hash_table (info)->dynobj == NULL)
2218 elf_hash_table (info)->dynobj = abfd;
2219 else
2220 abfd = elf_hash_table (info)->dynobj;
2222 /* Note that we set the SEC_IN_MEMORY flag for all of these
2223 sections. */
2224 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2225 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2227 /* A dynamically linked executable has a .interp section, but a
2228 shared library does not. */
2229 if (! info->shared)
2231 s = bfd_make_section (abfd, ".interp");
2232 if (s == NULL
2233 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2234 return false;
2237 /* Create sections to hold version informations. These are removed
2238 if they are not needed. */
2239 s = bfd_make_section (abfd, ".gnu.version_d");
2240 if (s == NULL
2241 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2242 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2243 return false;
2245 s = bfd_make_section (abfd, ".gnu.version");
2246 if (s == NULL
2247 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2248 || ! bfd_set_section_alignment (abfd, s, 1))
2249 return false;
2251 s = bfd_make_section (abfd, ".gnu.version_r");
2252 if (s == NULL
2253 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2254 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2255 return false;
2257 s = bfd_make_section (abfd, ".dynsym");
2258 if (s == NULL
2259 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2260 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2261 return false;
2263 s = bfd_make_section (abfd, ".dynstr");
2264 if (s == NULL
2265 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2266 return false;
2268 /* Create a strtab to hold the dynamic symbol names. */
2269 if (elf_hash_table (info)->dynstr == NULL)
2271 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2272 if (elf_hash_table (info)->dynstr == NULL)
2273 return false;
2276 s = bfd_make_section (abfd, ".dynamic");
2277 if (s == NULL
2278 || ! bfd_set_section_flags (abfd, s, flags)
2279 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2280 return false;
2282 /* The special symbol _DYNAMIC is always set to the start of the
2283 .dynamic section. This call occurs before we have processed the
2284 symbols for any dynamic object, so we don't have to worry about
2285 overriding a dynamic definition. We could set _DYNAMIC in a
2286 linker script, but we only want to define it if we are, in fact,
2287 creating a .dynamic section. We don't want to define it if there
2288 is no .dynamic section, since on some ELF platforms the start up
2289 code examines it to decide how to initialize the process. */
2290 h = NULL;
2291 if (! (_bfd_generic_link_add_one_symbol
2292 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2293 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2294 (struct bfd_link_hash_entry **) &h)))
2295 return false;
2296 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2297 h->type = STT_OBJECT;
2299 if (info->shared
2300 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2301 return false;
2303 bed = get_elf_backend_data (abfd);
2305 s = bfd_make_section (abfd, ".hash");
2306 if (s == NULL
2307 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2308 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2309 return false;
2310 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2312 /* Let the backend create the rest of the sections. This lets the
2313 backend set the right flags. The backend will normally create
2314 the .got and .plt sections. */
2315 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2316 return false;
2318 elf_hash_table (info)->dynamic_sections_created = true;
2320 return true;
2323 /* Add an entry to the .dynamic table. */
2325 boolean
2326 elf_add_dynamic_entry (info, tag, val)
2327 struct bfd_link_info *info;
2328 bfd_vma tag;
2329 bfd_vma val;
2331 Elf_Internal_Dyn dyn;
2332 bfd *dynobj;
2333 asection *s;
2334 size_t newsize;
2335 bfd_byte *newcontents;
2337 dynobj = elf_hash_table (info)->dynobj;
2339 s = bfd_get_section_by_name (dynobj, ".dynamic");
2340 BFD_ASSERT (s != NULL);
2342 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2343 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2344 if (newcontents == NULL)
2345 return false;
2347 dyn.d_tag = tag;
2348 dyn.d_un.d_val = val;
2349 elf_swap_dyn_out (dynobj, &dyn,
2350 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2352 s->_raw_size = newsize;
2353 s->contents = newcontents;
2355 return true;
2358 /* Record a new local dynamic symbol. */
2360 boolean
2361 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2362 struct bfd_link_info *info;
2363 bfd *input_bfd;
2364 long input_indx;
2366 struct elf_link_local_dynamic_entry *entry;
2367 struct elf_link_hash_table *eht;
2368 struct bfd_strtab_hash *dynstr;
2369 Elf_External_Sym esym;
2370 unsigned long dynstr_index;
2371 char *name;
2373 /* See if the entry exists already. */
2374 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2375 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2376 return true;
2378 entry = (struct elf_link_local_dynamic_entry *)
2379 bfd_alloc (input_bfd, sizeof (*entry));
2380 if (entry == NULL)
2381 return false;
2383 /* Go find the symbol, so that we can find it's name. */
2384 if (bfd_seek (input_bfd,
2385 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2386 + input_indx * sizeof (Elf_External_Sym)),
2387 SEEK_SET) != 0
2388 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2389 != sizeof (Elf_External_Sym)))
2390 return false;
2391 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2393 name = (bfd_elf_string_from_elf_section
2394 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2395 entry->isym.st_name));
2397 dynstr = elf_hash_table (info)->dynstr;
2398 if (dynstr == NULL)
2400 /* Create a strtab to hold the dynamic symbol names. */
2401 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2402 if (dynstr == NULL)
2403 return false;
2406 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2407 if (dynstr_index == (unsigned long) -1)
2408 return false;
2409 entry->isym.st_name = dynstr_index;
2411 eht = elf_hash_table (info);
2413 entry->next = eht->dynlocal;
2414 eht->dynlocal = entry;
2415 entry->input_bfd = input_bfd;
2416 entry->input_indx = input_indx;
2417 eht->dynsymcount++;
2419 /* Whatever binding the symbol had before, it's now local. */
2420 entry->isym.st_info
2421 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2423 /* The dynindx will be set at the end of size_dynamic_sections. */
2425 return true;
2428 /* Read and swap the relocs from the section indicated by SHDR. This
2429 may be either a REL or a RELA section. The relocations are
2430 translated into RELA relocations and stored in INTERNAL_RELOCS,
2431 which should have already been allocated to contain enough space.
2432 The EXTERNAL_RELOCS are a buffer where the external form of the
2433 relocations should be stored.
2435 Returns false if something goes wrong. */
2437 static boolean
2438 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2439 internal_relocs)
2440 bfd *abfd;
2441 Elf_Internal_Shdr *shdr;
2442 PTR external_relocs;
2443 Elf_Internal_Rela *internal_relocs;
2445 struct elf_backend_data *bed;
2447 /* If there aren't any relocations, that's OK. */
2448 if (!shdr)
2449 return true;
2451 /* Position ourselves at the start of the section. */
2452 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2453 return false;
2455 /* Read the relocations. */
2456 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2457 != shdr->sh_size)
2458 return false;
2460 bed = get_elf_backend_data (abfd);
2462 /* Convert the external relocations to the internal format. */
2463 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2465 Elf_External_Rel *erel;
2466 Elf_External_Rel *erelend;
2467 Elf_Internal_Rela *irela;
2468 Elf_Internal_Rel *irel;
2470 erel = (Elf_External_Rel *) external_relocs;
2471 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2472 irela = internal_relocs;
2473 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2474 * sizeof (Elf_Internal_Rel)));
2475 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2477 unsigned char i;
2479 if (bed->s->swap_reloc_in)
2480 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2481 else
2482 elf_swap_reloc_in (abfd, erel, irel);
2484 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2486 irela[i].r_offset = irel[i].r_offset;
2487 irela[i].r_info = irel[i].r_info;
2488 irela[i].r_addend = 0;
2492 else
2494 Elf_External_Rela *erela;
2495 Elf_External_Rela *erelaend;
2496 Elf_Internal_Rela *irela;
2498 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2500 erela = (Elf_External_Rela *) external_relocs;
2501 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2502 irela = internal_relocs;
2503 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2505 if (bed->s->swap_reloca_in)
2506 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2507 else
2508 elf_swap_reloca_in (abfd, erela, irela);
2512 return true;
2515 /* Read and swap the relocs for a section O. They may have been
2516 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2517 not NULL, they are used as buffers to read into. They are known to
2518 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2519 the return value is allocated using either malloc or bfd_alloc,
2520 according to the KEEP_MEMORY argument. If O has two relocation
2521 sections (both REL and RELA relocations), then the REL_HDR
2522 relocations will appear first in INTERNAL_RELOCS, followed by the
2523 REL_HDR2 relocations. */
2525 Elf_Internal_Rela *
2526 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2527 keep_memory)
2528 bfd *abfd;
2529 asection *o;
2530 PTR external_relocs;
2531 Elf_Internal_Rela *internal_relocs;
2532 boolean keep_memory;
2534 Elf_Internal_Shdr *rel_hdr;
2535 PTR alloc1 = NULL;
2536 Elf_Internal_Rela *alloc2 = NULL;
2537 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2539 if (elf_section_data (o)->relocs != NULL)
2540 return elf_section_data (o)->relocs;
2542 if (o->reloc_count == 0)
2543 return NULL;
2545 rel_hdr = &elf_section_data (o)->rel_hdr;
2547 if (internal_relocs == NULL)
2549 size_t size;
2551 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2552 * sizeof (Elf_Internal_Rela));
2553 if (keep_memory)
2554 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2555 else
2556 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2557 if (internal_relocs == NULL)
2558 goto error_return;
2561 if (external_relocs == NULL)
2563 size_t size = (size_t) rel_hdr->sh_size;
2565 if (elf_section_data (o)->rel_hdr2)
2566 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2567 alloc1 = (PTR) bfd_malloc (size);
2568 if (alloc1 == NULL)
2569 goto error_return;
2570 external_relocs = alloc1;
2573 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2574 external_relocs,
2575 internal_relocs))
2576 goto error_return;
2577 if (!elf_link_read_relocs_from_section
2578 (abfd,
2579 elf_section_data (o)->rel_hdr2,
2580 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2581 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2582 * bed->s->int_rels_per_ext_rel)))
2583 goto error_return;
2585 /* Cache the results for next time, if we can. */
2586 if (keep_memory)
2587 elf_section_data (o)->relocs = internal_relocs;
2589 if (alloc1 != NULL)
2590 free (alloc1);
2592 /* Don't free alloc2, since if it was allocated we are passing it
2593 back (under the name of internal_relocs). */
2595 return internal_relocs;
2597 error_return:
2598 if (alloc1 != NULL)
2599 free (alloc1);
2600 if (alloc2 != NULL)
2601 free (alloc2);
2602 return NULL;
2605 /* Record an assignment to a symbol made by a linker script. We need
2606 this in case some dynamic object refers to this symbol. */
2608 /*ARGSUSED*/
2609 boolean
2610 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2611 bfd *output_bfd ATTRIBUTE_UNUSED;
2612 struct bfd_link_info *info;
2613 const char *name;
2614 boolean provide;
2616 struct elf_link_hash_entry *h;
2618 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2619 return true;
2621 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2622 if (h == NULL)
2623 return false;
2625 if (h->root.type == bfd_link_hash_new)
2626 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2628 /* If this symbol is being provided by the linker script, and it is
2629 currently defined by a dynamic object, but not by a regular
2630 object, then mark it as undefined so that the generic linker will
2631 force the correct value. */
2632 if (provide
2633 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2634 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2635 h->root.type = bfd_link_hash_undefined;
2637 /* If this symbol is not being provided by the linker script, and it is
2638 currently defined by a dynamic object, but not by a regular object,
2639 then clear out any version information because the symbol will not be
2640 associated with the dynamic object any more. */
2641 if (!provide
2642 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2643 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2644 h->verinfo.verdef = NULL;
2646 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2648 /* When possible, keep the original type of the symbol */
2649 if (h->type == STT_NOTYPE)
2650 h->type = STT_OBJECT;
2652 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2653 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2654 || info->shared)
2655 && h->dynindx == -1)
2657 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2658 return false;
2660 /* If this is a weak defined symbol, and we know a corresponding
2661 real symbol from the same dynamic object, make sure the real
2662 symbol is also made into a dynamic symbol. */
2663 if (h->weakdef != NULL
2664 && h->weakdef->dynindx == -1)
2666 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2667 return false;
2671 return true;
2674 /* This structure is used to pass information to
2675 elf_link_assign_sym_version. */
2677 struct elf_assign_sym_version_info
2679 /* Output BFD. */
2680 bfd *output_bfd;
2681 /* General link information. */
2682 struct bfd_link_info *info;
2683 /* Version tree. */
2684 struct bfd_elf_version_tree *verdefs;
2685 /* Whether we are exporting all dynamic symbols. */
2686 boolean export_dynamic;
2687 /* Whether we had a failure. */
2688 boolean failed;
2691 /* This structure is used to pass information to
2692 elf_link_find_version_dependencies. */
2694 struct elf_find_verdep_info
2696 /* Output BFD. */
2697 bfd *output_bfd;
2698 /* General link information. */
2699 struct bfd_link_info *info;
2700 /* The number of dependencies. */
2701 unsigned int vers;
2702 /* Whether we had a failure. */
2703 boolean failed;
2706 /* Array used to determine the number of hash table buckets to use
2707 based on the number of symbols there are. If there are fewer than
2708 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2709 fewer than 37 we use 17 buckets, and so forth. We never use more
2710 than 32771 buckets. */
2712 static const size_t elf_buckets[] =
2714 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2715 16411, 32771, 0
2718 /* Compute bucket count for hashing table. We do not use a static set
2719 of possible tables sizes anymore. Instead we determine for all
2720 possible reasonable sizes of the table the outcome (i.e., the
2721 number of collisions etc) and choose the best solution. The
2722 weighting functions are not too simple to allow the table to grow
2723 without bounds. Instead one of the weighting factors is the size.
