bfd/
[binutils.git] / bfd / elf.c
blob05fa1877682a9e019c1fb45a40c08323dd0f159c
1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23 SECTION
24 ELF backends
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
70 /* Swap out a Verdef structure. */
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
86 /* Swap in a Verdaux structure. */
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
97 /* Swap out a Verdaux structure. */
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
108 /* Swap in a Verneed structure. */
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
122 /* Swap out a Verneed structure. */
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
136 /* Swap in a Vernaux structure. */
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
150 /* Swap out a Vernaux structure. */
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
164 /* Swap in a Versym structure. */
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
174 /* Swap out a Versym structure. */
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
187 unsigned long
188 bfd_elf_hash (const char *namearg)
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
195 while ((ch = *name++) != '\0')
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
206 return h & 0xffffffff;
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
220 return TRUE;
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
265 return (char *) shstrtab;
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
273 Elf_Internal_Shdr *hdr;
275 if (strindex == 0)
276 return "";
278 hdr = elf_elfsections (abfd)[shindex];
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
284 if (strindex >= hdr->sh_size)
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
296 return ((char *) hdr->contents) + strindex;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
326 if (symcount == 0)
327 return intsym_buf;
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
350 intsym_buf = NULL;
351 goto out;
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
370 intsym_buf = NULL;
371 goto out;
375 if (intsym_buf == NULL)
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
395 return intsym_buf;
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
424 return name;
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
468 unsigned int num_group = elf_tdata (abfd)->num_group;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
474 unsigned int i, shnum;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
487 if (num_group == 0)
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
492 else
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
510 unsigned char *src;
511 Elf_Internal_Group *dest;
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
536 unsigned int idx;
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
549 if (idx >= shnum)
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
555 dest->shdr = elf_elfsections (abfd)[idx];
562 if (num_group != (unsigned) -1)
564 unsigned int i;
566 for (i = 0; i < num_group; i++)
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
577 asection *s = NULL;
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
596 else
598 const char *gname;
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
614 i = num_group - 1;
615 break;
620 if (elf_group_name (newsect) == NULL)
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
625 return TRUE;
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
655 else
657 asection *link;
659 this_hdr = elf_elfsections (abfd)[elfsec];
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
673 elf_linked_to_section (s) = link;
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
682 for (i = 0; i < num_group; i++)
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
714 return result;
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
720 return elf_next_in_group (sec) != NULL;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
736 if (hdr->bfd_section != NULL)
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
755 newsect->filepos = hdr->sh_offset;
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
793 if ((flags & SEC_ALLOC) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
799 const char *name;
800 int len;
801 } debug_sections [] =
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
821 if (name [0] == '.')
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
851 if ((flags & SEC_ALLOC) != 0)
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
862 if (phdr->p_paddr != 0)
863 break;
865 if (i < elf_elfheader (abfd)->e_phnum)
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
917 return TRUE;
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
956 return 0;
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
993 return bfd_reloc_continue;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1006 /* Finish SHF_MERGE section merging. */
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1011 bfd *ibfd;
1012 asection *sec;
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1023 struct bfd_elf_section_data *secdata;
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1051 /* Copy the program header and other data from one object module to
1052 another. */
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1074 const char *pt;
1075 switch (p_type)
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1090 return pt;
1093 /* Print out the program headers. */
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1106 unsigned int i, c;
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1115 if (pt == NULL)
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1150 fprintf (f, _("\nDynamic Section:\n"));
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1257 fprintf (f, "\n");
1260 free (dynbuf);
1261 dynbuf = NULL;
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1271 if (elf_dynverdef (abfd) != 0)
1273 Elf_Internal_Verdef *t;
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1283 Elf_Internal_Verdaux *a;
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1296 if (elf_dynverref (abfd) != 0)
1298 Elf_Internal_Verneed *t;
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1303 Elf_Internal_Vernaux *a;
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1314 return TRUE;
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1322 /* Display ELF-specific fields of a symbol. */
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1330 FILE *file = filep;
1331 switch (how)
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1355 if (name == NULL)
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1377 unsigned int vernum;
1378 const char *version_string;
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1391 Elf_Internal_Verneed *t;
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1398 Elf_Internal_Vernaux *a;
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1402 if (a->vna_other == vernum)
1404 version_string = a->vna_nodename;
1405 break;
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1415 int i;
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1426 switch (st_other)
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1438 fprintf (file, " %s", name);
1440 break;
1444 /* Create an entry in an ELF linker hash table. */
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1481 return entry;
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1492 struct elf_link_hash_table *htab;
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1526 if (ind->dynindx != -1)
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1556 /* Initialize an ELF linker hash table. */
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1595 return ret;
1598 /* Create an ELF linker hash table. */
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1613 free (ret);
1614 return NULL;
1617 return &ret->root;
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1704 *pneeded = NULL;
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1730 Elf_Internal_Dyn dyn;
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1737 if (dyn.d_tag == DT_NEEDED)
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1760 free (dynbuf);
1762 return TRUE;
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1775 struct bfd_strtab_hash *ret;
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1780 bfd_size_type loc;
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1790 return ret;
1793 /* ELF .o/exec file reading */
1795 /* Create a new bfd section from an ELF section header. */
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1811 switch (hdr->sh_type)
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1835 Elf_Internal_Shdr *dynsymhdr;
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1845 else
1847 unsigned int i, num_sec;
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1861 break;
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1892 unsigned int i, num_sec;
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1913 return TRUE;
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1974 unsigned int i, num_sec;
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2030 unsigned int scan;
2031 int found;
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2039 if (found != 0)
2041 found = 0;
2042 break;
2044 found = scan;
2047 if (found != 0)
2048 hdr->sh_link = found;
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2102 break;
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2117 case SHT_GNU_verneed:
2118 elf_dynverref (abfd) = shindex;
2119 elf_tdata (abfd)->dynverref_hdr = *hdr;
2120 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2122 case SHT_SHLIB:
2123 return TRUE;
2125 case SHT_GROUP:
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2128 name. */
2129 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2130 return FALSE;
2131 name = group_signature (abfd, hdr);
2132 if (name == NULL)
2133 return FALSE;
2134 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2135 return FALSE;
2136 if (hdr->contents != NULL)
2138 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2139 unsigned int n_elt = hdr->sh_size / 4;
2140 asection *s;
2142 if (idx->flags & GRP_COMDAT)
2143 hdr->bfd_section->flags
2144 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2146 /* We try to keep the same section order as it comes in. */
2147 idx += n_elt;
2148 while (--n_elt != 0)
2149 if ((s = (--idx)->shdr->bfd_section) != NULL
2150 && elf_next_in_group (s) != NULL)
2152 elf_next_in_group (hdr->bfd_section) = s;
2153 break;
2156 break;
2158 default:
2159 /* Check for any processor-specific section types. */
2160 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2161 return TRUE;
2163 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2165 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd, name, hdr->sh_type);
2172 else
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2175 shindex);
2177 else if (hdr->sh_type >= SHT_LOPROC
2178 && hdr->sh_type <= SHT_HIPROC)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler)
2181 (_("%B: don't know how to handle processor specific section "
2182 "`%s' [0x%8x]"),
2183 abfd, name, hdr->sh_type);
2184 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler)
2187 (_("%B: don't know how to handle OS specific section "
2188 "`%s' [0x%8x]"),
2189 abfd, name, hdr->sh_type);
2190 else
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd, name, hdr->sh_type);
2196 return FALSE;
2199 return TRUE;
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2205 asection *
2206 bfd_section_from_r_symndx (bfd *abfd,
2207 struct sym_sec_cache *cache,
2208 asection *sec,
2209 unsigned long r_symndx)
2211 Elf_Internal_Shdr *symtab_hdr;
2212 unsigned char esym[sizeof (Elf64_External_Sym)];
2213 Elf_External_Sym_Shndx eshndx;
2214 Elf_Internal_Sym isym;
2215 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2217 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2218 return cache->sec[ent];
2220 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2221 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2222 &isym, esym, &eshndx) == NULL)
2223 return NULL;
2225 if (cache->abfd != abfd)
2227 memset (cache->indx, -1, sizeof (cache->indx));
2228 cache->abfd = abfd;
2230 cache->indx[ent] = r_symndx;
2231 cache->sec[ent] = sec;
2232 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2233 || isym.st_shndx > SHN_HIRESERVE)
2235 asection *s;
2236 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2237 if (s != NULL)
2238 cache->sec[ent] = s;
2240 return cache->sec[ent];
2243 /* Given an ELF section number, retrieve the corresponding BFD
2244 section. */
2246 asection *
2247 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2249 if (index >= elf_numsections (abfd))
2250 return NULL;
2251 return elf_elfsections (abfd)[index]->bfd_section;
2254 static const struct bfd_elf_special_section special_sections_b[] =
2256 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2257 { NULL, 0, 0, 0, 0 }
2260 static const struct bfd_elf_special_section special_sections_c[] =
2262 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2263 { NULL, 0, 0, 0, 0 }
2266 static const struct bfd_elf_special_section special_sections_d[] =
2268 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2269 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2270 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2276 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2277 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2278 { NULL, 0, 0, 0, 0 }
2281 static const struct bfd_elf_special_section special_sections_f[] =
2283 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2285 { NULL, 0, 0, 0, 0 }
2288 static const struct bfd_elf_special_section special_sections_g[] =
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2292 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2296 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2297 { NULL, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_h[] =
2302 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2303 { NULL, 0, 0, 0, 0 }
2306 static const struct bfd_elf_special_section special_sections_i[] =
2308 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2310 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2311 { NULL, 0, 0, 0, 0 }
2314 static const struct bfd_elf_special_section special_sections_l[] =
2316 { ".line", 5, 0, SHT_PROGBITS, 0 },
2317 { NULL, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_n[] =
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2323 { ".note", 5, -1, SHT_NOTE, 0 },
2324 { NULL, 0, 0, 0, 0 }
2327 static const struct bfd_elf_special_section special_sections_p[] =
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2330 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2331 { NULL, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_r[] =
2336 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2337 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2338 { ".rela", 5, -1, SHT_RELA, 0 },
2339 { ".rel", 4, -1, SHT_REL, 0 },
2340 { NULL, 0, 0, 0, 0 }
2343 static const struct bfd_elf_special_section special_sections_s[] =
2345 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2349 { NULL, 0, 0, 0, 0 }
2352 static const struct bfd_elf_special_section special_sections_t[] =
2354 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2355 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2356 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2357 { NULL, 0, 0, 0, 0 }
2360 static const struct bfd_elf_special_section *special_sections[] =
2362 special_sections_b, /* 'b' */
2363 special_sections_c, /* 'b' */
2364 special_sections_d, /* 'd' */
2365 NULL, /* 'e' */
2366 special_sections_f, /* 'f' */
2367 special_sections_g, /* 'g' */
2368 special_sections_h, /* 'h' */
2369 special_sections_i, /* 'i' */
2370 NULL, /* 'j' */
2371 NULL, /* 'k' */
2372 special_sections_l, /* 'l' */
2373 NULL, /* 'm' */
2374 special_sections_n, /* 'n' */
2375 NULL, /* 'o' */
2376 special_sections_p, /* 'p' */
2377 NULL, /* 'q' */
2378 special_sections_r, /* 'r' */
2379 special_sections_s, /* 's' */
2380 special_sections_t, /* 't' */
2383 const struct bfd_elf_special_section *
2384 _bfd_elf_get_special_section (const char *name,
2385 const struct bfd_elf_special_section *spec,
2386 unsigned int rela)
2388 int i;
2389 int len;
2391 len = strlen (name);
2393 for (i = 0; spec[i].prefix != NULL; i++)
2395 int suffix_len;
2396 int prefix_len = spec[i].prefix_length;
2398 if (len < prefix_len)
2399 continue;
2400 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2401 continue;
2403 suffix_len = spec[i].suffix_length;
2404 if (suffix_len <= 0)
2406 if (name[prefix_len] != 0)
2408 if (suffix_len == 0)
2409 continue;
2410 if (name[prefix_len] != '.'