2724 Therefore the result is always a good payoff between few collisions
2725 (= short chain lengths) and table size. */
2726 static size_t
2727 compute_bucket_count (info)
2728 struct bfd_link_info *info;
2730 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2731 size_t best_size = 0;
2732 unsigned long int *hashcodes;
2733 unsigned long int *hashcodesp;
2734 unsigned long int i;
2736 /* Compute the hash values for all exported symbols. At the same
2737 time store the values in an array so that we could use them for
2738 optimizations. */
2739 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2740 * sizeof (unsigned long int));
2741 if (hashcodes == NULL)
2742 return 0;
2743 hashcodesp = hashcodes;
2745 /* Put all hash values in HASHCODES. */
2746 elf_link_hash_traverse (elf_hash_table (info),
2747 elf_collect_hash_codes, &hashcodesp);
2749 /* We have a problem here. The following code to optimize the table
2750 size requires an integer type with more the 32 bits. If
2751 BFD_HOST_U_64_BIT is set we know about such a type. */
2752 #ifdef BFD_HOST_U_64_BIT
2753 if (info->optimize == true)
2755 unsigned long int nsyms = hashcodesp - hashcodes;
2756 size_t minsize;
2757 size_t maxsize;
2758 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2759 unsigned long int *counts ;
2761 /* Possible optimization parameters: if we have NSYMS symbols we say
2762 that the hashing table must at least have NSYMS/4 and at most
2763 2*NSYMS buckets. */
2764 minsize = nsyms / 4;
2765 if (minsize == 0)
2766 minsize = 1;
2767 best_size = maxsize = nsyms * 2;
2769 /* Create array where we count the collisions in. We must use bfd_malloc
2770 since the size could be large. */
2771 counts = (unsigned long int *) bfd_malloc (maxsize
2772 * sizeof (unsigned long int));
2773 if (counts == NULL)
2775 free (hashcodes);
2776 return 0;
2779 /* Compute the "optimal" size for the hash table. The criteria is a
2780 minimal chain length. The minor criteria is (of course) the size
2781 of the table. */
2782 for (i = minsize; i < maxsize; ++i)
2784 /* Walk through the array of hashcodes and count the collisions. */
2785 BFD_HOST_U_64_BIT max;
2786 unsigned long int j;
2787 unsigned long int fact;
2789 memset (counts, '\0', i * sizeof (unsigned long int));
2791 /* Determine how often each hash bucket is used. */
2792 for (j = 0; j < nsyms; ++j)
2793 ++counts[hashcodes[j] % i];
2795 /* For the weight function we need some information about the
2796 pagesize on the target. This is information need not be 100%
2797 accurate. Since this information is not available (so far) we
2798 define it here to a reasonable default value. If it is crucial
2799 to have a better value some day simply define this value. */
2800 # ifndef BFD_TARGET_PAGESIZE
2801 # define BFD_TARGET_PAGESIZE (4096)
2802 # endif
2804 /* We in any case need 2 + NSYMS entries for the size values and
2805 the chains. */
2806 max = (2 + nsyms) * (ARCH_SIZE / 8);
2808 # if 1
2809 /* Variant 1: optimize for short chains. We add the squares
2810 of all the chain lengths (which favous many small chain
2811 over a few long chains). */
2812 for (j = 0; j < i; ++j)
2813 max += counts[j] * counts[j];
2815 /* This adds penalties for the overall size of the table. */
2816 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2817 max *= fact * fact;
2818 # else
2819 /* Variant 2: Optimize a lot more for small table. Here we
2820 also add squares of the size but we also add penalties for
2821 empty slots (the +1 term). */
2822 for (j = 0; j < i; ++j)
2823 max += (1 + counts[j]) * (1 + counts[j]);
2825 /* The overall size of the table is considered, but not as
2826 strong as in variant 1, where it is squared. */
2827 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2828 max *= fact;
2829 # endif
2831 /* Compare with current best results. */
2832 if (max < best_chlen)
2834 best_chlen = max;
2835 best_size = i;
2839 free (counts);
2841 else
2842 #endif /* defined (BFD_HOST_U_64_BIT) */
2844 /* This is the fallback solution if no 64bit type is available or if we
2845 are not supposed to spend much time on optimizations. We select the
2846 bucket count using a fixed set of numbers. */
2847 for (i = 0; elf_buckets[i] != 0; i++)
2849 best_size = elf_buckets[i];
2850 if (dynsymcount < elf_buckets[i + 1])
2851 break;
2855 /* Free the arrays we needed. */
2856 free (hashcodes);
2858 return best_size;
2861 /* Set up the sizes and contents of the ELF dynamic sections. This is
2862 called by the ELF linker emulation before_allocation routine. We
2863 must set the sizes of the sections before the linker sets the
2864 addresses of the various sections. */
2866 boolean
2867 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2868 export_dynamic, filter_shlib,
2869 auxiliary_filters, info, sinterpptr,
2870 verdefs)
2871 bfd *output_bfd;
2872 const char *soname;
2873 const char *rpath;
2874 boolean export_dynamic;
2875 const char *filter_shlib;
2876 const char * const *auxiliary_filters;
2877 struct bfd_link_info *info;
2878 asection **sinterpptr;
2879 struct bfd_elf_version_tree *verdefs;
2881 bfd_size_type soname_indx;
2882 bfd *dynobj;
2883 struct elf_backend_data *bed;
2884 struct elf_assign_sym_version_info asvinfo;
2886 *sinterpptr = NULL;
2888 soname_indx = (bfd_size_type) -1;
2890 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2891 return true;
2893 /* The backend may have to create some sections regardless of whether
2894 we're dynamic or not. */
2895 bed = get_elf_backend_data (output_bfd);
2896 if (bed->elf_backend_always_size_sections
2897 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2898 return false;
2900 dynobj = elf_hash_table (info)->dynobj;
2902 /* If there were no dynamic objects in the link, there is nothing to
2903 do here. */
2904 if (dynobj == NULL)
2905 return true;
2907 if (elf_hash_table (info)->dynamic_sections_created)
2909 struct elf_info_failed eif;
2910 struct elf_link_hash_entry *h;
2911 asection *dynstr;
2913 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2914 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2916 if (soname != NULL)
2918 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2919 soname, true, true);
2920 if (soname_indx == (bfd_size_type) -1
2921 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2922 return false;
2925 if (info->symbolic)
2927 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2928 return false;
2929 info->flags |= DF_SYMBOLIC;
2932 if (rpath != NULL)
2934 bfd_size_type indx;
2936 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2937 true, true);
2938 if (indx == (bfd_size_type) -1
2939 || ! elf_add_dynamic_entry (info, DT_RPATH, indx)
2940 || (info->new_dtags
2941 && ! elf_add_dynamic_entry (info, DT_RUNPATH, indx)))
2942 return false;
2945 if (filter_shlib != NULL)
2947 bfd_size_type indx;
2949 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2950 filter_shlib, true, true);
2951 if (indx == (bfd_size_type) -1
2952 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2953 return false;
2956 if (auxiliary_filters != NULL)
2958 const char * const *p;
2960 for (p = auxiliary_filters; *p != NULL; p++)
2962 bfd_size_type indx;
2964 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2965 *p, true, true);
2966 if (indx == (bfd_size_type) -1
2967 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2968 return false;
2972 eif.info = info;
2973 eif.failed = false;
2975 /* If we are supposed to export all symbols into the dynamic symbol
2976 table (this is not the normal case), then do so. */
2977 if (export_dynamic)
2979 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2980 (PTR) &eif);
2981 if (eif.failed)
2982 return false;
2985 /* Attach all the symbols to their version information. */
2986 asvinfo.output_bfd = output_bfd;
2987 asvinfo.info = info;
2988 asvinfo.verdefs = verdefs;
2989 asvinfo.export_dynamic = export_dynamic;
2990 asvinfo.failed = false;
2992 elf_link_hash_traverse (elf_hash_table (info),
2993 elf_link_assign_sym_version,
2994 (PTR) &asvinfo);
2995 if (asvinfo.failed)
2996 return false;
2998 /* Find all symbols which were defined in a dynamic object and make
2999 the backend pick a reasonable value for them. */
3000 elf_link_hash_traverse (elf_hash_table (info),
3001 elf_adjust_dynamic_symbol,
3002 (PTR) &eif);
3003 if (eif.failed)
3004 return false;
3006 /* Add some entries to the .dynamic section. We fill in some of the
3007 values later, in elf_bfd_final_link, but we must add the entries
3008 now so that we know the final size of the .dynamic section. */
3010 /* If there are initialization and/or finalization functions to
3011 call then add the corresponding DT_INIT/DT_FINI entries. */
3012 h = (info->init_function
3013 ? elf_link_hash_lookup (elf_hash_table (info),
3014 info->init_function, false,
3015 false, false)
3016 : NULL);
3017 if (h != NULL
3018 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3019 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3021 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
3022 return false;
3024 h = (info->fini_function
3025 ? elf_link_hash_lookup (elf_hash_table (info),
3026 info->fini_function, false,
3027 false, false)
3028 : NULL);
3029 if (h != NULL
3030 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
3031 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
3033 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
3034 return false;
3037 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
3038 /* If .dynstr is excluded from the link, we don't want any of
3039 these tags. Strictly, we should be checking each section
3040 individually; This quick check covers for the case where
3041 someone does a /DISCARD/ : { *(*) }. */
3042 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
3044 bfd_size_type strsize;
3046 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3047 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
3048 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
3049 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
3050 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
3051 || ! elf_add_dynamic_entry (info, DT_SYMENT,
3052 sizeof (Elf_External_Sym)))
3053 return false;
3057 /* The backend must work out the sizes of all the other dynamic
3058 sections. */
3059 if (bed->elf_backend_size_dynamic_sections
3060 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
3061 return false;
3063 if (elf_hash_table (info)->dynamic_sections_created)
3065 size_t dynsymcount;
3066 asection *s;
3067 size_t bucketcount = 0;
3068 size_t hash_entry_size;
3070 /* Set up the version definition section. */
3071 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3072 BFD_ASSERT (s != NULL);
3074 /* We may have created additional version definitions if we are
3075 just linking a regular application. */
3076 verdefs = asvinfo.verdefs;
3078 if (verdefs == NULL)
3079 _bfd_strip_section_from_output (info, s);
3080 else
3082 unsigned int cdefs;
3083 bfd_size_type size;
3084 struct bfd_elf_version_tree *t;
3085 bfd_byte *p;
3086 Elf_Internal_Verdef def;
3087 Elf_Internal_Verdaux defaux;
3089 cdefs = 0;
3090 size = 0;
3092 /* Make space for the base version. */
3093 size += sizeof (Elf_External_Verdef);
3094 size += sizeof (Elf_External_Verdaux);
3095 ++cdefs;
3097 for (t = verdefs; t != NULL; t = t->next)
3099 struct bfd_elf_version_deps *n;
3101 size += sizeof (Elf_External_Verdef);
3102 size += sizeof (Elf_External_Verdaux);
3103 ++cdefs;
3105 for (n = t->deps; n != NULL; n = n->next)
3106 size += sizeof (Elf_External_Verdaux);
3109 s->_raw_size = size;
3110 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3111 if (s->contents == NULL && s->_raw_size != 0)
3112 return false;
3114 /* Fill in the version definition section. */
3116 p = s->contents;
3118 def.vd_version = VER_DEF_CURRENT;
3119 def.vd_flags = VER_FLG_BASE;
3120 def.vd_ndx = 1;
3121 def.vd_cnt = 1;
3122 def.vd_aux = sizeof (Elf_External_Verdef);
3123 def.vd_next = (sizeof (Elf_External_Verdef)
3124 + sizeof (Elf_External_Verdaux));
3126 if (soname_indx != (bfd_size_type) -1)
3128 def.vd_hash = bfd_elf_hash (soname);
3129 defaux.vda_name = soname_indx;
3131 else
3133 const char *name;
3134 bfd_size_type indx;
3136 name = output_bfd->filename;
3137 def.vd_hash = bfd_elf_hash (name);
3138 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3139 name, true, false);
3140 if (indx == (bfd_size_type) -1)
3141 return false;
3142 defaux.vda_name = indx;
3144 defaux.vda_next = 0;
3146 _bfd_elf_swap_verdef_out (output_bfd, &def,
3147 (Elf_External_Verdef *)p);
3148 p += sizeof (Elf_External_Verdef);
3149 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3150 (Elf_External_Verdaux *) p);
3151 p += sizeof (Elf_External_Verdaux);
3153 for (t = verdefs; t != NULL; t = t->next)
3155 unsigned int cdeps;
3156 struct bfd_elf_version_deps *n;
3157 struct elf_link_hash_entry *h;
3159 cdeps = 0;
3160 for (n = t->deps; n != NULL; n = n->next)
3161 ++cdeps;
3163 /* Add a symbol representing this version. */
3164 h = NULL;
3165 if (! (_bfd_generic_link_add_one_symbol
3166 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3167 (bfd_vma) 0, (const char *) NULL, false,
3168 get_elf_backend_data (dynobj)->collect,
3169 (struct bfd_link_hash_entry **) &h)))
3170 return false;
3171 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3172 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3173 h->type = STT_OBJECT;
3174 h->verinfo.vertree = t;
3176 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3177 return false;
3179 def.vd_version = VER_DEF_CURRENT;
3180 def.vd_flags = 0;
3181 if (t->globals == NULL && t->locals == NULL && ! t->used)
3182 def.vd_flags |= VER_FLG_WEAK;
3183 def.vd_ndx = t->vernum + 1;
3184 def.vd_cnt = cdeps + 1;
3185 def.vd_hash = bfd_elf_hash (t->name);
3186 def.vd_aux = sizeof (Elf_External_Verdef);
3187 if (t->next != NULL)
3188 def.vd_next = (sizeof (Elf_External_Verdef)
3189 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3190 else
3191 def.vd_next = 0;
3193 _bfd_elf_swap_verdef_out (output_bfd, &def,
3194 (Elf_External_Verdef *) p);
3195 p += sizeof (Elf_External_Verdef);
3197 defaux.vda_name = h->dynstr_index;
3198 if (t->deps == NULL)
3199 defaux.vda_next = 0;
3200 else
3201 defaux.vda_next = sizeof (Elf_External_Verdaux);
3202 t->name_indx = defaux.vda_name;
3204 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3205 (Elf_External_Verdaux *) p);
3206 p += sizeof (Elf_External_Verdaux);
3208 for (n = t->deps; n != NULL; n = n->next)
3210 if (n->version_needed == NULL)
3212 /* This can happen if there was an error in the
3213 version script. */
3214 defaux.vda_name = 0;
3216 else
3217 defaux.vda_name = n->version_needed->name_indx;
3218 if (n->next == NULL)
3219 defaux.vda_next = 0;
3220 else
3221 defaux.vda_next = sizeof (Elf_External_Verdaux);
3223 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3224 (Elf_External_Verdaux *) p);
3225 p += sizeof (Elf_External_Verdaux);
3229 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3230 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3231 return false;
3233 elf_tdata (output_bfd)->cverdefs = cdefs;
3236 if (info->new_dtags && info->flags)
3238 if (! elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
3239 return false;
3242 if (info->flags_1)
3244 if (! info->shared)
3245 info->flags_1 &= ~ (DF_1_INITFIRST
3246 | DF_1_NODELETE
3247 | DF_1_NOOPEN);
3248 if (! elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
3249 return false;
3252 /* Work out the size of the version reference section. */
3254 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3255 BFD_ASSERT (s != NULL);
3257 struct elf_find_verdep_info sinfo;
3259 sinfo.output_bfd = output_bfd;
3260 sinfo.info = info;
3261 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3262 if (sinfo.vers == 0)
3263 sinfo.vers = 1;
3264 sinfo.failed = false;
3266 elf_link_hash_traverse (elf_hash_table (info),
3267 elf_link_find_version_dependencies,
3268 (PTR) &sinfo);
3270 if (elf_tdata (output_bfd)->verref == NULL)
3271 _bfd_strip_section_from_output (info, s);
3272 else
3274 Elf_Internal_Verneed *t;
3275 unsigned int size;
3276 unsigned int crefs;
3277 bfd_byte *p;
3279 /* Build the version definition section. */
3280 size = 0;
3281 crefs = 0;
3282 for (t = elf_tdata (output_bfd)->verref;
3283 t != NULL;
3284 t = t->vn_nextref)
3286 Elf_Internal_Vernaux *a;
3288 size += sizeof (Elf_External_Verneed);
3289 ++crefs;
3290 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3291 size += sizeof (Elf_External_Vernaux);
3294 s->_raw_size = size;
3295 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3296 if (s->contents == NULL)
3297 return false;
3299 p = s->contents;
3300 for (t = elf_tdata (output_bfd)->verref;
3301 t != NULL;
3302 t = t->vn_nextref)
3304 unsigned int caux;
3305 Elf_Internal_Vernaux *a;
3306 bfd_size_type indx;
3308 caux = 0;
3309 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3310 ++caux;
3312 t->vn_version = VER_NEED_CURRENT;
3313 t->vn_cnt = caux;
3314 if (elf_dt_name (t->vn_bfd) != NULL)
3315 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3316 elf_dt_name (t->vn_bfd),
3317 true, false);
3318 else
3319 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3320 t->vn_bfd->filename, true, false);
3321 if (indx == (bfd_size_type) -1)
3322 return false;
3323 t->vn_file = indx;
3324 t->vn_aux = sizeof (Elf_External_Verneed);
3325 if (t->vn_nextref == NULL)
3326 t->vn_next = 0;
3327 else
3328 t->vn_next = (sizeof (Elf_External_Verneed)
3329 + caux * sizeof (Elf_External_Vernaux));
3331 _bfd_elf_swap_verneed_out (output_bfd, t,
3332 (Elf_External_Verneed *) p);
3333 p += sizeof (Elf_External_Verneed);
3335 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3337 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3338 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3339 a->vna_nodename, true, false);
3340 if (indx == (bfd_size_type) -1)
3341 return false;
3342 a->vna_name = indx;
3343 if (a->vna_nextptr == NULL)
3344 a->vna_next = 0;
3345 else
3346 a->vna_next = sizeof (Elf_External_Vernaux);
3348 _bfd_elf_swap_vernaux_out (output_bfd, a,
3349 (Elf_External_Vernaux *) p);
3350 p += sizeof (Elf_External_Vernaux);
3354 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3355 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3356 return false;
3358 elf_tdata (output_bfd)->cverrefs = crefs;
3362 /* Assign dynsym indicies. In a shared library we generate a
3363 section symbol for each output section, which come first.
3364 Next come all of the back-end allocated local dynamic syms,
3365 followed by the rest of the global symbols. */
3367 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3369 /* Work out the size of the symbol version section. */
3370 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3371 BFD_ASSERT (s != NULL);
3372 if (dynsymcount == 0
3373 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3375 _bfd_strip_section_from_output (info, s);
3376 /* The DYNSYMCOUNT might have changed if we were going to
3377 output a dynamic symbol table entry for S. */
3378 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3380 else
3382 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3383 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3384 if (s->contents == NULL)
3385 return false;
3387 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3388 return false;
3391 /* Set the size of the .dynsym and .hash sections. We counted
3392 the number of dynamic symbols in elf_link_add_object_symbols.