2411 && (suffix_len == -2
2412 || (rela && spec[i].type == SHT_REL)))
2413 continue;
2416 else
2418 if (len < prefix_len + suffix_len)
2419 continue;
2420 if (memcmp (name + len - suffix_len,
2421 spec[i].prefix + prefix_len,
2422 suffix_len) != 0)
2423 continue;
2425 return &spec[i];
2428 return NULL;
2431 const struct bfd_elf_special_section *
2432 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2434 int i;
2435 const struct bfd_elf_special_section *spec;
2436 const struct elf_backend_data *bed;
2438 /* See if this is one of the special sections. */
2439 if (sec->name == NULL)
2440 return NULL;
2442 bed = get_elf_backend_data (abfd);
2443 spec = bed->special_sections;
2444 if (spec)
2446 spec = _bfd_elf_get_special_section (sec->name,
2447 bed->special_sections,
2448 sec->use_rela_p);
2449 if (spec != NULL)
2450 return spec;
2453 if (sec->name[0] != '.')
2454 return NULL;
2456 i = sec->name[1] - 'b';
2457 if (i < 0 || i > 't' - 'b')
2458 return NULL;
2460 spec = special_sections[i];
2462 if (spec == NULL)
2463 return NULL;
2465 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2468 bfd_boolean
2469 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2471 struct bfd_elf_section_data *sdata;
2472 const struct elf_backend_data *bed;
2473 const struct bfd_elf_special_section *ssect;
2475 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2476 if (sdata == NULL)
2478 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2479 if (sdata == NULL)
2480 return FALSE;
2481 sec->used_by_bfd = sdata;
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed = get_elf_backend_data (abfd);
2486 sec->use_rela_p = bed->default_use_rela_p;
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec->flags && abfd->direction != read_direction)
2495 || (sec->flags & SEC_LINKER_CREATED) != 0)
2497 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2498 if (ssect != NULL)
2500 elf_section_type (sec) = ssect->type;
2501 elf_section_flags (sec) = ssect->attr;
2505 return _bfd_generic_new_section_hook (abfd, sec);
2508 /* Create a new bfd section from an ELF program header.
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2530 bfd_boolean
2531 _bfd_elf_make_section_from_phdr (bfd *abfd,
2532 Elf_Internal_Phdr *hdr,
2533 int index,
2534 const char *typename)
2536 asection *newsect;
2537 char *name;
2538 char namebuf[64];
2539 size_t len;
2540 int split;
2542 split = ((hdr->p_memsz > 0)
2543 && (hdr->p_filesz > 0)
2544 && (hdr->p_memsz > hdr->p_filesz));
2545 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2546 len = strlen (namebuf) + 1;
2547 name = bfd_alloc (abfd, len);
2548 if (!name)
2549 return FALSE;
2550 memcpy (name, namebuf, len);
2551 newsect = bfd_make_section (abfd, name);
2552 if (newsect == NULL)
2553 return FALSE;
2554 newsect->vma = hdr->p_vaddr;
2555 newsect->lma = hdr->p_paddr;
2556 newsect->size = hdr->p_filesz;
2557 newsect->filepos = hdr->p_offset;
2558 newsect->flags |= SEC_HAS_CONTENTS;
2559 newsect->alignment_power = bfd_log2 (hdr->p_align);
2560 if (hdr->p_type == PT_LOAD)
2562 newsect->flags |= SEC_ALLOC;
2563 newsect->flags |= SEC_LOAD;
2564 if (hdr->p_flags & PF_X)
2566 /* FIXME: all we known is that it has execute PERMISSION,
2567 may be data. */
2568 newsect->flags |= SEC_CODE;
2571 if (!(hdr->p_flags & PF_W))
2573 newsect->flags |= SEC_READONLY;
2576 if (split)
2578 sprintf (namebuf, "%s%db", typename, index);
2579 len = strlen (namebuf) + 1;
2580 name = bfd_alloc (abfd, len);
2581 if (!name)
2582 return FALSE;
2583 memcpy (name, namebuf, len);
2584 newsect = bfd_make_section (abfd, name);
2585 if (newsect == NULL)
2586 return FALSE;
2587 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2588 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2589 newsect->size = hdr->p_memsz - hdr->p_filesz;
2590 if (hdr->p_type == PT_LOAD)
2592 newsect->flags |= SEC_ALLOC;
2593 if (hdr->p_flags & PF_X)
2594 newsect->flags |= SEC_CODE;
2596 if (!(hdr->p_flags & PF_W))
2597 newsect->flags |= SEC_READONLY;
2600 return TRUE;
2603 bfd_boolean
2604 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2606 const struct elf_backend_data *bed;
2608 switch (hdr->p_type)
2610 case PT_NULL:
2611 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2613 case PT_LOAD:
2614 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2616 case PT_DYNAMIC:
2617 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2619 case PT_INTERP:
2620 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2622 case PT_NOTE:
2623 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2624 return FALSE;
2625 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2626 return FALSE;
2627 return TRUE;
2629 case PT_SHLIB:
2630 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2632 case PT_PHDR:
2633 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2635 case PT_GNU_EH_FRAME:
2636 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2637 "eh_frame_hdr");
2639 case PT_GNU_STACK:
2640 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2642 case PT_GNU_RELRO:
2643 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2645 default:
2646 /* Check for any processor-specific program segment types. */
2647 bed = get_elf_backend_data (abfd);
2648 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2656 bfd_boolean
2657 _bfd_elf_init_reloc_shdr (bfd *abfd,
2658 Elf_Internal_Shdr *rel_hdr,
2659 asection *asect,
2660 bfd_boolean use_rela_p)
2662 char *name;
2663 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2664 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2666 name = bfd_alloc (abfd, amt);
2667 if (name == NULL)
2668 return FALSE;
2669 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2670 rel_hdr->sh_name =
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2672 FALSE);
2673 if (rel_hdr->sh_name == (unsigned int) -1)
2674 return FALSE;
2675 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2676 rel_hdr->sh_entsize = (use_rela_p
2677 ? bed->s->sizeof_rela
2678 : bed->s->sizeof_rel);
2679 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2680 rel_hdr->sh_flags = 0;
2681 rel_hdr->sh_addr = 0;
2682 rel_hdr->sh_size = 0;
2683 rel_hdr->sh_offset = 0;
2685 return TRUE;
2688 /* Set up an ELF internal section header for a section. */
2690 static void
2691 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2693 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2694 bfd_boolean *failedptr = failedptrarg;
2695 Elf_Internal_Shdr *this_hdr;
2697 if (*failedptr)
2699 /* We already failed; just get out of the bfd_map_over_sections
2700 loop. */
2701 return;
2704 this_hdr = &elf_section_data (asect)->this_hdr;
2706 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2707 asect->name, FALSE);
2708 if (this_hdr->sh_name == (unsigned int) -1)
2710 *failedptr = TRUE;
2711 return;
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2716 if ((asect->flags & SEC_ALLOC) != 0
2717 || asect->user_set_vma)
2718 this_hdr->sh_addr = asect->vma;
2719 else
2720 this_hdr->sh_addr = 0;
2722 this_hdr->sh_offset = 0;
2723 this_hdr->sh_size = asect->size;
2724 this_hdr->sh_link = 0;
2725 this_hdr->sh_addralign = 1 << asect->alignment_power;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2729 this_hdr->bfd_section = asect;
2730 this_hdr->contents = NULL;
2732 /* If the section type is unspecified, we set it based on
2733 asect->flags. */
2734 if (this_hdr->sh_type == SHT_NULL)
2736 if ((asect->flags & SEC_GROUP) != 0)
2737 this_hdr->sh_type = SHT_GROUP;
2738 else if ((asect->flags & SEC_ALLOC) != 0
2739 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2740 || (asect->flags & SEC_NEVER_LOAD) != 0))
2741 this_hdr->sh_type = SHT_NOBITS;
2742 else
2743 this_hdr->sh_type = SHT_PROGBITS;
2746 switch (this_hdr->sh_type)
2748 default:
2749 break;
2751 case SHT_STRTAB:
2752 case SHT_INIT_ARRAY:
2753 case SHT_FINI_ARRAY:
2754 case SHT_PREINIT_ARRAY:
2755 case SHT_NOTE:
2756 case SHT_NOBITS:
2757 case SHT_PROGBITS:
2758 break;
2760 case SHT_HASH:
2761 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2762 break;
2764 case SHT_DYNSYM:
2765 this_hdr->sh_entsize = bed->s->sizeof_sym;
2766 break;
2768 case SHT_DYNAMIC:
2769 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2770 break;
2772 case SHT_RELA:
2773 if (get_elf_backend_data (abfd)->may_use_rela_p)
2774 this_hdr->sh_entsize = bed->s->sizeof_rela;
2775 break;
2777 case SHT_REL:
2778 if (get_elf_backend_data (abfd)->may_use_rel_p)
2779 this_hdr->sh_entsize = bed->s->sizeof_rel;
2780 break;
2782 case SHT_GNU_versym:
2783 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2784 break;
2786 case SHT_GNU_verdef:
2787 this_hdr->sh_entsize = 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2790 zero. */
2791 if (this_hdr->sh_info == 0)
2792 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2793 else
2794 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2795 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2796 break;
2798 case SHT_GNU_verneed:
2799 this_hdr->sh_entsize = 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2802 zero. */
2803 if (this_hdr->sh_info == 0)
2804 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2805 else
2806 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2807 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2808 break;
2810 case SHT_GROUP:
2811 this_hdr->sh_entsize = 4;
2812 break;
2815 if ((asect->flags & SEC_ALLOC) != 0)
2816 this_hdr->sh_flags |= SHF_ALLOC;
2817 if ((asect->flags & SEC_READONLY) == 0)
2818 this_hdr->sh_flags |= SHF_WRITE;
2819 if ((asect->flags & SEC_CODE) != 0)
2820 this_hdr->sh_flags |= SHF_EXECINSTR;
2821 if ((asect->flags & SEC_MERGE) != 0)
2823 this_hdr->sh_flags |= SHF_MERGE;
2824 this_hdr->sh_entsize = asect->entsize;
2825 if ((asect->flags & SEC_STRINGS) != 0)
2826 this_hdr->sh_flags |= SHF_STRINGS;
2828 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2829 this_hdr->sh_flags |= SHF_GROUP;
2830 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2832 this_hdr->sh_flags |= SHF_TLS;
2833 if (asect->size == 0
2834 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2836 struct bfd_link_order *o = asect->map_tail.link_order;
2838 this_hdr->sh_size = 0;
2839 if (o != NULL)
2841 this_hdr->sh_size = o->offset + o->size;
2842 if (this_hdr->sh_size != 0)
2843 this_hdr->sh_type = SHT_NOBITS;
2848 /* Check for processor-specific section types. */
2849 if (bed->elf_backend_fake_sections
2850 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2851 *failedptr = TRUE;
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect->flags & SEC_RELOC) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd,
2859 &elf_section_data (asect)->rel_hdr,
2860 asect,
2861 asect->use_rela_p))
2862 *failedptr = TRUE;
2865 /* Fill in the contents of a SHT_GROUP section. */
2867 void
2868 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2870 bfd_boolean *failedptr = failedptrarg;
2871 unsigned long symindx;
2872 asection *elt, *first;
2873 unsigned char *loc;
2874 bfd_boolean gas;
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2877 elfxx-ia64.c. */
2878 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2879 || *failedptr)
2880 return;
2882 symindx = 0;
2883 if (elf_group_id (sec) != NULL)
2884 symindx = elf_group_id (sec)->udata.i;
2886 if (symindx == 0)
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd) != NULL)
2891 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2892 else
2893 symindx = sec->target_index;
2895 elf_section_data (sec)->this_hdr.sh_info = symindx;
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2898 gas = TRUE;
2899 if (sec->contents == NULL)
2901 gas = FALSE;
2902 sec->contents = bfd_alloc (abfd, sec->size);
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec)->this_hdr.contents = sec->contents;
2906 if (sec->contents == NULL)
2908 *failedptr = TRUE;
2909 return;
2913 loc = sec->contents + sec->size;
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first = elt = elf_next_in_group (sec);
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2924 while (elt != NULL)
2926 asection *s;
2927 unsigned int idx;
2929 loc -= 4;
2930 s = elt;
2931 if (!gas)
2932 s = s->output_section;
2933 idx = 0;
2934 if (s != NULL)
2935 idx = elf_section_data (s)->this_idx;
2936 H_PUT_32 (abfd, idx, loc);
2937 elt = elf_next_in_group (elt);
2938 if (elt == first)
2939 break;
2942 if ((loc -= 4) != sec->contents)
2943 abort ();
2945 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2952 static bfd_boolean
2953 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2955 struct elf_obj_tdata *t = elf_tdata (abfd);
2956 asection *sec;
2957 unsigned int section_number, secn;
2958 Elf_Internal_Shdr **i_shdrp;
2959 struct bfd_elf_section_data *d;
2961 section_number = 1;
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info == NULL || link_info->relocatable)
2968 /* Put SHT_GROUP sections first. */
2969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2971 d = elf_section_data (sec);
2973 if (d->this_hdr.sh_type == SHT_GROUP)
2975 if (sec->flags & SEC_LINKER_CREATED)
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd, sec);
2979 abfd->section_count--;
2981 else
2983 if (section_number == SHN_LORESERVE)
2984 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2985 d->this_idx = section_number++;
2991 for (sec = abfd->sections; sec; sec = sec->next)
2993 d = elf_section_data (sec);
2995 if (d->this_hdr.sh_type != SHT_GROUP)
2997 if (section_number == SHN_LORESERVE)
2998 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2999 d->this_idx = section_number++;
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3002 if ((sec->flags & SEC_RELOC) == 0)
3003 d->rel_idx = 0;
3004 else
3006 if (section_number == SHN_LORESERVE)
3007 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3008 d->rel_idx = section_number++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3012 if (d->rel_hdr2)
3014 if (section_number == SHN_LORESERVE)
3015 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3016 d->rel_idx2 = section_number++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3019 else
3020 d->rel_idx2 = 0;
3023 if (section_number == SHN_LORESERVE)
3024 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3025 t->shstrtab_section = section_number++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3027 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3029 if (bfd_get_symcount (abfd) > 0)
3031 if (section_number == SHN_LORESERVE)
3032 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3033 t->symtab_section = section_number++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3035 if (section_number > SHN_LORESERVE - 2)
3037 if (section_number == SHN_LORESERVE)
3038 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3039 t->symtab_shndx_section = section_number++;
3040 t->symtab_shndx_hdr.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3042 ".symtab_shndx", FALSE);
3043 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3044 return FALSE;
3046 if (section_number == SHN_LORESERVE)
3047 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3048 t->strtab_section = section_number++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3053 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3055 elf_numsections (abfd) = section_number;
3056 elf_elfheader (abfd)->e_shnum = section_number;
3057 if (section_number > SHN_LORESERVE)
3058 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3060 /* Set up the list of section header pointers, in agreement with the
3061 indices. */
3062 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3063 if (i_shdrp == NULL)
3064 return FALSE;
3066 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3067 if (i_shdrp[0] == NULL)
3069 bfd_release (abfd, i_shdrp);
3070 return FALSE;
3073 elf_elfsections (abfd) = i_shdrp;
3075 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3076 if (bfd_get_symcount (abfd) > 0)
3078 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3079 if (elf_numsections (abfd) > SHN_LORESERVE)
3081 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3082 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3084 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3085 t->symtab_hdr.sh_link = t->strtab_section;
3088 for (sec = abfd->sections; sec; sec = sec->next)
3090 struct bfd_elf_section_data *d = elf_section_data (sec);
3091 asection *s;
3092 const char *name;
3094 i_shdrp[d->this_idx] = &d->this_hdr;
3095 if (d->rel_idx != 0)
3096 i_shdrp[d->rel_idx] = &d->rel_hdr;
3097 if (d->rel_idx2 != 0)
3098 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d->rel_idx != 0)
3107 d->rel_hdr.sh_link = t->symtab_section;
3108 d->rel_hdr.sh_info = d->this_idx;
3110 if (d->rel_idx2 != 0)
3112 d->rel_hdr2->sh_link = t->symtab_section;
3113 d->rel_hdr2->sh_info = d->this_idx;
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3119 s = elf_linked_to_section (sec);
3120 if (s)
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info != NULL)
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s))
3128 asection *kept;
3129 (*_bfd_error_handler)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd, d->this_hdr.bfd_section,
3132 s, s->owner);
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept = _bfd_elf_check_kept_section (s);
3136 if (kept == NULL)
3138 bfd_set_error (bfd_error_bad_value);
3139 return FALSE;
3141 s = kept;
3144 s = s->output_section;
3145 BFD_ASSERT (s != NULL);
3147 else
3149 /* Handle objcopy. */
3150 if (s->output_section == NULL)
3152 (*_bfd_error_handler)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd, d->this_hdr.bfd_section, s, s->owner);
3155 bfd_set_error (bfd_error_bad_value);
3156 return FALSE;
3158 s = s->output_section;
3160 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3162 else
3164 /* PR 290:
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3168 where s is NULL. */
3169 const struct elf_backend_data *bed
3170 = get_elf_backend_data (abfd);
3171 if (bed->link_order_error_handler)
3172 bed->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3174 abfd, sec);
3178 switch (d->this_hdr.sh_type)
3180 case SHT_REL:
3181 case SHT_RELA:
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s = bfd_get_section_by_name (abfd, ".dynsym");
3189 if (s != NULL)
3190 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192 /* We look up the section the relocs apply to by name. */
3193 name = sec->name;
3194 if (d->this_hdr.sh_type == SHT_REL)
3195 name += 4;
3196 else
3197 name += 5;
3198 s = bfd_get_section_by_name (abfd, name);
3199 if (s != NULL)
3200 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3201 break;
3203 case SHT_STRTAB:
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3211 size_t len;
3212 char *alc;
3214 len = strlen (sec->name);
3215 alc = bfd_malloc (len - 2);
3216 if (alc == NULL)
3217 return FALSE;
3218 memcpy (alc, sec->name, len - 3);
3219 alc[len - 3] = '\0';
3220 s = bfd_get_section_by_name (abfd, alc);
3221 free (alc);
3222 if (s != NULL)
3224 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3226 /* This is a .stab section. */
3227 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3228 elf_section_data (s)->this_hdr.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3232 break;
3234 case SHT_DYNAMIC:
3235 case SHT_DYNSYM:
3236 case SHT_GNU_verneed:
3237 case SHT_GNU_verdef:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3240 version strings. */
3241 s = bfd_get_section_by_name (abfd, ".dynstr");
3242 if (s != NULL)
3243 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3244 break;
3246 case SHT_GNU_LIBLIST:
3247 /* sh_link is the section header index of the prelink library
3248 list
3249 used for the dynamic entries, or the symbol table, or the
3250 version strings. */
3251 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3252 ? ".dynstr" : ".gnu.libstr");
3253 if (s != NULL)
3254 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3255 break;
3257 case SHT_HASH:
3258 case SHT_GNU_versym:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s = bfd_get_section_by_name (abfd, ".dynsym");
3262 if (s != NULL)
3263 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3264 break;
3266 case SHT_GROUP:
3267 d->this_hdr.sh_link = t->symtab_section;
3271 for (secn = 1; secn < section_number; ++secn)
3272 if (i_shdrp[secn] == NULL)
3273 i_shdrp[secn] = i_shdrp[0];
3274 else
3275 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3276 i_shdrp[secn]->sh_name);
3277 return TRUE;
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3283 static bfd_boolean
3284 sym_is_global (bfd *abfd, asymbol *sym)
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3288 if (bed->elf_backend_sym_is_global)
3289 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3291 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym))
3293 || bfd_is_com_section (bfd_get_section (sym)));
3296 /* Don't output section symbols for sections that are not going to be
3297 output. Also, don't output section symbols for reloc and other
3298 special sections. */
3300 static bfd_boolean
3301 ignore_section_sym (bfd *abfd, asymbol *sym)
3303 return ((sym->flags & BSF_SECTION_SYM) != 0
3304 && (sym->value != 0
3305 || (sym->section->owner != abfd
3306 && (sym->section->output_section->owner != abfd
3307 || sym->section->output_offset != 0))));
3310 static bfd_boolean
3311 elf_map_symbols (bfd *abfd)
3313 unsigned int symcount = bfd_get_symcount (abfd);
3314 asymbol **syms = bfd_get_outsymbols (abfd);
3315 asymbol **sect_syms;
3316 unsigned int num_locals = 0;
3317 unsigned int num_globals = 0;
3318 unsigned int num_locals2 = 0;
3319 unsigned int num_globals2 = 0;
3320 int max_index = 0;
3321 unsigned int idx;
3322 asection *asect;
3323 asymbol **new_syms;
3325 #ifdef DEBUG
3326 fprintf (stderr, "elf_map_symbols\n");
3327 fflush (stderr);
3328 #endif
3330 for (asect = abfd->sections; asect; asect = asect->next)
3332 if (max_index < asect->index)
3333 max_index = asect->index;
3336 max_index++;
3337 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3338 if (sect_syms == NULL)
3339 return FALSE;
3340 elf_section_syms (abfd) = sect_syms;
3341 elf_num_section_syms (abfd) = max_index;
3343 /* Init sect_syms entries for any section symbols we have already
3344 decided to output. */
3345 for (idx = 0; idx < symcount; idx++)