3393 We will build the contents of .dynsym and .hash when we build
3394 the final symbol table, because until then we do not know the
3395 correct value to give the symbols. We built the .dynstr
3396 section as we went along in elf_link_add_object_symbols. */
3397 s = bfd_get_section_by_name (dynobj, ".dynsym");
3398 BFD_ASSERT (s != NULL);
3399 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3400 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3401 if (s->contents == NULL && s->_raw_size != 0)
3402 return false;
3404 if (dynsymcount != 0)
3406 Elf_Internal_Sym isym;
3408 /* The first entry in .dynsym is a dummy symbol. */
3409 isym.st_value = 0;
3410 isym.st_size = 0;
3411 isym.st_name = 0;
3412 isym.st_info = 0;
3413 isym.st_other = 0;
3414 isym.st_shndx = 0;
3415 elf_swap_symbol_out (output_bfd, &isym,
3416 (PTR) (Elf_External_Sym *) s->contents);
3419 /* Compute the size of the hashing table. As a side effect this
3420 computes the hash values for all the names we export. */
3421 bucketcount = compute_bucket_count (info);
3423 s = bfd_get_section_by_name (dynobj, ".hash");
3424 BFD_ASSERT (s != NULL);
3425 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3426 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3427 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3428 if (s->contents == NULL)
3429 return false;
3430 memset (s->contents, 0, (size_t) s->_raw_size);
3432 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3433 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3434 s->contents + hash_entry_size);
3436 elf_hash_table (info)->bucketcount = bucketcount;
3438 s = bfd_get_section_by_name (dynobj, ".dynstr");
3439 BFD_ASSERT (s != NULL);
3440 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3442 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3443 return false;
3446 return true;
3449 /* Fix up the flags for a symbol. This handles various cases which
3450 can only be fixed after all the input files are seen. This is
3451 currently called by both adjust_dynamic_symbol and
3452 assign_sym_version, which is unnecessary but perhaps more robust in
3453 the face of future changes. */
3455 static boolean
3456 elf_fix_symbol_flags (h, eif)
3457 struct elf_link_hash_entry *h;
3458 struct elf_info_failed *eif;
3460 /* If this symbol was mentioned in a non-ELF file, try to set
3461 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3462 permit a non-ELF file to correctly refer to a symbol defined in
3463 an ELF dynamic object. */
3464 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3466 while (h->root.type == bfd_link_hash_indirect)
3467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3469 if (h->root.type != bfd_link_hash_defined
3470 && h->root.type != bfd_link_hash_defweak)
3471 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3472 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3473 else
3475 if (h->root.u.def.section->owner != NULL
3476 && (bfd_get_flavour (h->root.u.def.section->owner)
3477 == bfd_target_elf_flavour))
3478 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3479 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3480 else
3481 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3484 if (h->dynindx == -1
3485 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3486 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3488 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3490 eif->failed = true;
3491 return false;
3495 else
3497 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3498 was first seen in a non-ELF file. Fortunately, if the symbol
3499 was first seen in an ELF file, we're probably OK unless the
3500 symbol was defined in a non-ELF file. Catch that case here.
3501 FIXME: We're still in trouble if the symbol was first seen in
3502 a dynamic object, and then later in a non-ELF regular object. */
3503 if ((h->root.type == bfd_link_hash_defined
3504 || h->root.type == bfd_link_hash_defweak)
3505 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3506 && (h->root.u.def.section->owner != NULL
3507 ? (bfd_get_flavour (h->root.u.def.section->owner)
3508 != bfd_target_elf_flavour)
3509 : (bfd_is_abs_section (h->root.u.def.section)
3510 && (h->elf_link_hash_flags
3511 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3512 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3515 /* If this is a final link, and the symbol was defined as a common
3516 symbol in a regular object file, and there was no definition in
3517 any dynamic object, then the linker will have allocated space for
3518 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3519 flag will not have been set. */
3520 if (h->root.type == bfd_link_hash_defined
3521 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3522 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3523 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3524 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3525 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3527 /* If -Bsymbolic was used (which means to bind references to global
3528 symbols to the definition within the shared object), and this
3529 symbol was defined in a regular object, then it actually doesn't
3530 need a PLT entry, and we can accomplish that by forcing it local.
3531 Likewise, if the symbol has hidden or internal visibility.
3532 FIXME: It might be that we also do not need a PLT for other
3533 non-hidden visibilities, but we would have to tell that to the
3534 backend specifically; we can't just clear PLT-related data here. */
3535 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3536 && eif->info->shared
3537 && (eif->info->symbolic
3538 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3539 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
3540 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3542 struct elf_backend_data *bed;
3543 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3544 (*bed->elf_backend_hide_symbol) (eif->info, h);
3547 /* If this is a weak defined symbol in a dynamic object, and we know
3548 the real definition in the dynamic object, copy interesting flags
3549 over to the real definition. */
3550 if (h->weakdef != NULL)
3552 struct elf_link_hash_entry *weakdef;
3554 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3555 || h->root.type == bfd_link_hash_defweak);
3556 weakdef = h->weakdef;
3557 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3558 || weakdef->root.type == bfd_link_hash_defweak);
3559 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3561 /* If the real definition is defined by a regular object file,
3562 don't do anything special. See the longer description in
3563 elf_adjust_dynamic_symbol, below. */
3564 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3565 h->weakdef = NULL;
3566 else
3567 weakdef->elf_link_hash_flags |=
3568 (h->elf_link_hash_flags
3569 & (ELF_LINK_HASH_REF_REGULAR
3570 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3571 | ELF_LINK_NON_GOT_REF));
3574 return true;
3577 /* Make the backend pick a good value for a dynamic symbol. This is
3578 called via elf_link_hash_traverse, and also calls itself
3579 recursively. */
3581 static boolean
3582 elf_adjust_dynamic_symbol (h, data)
3583 struct elf_link_hash_entry *h;
3584 PTR data;
3586 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3587 bfd *dynobj;
3588 struct elf_backend_data *bed;
3590 /* Ignore indirect symbols. These are added by the versioning code. */
3591 if (h->root.type == bfd_link_hash_indirect)
3592 return true;
3594 /* Fix the symbol flags. */
3595 if (! elf_fix_symbol_flags (h, eif))
3596 return false;
3598 /* If this symbol does not require a PLT entry, and it is not
3599 defined by a dynamic object, or is not referenced by a regular
3600 object, ignore it. We do have to handle a weak defined symbol,
3601 even if no regular object refers to it, if we decided to add it
3602 to the dynamic symbol table. FIXME: Do we normally need to worry
3603 about symbols which are defined by one dynamic object and
3604 referenced by another one? */
3605 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3606 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3607 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3608 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3609 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3611 h->plt.offset = (bfd_vma) -1;
3612 return true;
3615 /* If we've already adjusted this symbol, don't do it again. This
3616 can happen via a recursive call. */
3617 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3618 return true;
3620 /* Don't look at this symbol again. Note that we must set this
3621 after checking the above conditions, because we may look at a
3622 symbol once, decide not to do anything, and then get called
3623 recursively later after REF_REGULAR is set below. */
3624 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3626 /* If this is a weak definition, and we know a real definition, and
3627 the real symbol is not itself defined by a regular object file,
3628 then get a good value for the real definition. We handle the
3629 real symbol first, for the convenience of the backend routine.
3631 Note that there is a confusing case here. If the real definition
3632 is defined by a regular object file, we don't get the real symbol
3633 from the dynamic object, but we do get the weak symbol. If the
3634 processor backend uses a COPY reloc, then if some routine in the
3635 dynamic object changes the real symbol, we will not see that
3636 change in the corresponding weak symbol. This is the way other
3637 ELF linkers work as well, and seems to be a result of the shared
3638 library model.
3640 I will clarify this issue. Most SVR4 shared libraries define the
3641 variable _timezone and define timezone as a weak synonym. The
3642 tzset call changes _timezone. If you write
3643 extern int timezone;
3644 int _timezone = 5;
3645 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3646 you might expect that, since timezone is a synonym for _timezone,
3647 the same number will print both times. However, if the processor
3648 backend uses a COPY reloc, then actually timezone will be copied
3649 into your process image, and, since you define _timezone
3650 yourself, _timezone will not. Thus timezone and _timezone will
3651 wind up at different memory locations. The tzset call will set
3652 _timezone, leaving timezone unchanged. */
3654 if (h->weakdef != NULL)
3656 /* If we get to this point, we know there is an implicit
3657 reference by a regular object file via the weak symbol H.
3658 FIXME: Is this really true? What if the traversal finds
3659 H->WEAKDEF before it finds H? */
3660 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3662 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3663 return false;
3666 /* If a symbol has no type and no size and does not require a PLT
3667 entry, then we are probably about to do the wrong thing here: we
3668 are probably going to create a COPY reloc for an empty object.
3669 This case can arise when a shared object is built with assembly
3670 code, and the assembly code fails to set the symbol type. */
3671 if (h->size == 0
3672 && h->type == STT_NOTYPE
3673 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3674 (*_bfd_error_handler)
3675 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3676 h->root.root.string);
3678 dynobj = elf_hash_table (eif->info)->dynobj;
3679 bed = get_elf_backend_data (dynobj);
3680 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3682 eif->failed = true;
3683 return false;
3686 return true;
3689 /* This routine is used to export all defined symbols into the dynamic
3690 symbol table. It is called via elf_link_hash_traverse. */
3692 static boolean
3693 elf_export_symbol (h, data)
3694 struct elf_link_hash_entry *h;
3695 PTR data;
3697 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3699 /* Ignore indirect symbols. These are added by the versioning code. */
3700 if (h->root.type == bfd_link_hash_indirect)
3701 return true;
3703 if (h->dynindx == -1
3704 && (h->elf_link_hash_flags
3705 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3707 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3709 eif->failed = true;
3710 return false;
3714 return true;
3717 /* Look through the symbols which are defined in other shared
3718 libraries and referenced here. Update the list of version
3719 dependencies. This will be put into the .gnu.version_r section.
3720 This function is called via elf_link_hash_traverse. */
3722 static boolean
3723 elf_link_find_version_dependencies (h, data)
3724 struct elf_link_hash_entry *h;
3725 PTR data;
3727 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3728 Elf_Internal_Verneed *t;
3729 Elf_Internal_Vernaux *a;
3731 /* We only care about symbols defined in shared objects with version
3732 information. */
3733 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3734 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3735 || h->dynindx == -1
3736 || h->verinfo.verdef == NULL)
3737 return true;
3739 /* See if we already know about this version. */
3740 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3742 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3743 continue;
3745 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3746 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3747 return true;
3749 break;
3752 /* This is a new version. Add it to tree we are building. */
3754 if (t == NULL)
3756 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3757 if (t == NULL)
3759 rinfo->failed = true;
3760 return false;
3763 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3764 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3765 elf_tdata (rinfo->output_bfd)->verref = t;
3768 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3770 /* Note that we are copying a string pointer here, and testing it
3771 above. If bfd_elf_string_from_elf_section is ever changed to
3772 discard the string data when low in memory, this will have to be
3773 fixed. */
3774 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3776 a->vna_flags = h->verinfo.verdef->vd_flags;
3777 a->vna_nextptr = t->vn_auxptr;
3779 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3780 ++rinfo->vers;
3782 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3784 t->vn_auxptr = a;
3786 return true;
3789 /* Figure out appropriate versions for all the symbols. We may not
3790 have the version number script until we have read all of the input
3791 files, so until that point we don't know which symbols should be
3792 local. This function is called via elf_link_hash_traverse. */
3794 static boolean
3795 elf_link_assign_sym_version (h, data)
3796 struct elf_link_hash_entry *h;
3797 PTR data;
3799 struct elf_assign_sym_version_info *sinfo =
3800 (struct elf_assign_sym_version_info *) data;
3801 struct bfd_link_info *info = sinfo->info;
3802 struct elf_backend_data *bed;
3803 struct elf_info_failed eif;
3804 char *p;
3806 /* Fix the symbol flags. */
3807 eif.failed = false;
3808 eif.info = info;
3809 if (! elf_fix_symbol_flags (h, &eif))
3811 if (eif.failed)
3812 sinfo->failed = true;
3813 return false;
3816 /* We only need version numbers for symbols defined in regular
3817 objects. */
3818 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3819 return true;
3821 bed = get_elf_backend_data (sinfo->output_bfd);
3822 p = strchr (h->root.root.string, ELF_VER_CHR);
3823 if (p != NULL && h->verinfo.vertree == NULL)
3825 struct bfd_elf_version_tree *t;
3826 boolean hidden;
3828 hidden = true;
3830 /* There are two consecutive ELF_VER_CHR characters if this is
3831 not a hidden symbol. */
3832 ++p;
3833 if (*p == ELF_VER_CHR)
3835 hidden = false;
3836 ++p;
3839 /* If there is no version string, we can just return out. */
3840 if (*p == '\0')
3842 if (hidden)
3843 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3844 return true;
3847 /* Look for the version. If we find it, it is no longer weak. */
3848 for (t = sinfo->verdefs; t != NULL; t = t->next)
3850 if (strcmp (t->name, p) == 0)
3852 int len;
3853 char *alc;
3854 struct bfd_elf_version_expr *d;
3856 len = p - h->root.root.string;
3857 alc = bfd_alloc (sinfo->output_bfd, len);
3858 if (alc == NULL)
3859 return false;
3860 strncpy (alc, h->root.root.string, len - 1);
3861 alc[len - 1] = '\0';
3862 if (alc[len - 2] == ELF_VER_CHR)
3863 alc[len - 2] = '\0';
3865 h->verinfo.vertree = t;
3866 t->used = true;
3867 d = NULL;
3869 if (t->globals != NULL)
3871 for (d = t->globals; d != NULL; d = d->next)
3872 if ((*d->match) (d, alc))
3873 break;
3876 /* See if there is anything to force this symbol to
3877 local scope. */
3878 if (d == NULL && t->locals != NULL)
3880 for (d = t->locals; d != NULL; d = d->next)
3882 if ((*d->match) (d, alc))
3884 if (h->dynindx != -1
3885 && info->shared
3886 && ! sinfo->export_dynamic)
3888 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3889 (*bed->elf_backend_hide_symbol) (info, h);
3890 /* FIXME: The name of the symbol has
3891 already been recorded in the dynamic
3892 string table section. */
3895 break;
3900 bfd_release (sinfo->output_bfd, alc);
3901 break;
3905 /* If we are building an application, we need to create a
3906 version node for this version. */
3907 if (t == NULL && ! info->shared)
3909 struct bfd_elf_version_tree **pp;
3910 int version_index;
3912 /* If we aren't going to export this symbol, we don't need
3913 to worry about it. */
3914 if (h->dynindx == -1)
3915 return true;
3917 t = ((struct bfd_elf_version_tree *)
3918 bfd_alloc (sinfo->output_bfd, sizeof *t));
3919 if (t == NULL)
3921 sinfo->failed = true;
3922 return false;
3925 t->next = NULL;
3926 t->name = p;
3927 t->globals = NULL;
3928 t->locals = NULL;
3929 t->deps = NULL;
3930 t->name_indx = (unsigned int) -1;
3931 t->used = true;
3933 version_index = 1;
3934 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3935 ++version_index;
3936 t->vernum = version_index;
3938 *pp = t;
3940 h->verinfo.vertree = t;
3942 else if (t == NULL)
3944 /* We could not find the version for a symbol when
3945 generating a shared archive. Return an error. */
3946 (*_bfd_error_handler)
3947 (_("%s: undefined versioned symbol name %s"),
3948 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3949 bfd_set_error (bfd_error_bad_value);
3950 sinfo->failed = true;
3951 return false;
3954 if (hidden)
3955 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3958 /* If we don't have a version for this symbol, see if we can find
3959 something. */
3960 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3962 struct bfd_elf_version_tree *t;
3963 struct bfd_elf_version_tree *deflt;
3964 struct bfd_elf_version_expr *d;
3966 /* See if can find what version this symbol is in. If the