3347 asymbol *sym = syms[idx];
3349 if ((sym->flags & BSF_SECTION_SYM) != 0
3350 && !ignore_section_sym (abfd, sym))
3352 asection *sec = sym->section;
3354 if (sec->owner != abfd)
3355 sec = sec->output_section;
3357 sect_syms[sec->index] = syms[idx];
3361 /* Classify all of the symbols. */
3362 for (idx = 0; idx < symcount; idx++)
3364 if (ignore_section_sym (abfd, syms[idx]))
3365 continue;
3366 if (!sym_is_global (abfd, syms[idx]))
3367 num_locals++;
3368 else
3369 num_globals++;
3372 /* We will be adding a section symbol for each normal BFD section. Most
3373 sections will already have a section symbol in outsymbols, but
3374 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3375 at least in that case. */
3376 for (asect = abfd->sections; asect; asect = asect->next)
3378 if (sect_syms[asect->index] == NULL)
3380 if (!sym_is_global (abfd, asect->symbol))
3381 num_locals++;
3382 else
3383 num_globals++;
3387 /* Now sort the symbols so the local symbols are first. */
3388 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3390 if (new_syms == NULL)
3391 return FALSE;
3393 for (idx = 0; idx < symcount; idx++)
3395 asymbol *sym = syms[idx];
3396 unsigned int i;
3398 if (ignore_section_sym (abfd, sym))
3399 continue;
3400 if (!sym_is_global (abfd, sym))
3401 i = num_locals2++;
3402 else
3403 i = num_locals + num_globals2++;
3404 new_syms[i] = sym;
3405 sym->udata.i = i + 1;
3407 for (asect = abfd->sections; asect; asect = asect->next)
3409 if (sect_syms[asect->index] == NULL)
3411 asymbol *sym = asect->symbol;
3412 unsigned int i;
3414 sect_syms[asect->index] = sym;
3415 if (!sym_is_global (abfd, sym))
3416 i = num_locals2++;
3417 else
3418 i = num_locals + num_globals2++;
3419 new_syms[i] = sym;
3420 sym->udata.i = i + 1;
3424 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3426 elf_num_locals (abfd) = num_locals;
3427 elf_num_globals (abfd) = num_globals;
3428 return TRUE;
3431 /* Align to the maximum file alignment that could be required for any
3432 ELF data structure. */
3434 static inline file_ptr
3435 align_file_position (file_ptr off, int align)
3437 return (off + align - 1) & ~(align - 1);
3440 /* Assign a file position to a section, optionally aligning to the
3441 required section alignment. */
3443 file_ptr
3444 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3445 file_ptr offset,
3446 bfd_boolean align)
3448 if (align)
3450 unsigned int al;
3452 al = i_shdrp->sh_addralign;
3453 if (al > 1)
3454 offset = BFD_ALIGN (offset, al);
3456 i_shdrp->sh_offset = offset;
3457 if (i_shdrp->bfd_section != NULL)
3458 i_shdrp->bfd_section->filepos = offset;
3459 if (i_shdrp->sh_type != SHT_NOBITS)
3460 offset += i_shdrp->sh_size;
3461 return offset;
3464 /* Compute the file positions we are going to put the sections at, and
3465 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3466 is not NULL, this is being called by the ELF backend linker. */
3468 bfd_boolean
3469 _bfd_elf_compute_section_file_positions (bfd *abfd,
3470 struct bfd_link_info *link_info)
3472 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3473 bfd_boolean failed;
3474 struct bfd_strtab_hash *strtab = NULL;
3475 Elf_Internal_Shdr *shstrtab_hdr;
3477 if (abfd->output_has_begun)
3478 return TRUE;
3480 /* Do any elf backend specific processing first. */
3481 if (bed->elf_backend_begin_write_processing)
3482 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3484 if (! prep_headers (abfd))
3485 return FALSE;
3487 /* Post process the headers if necessary. */
3488 if (bed->elf_backend_post_process_headers)
3489 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3491 failed = FALSE;
3492 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3493 if (failed)
3494 return FALSE;
3496 if (!assign_section_numbers (abfd, link_info))
3497 return FALSE;
3499 /* The backend linker builds symbol table information itself. */
3500 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3502 /* Non-zero if doing a relocatable link. */
3503 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3505 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3506 return FALSE;
3509 if (link_info == NULL)
3511 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3512 if (failed)
3513 return FALSE;
3516 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3517 /* sh_name was set in prep_headers. */
3518 shstrtab_hdr->sh_type = SHT_STRTAB;
3519 shstrtab_hdr->sh_flags = 0;
3520 shstrtab_hdr->sh_addr = 0;
3521 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3522 shstrtab_hdr->sh_entsize = 0;
3523 shstrtab_hdr->sh_link = 0;
3524 shstrtab_hdr->sh_info = 0;
3525 /* sh_offset is set in assign_file_positions_except_relocs. */
3526 shstrtab_hdr->sh_addralign = 1;
3528 if (!assign_file_positions_except_relocs (abfd, link_info))
3529 return FALSE;
3531 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3533 file_ptr off;
3534 Elf_Internal_Shdr *hdr;
3536 off = elf_tdata (abfd)->next_file_pos;
3538 hdr = &elf_tdata (abfd)->symtab_hdr;
3539 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3541 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3542 if (hdr->sh_size != 0)
3543 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3545 hdr = &elf_tdata (abfd)->strtab_hdr;
3546 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3548 elf_tdata (abfd)->next_file_pos = off;
3550 /* Now that we know where the .strtab section goes, write it
3551 out. */
3552 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3553 || ! _bfd_stringtab_emit (abfd, strtab))
3554 return FALSE;
3555 _bfd_stringtab_free (strtab);
3558 abfd->output_has_begun = TRUE;
3560 return TRUE;
3563 /* Create a mapping from a set of sections to a program segment. */
3565 static struct elf_segment_map *
3566 make_mapping (bfd *abfd,
3567 asection **sections,
3568 unsigned int from,
3569 unsigned int to,
3570 bfd_boolean phdr)
3572 struct elf_segment_map *m;
3573 unsigned int i;
3574 asection **hdrpp;
3575 bfd_size_type amt;
3577 amt = sizeof (struct elf_segment_map);
3578 amt += (to - from - 1) * sizeof (asection *);
3579 m = bfd_zalloc (abfd, amt);
3580 if (m == NULL)
3581 return NULL;
3582 m->next = NULL;
3583 m->p_type = PT_LOAD;
3584 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3585 m->sections[i - from] = *hdrpp;
3586 m->count = to - from;
3588 if (from == 0 && phdr)
3590 /* Include the headers in the first PT_LOAD segment. */
3591 m->includes_filehdr = 1;
3592 m->includes_phdrs = 1;
3595 return m;
3598 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3599 on failure. */
3601 struct elf_segment_map *
3602 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3604 struct elf_segment_map *m;
3606 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3607 if (m == NULL)
3608 return NULL;
3609 m->next = NULL;
3610 m->p_type = PT_DYNAMIC;
3611 m->count = 1;
3612 m->sections[0] = dynsec;
3614 return m;
3617 /* Set up a mapping from BFD sections to program segments. */
3619 static bfd_boolean
3620 map_sections_to_segments (bfd *abfd)
3622 asection **sections = NULL;
3623 asection *s;
3624 unsigned int i;
3625 unsigned int count;
3626 struct elf_segment_map *mfirst;
3627 struct elf_segment_map **pm;
3628 struct elf_segment_map *m;
3629 asection *last_hdr;
3630 bfd_vma last_size;
3631 unsigned int phdr_index;
3632 bfd_vma maxpagesize;
3633 asection **hdrpp;
3634 bfd_boolean phdr_in_segment = TRUE;
3635 bfd_boolean writable;
3636 int tls_count = 0;
3637 asection *first_tls = NULL;
3638 asection *dynsec, *eh_frame_hdr;
3639 bfd_size_type amt;
3641 if (elf_tdata (abfd)->segment_map != NULL)
3642 return TRUE;
3644 if (bfd_count_sections (abfd) == 0)
3645 return TRUE;
3647 /* Select the allocated sections, and sort them. */
3649 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3650 if (sections == NULL)
3651 goto error_return;
3653 i = 0;
3654 for (s = abfd->sections; s != NULL; s = s->next)
3656 if ((s->flags & SEC_ALLOC) != 0)
3658 sections[i] = s;
3659 ++i;
3662 BFD_ASSERT (i <= bfd_count_sections (abfd));
3663 count = i;
3665 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3667 /* Build the mapping. */
3669 mfirst = NULL;
3670 pm = &mfirst;
3672 /* If we have a .interp section, then create a PT_PHDR segment for
3673 the program headers and a PT_INTERP segment for the .interp
3674 section. */
3675 s = bfd_get_section_by_name (abfd, ".interp");
3676 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3678 amt = sizeof (struct elf_segment_map);
3679 m = bfd_zalloc (abfd, amt);
3680 if (m == NULL)
3681 goto error_return;
3682 m->next = NULL;
3683 m->p_type = PT_PHDR;
3684 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3685 m->p_flags = PF_R | PF_X;
3686 m->p_flags_valid = 1;
3687 m->includes_phdrs = 1;
3689 *pm = m;
3690 pm = &m->next;
3692 amt = sizeof (struct elf_segment_map);
3693 m = bfd_zalloc (abfd, amt);
3694 if (m == NULL)
3695 goto error_return;
3696 m->next = NULL;
3697 m->p_type = PT_INTERP;
3698 m->count = 1;
3699 m->sections[0] = s;
3701 *pm = m;
3702 pm = &m->next;
3705 /* Look through the sections. We put sections in the same program
3706 segment when the start of the second section can be placed within
3707 a few bytes of the end of the first section. */
3708 last_hdr = NULL;
3709 last_size = 0;
3710 phdr_index = 0;
3711 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3712 writable = FALSE;
3713 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3714 if (dynsec != NULL
3715 && (dynsec->flags & SEC_LOAD) == 0)
3716 dynsec = NULL;
3718 /* Deal with -Ttext or something similar such that the first section
3719 is not adjacent to the program headers. This is an
3720 approximation, since at this point we don't know exactly how many
3721 program headers we will need. */
3722 if (count > 0)
3724 bfd_size_type phdr_size;
3726 phdr_size = elf_tdata (abfd)->program_header_size;
3727 if (phdr_size == 0)
3728 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3729 if ((abfd->flags & D_PAGED) == 0
3730 || sections[0]->lma < phdr_size
3731 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3732 phdr_in_segment = FALSE;
3735 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3737 asection *hdr;
3738 bfd_boolean new_segment;
3740 hdr = *hdrpp;
3742 /* See if this section and the last one will fit in the same
3743 segment. */
3745 if (last_hdr == NULL)
3747 /* If we don't have a segment yet, then we don't need a new
3748 one (we build the last one after this loop). */
3749 new_segment = FALSE;
3751 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3753 /* If this section has a different relation between the
3754 virtual address and the load address, then we need a new
3755 segment. */
3756 new_segment = TRUE;
3758 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3759 < BFD_ALIGN (hdr->lma, maxpagesize))
3761 /* If putting this section in this segment would force us to
3762 skip a page in the segment, then we need a new segment. */
3763 new_segment = TRUE;
3765 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3766 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3768 /* We don't want to put a loadable section after a
3769 nonloadable section in the same segment.