3967 symbol is supposed to be local, then don't actually register
3968 it. */
3969 deflt = NULL;
3970 for (t = sinfo->verdefs; t != NULL; t = t->next)
3972 if (t->globals != NULL)
3974 for (d = t->globals; d != NULL; d = d->next)
3976 if ((*d->match) (d, h->root.root.string))
3978 h->verinfo.vertree = t;
3979 break;
3983 if (d != NULL)
3984 break;
3987 if (t->locals != NULL)
3989 for (d = t->locals; d != NULL; d = d->next)
3991 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3992 deflt = t;
3993 else if ((*d->match) (d, h->root.root.string))
3995 h->verinfo.vertree = t;
3996 if (h->dynindx != -1
3997 && info->shared
3998 && ! sinfo->export_dynamic)
4000 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4001 (*bed->elf_backend_hide_symbol) (info, h);
4002 /* FIXME: The name of the symbol has already
4003 been recorded in the dynamic string table
4004 section. */
4006 break;
4010 if (d != NULL)
4011 break;
4015 if (deflt != NULL && h->verinfo.vertree == NULL)
4017 h->verinfo.vertree = deflt;
4018 if (h->dynindx != -1
4019 && info->shared
4020 && ! sinfo->export_dynamic)
4022 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
4023 (*bed->elf_backend_hide_symbol) (info, h);
4024 /* FIXME: The name of the symbol has already been
4025 recorded in the dynamic string table section. */
4030 return true;
4033 /* Final phase of ELF linker. */
4035 /* A structure we use to avoid passing large numbers of arguments. */
4037 struct elf_final_link_info
4039 /* General link information. */
4040 struct bfd_link_info *info;
4041 /* Output BFD. */
4042 bfd *output_bfd;
4043 /* Symbol string table. */
4044 struct bfd_strtab_hash *symstrtab;
4045 /* .dynsym section. */
4046 asection *dynsym_sec;
4047 /* .hash section. */
4048 asection *hash_sec;
4049 /* symbol version section (.gnu.version). */
4050 asection *symver_sec;
4051 /* Buffer large enough to hold contents of any section. */
4052 bfd_byte *contents;
4053 /* Buffer large enough to hold external relocs of any section. */
4054 PTR external_relocs;
4055 /* Buffer large enough to hold internal relocs of any section. */
4056 Elf_Internal_Rela *internal_relocs;
4057 /* Buffer large enough to hold external local symbols of any input
4058 BFD. */
4059 Elf_External_Sym *external_syms;
4060 /* Buffer large enough to hold internal local symbols of any input
4061 BFD. */
4062 Elf_Internal_Sym *internal_syms;
4063 /* Array large enough to hold a symbol index for each local symbol
4064 of any input BFD. */
4065 long *indices;
4066 /* Array large enough to hold a section pointer for each local
4067 symbol of any input BFD. */
4068 asection **sections;
4069 /* Buffer to hold swapped out symbols. */
4070 Elf_External_Sym *symbuf;
4071 /* Number of swapped out symbols in buffer. */
4072 size_t symbuf_count;
4073 /* Number of symbols which fit in symbuf. */
4074 size_t symbuf_size;
4077 static boolean elf_link_output_sym
4078 PARAMS ((struct elf_final_link_info *, const char *,
4079 Elf_Internal_Sym *, asection *));
4080 static boolean elf_link_flush_output_syms
4081 PARAMS ((struct elf_final_link_info *));
4082 static boolean elf_link_output_extsym
4083 PARAMS ((struct elf_link_hash_entry *, PTR));
4084 static boolean elf_link_sec_merge_syms
4085 PARAMS ((struct elf_link_hash_entry *, PTR));
4086 static boolean elf_link_input_bfd
4087 PARAMS ((struct elf_final_link_info *, bfd *));
4088 static boolean elf_reloc_link_order
4089 PARAMS ((bfd *, struct bfd_link_info *, asection *,
4090 struct bfd_link_order *));
4092 /* This struct is used to pass information to elf_link_output_extsym. */
4094 struct elf_outext_info
4096 boolean failed;
4097 boolean localsyms;
4098 struct elf_final_link_info *finfo;
4101 /* Compute the size of, and allocate space for, REL_HDR which is the
4102 section header for a section containing relocations for O. */
4104 static boolean
4105 elf_link_size_reloc_section (abfd, rel_hdr, o)
4106 bfd *abfd;
4107 Elf_Internal_Shdr *rel_hdr;
4108 asection *o;
4110 register struct elf_link_hash_entry **p, **pend;
4111 unsigned reloc_count;
4113 /* Figure out how many relocations there will be. */
4114 if (rel_hdr == &elf_section_data (o)->rel_hdr)
4115 reloc_count = elf_section_data (o)->rel_count;
4116 else
4117 reloc_count = elf_section_data (o)->rel_count2;
4119 /* That allows us to calculate the size of the section. */
4120 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
4122 /* The contents field must last into write_object_contents, so we
4123 allocate it with bfd_alloc rather than malloc. Also since we
4124 cannot be sure that the contents will actually be filled in,
4125 we zero the allocated space. */
4126 rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
4127 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
4128 return false;
4130 /* We only allocate one set of hash entries, so we only do it the
4131 first time we are called. */
4132 if (elf_section_data (o)->rel_hashes == NULL)
4134 p = ((struct elf_link_hash_entry **)
4135 bfd_malloc (o->reloc_count
4136 * sizeof (struct elf_link_hash_entry *)));
4137 if (p == NULL && o->reloc_count != 0)
4138 return false;
4140 elf_section_data (o)->rel_hashes = p;
4141 pend = p + o->reloc_count;
4142 for (; p < pend; p++)
4143 *p = NULL;
4146 return true;
4149 /* When performing a relocateable link, the input relocations are
4150 preserved. But, if they reference global symbols, the indices
4151 referenced must be updated. Update all the relocations in
4152 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
4154 static void
4155 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
4156 bfd *abfd;
4157 Elf_Internal_Shdr *rel_hdr;
4158 unsigned int count;
4159 struct elf_link_hash_entry **rel_hash;
4161 unsigned int i;
4162 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4164 for (i = 0; i < count; i++, rel_hash++)
4166 if (*rel_hash == NULL)
4167 continue;
4169 BFD_ASSERT ((*rel_hash)->indx >= 0);
4171 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4173 Elf_External_Rel *erel;
4174 Elf_Internal_Rel irel;
4176 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4177 if (bed->s->swap_reloc_in)
4178 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, &irel);
4179 else
4180 elf_swap_reloc_in (abfd, erel, &irel);
4181 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4182 ELF_R_TYPE (irel.r_info));
4183 if (bed->s->swap_reloc_out)
4184 (*bed->s->swap_reloc_out) (abfd, &irel, (bfd_byte *) erel);
4185 else
4186 elf_swap_reloc_out (abfd, &irel, erel);
4188 else
4190 Elf_External_Rela *erela;
4191 Elf_Internal_Rela irela;
4193 BFD_ASSERT (rel_hdr->sh_entsize
4194 == sizeof (Elf_External_Rela));
4196 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4197 if (bed->s->swap_reloca_in)
4198 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, &irela);
4199 else
4200 elf_swap_reloca_in (abfd, erela, &irela);
4201 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4202 ELF_R_TYPE (irela.r_info));
4203 if (bed->s->swap_reloca_out)
4204 (*bed->s->swap_reloca_out) (abfd, &irela, (bfd_byte *) erela);
4205 else
4206 elf_swap_reloca_out (abfd, &irela, erela);
4211 /* Do the final step of an ELF link. */
4213 boolean
4214 elf_bfd_final_link (abfd, info)
4215 bfd *abfd;
4216 struct bfd_link_info *info;
4218 boolean dynamic;
4219 bfd *dynobj;
4220 struct elf_final_link_info finfo;
4221 register asection *o;
4222 register struct bfd_link_order *p;
4223 register bfd *sub;
4224 size_t max_contents_size;
4225 size_t max_external_reloc_size;
4226 size_t max_internal_reloc_count;
4227 size_t max_sym_count;
4228 file_ptr off;
4229 Elf_Internal_Sym elfsym;
4230 unsigned int i;
4231 Elf_Internal_Shdr *symtab_hdr;
4232 Elf_Internal_Shdr *symstrtab_hdr;
4233 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4234 struct elf_outext_info eoinfo;
4235 boolean merged;
4237 if (info->shared)
4238 abfd->flags |= DYNAMIC;
4240 dynamic = elf_hash_table (info)->dynamic_sections_created;
4241 dynobj = elf_hash_table (info)->dynobj;
4243 finfo.info = info;
4244 finfo.output_bfd = abfd;
4245 finfo.symstrtab = elf_stringtab_init ();
4246 if (finfo.symstrtab == NULL)
4247 return false;
4249 if (! dynamic)
4251 finfo.dynsym_sec = NULL;
4252 finfo.hash_sec = NULL;
4253 finfo.symver_sec = NULL;
4255 else
4257 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4258 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4259 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4260 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4261 /* Note that it is OK if symver_sec is NULL. */
4264 finfo.contents = NULL;
4265 finfo.external_relocs = NULL;
4266 finfo.internal_relocs = NULL;
4267 finfo.external_syms = NULL;
4268 finfo.internal_syms = NULL;
4269 finfo.indices = NULL;
4270 finfo.sections = NULL;
4271 finfo.symbuf = NULL;
4272 finfo.symbuf_count = 0;
4274 /* Count up the number of relocations we will output for each output
4275 section, so that we know the sizes of the reloc sections. We
4276 also figure out some maximum sizes. */
4277 max_contents_size = 0;
4278 max_external_reloc_size = 0;
4279 max_internal_reloc_count = 0;
4280 max_sym_count = 0;
4281 merged = false;
4282 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4284 o->reloc_count = 0;
4286 for (p = o->link_order_head; p != NULL; p = p->next)
4288 if (p->type == bfd_section_reloc_link_order
4289 || p->type == bfd_symbol_reloc_link_order)
4290 ++o->reloc_count;
4291 else if (p->type == bfd_indirect_link_order)
4293 asection *sec;
4295 sec = p->u.indirect.section;
4297 /* Mark all sections which are to be included in the
4298 link. This will normally be every section. We need
4299 to do this so that we can identify any sections which
4300 the linker has decided to not include. */
4301 sec->linker_mark = true;
4303 if (sec->flags & SEC_MERGE)
4304 merged = true;
4306 if (info->relocateable || info->emitrelocations)
4307 o->reloc_count += sec->reloc_count;
4309 if (sec->_raw_size > max_contents_size)
4310 max_contents_size = sec->_raw_size;
4311 if (sec->_cooked_size > max_contents_size)
4312 max_contents_size = sec->_cooked_size;
4314 /* We are interested in just local symbols, not all
4315 symbols. */
4316 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4317 && (sec->owner->flags & DYNAMIC) == 0)
4319 size_t sym_count;
4321 if (elf_bad_symtab (sec->owner))
4322 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4323 / sizeof (Elf_External_Sym));
4324 else
4325 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4327 if (sym_count > max_sym_count)
4328 max_sym_count = sym_count;
4330 if ((sec->flags & SEC_RELOC) != 0)
4332 size_t ext_size;
4334 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4335 if (ext_size > max_external_reloc_size)
4336 max_external_reloc_size = ext_size;
4337 if (sec->reloc_count > max_internal_reloc_count)
4338 max_internal_reloc_count = sec->reloc_count;
4344 if (o->reloc_count > 0)
4345 o->flags |= SEC_RELOC;
4346 else
4348 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4349 set it (this is probably a bug) and if it is set
4350 assign_section_numbers will create a reloc section. */
4351 o->flags &=~ SEC_RELOC;
4354 /* If the SEC_ALLOC flag is not set, force the section VMA to
4355 zero. This is done in elf_fake_sections as well, but forcing
4356 the VMA to 0 here will ensure that relocs against these
4357 sections are handled correctly. */
4358 if ((o->flags & SEC_ALLOC) == 0
4359 && ! o->user_set_vma)
4360 o->vma = 0;
4363 if (! info->relocateable && merged)
4364 elf_link_hash_traverse (elf_hash_table (info),
4365 elf_link_sec_merge_syms, (PTR) abfd);
4367 /* Figure out the file positions for everything but the symbol table
4368 and the relocs. We set symcount to force assign_section_numbers
4369 to create a symbol table. */
4370 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4371 BFD_ASSERT (! abfd->output_has_begun);
4372 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4373 goto error_return;
4375 /* Figure out how many relocations we will have in each section.
4376 Just using RELOC_COUNT isn't good enough since that doesn't
4377 maintain a separate value for REL vs. RELA relocations. */
4378 if (info->relocateable || info->emitrelocations)
4379 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4380 for (o = sub->sections; o != NULL; o = o->next)
4382 asection *output_section;
4384 if (! o->linker_mark)
4386 /* This section was omitted from the link. */
4387 continue;
4390 output_section = o->output_section;
4392 if (output_section != NULL
4393 && (o->flags & SEC_RELOC) != 0)
4395 struct bfd_elf_section_data *esdi
4396 = elf_section_data (o);
4397 struct bfd_elf_section_data *esdo
4398 = elf_section_data (output_section);
4399 unsigned int *rel_count;
4400 unsigned int *rel_count2;
4402 /* We must be careful to add the relocation froms the
4403 input section to the right output count. */
4404 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4406 rel_count = &esdo->rel_count;
4407 rel_count2 = &esdo->rel_count2;
4409 else
4411 rel_count = &esdo->rel_count2;
4412 rel_count2 = &esdo->rel_count;
4415 *rel_count += (esdi->rel_hdr.sh_size
4416 / esdi->rel_hdr.sh_entsize);
4417 if (esdi->rel_hdr2)
4418 *rel_count2 += (esdi->rel_hdr2->sh_size
4419 / esdi->rel_hdr2->sh_entsize);
4423 /* That created the reloc sections. Set their sizes, and assign
4424 them file positions, and allocate some buffers. */
4425 for (o = abfd->sections; o != NULL; o = o->next)
4427 if ((o->flags & SEC_RELOC) != 0)
4429 if (!elf_link_size_reloc_section (abfd,
4430 &elf_section_data (o)->rel_hdr,
4432 goto error_return;
4434 if (elf_section_data (o)->rel_hdr2
4435 && !elf_link_size_reloc_section (abfd,
4436 elf_section_data (o)->rel_hdr2,
4438 goto error_return;
4441 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4442 to count upwards while actually outputting the relocations. */
4443 elf_section_data (o)->rel_count = 0;
4444 elf_section_data (o)->rel_count2 = 0;
4447 _bfd_elf_assign_file_positions_for_relocs (abfd);
4449 /* We have now assigned file positions for all the sections except
4450 .symtab and .strtab. We start the .symtab section at the current
4451 file position, and write directly to it. We build the .strtab
4452 section in memory. */
4453 bfd_get_symcount (abfd) = 0;
4454 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4455 /* sh_name is set in prep_headers. */
4456 symtab_hdr->sh_type = SHT_SYMTAB;
4457 symtab_hdr->sh_flags = 0;
4458 symtab_hdr->sh_addr = 0;
4459 symtab_hdr->sh_size = 0;
4460 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4461 /* sh_link is set in assign_section_numbers. */
4462 /* sh_info is set below. */
4463 /* sh_offset is set just below. */
4464 symtab_hdr->sh_addralign = bed->s->file_align;
4466 off = elf_tdata (abfd)->next_file_pos;
4467 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4469 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4470 incorrect. We do not yet know the size of the .symtab section.
4471 We correct next_file_pos below, after we do know the size. */
4473 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4474 continuously seeking to the right position in the file. */
4475 if (! info->keep_memory || max_sym_count < 20)
4476 finfo.symbuf_size = 20;
4477 else
4478 finfo.symbuf_size = max_sym_count;
4479 finfo.symbuf = ((Elf_External_Sym *)
4480 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4481 if (finfo.symbuf == NULL)
4482 goto error_return;
4484 /* Start writing out the symbol table. The first symbol is always a
4485 dummy symbol. */
4486 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4488 elfsym.st_value = 0;
4489 elfsym.st_size = 0;
4490 elfsym.st_info = 0;
4491 elfsym.st_other = 0;
4492 elfsym.st_shndx = SHN_UNDEF;
4493 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4494 &elfsym, bfd_und_section_ptr))
4495 goto error_return;
4498 #if 0
4499 /* Some standard ELF linkers do this, but we don't because it causes
4500 bootstrap comparison failures. */
4501 /* Output a file symbol for the output file as the second symbol.
4502 We output this even if we are discarding local symbols, although
4503 I'm not sure if this is correct. */
4504 elfsym.st_value = 0;
4505 elfsym.st_size = 0;
4506 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4507 elfsym.st_other = 0;
4508 elfsym.st_shndx = SHN_ABS;
4509 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4510 &elfsym, bfd_abs_section_ptr))
4511 goto error_return;
4512 #endif
4514 /* Output a symbol for each section. We output these even if we are
4515 discarding local symbols, since they are used for relocs. These
4516 symbols have no names. We store the index of each one in the
4517 index field of the section, so that we can find it again when
4518 outputting relocs. */
4519 if (info->strip != strip_all || info->relocateable || info->emitrelocations)
4521 elfsym.st_size = 0;
4522 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4523 elfsym.st_other = 0;
4524 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4526 o = section_from_elf_index (abfd, i);
4527 if (o != NULL)
4528 o->target_index = bfd_get_symcount (abfd);
4529 elfsym.st_shndx = i;
4530 if (info->relocateable || o == NULL)
4531 elfsym.st_value = 0;
4532 else
4533 elfsym.st_value = o->vma;
4534 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4535 &elfsym, o))
4536 goto error_return;
4540 /* Allocate some memory to hold information read in from the input
4541 files. */
4542 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4543 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4544 finfo.internal_relocs = ((Elf_Internal_Rela *)
4545 bfd_malloc (max_internal_reloc_count
4546 * sizeof (Elf_Internal_Rela)
4547 * bed->s->int_rels_per_ext_rel));
4548 finfo.external_syms = ((Elf_External_Sym *)
4549 bfd_malloc (max_sym_count
4550 * sizeof (Elf_External_Sym)));
4551 finfo.internal_syms = ((Elf_Internal_Sym *)
4552 bfd_malloc (max_sym_count
4553 * sizeof (Elf_Internal_Sym)));
4554 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4555 finfo.sections = ((asection **)
4556 bfd_malloc (max_sym_count * sizeof (asection *)));
4557 if ((finfo.contents == NULL && max_contents_size != 0)
4558 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4559 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4560 || (finfo.external_syms == NULL && max_sym_count != 0)
4561 || (finfo.internal_syms == NULL && max_sym_count != 0)
4562 || (finfo.indices == NULL && max_sym_count != 0)
4563 || (finfo.sections == NULL && max_sym_count != 0))
4564 goto error_return;
4566 /* Since ELF permits relocations to be against local symbols, we
4567 must have the local symbols available when we do the relocations.
4568 Since we would rather only read the local symbols once, and we
4569 would rather not keep them in memory, we handle all the
4570 relocations for a single input file at the same time.
4572 Unfortunately, there is no way to know the total number of local
4573 symbols until we have seen all of them, and the local symbol
4574 indices precede the global symbol indices. This means that when
4575 we are generating relocateable output, and we see a reloc against
4576 a global symbol, we can not know the symbol index until we have
4577 finished examining all the local symbols to see which ones we are
4578 going to output. To deal with this, we keep the relocations in
4579 memory, and don't output them until the end of the link. This is
4580 an unfortunate waste of memory, but I don't see a good way around
4581 it. Fortunately, it only happens when performing a relocateable
4582 link, which is not the common case. FIXME: If keep_memory is set
4583 we could write the relocs out and then read them again; I don't
4584 know how bad the memory loss will be. */
4586 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4587 sub->output_has_begun = false;
4588 for (o = abfd->sections; o != NULL; o = o->next)
4590 for (p = o->link_order_head; p != NULL; p = p->next)
4592 if (p->type == bfd_indirect_link_order
4593 && (bfd_get_flavour (p->u.indirect.section->owner)
4594 == bfd_target_elf_flavour))
4596 sub = p->u.indirect.section->owner;
4597 if (! sub->output_has_begun)
4599 if (! elf_link_input_bfd (&finfo, sub))
4600 goto error_return;
4601 sub->output_has_begun = true;
4604 else if (p->type == bfd_section_reloc_link_order
4605 || p->type == bfd_symbol_reloc_link_order)
4607 if (! elf_reloc_link_order (abfd, info, o, p))
4608 goto error_return;
4610 else
4612 if (! _bfd_default_link_order (abfd, info, o, p))
4613 goto error_return;
4618 /* That wrote out all the local symbols. Finish up the symbol table
4619 with the global symbols. Even if we want to strip everything we
4620 can, we still need to deal with those global symbols that got
4621 converted to local in a version script. */
4623 if (info->shared)
4625 /* Output any global symbols that got converted to local in a
4626 version script. We do this in a separate step since ELF
4627 requires all local symbols to appear prior to any global
4628 symbols. FIXME: We should only do this if some global
4629 symbols were, in fact, converted to become local. FIXME:
4630 Will this work correctly with the Irix 5 linker? */
4631 eoinfo.failed = false;
4632 eoinfo.finfo = &finfo;
4633 eoinfo.localsyms = true;
4634 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4635 (PTR) &eoinfo);
4636 if (eoinfo.failed)
4637 return false;
4640 /* The sh_info field records the index of the first non local symbol. */
4641 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4643 if (dynamic
4644 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
4646 Elf_Internal_Sym sym;
4647 Elf_External_Sym *dynsym =
4648 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4649 long last_local = 0;
4651 /* Write out the section symbols for the output sections. */
4652 if (info->shared)
4654 asection *s;
4656 sym.st_size = 0;
4657 sym.st_name = 0;
4658 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4659 sym.st_other = 0;
4661 for (s = abfd->sections; s != NULL; s = s->next)
4663 int indx;
4664 indx = elf_section_data (s)->this_idx;
4665 BFD_ASSERT (indx > 0);
4666 sym.st_shndx = indx;
4667 sym.st_value = s->vma;
4669 elf_swap_symbol_out (abfd, &sym,
4670 dynsym + elf_section_data (s)->dynindx);
4673 last_local = bfd_count_sections (abfd);
4676 /* Write out the local dynsyms. */
4677 if (elf_hash_table (info)->dynlocal)
4679 struct elf_link_local_dynamic_entry *e;
4680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4682 asection *s;
4684 sym.st_size = e->isym.st_size;
4685 sym.st_other = e->isym.st_other;
4687 /* Copy the internal symbol as is.
4688 Note that we saved a word of storage and overwrote
4689 the original st_name with the dynstr_index. */
4690 sym = e->isym;
4692 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4694 s = bfd_section_from_elf_index (e->input_bfd,
4695 e->isym.st_shndx);
4697 sym.st_shndx =
4698 elf_section_data (s->output_section)->this_idx;
4699 sym.st_value = (s->output_section->vma
4700 + s->output_offset
4701 + e->isym.st_value);
4704 if (last_local < e->dynindx)
4705 last_local = e->dynindx;
4707 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4711 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4712 last_local + 1;
4715 /* We get the global symbols from the hash table. */
4716 eoinfo.failed = false;
4717 eoinfo.localsyms = false;
4718 eoinfo.finfo = &finfo;
4719 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4720 (PTR) &eoinfo);
4721 if (eoinfo.failed)
4722 return false;
4724 /* If backend needs to output some symbols not present in the hash
4725 table, do it now. */
4726 if (bed->elf_backend_output_arch_syms)
4728 if (! (*bed->elf_backend_output_arch_syms)
4729 (abfd, info, (PTR) &finfo,
4730 (boolean (*) PARAMS ((PTR, const char *,
4731 Elf_Internal_Sym *, asection *)))
4732 elf_link_output_sym))
4733 return false;
4736 /* Flush all symbols to the file. */
4737 if (! elf_link_flush_output_syms (&finfo))
4738 return false;
4740 /* Now we know the size of the symtab section. */
4741 off += symtab_hdr->sh_size;
4743 /* Finish up and write out the symbol string table (.strtab)
4744 section. */
4745 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4746 /* sh_name was set in prep_headers. */
4747 symstrtab_hdr->sh_type = SHT_STRTAB;
4748 symstrtab_hdr->sh_flags = 0;
4749 symstrtab_hdr->sh_addr = 0;
4750 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4751 symstrtab_hdr->sh_entsize = 0;
4752 symstrtab_hdr->sh_link = 0;
4753 symstrtab_hdr->sh_info = 0;
4754 /* sh_offset is set just below. */
4755 symstrtab_hdr->sh_addralign = 1;
4757 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4758 elf_tdata (abfd)->next_file_pos = off;
4760 if (bfd_get_symcount (abfd) > 0)
4762 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4763 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4764 return false;
4767 /* Adjust the relocs to have the correct symbol indices. */
4768 for (o = abfd->sections; o != NULL; o = o->next)
4770 if ((o->flags & SEC_RELOC) == 0)
4771 continue;
4773 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4774 elf_section_data (o)->rel_count,
4775 elf_section_data (o)->rel_hashes);
4776 if (elf_section_data (o)->rel_hdr2 != NULL)
4777 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4778 elf_section_data (o)->rel_count2,
4779 (elf_section_data (o)->rel_hashes
4780 + elf_section_data (o)->rel_count));
4782 /* Set the reloc_count field to 0 to prevent write_relocs from
4783 trying to swap the relocs out itself. */
4784 o->reloc_count = 0;
4787 /* If we are linking against a dynamic object, or generating a
4788 shared library, finish up the dynamic linking information. */
4789 if (dynamic)
4791 Elf_External_Dyn *dyncon, *dynconend;
4793 /* Fix up .dynamic entries. */
4794 o = bfd_get_section_by_name (dynobj, ".dynamic");
4795 BFD_ASSERT (o != NULL);
4797 dyncon = (Elf_External_Dyn *) o->contents;
4798 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4799 for (; dyncon < dynconend; dyncon++)
4801 Elf_Internal_Dyn dyn;
4802 const char *name;
4803 unsigned int type;
4805 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4807 switch (dyn.d_tag)
4809 default:
4810 break;
4811 case DT_INIT:
4812 name = info->init_function;
4813 goto get_sym;
4814 case DT_FINI:
4815 name = info->fini_function;
4816 get_sym:
4818 struct elf_link_hash_entry *h;
4820 h = elf_link_hash_lookup (elf_hash_table (info), name,
4821 false, false, true);
4822 if (h != NULL
4823 && (h->root.type == bfd_link_hash_defined
4824 || h->root.type == bfd_link_hash_defweak))
4826 dyn.d_un.d_val = h->root.u.def.value;
4827 o = h->root.u.def.section;
4828 if (o->output_section != NULL)
4829 dyn.d_un.d_val += (o->output_section->vma
4830 + o->output_offset);
4831 else
4833 /* The symbol is imported from another shared
4834 library and does not apply to this one. */
4835 dyn.d_un.d_val = 0;
4838 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4841 break;
4843 case DT_HASH:
4844 name = ".hash";
4845 goto get_vma;
4846 case DT_STRTAB:
4847 name = ".dynstr";
4848 goto get_vma;
4849 case DT_SYMTAB:
4850 name = ".dynsym";
4851 goto get_vma;
4852 case DT_VERDEF:
4853 name = ".gnu.version_d";
4854 goto get_vma;
4855 case DT_VERNEED:
4856 name = ".gnu.version_r";
4857 goto get_vma;
4858 case DT_VERSYM:
4859 name = ".gnu.version";
4860 get_vma:
4861 o = bfd_get_section_by_name (abfd, name);
4862 BFD_ASSERT (o != NULL);
4863 dyn.d_un.d_ptr = o->vma;
4864 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4865 break;
4867 case DT_REL:
4868 case DT_RELA:
4869 case DT_RELSZ:
4870 case DT_RELASZ:
4871 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4872 type = SHT_REL;
4873 else
4874 type = SHT_RELA;
4875 dyn.d_un.d_val = 0;
4876 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4878 Elf_Internal_Shdr *hdr;
4880 hdr = elf_elfsections (abfd)[i];
4881 if (hdr->sh_type == type
4882 && (hdr->sh_flags & SHF_ALLOC) != 0)
4884 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4885 dyn.d_un.d_val += hdr->sh_size;
4886 else
4888 if (dyn.d_un.d_val == 0
4889 || hdr->sh_addr < dyn.d_un.d_val)
4890 dyn.d_un.d_val = hdr->sh_addr;
4894 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4895 break;
4900 /* If we have created any dynamic sections, then output them. */
4901 if (dynobj != NULL)
4903 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4904 goto error_return;
4906 for (o = dynobj->sections; o != NULL; o = o->next)
4908 if ((o->flags & SEC_HAS_CONTENTS) == 0
4909 || o->_raw_size == 0
4910 || o->output_section == bfd_abs_section_ptr)
4911 continue;
4912 if ((o->flags & SEC_LINKER_CREATED) == 0)
4914 /* At this point, we are only interested in sections
4915 created by elf_link_create_dynamic_sections. */
4916 continue;
4918 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4919 != SHT_STRTAB)
4920 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4922 if (! bfd_set_section_contents (abfd, o->output_section,
4923 o->contents, o->output_offset,
4924 o->_raw_size))
4925 goto error_return;
4927 else
4929 file_ptr off;
4931 /* The contents of the .dynstr section are actually in a
4932 stringtab. */
4933 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4934 if (bfd_seek (abfd, off, SEEK_SET) != 0
4935 || ! _bfd_stringtab_emit (abfd,
4936 elf_hash_table (info)->dynstr))
4937 goto error_return;
4942 /* If we have optimized stabs strings, output them. */
4943 if (elf_hash_table (info)->stab_info != NULL)
4945 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4946 goto error_return;
4949 if (finfo.symstrtab != NULL)
4950 _bfd_stringtab_free (finfo.symstrtab);
4951 if (finfo.contents != NULL)
4952 free (finfo.contents);
4953 if (finfo.external_relocs != NULL)
4954 free (finfo.external_relocs);
4955 if (finfo.internal_relocs != NULL)
4956 free (finfo.internal_relocs);
4957 if (finfo.external_syms != NULL)
4958 free (finfo.external_syms);
4959 if (finfo.internal_syms != NULL)
4960 free (finfo.internal_syms);
4961 if (finfo.indices != NULL)
4962 free (finfo.indices);
4963 if (finfo.sections != NULL)
4964 free (finfo.sections);
4965 if (finfo.symbuf != NULL)
4966 free (finfo.symbuf);
4967 for (o = abfd->sections; o != NULL; o = o->next)
4969 if ((o->flags & SEC_RELOC) != 0
4970 && elf_section_data (o)->rel_hashes != NULL)
4971 free (elf_section_data (o)->rel_hashes);
4974 elf_tdata (abfd)->linker = true;
4976 return true;
4978 error_return:
4979 if (finfo.symstrtab != NULL)
4980 _bfd_stringtab_free (finfo.symstrtab);
4981 if (finfo.contents != NULL)
4982 free (finfo.contents);
4983 if (finfo.external_relocs != NULL)
4984 free (finfo.external_relocs);
4985 if (finfo.internal_relocs != NULL)
4986 free (finfo.internal_relocs);
4987 if (finfo.external_syms != NULL)
4988 free (finfo.external_syms);
4989 if (finfo.internal_syms != NULL)
4990 free (finfo.internal_syms);
4991 if (finfo.indices != NULL)
4992 free (finfo.indices);
4993 if (finfo.sections != NULL)
4994 free (finfo.sections);
4995 if (finfo.symbuf != NULL)
4996 free (finfo.symbuf);
4997 for (o = abfd->sections; o != NULL; o = o->next)
4999 if ((o->flags & SEC_RELOC) != 0
5000 && elf_section_data (o)->rel_hashes != NULL)
5001 free (elf_section_data (o)->rel_hashes);
5004 return false;
5007 /* Add a symbol to the output symbol table. */
5009 static boolean
5010 elf_link_output_sym (finfo, name, elfsym, input_sec)
5011 struct elf_final_link_info *finfo;
5012 const char *name;
5013 Elf_Internal_Sym *elfsym;
5014 asection *input_sec;
5016 boolean (*output_symbol_hook) PARAMS ((bfd *,
5017 struct bfd_link_info *info,
5018 const char *,
5019 Elf_Internal_Sym *,
5020 asection *));
5022 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
5023 elf_backend_link_output_symbol_hook;
5024 if (output_symbol_hook != NULL)
5026 if (! ((*output_symbol_hook)
5027 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
5028 return false;
5031 if (name == (const char *) NULL || *name == '\0')
5032 elfsym->st_name = 0;
5033 else if (input_sec->flags & SEC_EXCLUDE)
5034 elfsym->st_name = 0;
5035 else
5037 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
5038 name, true,
5039 false);
5040 if (elfsym->st_name == (unsigned long) -1)
5041 return false;
5044 if (finfo->symbuf_count >= finfo->symbuf_size)
5046 if (! elf_link_flush_output_syms (finfo))
5047 return false;
5050 elf_swap_symbol_out (finfo->output_bfd, elfsym,
5051 (PTR) (finfo->symbuf + finfo->symbuf_count));
5052 ++finfo->symbuf_count;
5054 ++ bfd_get_symcount (finfo->output_bfd);
5056 return true;
5059 /* Flush the output symbols to the file. */
5061 static boolean
5062 elf_link_flush_output_syms (finfo)
5063 struct elf_final_link_info *finfo;
5065 if (finfo->symbuf_count > 0)
5067 Elf_Internal_Shdr *symtab;
5069 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
5071 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
5072 SEEK_SET) != 0
5073 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
5074 sizeof (Elf_External_Sym), finfo->output_bfd)
5075 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
5076 return false;
5078 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
5080 finfo->symbuf_count = 0;
5083 return true;
5086 /* Adjust all external symbols pointing into SEC_MERGE sections
5087 to reflect the object merging within the sections. */
5089 static boolean
5090 elf_link_sec_merge_syms (h, data)
5091 struct elf_link_hash_entry *h;
5092 PTR data;
5094 asection *sec;
5096 if ((h->root.type == bfd_link_hash_defined
5097 || h->root.type == bfd_link_hash_defweak)
5098 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
5099 && elf_section_data (sec)->merge_info)
5101 bfd *output_bfd = (bfd *) data;
5103 h->root.u.def.value =
5104 _bfd_merged_section_offset (output_bfd,
5105 &h->root.u.def.section,
5106 elf_section_data (sec)->merge_info,
5107 h->root.u.def.value, (bfd_vma) 0);
5110 return true;
5113 /* Add an external symbol to the symbol table. This is called from
5114 the hash table traversal routine. When generating a shared object,
5115 we go through the symbol table twice. The first time we output
5116 anything that might have been forced to local scope in a version
5117 script. The second time we output the symbols that are still
5118 global symbols. */
5120 static boolean
5121 elf_link_output_extsym (h, data)
5122 struct elf_link_hash_entry *h;
5123 PTR data;
5125 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
5126 struct elf_final_link_info *finfo = eoinfo->finfo;
5127 boolean strip;
5128 Elf_Internal_Sym sym;
5129 asection *input_sec;
5131 /* Decide whether to output this symbol in this pass. */
5132 if (eoinfo->localsyms)
5134 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5135 return true;
5137 else
5139 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5140 return true;
5143 /* If we are not creating a shared library, and this symbol is
5144 referenced by a shared library but is not defined anywhere, then
5145 warn that it is undefined. If we do not do this, the runtime
5146 linker will complain that the symbol is undefined when the
5147 program is run. We don't have to worry about symbols that are
5148 referenced by regular files, because we will already have issued
5149 warnings for them. */
5150 if (! finfo->info->relocateable
5151 && ! finfo->info->allow_shlib_undefined
5152 && ! (finfo->info->shared
5153 && !finfo->info->no_undefined)
5154 && h->root.type == bfd_link_hash_undefined
5155 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
5156 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5158 if (! ((*finfo->info->callbacks->undefined_symbol)
5159 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
5160 (asection *) NULL, 0, true)))
5162 eoinfo->failed = true;
5163 return false;
5167 /* We don't want to output symbols that have never been mentioned by
5168 a regular file, or that we have been told to strip. However, if
5169 h->indx is set to -2, the symbol is used by a reloc and we must
5170 output it. */
5171 if (h->indx == -2)
5172 strip = false;
5173 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5174 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
5175 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
5176 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
5177 strip = true;
5178 else if (finfo->info->strip == strip_all
5179 || (finfo->info->strip == strip_some
5180 && bfd_hash_lookup (finfo->info->keep_hash,
5181 h->root.root.string,
5182 false, false) == NULL))
5183 strip = true;
5184 else
5185 strip = false;
5187 /* If we're stripping it, and it's not a dynamic symbol, there's
5188 nothing else to do unless it is a forced local symbol. */
5189 if (strip
5190 && h->dynindx == -1