3770 Consider .tbss sections as loadable for this purpose. */
3771 new_segment = TRUE;
3773 else if ((abfd->flags & D_PAGED) == 0)
3775 /* If the file is not demand paged, which means that we
3776 don't require the sections to be correctly aligned in the
3777 file, then there is no other reason for a new segment. */
3778 new_segment = FALSE;
3780 else if (! writable
3781 && (hdr->flags & SEC_READONLY) == 0
3782 && (((last_hdr->lma + last_size - 1)
3783 & ~(maxpagesize - 1))
3784 != (hdr->lma & ~(maxpagesize - 1))))
3786 /* We don't want to put a writable section in a read only
3787 segment, unless they are on the same page in memory
3788 anyhow. We already know that the last section does not
3789 bring us past the current section on the page, so the
3790 only case in which the new section is not on the same
3791 page as the previous section is when the previous section
3792 ends precisely on a page boundary. */
3793 new_segment = TRUE;
3795 else
3797 /* Otherwise, we can use the same segment. */
3798 new_segment = FALSE;
3801 if (! new_segment)
3803 if ((hdr->flags & SEC_READONLY) == 0)
3804 writable = TRUE;
3805 last_hdr = hdr;
3806 /* .tbss sections effectively have zero size. */
3807 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3808 last_size = hdr->size;
3809 else
3810 last_size = 0;
3811 continue;
3814 /* We need a new program segment. We must create a new program
3815 header holding all the sections from phdr_index until hdr. */
3817 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3818 if (m == NULL)
3819 goto error_return;
3821 *pm = m;
3822 pm = &m->next;
3824 if ((hdr->flags & SEC_READONLY) == 0)
3825 writable = TRUE;
3826 else
3827 writable = FALSE;
3829 last_hdr = hdr;
3830 /* .tbss sections effectively have zero size. */
3831 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3832 last_size = hdr->size;
3833 else
3834 last_size = 0;
3835 phdr_index = i;
3836 phdr_in_segment = FALSE;
3839 /* Create a final PT_LOAD program segment. */
3840 if (last_hdr != NULL)
3842 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3843 if (m == NULL)
3844 goto error_return;
3846 *pm = m;
3847 pm = &m->next;
3850 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3851 if (dynsec != NULL)
3853 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3854 if (m == NULL)
3855 goto error_return;
3856 *pm = m;
3857 pm = &m->next;
3860 /* For each loadable .note section, add a PT_NOTE segment. We don't
3861 use bfd_get_section_by_name, because if we link together
3862 nonloadable .note sections and loadable .note sections, we will
3863 generate two .note sections in the output file. FIXME: Using
3864 names for section types is bogus anyhow. */
3865 for (s = abfd->sections; s != NULL; s = s->next)
3867 if ((s->flags & SEC_LOAD) != 0
3868 && strncmp (s->name, ".note", 5) == 0)
3870 amt = sizeof (struct elf_segment_map);
3871 m = bfd_zalloc (abfd, amt);
3872 if (m == NULL)
3873 goto error_return;
3874 m->next = NULL;
3875 m->p_type = PT_NOTE;
3876 m->count = 1;
3877 m->sections[0] = s;
3879 *pm = m;
3880 pm = &m->next;
3882 if (s->flags & SEC_THREAD_LOCAL)
3884 if (! tls_count)
3885 first_tls = s;
3886 tls_count++;
3890 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3891 if (tls_count > 0)
3893 int i;
3895 amt = sizeof (struct elf_segment_map);
3896 amt += (tls_count - 1) * sizeof (asection *);
3897 m = bfd_zalloc (abfd, amt);
3898 if (m == NULL)
3899 goto error_return;
3900 m->next = NULL;
3901 m->p_type = PT_TLS;
3902 m->count = tls_count;
3903 /* Mandated PF_R. */
3904 m->p_flags = PF_R;
3905 m->p_flags_valid = 1;
3906 for (i = 0; i < tls_count; ++i)
3908 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3909 m->sections[i] = first_tls;
3910 first_tls = first_tls->next;
3913 *pm = m;
3914 pm = &m->next;
3917 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3918 segment. */
3919 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3920 if (eh_frame_hdr != NULL
3921 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3923 amt = sizeof (struct elf_segment_map);
3924 m = bfd_zalloc (abfd, amt);
3925 if (m == NULL)
3926 goto error_return;
3927 m->next = NULL;
3928 m->p_type = PT_GNU_EH_FRAME;
3929 m->count = 1;
3930 m->sections[0] = eh_frame_hdr->output_section;
3932 *pm = m;
3933 pm = &m->next;
3936 if (elf_tdata (abfd)->stack_flags)
3938 amt = sizeof (struct elf_segment_map);
3939 m = bfd_zalloc (abfd, amt);
3940 if (m == NULL)
3941 goto error_return;
3942 m->next = NULL;
3943 m->p_type = PT_GNU_STACK;
3944 m->p_flags = elf_tdata (abfd)->stack_flags;
3945 m->p_flags_valid = 1;
3947 *pm = m;
3948 pm = &m->next;
3951 if (elf_tdata (abfd)->relro)
3953 amt = sizeof (struct elf_segment_map);
3954 m = bfd_zalloc (abfd, amt);
3955 if (m == NULL)
3956 goto error_return;
3957 m->next = NULL;
3958 m->p_type = PT_GNU_RELRO;
3959 m->p_flags = PF_R;
3960 m->p_flags_valid = 1;
3962 *pm = m;
3963 pm = &m->next;
3966 free (sections);
3967 sections = NULL;
3969 elf_tdata (abfd)->segment_map = mfirst;
3970 return TRUE;
3972 error_return:
3973 if (sections != NULL)
3974 free (sections);
3975 return FALSE;
3978 /* Sort sections by address. */
3980 static int
3981 elf_sort_sections (const void *arg1, const void *arg2)
3983 const asection *sec1 = *(const asection **) arg1;
3984 const asection *sec2 = *(const asection **) arg2;
3985 bfd_size_type size1, size2;
3987 /* Sort by LMA first, since this is the address used to
3988 place the section into a segment. */
3989 if (sec1->lma < sec2->lma)
3990 return -1;
3991 else if (sec1->lma > sec2->lma)
3992 return 1;
3994 /* Then sort by VMA. Normally the LMA and the VMA will be
3995 the same, and this will do nothing. */
3996 if (sec1->vma < sec2->vma)
3997 return -1;
3998 else if (sec1->vma > sec2->vma)
3999 return 1;
4001 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4003 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4005 if (TOEND (sec1))
4007 if (TOEND (sec2))
4009 /* If the indicies are the same, do not return 0
4010 here, but continue to try the next comparison. */
4011 if (sec1->target_index - sec2->target_index != 0)
4012 return sec1->target_index - sec2->target_index;
4014 else
4015 return 1;
4017 else if (TOEND (sec2))
4018 return -1;
4020 #undef TOEND
4022 /* Sort by size, to put zero sized sections
4023 before others at the same address. */
4025 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4026 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4028 if (size1 < size2)
4029 return -1;
4030 if (size1 > size2)
4031 return 1;
4033 return sec1->target_index - sec2->target_index;
4036 /* Ian Lance Taylor writes:
4038 We shouldn't be using % with a negative signed number. That's just
4039 not good. We have to make sure either that the number is not
4040 negative, or that the number has an unsigned type. When the types
4041 are all the same size they wind up as unsigned. When file_ptr is a
4042 larger signed type, the arithmetic winds up as signed long long,
4043 which is wrong.