5191 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
5192 return true;
5194 sym.st_value = 0;
5195 sym.st_size = h->size;
5196 sym.st_other = h->other;
5197 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5198 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
5199 else if (h->root.type == bfd_link_hash_undefweak
5200 || h->root.type == bfd_link_hash_defweak)
5201 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
5202 else
5203 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
5205 switch (h->root.type)
5207 default:
5208 case bfd_link_hash_new:
5209 abort ();
5210 return false;
5212 case bfd_link_hash_undefined:
5213 input_sec = bfd_und_section_ptr;
5214 sym.st_shndx = SHN_UNDEF;
5215 break;
5217 case bfd_link_hash_undefweak:
5218 input_sec = bfd_und_section_ptr;
5219 sym.st_shndx = SHN_UNDEF;
5220 break;
5222 case bfd_link_hash_defined:
5223 case bfd_link_hash_defweak:
5225 input_sec = h->root.u.def.section;
5226 if (input_sec->output_section != NULL)
5228 sym.st_shndx =
5229 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
5230 input_sec->output_section);
5231 if (sym.st_shndx == (unsigned short) -1)
5233 (*_bfd_error_handler)
5234 (_("%s: could not find output section %s for input section %s"),
5235 bfd_get_filename (finfo->output_bfd),
5236 input_sec->output_section->name,
5237 input_sec->name);
5238 eoinfo->failed = true;
5239 return false;
5242 /* ELF symbols in relocateable files are section relative,
5243 but in nonrelocateable files they are virtual
5244 addresses. */
5245 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5246 if (! finfo->info->relocateable)
5247 sym.st_value += input_sec->output_section->vma;
5249 else
5251 BFD_ASSERT (input_sec->owner == NULL
5252 || (input_sec->owner->flags & DYNAMIC) != 0);
5253 sym.st_shndx = SHN_UNDEF;
5254 input_sec = bfd_und_section_ptr;
5257 break;
5259 case bfd_link_hash_common:
5260 input_sec = h->root.u.c.p->section;
5261 sym.st_shndx = SHN_COMMON;
5262 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5263 break;
5265 case bfd_link_hash_indirect:
5266 /* These symbols are created by symbol versioning. They point
5267 to the decorated version of the name. For example, if the
5268 symbol foo@@GNU_1.2 is the default, which should be used when
5269 foo is used with no version, then we add an indirect symbol
5270 foo which points to foo@@GNU_1.2. We ignore these symbols,
5271 since the indirected symbol is already in the hash table. */
5272 return true;
5274 case bfd_link_hash_warning:
5275 /* We can't represent these symbols in ELF, although a warning
5276 symbol may have come from a .gnu.warning.SYMBOL section. We
5277 just put the target symbol in the hash table. If the target
5278 symbol does not really exist, don't do anything. */
5279 if (h->root.u.i.link->type == bfd_link_hash_new)
5280 return true;
5281 return (elf_link_output_extsym
5282 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5285 /* Give the processor backend a chance to tweak the symbol value,
5286 and also to finish up anything that needs to be done for this
5287 symbol. */
5288 if ((h->dynindx != -1
5289 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5290 && elf_hash_table (finfo->info)->dynamic_sections_created)
5292 struct elf_backend_data *bed;
5294 bed = get_elf_backend_data (finfo->output_bfd);
5295 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5296 (finfo->output_bfd, finfo->info, h, &sym)))
5298 eoinfo->failed = true;
5299 return false;
5303 /* If we are marking the symbol as undefined, and there are no
5304 non-weak references to this symbol from a regular object, then
5305 mark the symbol as weak undefined; if there are non-weak
5306 references, mark the symbol as strong. We can't do this earlier,
5307 because it might not be marked as undefined until the
5308 finish_dynamic_symbol routine gets through with it. */
5309 if (sym.st_shndx == SHN_UNDEF
5310 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5311 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5312 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5314 int bindtype;
5316 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5317 bindtype = STB_GLOBAL;
5318 else
5319 bindtype = STB_WEAK;
5320 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5323 /* If a symbol is not defined locally, we clear the visibility
5324 field. */
5325 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5326 sym.st_other ^= ELF_ST_VISIBILITY(sym.st_other);
5328 /* If this symbol should be put in the .dynsym section, then put it
5329 there now. We have already know the symbol index. We also fill
5330 in the entry in the .hash section. */
5331 if (h->dynindx != -1
5332 && elf_hash_table (finfo->info)->dynamic_sections_created)
5334 size_t bucketcount;
5335 size_t bucket;
5336 size_t hash_entry_size;
5337 bfd_byte *bucketpos;
5338 bfd_vma chain;
5340 sym.st_name = h->dynstr_index;
5342 elf_swap_symbol_out (finfo->output_bfd, &sym,
5343 (PTR) (((Elf_External_Sym *)
5344 finfo->dynsym_sec->contents)
5345 + h->dynindx));
5347 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5348 bucket = h->elf_hash_value % bucketcount;
5349 hash_entry_size
5350 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5351 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5352 + (bucket + 2) * hash_entry_size);
5353 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5354 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5355 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5356 ((bfd_byte *) finfo->hash_sec->contents
5357 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5359 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5361 Elf_Internal_Versym iversym;
5363 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5365 if (h->verinfo.verdef == NULL)
5366 iversym.vs_vers = 0;
5367 else
5368 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5370 else
5372 if (h->verinfo.vertree == NULL)
5373 iversym.vs_vers = 1;
5374 else
5375 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5378 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5379 iversym.vs_vers |= VERSYM_HIDDEN;
5381 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5382 (((Elf_External_Versym *)
5383 finfo->symver_sec->contents)
5384 + h->dynindx));
5388 /* If we're stripping it, then it was just a dynamic symbol, and
5389 there's nothing else to do. */
5390 if (strip)
5391 return true;
5393 h->indx = bfd_get_symcount (finfo->output_bfd);
5395 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5397 eoinfo->failed = true;
5398 return false;
5401 return true;
5404 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5405 originated from the section given by INPUT_REL_HDR) to the
5406 OUTPUT_BFD. */
5408 static void
5409 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5410 internal_relocs)
5411 bfd *output_bfd;
5412 asection *input_section;
5413 Elf_Internal_Shdr *input_rel_hdr;
5414 Elf_Internal_Rela *internal_relocs;
5416 Elf_Internal_Rela *irela;
5417 Elf_Internal_Rela *irelaend;
5418 Elf_Internal_Shdr *output_rel_hdr;
5419 asection *output_section;
5420 unsigned int *rel_countp = NULL;
5421 struct elf_backend_data *bed;
5423 output_section = input_section->output_section;
5424 output_rel_hdr = NULL;
5426 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5427 == input_rel_hdr->sh_entsize)
5429 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5430 rel_countp = &elf_section_data (output_section)->rel_count;
5432 else if (elf_section_data (output_section)->rel_hdr2
5433 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5434 == input_rel_hdr->sh_entsize))
5436 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5437 rel_countp = &elf_section_data (output_section)->rel_count2;
5440 BFD_ASSERT (output_rel_hdr != NULL);
5442 bed = get_elf_backend_data (output_bfd);
5443 irela = internal_relocs;
5444 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5445 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5447 Elf_External_Rel *erel;
5449 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5450 for (; irela < irelaend; irela++, erel++)
5452 Elf_Internal_Rel irel;
5454 irel.r_offset = irela->r_offset;
5455 irel.r_info = irela->r_info;
5456 BFD_ASSERT (irela->r_addend == 0);
5457 if (bed->s->swap_reloc_out)
5458 (*bed->s->swap_reloc_out) (output_bfd, &irel, (PTR) erel);
5459 else
5460 elf_swap_reloc_out (output_bfd, &irel, erel);
5463 else
5465 Elf_External_Rela *erela;
5467 BFD_ASSERT (input_rel_hdr->sh_entsize
5468 == sizeof (Elf_External_Rela));
5469 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5470 for (; irela < irelaend; irela++, erela++)
5471 if (bed->s->swap_reloca_out)
5472 (*bed->s->swap_reloca_out) (output_bfd, irela, (PTR) erela);
5473 else
5474 elf_swap_reloca_out (output_bfd, irela, erela);
5477 /* Bump the counter, so that we know where to add the next set of
5478 relocations. */
5479 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5482 /* Link an input file into the linker output file. This function
5483 handles all the sections and relocations of the input file at once.
5484 This is so that we only have to read the local symbols once, and
5485 don't have to keep them in memory. */
5487 static boolean
5488 elf_link_input_bfd (finfo, input_bfd)
5489 struct elf_final_link_info *finfo;
5490 bfd *input_bfd;
5492 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5493 bfd *, asection *, bfd_byte *,
5494 Elf_Internal_Rela *,
5495 Elf_Internal_Sym *, asection **));
5496 bfd *output_bfd;
5497 Elf_Internal_Shdr *symtab_hdr;
5498 size_t locsymcount;
5499 size_t extsymoff;
5500 Elf_External_Sym *external_syms;
5501 Elf_External_Sym *esym;
5502 Elf_External_Sym *esymend;
5503 Elf_Internal_Sym *isym;
5504 long *pindex;
5505 asection **ppsection;
5506 asection *o;
5507 struct elf_backend_data *bed;
5509 output_bfd = finfo->output_bfd;
5510 bed = get_elf_backend_data (output_bfd);
5511 relocate_section = bed->elf_backend_relocate_section;
5513 /* If this is a dynamic object, we don't want to do anything here:
5514 we don't want the local symbols, and we don't want the section
5515 contents. */
5516 if ((input_bfd->flags & DYNAMIC) != 0)
5517 return true;
5519 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5520 if (elf_bad_symtab (input_bfd))
5522 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5523 extsymoff = 0;
5525 else
5527 locsymcount = symtab_hdr->sh_info;
5528 extsymoff = symtab_hdr->sh_info;
5531 /* Read the local symbols. */
5532 if (symtab_hdr->contents != NULL)
5533 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5534 else if (locsymcount == 0)
5535 external_syms = NULL;
5536 else
5538 external_syms = finfo->external_syms;
5539 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5540 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5541 locsymcount, input_bfd)
5542 != locsymcount * sizeof (Elf_External_Sym)))
5543 return false;
5546 /* Swap in the local symbols and write out the ones which we know
5547 are going into the output file. */
5548 esym = external_syms;
5549 esymend = esym + locsymcount;
5550 isym = finfo->internal_syms;
5551 pindex = finfo->indices;
5552 ppsection = finfo->sections;
5553 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5555 asection *isec;
5556 const char *name;
5557 Elf_Internal_Sym osym;
5559 elf_swap_symbol_in (input_bfd, esym, isym);
5560 *pindex = -1;
5562 if (elf_bad_symtab (input_bfd))
5564 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5566 *ppsection = NULL;
5567 continue;
5571 name = NULL;
5572 if (isym->st_shndx == SHN_UNDEF)
5574 isec = bfd_und_section_ptr;
5575 name = isec->name;
5577 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5579 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5580 if (isec && elf_section_data (isec)->merge_info
5581 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
5582 isym->st_value =
5583 _bfd_merged_section_offset (output_bfd, &isec,
5584 elf_section_data (isec)->merge_info,
5585 isym->st_value, (bfd_vma) 0);
5587 else if (isym->st_shndx == SHN_ABS)
5589 isec = bfd_abs_section_ptr;
5590 name = isec->name;
5592 else if (isym->st_shndx == SHN_COMMON)
5594 isec = bfd_com_section_ptr;
5595 name = isec->name;
5597 else
5599 /* Who knows? */
5600 isec = NULL;
5603 *ppsection = isec;
5605 /* Don't output the first, undefined, symbol. */
5606 if (esym == external_syms)
5607 continue;
5609 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5611 asection *ksec;
5613 /* Save away all section symbol values. */
5614 if (isec != NULL)
5616 if (name)
5618 if (isec->symbol->value != isym->st_value)
5619 (*_bfd_error_handler)
5620 (_("%s: invalid section symbol index 0x%x (%s) ingored"),
5621 bfd_get_filename (input_bfd), isym->st_shndx,
5622 name);
5623 continue;
5625 isec->symbol->value = isym->st_value;
5628 /* If this is a discarded link-once section symbol, update
5629 it's value to that of the kept section symbol. The
5630 linker will keep the first of any matching link-once
5631 sections, so we should have already seen it's section
5632 symbol. I trust no-one will have the bright idea of
5633 re-ordering the bfd list... */
5634 if (isec != NULL
5635 && (bfd_get_section_flags (input_bfd, isec) & SEC_LINK_ONCE) != 0
5636 && (ksec = isec->kept_section) != NULL)
5638 isym->st_value = ksec->symbol->value;
5640 /* That put the value right, but the section info is all
5641 wrong. I hope this works. */
5642 isec->output_offset = ksec->output_offset;
5643 isec->output_section = ksec->output_section;
5646 /* We never output section symbols. Instead, we use the
5647 section symbol of the corresponding section in the output
5648 file. */
5649 continue;
5652 /* If we are stripping all symbols, we don't want to output this
5653 one. */
5654 if (finfo->info->strip == strip_all)
5655 continue;
5657 /* If we are discarding all local symbols, we don't want to
5658 output this one. If we are generating a relocateable output
5659 file, then some of the local symbols may be required by
5660 relocs; we output them below as we discover that they are
5661 needed. */
5662 if (finfo->info->discard == discard_all)
5663 continue;
5665 /* If this symbol is defined in a section which we are
5666 discarding, we don't need to keep it, but note that
5667 linker_mark is only reliable for sections that have contents.
5668 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5669 as well as linker_mark. */
5670 if (isym->st_shndx > 0
5671 && isym->st_shndx < SHN_LORESERVE
5672 && isec != NULL
5673 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5674 || (! finfo->info->relocateable
5675 && (isec->flags & SEC_EXCLUDE) != 0)))
5676 continue;
5678 /* Get the name of the symbol. */
5679 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5680 isym->st_name);
5681 if (name == NULL)
5682 return false;
5684 /* See if we are discarding symbols with this name. */
5685 if ((finfo->info->strip == strip_some
5686 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5687 == NULL))
5688 || (((finfo->info->discard == discard_sec_merge
5689 && (isec->flags & SEC_MERGE) && ! finfo->info->relocateable)
5690 || finfo->info->discard == discard_l)
5691 && bfd_is_local_label_name (input_bfd, name)))
5692 continue;
5694 /* If we get here, we are going to output this symbol. */
5696 osym = *isym;
5698 /* Adjust the section index for the output file. */
5699 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5700 isec->output_section);
5701 if (osym.st_shndx == (unsigned short) -1)
5702 return false;
5704 *pindex = bfd_get_symcount (output_bfd);
5706 /* ELF symbols in relocateable files are section relative, but
5707 in executable files they are virtual addresses. Note that
5708 this code assumes that all ELF sections have an associated
5709 BFD section with a reasonable value for output_offset; below
5710 we assume that they also have a reasonable value for
5711 output_section. Any special sections must be set up to meet
5712 these requirements. */
5713 osym.st_value += isec->output_offset;
5714 if (! finfo->info->relocateable)
5715 osym.st_value += isec->output_section->vma;
5717 if (! elf_link_output_sym (finfo, name, &osym, isec))
5718 return false;
5721 /* Relocate the contents of each section. */
5722 for (o = input_bfd->sections; o != NULL; o = o->next)
5724 bfd_byte *contents;
5726 if (! o->linker_mark)
5728 /* This section was omitted from the link. */
5729 continue;
5732 if ((o->flags & SEC_HAS_CONTENTS) == 0
5733 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5734 continue;
5736 if ((o->flags & SEC_LINKER_CREATED) != 0)
5738 /* Section was created by elf_link_create_dynamic_sections
5739 or somesuch. */
5740 continue;
5743 /* Get the contents of the section. They have been cached by a
5744 relaxation routine. Note that o is a section in an input
5745 file, so the contents field will not have been set by any of
5746 the routines which work on output files. */
5747 if (elf_section_data (o)->this_hdr.contents != NULL)
5748 contents = elf_section_data (o)->this_hdr.contents;
5749 else
5751 contents = finfo->contents;
5752 if (! bfd_get_section_contents (input_bfd, o, contents,
5753 (file_ptr) 0, o->_raw_size))
5754 return false;
5757 if ((o->flags & SEC_RELOC) != 0)
5759 Elf_Internal_Rela *internal_relocs;
5761 /* Get the swapped relocs. */
5762 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5763 (input_bfd, o, finfo->external_relocs,
5764 finfo->internal_relocs, false));
5765 if (internal_relocs == NULL
5766 && o->reloc_count > 0)
5767 return false;
5769 /* Relocate the section by invoking a back end routine.
5771 The back end routine is responsible for adjusting the
5772 section contents as necessary, and (if using Rela relocs
5773 and generating a relocateable output file) adjusting the
5774 reloc addend as necessary.
5776 The back end routine does not have to worry about setting
5777 the reloc address or the reloc symbol index.
5779 The back end routine is given a pointer to the swapped in
5780 internal symbols, and can access the hash table entries
5781 for the external symbols via elf_sym_hashes (input_bfd).
5783 When generating relocateable output, the back end routine
5784 must handle STB_LOCAL/STT_SECTION symbols specially. The
5785 output symbol is going to be a section symbol
5786 corresponding to the output section, which will require
5787 the addend to be adjusted. */
5789 if (! (*relocate_section) (output_bfd, finfo->info,
5790 input_bfd, o, contents,
5791 internal_relocs,
5792 finfo->internal_syms,
5793 finfo->sections))
5794 return false;
5796 if (finfo->info->relocateable || finfo->info->emitrelocations)
5798 Elf_Internal_Rela *irela;
5799 Elf_Internal_Rela *irelaend;
5800 struct elf_link_hash_entry **rel_hash;
5801 Elf_Internal_Shdr *input_rel_hdr;
5803 /* Adjust the reloc addresses and symbol indices. */
5805 irela = internal_relocs;
5806 irelaend =
5807 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5808 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5809 + elf_section_data (o->output_section)->rel_count
5810 + elf_section_data (o->output_section)->rel_count2);
5811 for (; irela < irelaend; irela++, rel_hash++)
5813 unsigned long r_symndx;
5814 Elf_Internal_Sym *isym;
5815 asection *sec;
5817 irela->r_offset += o->output_offset;
5819 /* Relocs in an executable have to be virtual addresses. */
5820 if (finfo->info->emitrelocations)
5821 irela->r_offset += o->output_section->vma;
5823 r_symndx = ELF_R_SYM (irela->r_info);
5825 if (r_symndx == 0)
5826 continue;
5828 if (r_symndx >= locsymcount
5829 || (elf_bad_symtab (input_bfd)
5830 && finfo->sections[r_symndx] == NULL))
5832 struct elf_link_hash_entry *rh;
5833 long indx;
5835 /* This is a reloc against a global symbol. We
5836 have not yet output all the local symbols, so
5837 we do not know the symbol index of any global
5838 symbol. We set the rel_hash entry for this
5839 reloc to point to the global hash table entry
5840 for this symbol. The symbol index is then
5841 set at the end of elf_bfd_final_link. */
5842 indx = r_symndx - extsymoff;
5843 rh = elf_sym_hashes (input_bfd)[indx];
5844 while (rh->root.type == bfd_link_hash_indirect
5845 || rh->root.type == bfd_link_hash_warning)
5846 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5848 /* Setting the index to -2 tells
5849 elf_link_output_extsym that this symbol is
5850 used by a reloc. */
5851 BFD_ASSERT (rh->indx < 0);
5852 rh->indx = -2;
5854 *rel_hash = rh;
5856 continue;
5859 /* This is a reloc against a local symbol. */
5861 *rel_hash = NULL;
5862 isym = finfo->internal_syms + r_symndx;
5863 sec = finfo->sections[r_symndx];
5864 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5866 /* I suppose the backend ought to fill in the
5867 section of any STT_SECTION symbol against a
5868 processor specific section. If we have
5869 discarded a section, the output_section will
5870 be the absolute section. */
5871 if (sec != NULL
5872 && (bfd_is_abs_section (sec)
5873 || (sec->output_section != NULL
5874 && bfd_is_abs_section (sec->output_section))))
5875 r_symndx = 0;
5876 else if (sec == NULL || sec->owner == NULL)
5878 bfd_set_error (bfd_error_bad_value);
5879 return false;
5881 else
5883 r_symndx = sec->output_section->target_index;
5884 BFD_ASSERT (r_symndx != 0);
5887 else
5889 if (finfo->indices[r_symndx] == -1)
5891 unsigned long link;
5892 const char *name;
5893 asection *osec;
5895 if (finfo->info->strip == strip_all)
5897 /* You can't do ld -r -s. */
5898 bfd_set_error (bfd_error_invalid_operation);
5899 return false;
5902 /* This symbol was skipped earlier, but
5903 since it is needed by a reloc, we
5904 must output it now. */
5905 link = symtab_hdr->sh_link;
5906 name = bfd_elf_string_from_elf_section (input_bfd,
5907 link,
5908 isym->st_name);
5909 if (name == NULL)
5910 return false;
5912 osec = sec->output_section;
5913 isym->st_shndx =
5914 _bfd_elf_section_from_bfd_section (output_bfd,
5915 osec);
5916 if (isym->st_shndx == (unsigned short) -1)
5917 return false;
5919 isym->st_value += sec->output_offset;
5920 if (! finfo->info->relocateable)
5921 isym->st_value += osec->vma;
5923 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5925 if (! elf_link_output_sym (finfo, name, isym, sec))
5926 return false;
5929 r_symndx = finfo->indices[r_symndx];
5932 irela->r_info = ELF_R_INFO (r_symndx,
5933 ELF_R_TYPE (irela->r_info));
5936 /* Swap out the relocs. */
5937 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5938 elf_link_output_relocs (output_bfd, o,
5939 input_rel_hdr,
5940 internal_relocs);
5941 internal_relocs
5942 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5943 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5944 if (input_rel_hdr)
5945 elf_link_output_relocs (output_bfd, o,
5946 input_rel_hdr,
5947 internal_relocs);
5951 /* Write out the modified section contents. */
5952 if (elf_section_data (o)->stab_info)
5954 if (! (_bfd_write_section_stabs
5955 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5956 o, &elf_section_data (o)->stab_info, contents)))
5957 return false;
5959 else if (elf_section_data (o)->merge_info)
5961 if (! (_bfd_write_merged_section
5962 (output_bfd, o, elf_section_data (o)->merge_info)))
5963 return false;
5965 else
5967 if (! (o->flags & SEC_EXCLUDE) &&
5968 ! bfd_set_section_contents (output_bfd, o->output_section,
5969 contents, o->output_offset,
5970 (o->_cooked_size != 0
5971 ? o->_cooked_size
5972 : o->_raw_size)))
5973 return false;
5977 return true;
5980 /* Generate a reloc when linking an ELF file. This is a reloc
5981 requested by the linker, and does come from any input file. This
5982 is used to build constructor and destructor tables when linking
5983 with -Ur. */
5985 static boolean
5986 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5987 bfd *output_bfd;
5988 struct bfd_link_info *info;
5989 asection *output_section;
5990 struct bfd_link_order *link_order;
5992 reloc_howto_type *howto;
5993 long indx;
5994 bfd_vma offset;
5995 bfd_vma addend;
5996 struct elf_link_hash_entry **rel_hash_ptr;
5997 Elf_Internal_Shdr *rel_hdr;
5998 struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
6000 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
6001 if (howto == NULL)
6003 bfd_set_error (bfd_error_bad_value);
6004 return false;
6007 addend = link_order->u.reloc.p->addend;
6009 /* Figure out the symbol index. */
6010 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
6011 + elf_section_data (output_section)->rel_count
6012 + elf_section_data (output_section)->rel_count2);
6013 if (link_order->type == bfd_section_reloc_link_order)
6015 indx = link_order->u.reloc.p->u.section->target_index;
6016 BFD_ASSERT (indx != 0);
6017 *rel_hash_ptr = NULL;
6019 else
6021 struct elf_link_hash_entry *h;
6023 /* Treat a reloc against a defined symbol as though it were
6024 actually against the section. */
6025 h = ((struct elf_link_hash_entry *)
6026 bfd_wrapped_link_hash_lookup (output_bfd, info,
6027 link_order->u.reloc.p->u.name,
6028 false, false, true));
6029 if (h != NULL
6030 && (h->root.type == bfd_link_hash_defined
6031 || h->root.type == bfd_link_hash_defweak))
6033 asection *section;
6035 section = h->root.u.def.section;
6036 indx = section->output_section->target_index;
6037 *rel_hash_ptr = NULL;
6038 /* It seems that we ought to add the symbol value to the
6039 addend here, but in practice it has already been added
6040 because it was passed to constructor_callback. */
6041 addend += section->output_section->vma + section->output_offset;
6043 else if (h != NULL)
6045 /* Setting the index to -2 tells elf_link_output_extsym that
6046 this symbol is used by a reloc. */
6047 h->indx = -2;
6048 *rel_hash_ptr = h;
6049 indx = 0;
6051 else
6053 if (! ((*info->callbacks->unattached_reloc)
6054 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
6055 (asection *) NULL, (bfd_vma) 0)))
6056 return false;
6057 indx = 0;
6061 /* If this is an inplace reloc, we must write the addend into the
6062 object file. */
6063 if (howto->partial_inplace && addend != 0)
6065 bfd_size_type size;
6066 bfd_reloc_status_type rstat;
6067 bfd_byte *buf;
6068 boolean ok;
6070 size = bfd_get_reloc_size (howto);
6071 buf = (bfd_byte *) bfd_zmalloc (size);
6072 if (buf == (bfd_byte *) NULL)
6073 return false;
6074 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
6075 switch (rstat)
6077 case bfd_reloc_ok:
6078 break;
6079 default:
6080 case bfd_reloc_outofrange:
6081 abort ();
6082 case bfd_reloc_overflow:
6083 if (! ((*info->callbacks->reloc_overflow)
6084 (info,
6085 (link_order->type == bfd_section_reloc_link_order
6086 ? bfd_section_name (output_bfd,
6087 link_order->u.reloc.p->u.section)
6088 : link_order->u.reloc.p->u.name),
6089 howto->name, addend, (bfd *) NULL, (asection *) NULL,
6090 (bfd_vma) 0)))
6092 free (buf);
6093 return false;
6095 break;
6097 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
6098 (file_ptr) link_order->offset, size);
6099 free (buf);
6100 if (! ok)
6101 return false;
6104 /* The address of a reloc is relative to the section in a
6105 relocateable file, and is a virtual address in an executable
6106 file. */
6107 offset = link_order->offset;
6108 if (! info->relocateable)
6109 offset += output_section->vma;
6111 rel_hdr = &elf_section_data (output_section)->rel_hdr;
6113 if (rel_hdr->sh_type == SHT_REL)
6115 Elf_Internal_Rel irel;
6116 Elf_External_Rel *erel;
6118 irel.r_offset = offset;
6119 irel.r_info = ELF_R_INFO (indx, howto->type);
6120 erel = ((Elf_External_Rel *) rel_hdr->contents
6121 + elf_section_data (output_section)->rel_count);
6122 if (bed->s->swap_reloc_out)
6123 (*bed->s->swap_reloc_out) (output_bfd, &irel, (bfd_byte *) erel);
6124 else
6125 elf_swap_reloc_out (output_bfd, &irel, erel);
6127 else
6129 Elf_Internal_Rela irela;
6130 Elf_External_Rela *erela;
6132 irela.r_offset = offset;
6133 irela.r_info = ELF_R_INFO (indx, howto->type);
6134 irela.r_addend = addend;
6135 erela = ((Elf_External_Rela *) rel_hdr->contents
6136 + elf_section_data (output_section)->rel_count);
6137 if (bed->s->swap_reloca_out)
6138 (*bed->s->swap_reloca_out) (output_bfd, &irela, (bfd_byte *) erela);
6139 else
6140 elf_swap_reloca_out (output_bfd, &irela, erela);
6143 ++elf_section_data (output_section)->rel_count;
6145 return true;
6148 /* Allocate a pointer to live in a linker created section. */
6150 boolean
6151 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
6152 bfd *abfd;
6153 struct bfd_link_info *info;
6154 elf_linker_section_t *lsect;
6155 struct elf_link_hash_entry *h;
6156 const Elf_Internal_Rela *rel;
6158 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
6159 elf_linker_section_pointers_t *linker_section_ptr;
6160 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
6162 BFD_ASSERT (lsect != NULL);
6164 /* Is this a global symbol? */
6165 if (h != NULL)
6167 /* Has this symbol already been allocated, if so, our work is done */
6168 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6169 rel->r_addend,
6170 lsect->which))
6171 return true;
6173 ptr_linker_section_ptr = &h->linker_section_pointer;
6174 /* Make sure this symbol is output as a dynamic symbol. */
6175 if (h->dynindx == -1)
6177 if (! elf_link_record_dynamic_symbol (info, h))
6178 return false;
6181 if (lsect->rel_section)
6182 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6185 else /* Allocation of a pointer to a local symbol */
6187 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
6189 /* Allocate a table to hold the local symbols if first time */
6190 if (!ptr)
6192 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
6193 register unsigned int i;
6195 ptr = (elf_linker_section_pointers_t **)
6196 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
6198 if (!ptr)
6199 return false;
6201 elf_local_ptr_offsets (abfd) = ptr;
6202 for (i = 0; i < num_symbols; i++)
6203 ptr[i] = (elf_linker_section_pointers_t *)0;
6206 /* Has this symbol already been allocated, if so, our work is done */
6207 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
6208 rel->r_addend,
6209 lsect->which))
6210 return true;
6212 ptr_linker_section_ptr = &ptr[r_symndx];
6214 if (info->shared)
6216 /* If we are generating a shared object, we need to
6217 output a R_<xxx>_RELATIVE reloc so that the
6218 dynamic linker can adjust this GOT entry. */
6219 BFD_ASSERT (lsect->rel_section != NULL);
6220 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
6224 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
6225 from internal memory. */
6226 BFD_ASSERT (ptr_linker_section_ptr != NULL);
6227 linker_section_ptr = (elf_linker_section_pointers_t *)
6228 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
6230 if (!linker_section_ptr)
6231 return false;
6233 linker_section_ptr->next = *ptr_linker_section_ptr;
6234 linker_section_ptr->addend = rel->r_addend;
6235 linker_section_ptr->which = lsect->which;
6236 linker_section_ptr->written_address_p = false;
6237 *ptr_linker_section_ptr = linker_section_ptr;
6239 #if 0
6240 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
6242 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
6243 lsect->hole_offset += ARCH_SIZE / 8;
6244 lsect->sym_offset += ARCH_SIZE / 8;
6245 if (lsect->sym_hash) /* Bump up symbol value if needed */
6247 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
6248 #ifdef DEBUG
6249 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
6250 lsect->sym_hash->root.root.string,
6251 (long)ARCH_SIZE / 8,
6252 (long)lsect->sym_hash->root.u.def.value);
6253 #endif
6256 else
6257 #endif
6258 linker_section_ptr->offset = lsect->section->_raw_size;
6260 lsect->section->_raw_size += ARCH_SIZE / 8;
6262 #ifdef DEBUG
6263 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
6264 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
6265 #endif
6267 return true;
6270 #if ARCH_SIZE==64
6271 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
6272 #endif
6273 #if ARCH_SIZE==32
6274 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
6275 #endif
6277 /* Fill in the address for a pointer generated in alinker section. */
6279 bfd_vma
6280 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
6281 bfd *output_bfd;
6282 bfd *input_bfd;
6283 struct bfd_link_info *info;
6284 elf_linker_section_t *lsect;
6285 struct elf_link_hash_entry *h;
6286 bfd_vma relocation;
6287 const Elf_Internal_Rela *rel;
6288 int relative_reloc;
6290 elf_linker_section_pointers_t *linker_section_ptr;
6292 BFD_ASSERT (lsect != NULL);
6294 if (h != NULL) /* global symbol */
6296 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
6297 rel->r_addend,
6298 lsect->which);
6300 BFD_ASSERT (linker_section_ptr != NULL);
6302 if (! elf_hash_table (info)->dynamic_sections_created
6303 || (info->shared
6304 && info->symbolic
6305 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
6307 /* This is actually a static link, or it is a
6308 -Bsymbolic link and the symbol is defined
6309 locally. We must initialize this entry in the
6310 global section.