4045 What we're trying to say here is something like ``increase OFF by
4046 the least amount that will cause it to be equal to the VMA modulo
4047 the page size.'' */
4048 /* In other words, something like:
4050 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4051 off_offset = off % bed->maxpagesize;
4052 if (vma_offset < off_offset)
4053 adjustment = vma_offset + bed->maxpagesize - off_offset;
4054 else
4055 adjustment = vma_offset - off_offset;
4057 which can can be collapsed into the expression below. */
4059 static file_ptr
4060 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4062 return ((vma - off) % maxpagesize);
4065 static void
4066 print_segment_map (bfd *abfd)
4068 struct elf_segment_map *m;
4069 unsigned int i, j;
4071 fprintf (stderr, _(" Section to Segment mapping:\n"));
4072 fprintf (stderr, _(" Segment Sections...\n"));
4074 for (i= 0, m = elf_tdata (abfd)->segment_map;
4075 m != NULL;
4076 i++, m = m->next)
4078 const char *pt = get_segment_type (m->p_type);
4079 char buf[32];
4081 if (pt == NULL)
4083 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4084 sprintf (buf, "LOPROC+%7.7x",
4085 (unsigned int) (m->p_type - PT_LOPROC));
4086 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4087 sprintf (buf, "LOOS+%7.7x",
4088 (unsigned int) (m->p_type - PT_LOOS));
4089 else
4090 snprintf (buf, sizeof (buf), "%8.8x",
4091 (unsigned int) m->p_type);
4092 pt = buf;
4094 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4095 for (j = 0; j < m->count; j++)
4096 fprintf (stderr, "%s ", m->sections [j]->name);
4097 putc ('\n',stderr);
4101 /* Assign file positions to the sections based on the mapping from
4102 sections to segments. This function also sets up some fields in
4103 the file header. */
4105 static bfd_boolean
4106 assign_file_positions_for_load_sections (bfd *abfd,
4107 struct bfd_link_info *link_info)
4109 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4110 struct elf_segment_map *m;
4111 Elf_Internal_Phdr *phdrs;
4112 Elf_Internal_Phdr *p;
4113 file_ptr off, voff;
4114 bfd_size_type maxpagesize;
4115 unsigned int count;
4116 unsigned int alloc;
4117 unsigned int i;
4119 if (elf_tdata (abfd)->segment_map == NULL)
4121 if (! map_sections_to_segments (abfd))
4122 return FALSE;
4124 else
4126 /* The placement algorithm assumes that non allocated sections are
4127 not in PT_LOAD segments. We ensure this here by removing such
4128 sections from the segment map. We also remove excluded
4129 sections. */
4130 for (m = elf_tdata (abfd)->segment_map;
4131 m != NULL;
4132 m = m->next)
4134 unsigned int new_count;
4136 new_count = 0;
4137 for (i = 0; i < m->count; i ++)
4139 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4140 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4141 || m->p_type != PT_LOAD))
4143 if (i != new_count)
4144 m->sections[new_count] = m->sections[i];
4146 new_count ++;
4150 if (new_count != m->count)
4151 m->count = new_count;
4155 if (bed->elf_backend_modify_segment_map)
4157 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4158 return FALSE;
4161 count = 0;
4162 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4163 ++count;
4165 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4166 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4167 elf_elfheader (abfd)->e_phnum = count;
4169 if (count == 0)
4171 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4172 return TRUE;
4175 /* If we already counted the number of program segments, make sure
4176 that we allocated enough space. This happens when SIZEOF_HEADERS
4177 is used in a linker script. */
4178 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4179 if (alloc != 0 && count > alloc)
4181 ((*_bfd_error_handler)
4182 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4183 abfd, alloc, count));
4184 print_segment_map (abfd);
4185 bfd_set_error (bfd_error_bad_value);
4186 return FALSE;
4189 if (alloc == 0)
4191 alloc = count;
4192 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4195 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4196 elf_tdata (abfd)->phdr = phdrs;
4197 if (phdrs == NULL)
4198 return FALSE;
4200 maxpagesize = 1;
4201 if ((abfd->flags & D_PAGED) != 0)
4202 maxpagesize = bed->maxpagesize;
4204 off = bed->s->sizeof_ehdr;
4205 off += alloc * bed->s->sizeof_phdr;
4207 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4208 m != NULL;
4209 m = m->next, p++)
4211 asection **secpp;
4213 /* If elf_segment_map is not from map_sections_to_segments, the
4214 sections may not be correctly ordered. NOTE: sorting should
4215 not be done to the PT_NOTE section of a corefile, which may
4216 contain several pseudo-sections artificially created by bfd.
4217 Sorting these pseudo-sections breaks things badly. */
4218 if (m->count > 1
4219 && !(elf_elfheader (abfd)->e_type == ET_CORE
4220 && m->p_type == PT_NOTE))
4221 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4222 elf_sort_sections);
4224 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4225 number of sections with contents contributing to both p_filesz
4226 and p_memsz, followed by a number of sections with no contents
4227 that just contribute to p_memsz. In this loop, OFF tracks next
4228 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4229 an adjustment we use for segments that have no file contents
4230 but need zero filled memory allocation. */
4231 voff = 0;
4232 p->p_type = m->p_type;
4233 p->p_flags = m->p_flags;
4235 if (m->count == 0)
4236 p->p_vaddr = 0;
4237 else
4238 p->p_vaddr = m->sections[0]->vma;
4240 if (m->p_paddr_valid)
4241 p->p_paddr = m->p_paddr;
4242 else if (m->count == 0)
4243 p->p_paddr = 0;
4244 else
4245 p->p_paddr = m->sections[0]->lma;
4247 if (p->p_type == PT_LOAD
4248 && (abfd->flags & D_PAGED) != 0)
4250 /* p_align in demand paged PT_LOAD segments effectively stores
4251 the maximum page size. When copying an executable with
4252 objcopy, we set m->p_align from the input file. Use this
4253 value for maxpagesize rather than bed->maxpagesize, which
4254 may be different. Note that we use maxpagesize for PT_TLS
4255 segment alignment later in this function, so we are relying
4256 on at least one PT_LOAD segment appearing before a PT_TLS
4257 segment. */
4258 if (m->p_align_valid)
4259 maxpagesize = m->p_align;
4261 p->p_align = maxpagesize;
4263 else if (m->count == 0)
4264 p->p_align = 1 << bed->s->log_file_align;
4265 else
4266 p->p_align = 0;
4268 if (p->p_type == PT_LOAD
4269 && m->count > 0)
4271 bfd_size_type align;
4272 bfd_vma adjust;
4273 unsigned int align_power = 0;
4275 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4277 unsigned int secalign;
4279 secalign = bfd_get_section_alignment (abfd, *secpp);
4280 if (secalign > align_power)
4281 align_power = secalign;
4283 align = (bfd_size_type) 1 << align_power;
4285 if (align < maxpagesize)
4286 align = maxpagesize;
4288 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4289 off += adjust;
4290 if (adjust != 0
4291 && !m->includes_filehdr
4292 && !m->includes_phdrs
4293 && (ufile_ptr) off >= align)
4295 /* If the first section isn't loadable, the same holds for
4296 any other sections. Since the segment won't need file
4297 space, we can make p_offset overlap some prior segment.
4298 However, .tbss is special. If a segment starts with
4299 .tbss, we need to look at the next section to decide
4300 whether the segment has any loadable sections. */
4301 i = 0;
4302 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4304 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4305 || ++i >= m->count)
4307 off -= adjust;
4308 voff = adjust - align;
4309 break;
4314 /* Make sure the .dynamic section is the first section in the
4315 PT_DYNAMIC segment. */
4316 else if (p->p_type == PT_DYNAMIC
4317 && m->count > 1
4318 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4320 _bfd_error_handler
4321 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4322 abfd);
4323 bfd_set_error (bfd_error_bad_value);
4324 return FALSE;
4327 p->p_offset = 0;
4328 p->p_filesz = 0;
4329 p->p_memsz = 0;
4331 if (m->includes_filehdr)
4333 if (! m->p_flags_valid)
4334 p->p_flags |= PF_R;
4335 p->p_offset = 0;
4336 p->p_filesz = bed->s->sizeof_ehdr;
4337 p->p_memsz = bed->s->sizeof_ehdr;
4338 if (m->count > 0)
4340 BFD_ASSERT (p->p_type == PT_LOAD);
4342 if (p->p_vaddr < (bfd_vma) off)
4344 (*_bfd_error_handler)
4345 (_("%B: Not enough room for program headers, try linking with -N"),
4346 abfd);
4347 bfd_set_error (bfd_error_bad_value);
4348 return FALSE;
4351 p->p_vaddr -= off;
4352 if (! m->p_paddr_valid)
4353 p->p_paddr -= off;
4357 if (m->includes_phdrs)
4359 if (! m->p_flags_valid)
4360 p->p_flags |= PF_R;
4362 if (!m->includes_filehdr)
4364 p->p_offset = bed->s->sizeof_ehdr;
4366 if (m->count > 0)
4368 BFD_ASSERT (p->p_type == PT_LOAD);
4369 p->p_vaddr -= off - p->p_offset;
4370 if (! m->p_paddr_valid)
4371 p->p_paddr -= off - p->p_offset;
4375 p->p_filesz += alloc * bed->s->sizeof_phdr;
4376 p->p_memsz += alloc * bed->s->sizeof_phdr;
4379 if (p->p_type == PT_LOAD
4380 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4382 if (! m->includes_filehdr && ! m->includes_phdrs)
4383 p->p_offset = off + voff;
4384 else
4386 file_ptr adjust;
4388 adjust = off - (p->p_offset + p->p_filesz);
4389 p->p_filesz += adjust;
4390 p->p_memsz += adjust;
4394 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4395 maps. Set filepos for sections in PT_LOAD segments, and in
4396 core files, for sections in PT_NOTE segments.
4397 assign_file_positions_for_non_load_sections will set filepos
4398 for other sections and update p_filesz for other segments. */
4399 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4401 asection *sec;
4402 flagword flags;
4403 bfd_size_type align;
4405 sec = *secpp;
4406 flags = sec->flags;
4407 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4409 if (p->p_type == PT_LOAD
4410 || p->p_type == PT_TLS)
4412 bfd_signed_vma adjust;
4414 if ((flags & SEC_LOAD) != 0)
4416 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4417 if (adjust < 0)
4419 (*_bfd_error_handler)
4420 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4421 abfd, sec, (unsigned long) sec->lma);
4422 adjust = 0;
4424 off += adjust;
4425 p->p_filesz += adjust;
4426 p->p_memsz += adjust;
4428 /* .tbss is special. It doesn't contribute to p_memsz of
4429 normal segments. */
4430 else if ((flags & SEC_ALLOC) != 0
4431 && ((flags & SEC_THREAD_LOCAL) == 0
4432 || p->p_type == PT_TLS))
4434 /* The section VMA must equal the file position
4435 modulo the page size. */
4436 bfd_size_type page = align;
4437 if (page < maxpagesize)
4438 page = maxpagesize;
4439 adjust = vma_page_aligned_bias (sec->vma,
4440 p->p_vaddr + p->p_memsz,
4441 page);
4442 p->p_memsz += adjust;
4446 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4448 /* The section at i == 0 is the one that actually contains
4449 everything. */
4450 if (i == 0)
4452 sec->filepos = off;
4453 off += sec->size;
4454 p->p_filesz = sec->size;
4455 p->p_memsz = 0;
4456 p->p_align = 1;
4458 else
4460 /* The rest are fake sections that shouldn't be written. */
4461 sec->filepos = 0;
4462 sec->size = 0;
4463 sec->flags = 0;
4464 continue;
4467 else
4469 if (p->p_type == PT_LOAD)
4471 sec->filepos = off;
4472 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4473 1997, and the exact reason for it isn't clear. One
4474 plausible explanation is that it is to work around
4475 a problem we have with linker scripts using data
4476 statements in NOLOAD sections. I don't think it
4477 makes a great deal of sense to have such a section
4478 assigned to a PT_LOAD segment, but apparently
4479 people do this. The data statement results in a
4480 bfd_data_link_order being built, and these need
4481 section contents to write into. Eventually, we get
4482 to _bfd_elf_write_object_contents which writes any
4483 section with contents to the output. Make room
4484 here for the write, so that following segments are
4485 not trashed. */
4486 if ((flags & SEC_LOAD) != 0
4487 || (flags & SEC_HAS_CONTENTS) != 0)
4488 off += sec->size;
4491 if ((flags & SEC_LOAD) != 0)
4493 p->p_filesz += sec->size;
4494 p->p_memsz += sec->size;
4497 /* .tbss is special. It doesn't contribute to p_memsz of
4498 normal segments. */
4499 else if ((flags & SEC_ALLOC) != 0
4500 && ((flags & SEC_THREAD_LOCAL) == 0
4501 || p->p_type == PT_TLS))
4502 p->p_memsz += sec->size;
4504 if (p->p_type == PT_TLS
4505 && sec->size == 0
4506 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4508 struct bfd_link_order *o = sec->map_tail.link_order;
4509 if (o != NULL)
4510 p->p_memsz += o->offset + o->size;
4513 if (align > p->p_align
4514 && (p->p_type != PT_LOAD
4515 || (abfd->flags & D_PAGED) == 0))
4516 p->p_align = align;
4519 if (! m->p_flags_valid)
4521 p->p_flags |= PF_R;
4522 if ((flags & SEC_CODE) != 0)
4523 p->p_flags |= PF_X;
4524 if ((flags & SEC_READONLY) == 0)
4525 p->p_flags |= PF_W;
4530 /* Clear out any program headers we allocated but did not use. */
4531 for (; count < alloc; count++, p++)
4533 memset (p, 0, sizeof *p);
4534 p->p_type = PT_NULL;
4537 elf_tdata (abfd)->next_file_pos = off;
4538 return TRUE;
4541 /* Assign file positions for the other sections. */
4543 static bfd_boolean
4544 assign_file_positions_for_non_load_sections (bfd *abfd,
4545 struct bfd_link_info *link_info)
4547 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4548 Elf_Internal_Shdr **i_shdrpp;
4549 Elf_Internal_Shdr **hdrpp;
4550 Elf_Internal_Phdr *phdrs;
4551 Elf_Internal_Phdr *p;
4552 struct elf_segment_map *m;
4553 bfd_vma filehdr_vaddr, filehdr_paddr;
4554 bfd_vma phdrs_vaddr, phdrs_paddr;
4555 file_ptr off;
4556 unsigned int num_sec;
4557 unsigned int i;
4558 unsigned int count;
4560 i_shdrpp = elf_elfsections (abfd);
4561 num_sec = elf_numsections (abfd);
4562 off = elf_tdata (abfd)->next_file_pos;
4563 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4565 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4566 Elf_Internal_Shdr *hdr;
4568 hdr = *hdrpp;
4569 if (hdr->bfd_section != NULL
4570 && hdr->bfd_section->filepos != 0)
4571 hdr->sh_offset = hdr->bfd_section->filepos;
4572 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4574 ((*_bfd_error_handler)
4575 (_("%B: warning: allocated section `%s' not in segment"),
4576 abfd,
4577 (hdr->bfd_section == NULL
4578 ? "*unknown*"
4579 : hdr->bfd_section->name)));
4580 if ((abfd->flags & D_PAGED) != 0)
4581 off += vma_page_aligned_bias (hdr->sh_addr, off,
4582 bed->maxpagesize);
4583 else
4584 off += vma_page_aligned_bias (hdr->sh_addr, off,
4585 hdr->sh_addralign);
4586 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4587 FALSE);
4589 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4590 && hdr->bfd_section == NULL)
4591 || hdr == i_shdrpp[tdata->symtab_section]
4592 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4593 || hdr == i_shdrpp[tdata->strtab_section])
4594 hdr->sh_offset = -1;
4595 else
4596 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4598 if (i == SHN_LORESERVE - 1)
4600 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4601 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4605 /* Now that we have set the section file positions, we can set up
4606 the file positions for the non PT_LOAD segments. */
4607 count = 0;
4608 filehdr_vaddr = 0;
4609 filehdr_paddr = 0;
4610 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4611 phdrs_paddr = 0;
4612 phdrs = elf_tdata (abfd)->phdr;
4613 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4614 m != NULL;
4615 m = m->next, p++)
4617 ++count;
4618 if (p->p_type != PT_LOAD)
4619 continue;
4621 if (m->includes_filehdr)
4623 filehdr_vaddr = p->p_vaddr;
4624 filehdr_paddr = p->p_paddr;
4626 if (m->includes_phdrs)
4628 phdrs_vaddr = p->p_vaddr;
4629 phdrs_paddr = p->p_paddr;
4630 if (m->includes_filehdr)
4632 phdrs_vaddr += bed->s->sizeof_ehdr;
4633 phdrs_paddr += bed->s->sizeof_ehdr;
4638 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4639 m != NULL;
4640 m = m->next, p++)
4642 if (m->count != 0)
4644 if (p->p_type != PT_LOAD
4645 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4647 Elf_Internal_Shdr *hdr;
4648 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4650 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4651 p->p_filesz = (m->sections[m->count - 1]->filepos
4652 - m->sections[0]->filepos);
4653 if (hdr->sh_type != SHT_NOBITS)
4654 p->p_filesz += hdr->sh_size;
4656 p->p_offset = m->sections[0]->filepos;
4659 else
4661 if (m->includes_filehdr)
4663 p->p_vaddr = filehdr_vaddr;
4664 if (! m->p_paddr_valid)
4665 p->p_paddr = filehdr_paddr;
4667 else if (m->includes_phdrs)
4669 p->p_vaddr = phdrs_vaddr;
4670 if (! m->p_paddr_valid)
4671 p->p_paddr = phdrs_paddr;
4673 else if (p->p_type == PT_GNU_RELRO)
4675 Elf_Internal_Phdr *lp;
4677 for (lp = phdrs; lp < phdrs + count; ++lp)
4679 if (lp->p_type == PT_LOAD
4680 && lp->p_vaddr <= link_info->relro_end
4681 && lp->p_vaddr >= link_info->relro_start
4682 && lp->p_vaddr + lp->p_filesz
4683 >= link_info->relro_end)
4684 break;
4687 if (lp < phdrs + count
4688 && link_info->relro_end > lp->p_vaddr)
4690 p->p_vaddr = lp->p_vaddr;
4691 p->p_paddr = lp->p_paddr;
4692 p->p_offset = lp->p_offset;
4693 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4694 p->p_memsz = p->p_filesz;
4695 p->p_align = 1;
4696 p->p_flags = (lp->p_flags & ~PF_W);
4698 else
4700 memset (p, 0, sizeof *p);
4701 p->p_type = PT_NULL;
4707 elf_tdata (abfd)->next_file_pos = off;
4709 return TRUE;
4712 /* Get the size of the program header.
4714 If this is called by the linker before any of the section VMA's are set, it
4715 can't calculate the correct value for a strange memory layout. This only
4716 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4717 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4718 data segment (exclusive of .interp and .dynamic).
4720 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4721 will be two segments. */
4723 static bfd_size_type
4724 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4726 size_t segs;
4727 asection *s;
4728 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4730 /* We can't return a different result each time we're called. */
4731 if (elf_tdata (abfd)->program_header_size != 0)
4732 return elf_tdata (abfd)->program_header_size;
4734 if (elf_tdata (abfd)->segment_map != NULL)
4736 struct elf_segment_map *m;
4738 segs = 0;
4739 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4740 ++segs;
4741 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4742 return elf_tdata (abfd)->program_header_size;
4745 /* Assume we will need exactly two PT_LOAD segments: one for text
4746 and one for data. */
4747 segs = 2;
4749 s = bfd_get_section_by_name (abfd, ".interp");
4750 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4752 /* If we have a loadable interpreter section, we need a
4753 PT_INTERP segment. In this case, assume we also need a
4754 PT_PHDR segment, although that may not be true for all
4755 targets. */
4756 segs += 2;
4759 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4761 /* We need a PT_DYNAMIC segment. */
4762 ++segs;
4765 if (elf_tdata (abfd)->eh_frame_hdr)
4767 /* We need a PT_GNU_EH_FRAME segment. */
4768 ++segs;
4771 if (elf_tdata (abfd)->stack_flags)
4773 /* We need a PT_GNU_STACK segment. */
4774 ++segs;
4777 if (elf_tdata (abfd)->relro)
4779 /* We need a PT_GNU_RELRO segment. */
4780 ++segs;
4783 for (s = abfd->sections; s != NULL; s = s->next)
4785 if ((s->flags & SEC_LOAD) != 0
4786 && strncmp (s->name, ".note", 5) == 0)
4788 /* We need a PT_NOTE segment. */
4789 ++segs;
4793 for (s = abfd->sections; s != NULL; s = s->next)
4795 if (s->flags & SEC_THREAD_LOCAL)
4797 /* We need a PT_TLS segment. */
4798 ++segs;
4799 break;
4803 /* Let the backend count up any program headers it might need. */
4804 if (bed->elf_backend_additional_program_headers)
4806 int a;
4808 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4809 if (a == -1)
4810 abort ();
4811 segs += a;
4814 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4815 return elf_tdata (abfd)->program_header_size;
4818 /* Work out the file positions of all the sections. This is called by
4819 _bfd_elf_compute_section_file_positions. All the section sizes and
4820 VMAs must be known before this is called.
4822 Reloc sections come in two flavours: Those processed specially as
4823 "side-channel" data attached to a section to which they apply, and
4824 those that bfd doesn't process as relocations. The latter sort are
4825 stored in a normal bfd section by bfd_section_from_shdr. We don't
4826 consider the former sort here, unless they form part of the loadable
4827 image. Reloc sections not assigned here will be handled later by
4828 assign_file_positions_for_relocs.
4830 We also don't set the positions of the .symtab and .strtab here. */
4832 static bfd_boolean
4833 assign_file_positions_except_relocs (bfd *abfd,
4834 struct bfd_link_info *link_info)
4836 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4837 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4838 file_ptr off;
4839 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4841 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4842 && bfd_get_format (abfd) != bfd_core)
4844 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4845 unsigned int num_sec = elf_numsections (abfd);
4846 Elf_Internal_Shdr **hdrpp;
4847 unsigned int i;
4849 /* Start after the ELF header. */
4850 off = i_ehdrp->e_ehsize;
4852 /* We are not creating an executable, which means that we are
4853 not creating a program header, and that the actual order of
4854 the sections in the file is unimportant. */
4855 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4857 Elf_Internal_Shdr *hdr;
4859 hdr = *hdrpp;
4860 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4861 && hdr->bfd_section == NULL)
4862 || i == tdata->symtab_section
4863 || i == tdata->symtab_shndx_section
4864 || i == tdata->strtab_section)
4866 hdr->sh_offset = -1;
4868 else
4869 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4871 if (i == SHN_LORESERVE - 1)
4873 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4874 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4878 else
4880 unsigned int alloc;
4882 /* Assign file positions for the loaded sections based on the
4883 assignment of sections to segments. */
4884 if (!assign_file_positions_for_load_sections (abfd, link_info))
4885 return FALSE;
4887 /* And for non-load sections. */
4888 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4889 return FALSE;
4891 /* Write out the program headers. */
4892 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4893 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4894 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4895 return FALSE;
4897 off = tdata->next_file_pos;
4900 /* Place the section headers. */
4901 off = align_file_position (off, 1 << bed->s->log_file_align);
4902 i_ehdrp->e_shoff = off;
4903 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4905 tdata->next_file_pos = off;
4907 return TRUE;
4910 static bfd_boolean
4911 prep_headers (bfd *abfd)
4913 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4914 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4915 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4916 struct elf_strtab_hash *shstrtab;
4917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4919 i_ehdrp = elf_elfheader (abfd);
4920 i_shdrp = elf_elfsections (abfd);
4922 shstrtab = _bfd_elf_strtab_init ();
4923 if (shstrtab == NULL)
4924 return FALSE;
4926 elf_shstrtab (abfd) = shstrtab;
4928 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4929 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4930 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4931 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4933 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4934 i_ehdrp->e_ident[EI_DATA] =
4935 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4936 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4938 if ((abfd->flags & DYNAMIC) != 0)
4939 i_ehdrp->e_type = ET_DYN;
4940 else if ((abfd->flags & EXEC_P) != 0)
4941 i_ehdrp->e_type = ET_EXEC;
4942 else if (bfd_get_format (abfd) == bfd_core)
4943 i_ehdrp->e_type = ET_CORE;
4944 else
4945 i_ehdrp->e_type = ET_REL;
4947 switch (bfd_get_arch (abfd))
4949 case bfd_arch_unknown:
4950 i_ehdrp->e_machine = EM_NONE;
4951 break;
4953 /* There used to be a long list of cases here, each one setting
4954 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4955 in the corresponding bfd definition. To avoid duplication,
4956 the switch was removed. Machines that need special handling
4957 can generally do it in elf_backend_final_write_processing(),
4958 unless they need the information earlier than the final write.