6312 When doing a dynamic link, we create a .rela.<xxx>
6313 relocation entry to initialize the value. This
6314 is done in the finish_dynamic_symbol routine. */
6315 if (!linker_section_ptr->written_address_p)
6317 linker_section_ptr->written_address_p = true;
6318 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6319 lsect->section->contents + linker_section_ptr->offset);
6323 else /* local symbol */
6325 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6326 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6327 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6328 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6329 rel->r_addend,
6330 lsect->which);
6332 BFD_ASSERT (linker_section_ptr != NULL);
6334 /* Write out pointer if it hasn't been rewritten out before */
6335 if (!linker_section_ptr->written_address_p)
6337 linker_section_ptr->written_address_p = true;
6338 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6339 lsect->section->contents + linker_section_ptr->offset);
6341 if (info->shared)
6343 asection *srel = lsect->rel_section;
6344 Elf_Internal_Rela outrel;
6346 /* We need to generate a relative reloc for the dynamic linker. */
6347 if (!srel)
6348 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6349 lsect->rel_name);
6351 BFD_ASSERT (srel != NULL);
6353 outrel.r_offset = (lsect->section->output_section->vma
6354 + lsect->section->output_offset
6355 + linker_section_ptr->offset);
6356 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6357 outrel.r_addend = 0;
6358 elf_swap_reloca_out (output_bfd, &outrel,
6359 (((Elf_External_Rela *)
6360 lsect->section->contents)
6361 + elf_section_data (lsect->section)->rel_count));
6362 ++elf_section_data (lsect->section)->rel_count;
6367 relocation = (lsect->section->output_offset
6368 + linker_section_ptr->offset
6369 - lsect->hole_offset
6370 - lsect->sym_offset);
6372 #ifdef DEBUG
6373 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6374 lsect->name, (long)relocation, (long)relocation);
6375 #endif
6377 /* Subtract out the addend, because it will get added back in by the normal
6378 processing. */
6379 return relocation - linker_section_ptr->addend;
6382 /* Garbage collect unused sections. */
6384 static boolean elf_gc_mark
6385 PARAMS ((struct bfd_link_info *info, asection *sec,
6386 asection * (*gc_mark_hook)
6387 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6388 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6390 static boolean elf_gc_sweep
6391 PARAMS ((struct bfd_link_info *info,
6392 boolean (*gc_sweep_hook)
6393 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6394 const Elf_Internal_Rela *relocs))));
6396 static boolean elf_gc_sweep_symbol
6397 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6399 static boolean elf_gc_allocate_got_offsets
6400 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6402 static boolean elf_gc_propagate_vtable_entries_used
6403 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6405 static boolean elf_gc_smash_unused_vtentry_relocs
6406 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6408 /* The mark phase of garbage collection. For a given section, mark
6409 it, and all the sections which define symbols to which it refers. */
6411 static boolean
6412 elf_gc_mark (info, sec, gc_mark_hook)
6413 struct bfd_link_info *info;
6414 asection *sec;
6415 asection * (*gc_mark_hook)
6416 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6417 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6419 boolean ret = true;
6421 sec->gc_mark = 1;
6423 /* Look through the section relocs. */
6425 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6427 Elf_Internal_Rela *relstart, *rel, *relend;
6428 Elf_Internal_Shdr *symtab_hdr;
6429 struct elf_link_hash_entry **sym_hashes;
6430 size_t nlocsyms;
6431 size_t extsymoff;
6432 Elf_External_Sym *locsyms, *freesyms = NULL;
6433 bfd *input_bfd = sec->owner;
6434 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6436 /* GCFIXME: how to arrange so that relocs and symbols are not
6437 reread continually? */
6439 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6440 sym_hashes = elf_sym_hashes (input_bfd);
6442 /* Read the local symbols. */
6443 if (elf_bad_symtab (input_bfd))
6445 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6446 extsymoff = 0;
6448 else
6449 extsymoff = nlocsyms = symtab_hdr->sh_info;
6450 if (symtab_hdr->contents)
6451 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6452 else if (nlocsyms == 0)
6453 locsyms = NULL;
6454 else
6456 locsyms = freesyms =
6457 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6458 if (freesyms == NULL
6459 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6460 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6461 nlocsyms, input_bfd)
6462 != nlocsyms * sizeof (Elf_External_Sym)))
6464 ret = false;
6465 goto out1;
6469 /* Read the relocations. */
6470 relstart = (NAME(_bfd_elf,link_read_relocs)
6471 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6472 info->keep_memory));
6473 if (relstart == NULL)
6475 ret = false;
6476 goto out1;
6478 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6480 for (rel = relstart; rel < relend; rel++)
6482 unsigned long r_symndx;
6483 asection *rsec;
6484 struct elf_link_hash_entry *h;
6485 Elf_Internal_Sym s;
6487 r_symndx = ELF_R_SYM (rel->r_info);
6488 if (r_symndx == 0)
6489 continue;
6491 if (elf_bad_symtab (sec->owner))
6493 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6494 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6495 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6496 else
6498 h = sym_hashes[r_symndx - extsymoff];
6499 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6502 else if (r_symndx >= nlocsyms)
6504 h = sym_hashes[r_symndx - extsymoff];
6505 rsec = (*gc_mark_hook) (sec->owner, info, rel, h, NULL);
6507 else
6509 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6510 rsec = (*gc_mark_hook) (sec->owner, info, rel, NULL, &s);
6513 if (rsec && !rsec->gc_mark)
6514 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6516 ret = false;
6517 goto out2;
6521 out2:
6522 if (!info->keep_memory)
6523 free (relstart);
6524 out1:
6525 if (freesyms)
6526 free (freesyms);
6529 return ret;
6532 /* The sweep phase of garbage collection. Remove all garbage sections. */
6534 static boolean
6535 elf_gc_sweep (info, gc_sweep_hook)
6536 struct bfd_link_info *info;
6537 boolean (*gc_sweep_hook)
6538 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6539 const Elf_Internal_Rela *relocs));
6541 bfd *sub;
6543 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6545 asection *o;
6547 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6548 continue;
6550 for (o = sub->sections; o != NULL; o = o->next)
6552 /* Keep special sections. Keep .debug sections. */
6553 if ((o->flags & SEC_LINKER_CREATED)
6554 || (o->flags & SEC_DEBUGGING))
6555 o->gc_mark = 1;
6557 if (o->gc_mark)
6558 continue;
6560 /* Skip sweeping sections already excluded. */
6561 if (o->flags & SEC_EXCLUDE)
6562 continue;
6564 /* Since this is early in the link process, it is simple
6565 to remove a section from the output. */
6566 o->flags |= SEC_EXCLUDE;
6568 /* But we also have to update some of the relocation
6569 info we collected before. */
6570 if (gc_sweep_hook
6571 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6573 Elf_Internal_Rela *internal_relocs;
6574 boolean r;
6576 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6577 (o->owner, o, NULL, NULL, info->keep_memory));
6578 if (internal_relocs == NULL)
6579 return false;
6581 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
6583 if (!info->keep_memory)
6584 free (internal_relocs);
6586 if (!r)
6587 return false;
6592 /* Remove the symbols that were in the swept sections from the dynamic
6593 symbol table. GCFIXME: Anyone know how to get them out of the
6594 static symbol table as well? */
6596 int i = 0;
6598 elf_link_hash_traverse (elf_hash_table (info),
6599 elf_gc_sweep_symbol,
6600 (PTR) &i);
6602 elf_hash_table (info)->dynsymcount = i;
6605 return true;
6608 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6610 static boolean
6611 elf_gc_sweep_symbol (h, idxptr)
6612 struct elf_link_hash_entry *h;
6613 PTR idxptr;
6615 int *idx = (int *) idxptr;
6617 if (h->dynindx != -1
6618 && ((h->root.type != bfd_link_hash_defined
6619 && h->root.type != bfd_link_hash_defweak)
6620 || h->root.u.def.section->gc_mark))
6621 h->dynindx = (*idx)++;
6623 return true;
6626 /* Propogate collected vtable information. This is called through
6627 elf_link_hash_traverse. */
6629 static boolean
6630 elf_gc_propagate_vtable_entries_used (h, okp)
6631 struct elf_link_hash_entry *h;
6632 PTR okp;
6634 /* Those that are not vtables. */
6635 if (h->vtable_parent == NULL)
6636 return true;
6638 /* Those vtables that do not have parents, we cannot merge. */
6639 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6640 return true;
6642 /* If we've already been done, exit. */
6643 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6644 return true;
6646 /* Make sure the parent's table is up to date. */
6647 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6649 if (h->vtable_entries_used == NULL)
6651 /* None of this table's entries were referenced. Re-use the
6652 parent's table. */
6653 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6654 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6656 else
6658 size_t n;
6659 boolean *cu, *pu;
6661 /* Or the parent's entries into ours. */
6662 cu = h->vtable_entries_used;
6663 cu[-1] = true;
6664 pu = h->vtable_parent->vtable_entries_used;
6665 if (pu != NULL)
6667 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6668 while (--n != 0)
6670 if (*pu) *cu = true;
6671 pu++, cu++;
6676 return true;
6679 static boolean
6680 elf_gc_smash_unused_vtentry_relocs (h, okp)
6681 struct elf_link_hash_entry *h;
6682 PTR okp;
6684 asection *sec;
6685 bfd_vma hstart, hend;
6686 Elf_Internal_Rela *relstart, *relend, *rel;
6687 struct elf_backend_data *bed;
6689 /* Take care of both those symbols that do not describe vtables as
6690 well as those that are not loaded. */
6691 if (h->vtable_parent == NULL)
6692 return true;
6694 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6695 || h->root.type == bfd_link_hash_defweak);
6697 sec = h->root.u.def.section;
6698 hstart = h->root.u.def.value;
6699 hend = hstart + h->size;
6701 relstart = (NAME(_bfd_elf,link_read_relocs)
6702 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6703 if (!relstart)
6704 return *(boolean *)okp = false;
6705 bed = get_elf_backend_data (sec->owner);
6706 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6708 for (rel = relstart; rel < relend; ++rel)
6709 if (rel->r_offset >= hstart && rel->r_offset < hend)
6711 /* If the entry is in use, do nothing. */
6712 if (h->vtable_entries_used
6713 && (rel->r_offset - hstart) < h->vtable_entries_size)
6715 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6716 if (h->vtable_entries_used[entry])
6717 continue;
6719 /* Otherwise, kill it. */
6720 rel->r_offset = rel->r_info = rel->r_addend = 0;
6723 return true;
6726 /* Do mark and sweep of unused sections. */
6728 boolean
6729 elf_gc_sections (abfd, info)
6730 bfd *abfd;
6731 struct bfd_link_info *info;
6733 boolean ok = true;
6734 bfd *sub;
6735 asection * (*gc_mark_hook)
6736 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6737 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6739 if (!get_elf_backend_data (abfd)->can_gc_sections
6740 || info->relocateable || info->emitrelocations
6741 || elf_hash_table (info)->dynamic_sections_created)
6742 return true;
6744 /* Apply transitive closure to the vtable entry usage info. */
6745 elf_link_hash_traverse (elf_hash_table (info),
6746 elf_gc_propagate_vtable_entries_used,
6747 (PTR) &ok);
6748 if (!ok)
6749 return false;
6751 /* Kill the vtable relocations that were not used. */
6752 elf_link_hash_traverse (elf_hash_table (info),
6753 elf_gc_smash_unused_vtentry_relocs,
6754 (PTR) &ok);
6755 if (!ok)
6756 return false;
6758 /* Grovel through relocs to find out who stays ... */
6760 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6761 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6763 asection *o;
6765 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
6766 continue;
6768 for (o = sub->sections; o != NULL; o = o->next)
6770 if (o->flags & SEC_KEEP)
6771 if (!elf_gc_mark (info, o, gc_mark_hook))
6772 return false;
6776 /* ... and mark SEC_EXCLUDE for those that go. */
6777 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6778 return false;
6780 return true;
6783 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6785 boolean
6786 elf_gc_record_vtinherit (abfd, sec, h, offset)
6787 bfd *abfd;
6788 asection *sec;
6789 struct elf_link_hash_entry *h;
6790 bfd_vma offset;
6792 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6793 struct elf_link_hash_entry **search, *child;
6794 bfd_size_type extsymcount;
6796 /* The sh_info field of the symtab header tells us where the
6797 external symbols start. We don't care about the local symbols at
6798 this point. */
6799 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6800 if (!elf_bad_symtab (abfd))
6801 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6803 sym_hashes = elf_sym_hashes (abfd);
6804 sym_hashes_end = sym_hashes + extsymcount;
6806 /* Hunt down the child symbol, which is in this section at the same
6807 offset as the relocation. */
6808 for (search = sym_hashes; search != sym_hashes_end; ++search)
6810 if ((child = *search) != NULL
6811 && (child->root.type == bfd_link_hash_defined
6812 || child->root.type == bfd_link_hash_defweak)
6813 && child->root.u.def.section == sec
6814 && child->root.u.def.value == offset)
6815 goto win;
6818 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6819 bfd_get_filename (abfd), sec->name,
6820 (unsigned long)offset);
6821 bfd_set_error (bfd_error_invalid_operation);
6822 return false;
6824 win:
6825 if (!h)
6827 /* This *should* only be the absolute section. It could potentially
6828 be that someone has defined a non-global vtable though, which
6829 would be bad. It isn't worth paging in the local symbols to be
6830 sure though; that case should simply be handled by the assembler. */
6832 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6834 else
6835 child->vtable_parent = h;
6837 return true;
6840 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6842 boolean
6843 elf_gc_record_vtentry (abfd, sec, h, addend)
6844 bfd *abfd ATTRIBUTE_UNUSED;
6845 asection *sec ATTRIBUTE_UNUSED;
6846 struct elf_link_hash_entry *h;
6847 bfd_vma addend;
6849 if (addend >= h->vtable_entries_size)
6851 size_t size, bytes;
6852 boolean *ptr = h->vtable_entries_used;
6854 /* While the symbol is undefined, we have to be prepared to handle
6855 a zero size. */
6856 if (h->root.type == bfd_link_hash_undefined)
6857 size = addend;
6858 else
6860 size = h->size;
6861 if (size < addend)
6863 /* Oops! We've got a reference past the defined end of
6864 the table. This is probably a bug -- shall we warn? */
6865 size = addend;
6869 /* Allocate one extra entry for use as a "done" flag for the
6870 consolidation pass. */
6871 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6873 if (ptr)
6875 ptr = bfd_realloc (ptr - 1, bytes);
6877 if (ptr != NULL)
6879 size_t oldbytes;
6881 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6882 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6885 else
6886 ptr = bfd_zmalloc (bytes);
6888 if (ptr == NULL)
6889 return false;
6891 /* And arrange for that done flag to be at index -1. */
6892 h->vtable_entries_used = ptr + 1;
6893 h->vtable_entries_size = size;
6896 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6898 return true;
6901 /* And an accompanying bit to work out final got entry offsets once
6902 we're done. Should be called from final_link. */
6904 boolean
6905 elf_gc_common_finalize_got_offsets (abfd, info)
6906 bfd *abfd;
6907 struct bfd_link_info *info;
6909 bfd *i;
6910 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6911 bfd_vma gotoff;
6913 /* The GOT offset is relative to the .got section, but the GOT header is
6914 put into the .got.plt section, if the backend uses it. */
6915 if (bed->want_got_plt)
6916 gotoff = 0;
6917 else
6918 gotoff = bed->got_header_size;
6920 /* Do the local .got entries first. */
6921 for (i = info->input_bfds; i; i = i->link_next)
6923 bfd_signed_vma *local_got;
6924 bfd_size_type j, locsymcount;
6925 Elf_Internal_Shdr *symtab_hdr;
6927 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
6928 continue;
6930 local_got = elf_local_got_refcounts (i);
6931 if (!local_got)
6932 continue;
6934 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6935 if (elf_bad_symtab (i))
6936 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6937 else
6938 locsymcount = symtab_hdr->sh_info;
6940 for (j = 0; j < locsymcount; ++j)
6942 if (local_got[j] > 0)
6944 local_got[j] = gotoff;
6945 gotoff += ARCH_SIZE / 8;
6947 else
6948 local_got[j] = (bfd_vma) -1;
6952 /* Then the global .got entries. .plt refcounts are handled by
6953 adjust_dynamic_symbol */
6954 elf_link_hash_traverse (elf_hash_table (info),
6955 elf_gc_allocate_got_offsets,
6956 (PTR) &gotoff);
6957 return true;
6960 /* We need a special top-level link routine to convert got reference counts
6961 to real got offsets. */
6963 static boolean
6964 elf_gc_allocate_got_offsets (h, offarg)
6965 struct elf_link_hash_entry *h;
6966 PTR offarg;
6968 bfd_vma *off = (bfd_vma *) offarg;
6970 if (h->got.refcount > 0)
6972 h->got.offset = off[0];
6973 off[0] += ARCH_SIZE / 8;
6975 else
6976 h->got.offset = (bfd_vma) -1;
6978 return true;
6981 /* Many folk need no more in the way of final link than this, once
6982 got entry reference counting is enabled. */
6984 boolean
6985 elf_gc_common_final_link (abfd, info)
6986 bfd *abfd;
6987 struct bfd_link_info *info;
6989 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6990 return false;
6992 /* Invoke the regular ELF backend linker to do all the work. */
6993 return elf_bfd_final_link (abfd, info);
6996 /* This function will be called though elf_link_hash_traverse to store
6997 all hash value of the exported symbols in an array. */
6999 static boolean
7000 elf_collect_hash_codes (h, data)
7001 struct elf_link_hash_entry *h;
7002 PTR data;
7004 unsigned long **valuep = (unsigned long **) data;
7005 const char *name;
7006 char *p;
7007 unsigned long ha;
7008 char *alc = NULL;
7010 /* Ignore indirect symbols. These are added by the versioning code. */
7011 if (h->dynindx == -1)
7012 return true;
7014 name = h->root.root.string;
7015 p = strchr (name, ELF_VER_CHR);
7016 if (p != NULL)
7018 alc = bfd_malloc (p - name + 1);
7019 memcpy (alc, name, p - name);
7020 alc[p - name] = '\0';
7021 name = alc;
7024 /* Compute the hash value. */
7025 ha = bfd_elf_hash (name);
7027 /* Store the found hash value in the array given as the argument. */
7028 *(*valuep)++ = ha;
7030 /* And store it in the struct so that we can put it in the hash table
7031 later. */
7032 h->elf_hash_value = ha;
7034 if (alc != NULL)
7035 free (alc);
7037 return true;