4959 Such need can generally be supplied by replacing the tests for
4960 e_machine with the conditions used to determine it. */
4961 default:
4962 i_ehdrp->e_machine = bed->elf_machine_code;
4965 i_ehdrp->e_version = bed->s->ev_current;
4966 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4968 /* No program header, for now. */
4969 i_ehdrp->e_phoff = 0;
4970 i_ehdrp->e_phentsize = 0;
4971 i_ehdrp->e_phnum = 0;
4973 /* Each bfd section is section header entry. */
4974 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4975 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4977 /* If we're building an executable, we'll need a program header table. */
4978 if (abfd->flags & EXEC_P)
4979 /* It all happens later. */
4981 else
4983 i_ehdrp->e_phentsize = 0;
4984 i_phdrp = 0;
4985 i_ehdrp->e_phoff = 0;
4988 elf_tdata (abfd)->symtab_hdr.sh_name =
4989 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4990 elf_tdata (abfd)->strtab_hdr.sh_name =
4991 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4992 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4993 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4994 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4995 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4996 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4997 return FALSE;
4999 return TRUE;
5002 /* Assign file positions for all the reloc sections which are not part
5003 of the loadable file image. */
5005 void
5006 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5008 file_ptr off;
5009 unsigned int i, num_sec;
5010 Elf_Internal_Shdr **shdrpp;
5012 off = elf_tdata (abfd)->next_file_pos;
5014 num_sec = elf_numsections (abfd);
5015 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5017 Elf_Internal_Shdr *shdrp;
5019 shdrp = *shdrpp;
5020 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5021 && shdrp->sh_offset == -1)
5022 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5025 elf_tdata (abfd)->next_file_pos = off;
5028 bfd_boolean
5029 _bfd_elf_write_object_contents (bfd *abfd)
5031 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5032 Elf_Internal_Ehdr *i_ehdrp;
5033 Elf_Internal_Shdr **i_shdrp;
5034 bfd_boolean failed;
5035 unsigned int count, num_sec;
5037 if (! abfd->output_has_begun
5038 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5039 return FALSE;
5041 i_shdrp = elf_elfsections (abfd);
5042 i_ehdrp = elf_elfheader (abfd);
5044 failed = FALSE;
5045 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5046 if (failed)
5047 return FALSE;
5049 _bfd_elf_assign_file_positions_for_relocs (abfd);
5051 /* After writing the headers, we need to write the sections too... */
5052 num_sec = elf_numsections (abfd);
5053 for (count = 1; count < num_sec; count++)
5055 if (bed->elf_backend_section_processing)
5056 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5057 if (i_shdrp[count]->contents)
5059 bfd_size_type amt = i_shdrp[count]->sh_size;
5061 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5062 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5063 return FALSE;
5065 if (count == SHN_LORESERVE - 1)
5066 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5069 /* Write out the section header names. */
5070 if (elf_shstrtab (abfd) != NULL
5071 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5072 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5073 return FALSE;
5075 if (bed->elf_backend_final_write_processing)
5076 (*bed->elf_backend_final_write_processing) (abfd,
5077 elf_tdata (abfd)->linker);
5079 return bed->s->write_shdrs_and_ehdr (abfd);
5082 bfd_boolean
5083 _bfd_elf_write_corefile_contents (bfd *abfd)
5085 /* Hopefully this can be done just like an object file. */
5086 return _bfd_elf_write_object_contents (abfd);
5089 /* Given a section, search the header to find them. */
5092 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5094 const struct elf_backend_data *bed;
5095 int index;
5097 if (elf_section_data (asect) != NULL
5098 && elf_section_data (asect)->this_idx != 0)
5099 return elf_section_data (asect)->this_idx;
5101 if (bfd_is_abs_section (asect))
5102 index = SHN_ABS;
5103 else if (bfd_is_com_section (asect))
5104 index = SHN_COMMON;
5105 else if (bfd_is_und_section (asect))
5106 index = SHN_UNDEF;
5107 else
5108 index = -1;
5110 bed = get_elf_backend_data (abfd);
5111 if (bed->elf_backend_section_from_bfd_section)
5113 int retval = index;
5115 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5116 return retval;
5119 if (index == -1)
5120 bfd_set_error (bfd_error_nonrepresentable_section);
5122 return index;
5125 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5126 on error. */
5129 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5131 asymbol *asym_ptr = *asym_ptr_ptr;
5132 int idx;
5133 flagword flags = asym_ptr->flags;
5135 /* When gas creates relocations against local labels, it creates its
5136 own symbol for the section, but does put the symbol into the
5137 symbol chain, so udata is 0. When the linker is generating
5138 relocatable output, this section symbol may be for one of the
5139 input sections rather than the output section. */
5140 if (asym_ptr->udata.i == 0
5141 && (flags & BSF_SECTION_SYM)
5142 && asym_ptr->section)
5144 asection *sec;
5145 int indx;
5147 sec = asym_ptr->section;
5148 if (sec->owner != abfd && sec->output_section != NULL)
5149 sec = sec->output_section;
5150 if (sec->owner == abfd
5151 && (indx = sec->index) < elf_num_section_syms (abfd)
5152 && elf_section_syms (abfd)[indx] != NULL)
5153 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5156 idx = asym_ptr->udata.i;
5158 if (idx == 0)
5160 /* This case can occur when using --strip-symbol on a symbol
5161 which is used in a relocation entry. */
5162 (*_bfd_error_handler)
5163 (_("%B: symbol `%s' required but not present"),
5164 abfd, bfd_asymbol_name (asym_ptr));
5165 bfd_set_error (bfd_error_no_symbols);
5166 return -1;
5169 #if DEBUG & 4
5171 fprintf (stderr,
5172 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5173 (long) asym_ptr, asym_ptr->name, idx, flags,
5174 elf_symbol_flags (flags));
5175 fflush (stderr);
5177 #endif
5179 return idx;
5182 /* Rewrite program header information. */
5184 static bfd_boolean
5185 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5187 Elf_Internal_Ehdr *iehdr;
5188 struct elf_segment_map *map;
5189 struct elf_segment_map *map_first;
5190 struct elf_segment_map **pointer_to_map;
5191 Elf_Internal_Phdr *segment;
5192 asection *section;
5193 unsigned int i;
5194 unsigned int num_segments;
5195 bfd_boolean phdr_included = FALSE;
5196 bfd_vma maxpagesize;
5197 struct elf_segment_map *phdr_adjust_seg = NULL;
5198 unsigned int phdr_adjust_num = 0;
5199 const struct elf_backend_data *bed;
5201 bed = get_elf_backend_data (ibfd);
5202 iehdr = elf_elfheader (ibfd);
5204 map_first = NULL;
5205 pointer_to_map = &map_first;
5207 num_segments = elf_elfheader (ibfd)->e_phnum;
5208 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5210 /* Returns the end address of the segment + 1. */
5211 #define SEGMENT_END(segment, start) \
5212 (start + (segment->p_memsz > segment->p_filesz \
5213 ? segment->p_memsz : segment->p_filesz))
5215 #define SECTION_SIZE(section, segment) \
5216 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5217 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5218 ? section->size : 0)
5220 /* Returns TRUE if the given section is contained within
5221 the given segment. VMA addresses are compared. */
5222 #define IS_CONTAINED_BY_VMA(section, segment) \
5223 (section->vma >= segment->p_vaddr \
5224 && (section->vma + SECTION_SIZE (section, segment) \
5225 <= (SEGMENT_END (segment, segment->p_vaddr))))
5227 /* Returns TRUE if the given section is contained within
5228 the given segment. LMA addresses are compared. */
5229 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5230 (section->lma >= base \
5231 && (section->lma + SECTION_SIZE (section, segment) \
5232 <= SEGMENT_END (segment, base)))
5234 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5235 #define IS_COREFILE_NOTE(p, s) \
5236 (p->p_type == PT_NOTE \
5237 && bfd_get_format (ibfd) == bfd_core \
5238 && s->vma == 0 && s->lma == 0 \
5239 && (bfd_vma) s->filepos >= p->p_offset \
5240 && ((bfd_vma) s->filepos + s->size \
5241 <= p->p_offset + p->p_filesz))
5243 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5244 linker, which generates a PT_INTERP section with p_vaddr and
5245 p_memsz set to 0. */
5246 #define IS_SOLARIS_PT_INTERP(p, s) \
5247 (p->p_vaddr == 0 \
5248 && p->p_paddr == 0 \
5249 && p->p_memsz == 0 \
5250 && p->p_filesz > 0 \
5251 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5252 && s->size > 0 \
5253 && (bfd_vma) s->filepos >= p->p_offset \
5254 && ((bfd_vma) s->filepos + s->size \
5255 <= p->p_offset + p->p_filesz))
5257 /* Decide if the given section should be included in the given segment.
5258 A section will be included if:
5259 1. It is within the address space of the segment -- we use the LMA
5260 if that is set for the segment and the VMA otherwise,
5261 2. It is an allocated segment,
5262 3. There is an output section associated with it,
5263 4. The section has not already been allocated to a previous segment.
5264 5. PT_GNU_STACK segments do not include any sections.
5265 6. PT_TLS segment includes only SHF_TLS sections.
5266 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5267 8. PT_DYNAMIC should not contain empty sections at the beginning
5268 (with the possible exception of .dynamic). */
5269 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5270 ((((segment->p_paddr \
5271 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5272 : IS_CONTAINED_BY_VMA (section, segment)) \
5273 && (section->flags & SEC_ALLOC) != 0) \
5274 || IS_COREFILE_NOTE (segment, section)) \
5275 && section->output_section != NULL \
5276 && segment->p_type != PT_GNU_STACK \
5277 && (segment->p_type != PT_TLS \
5278 || (section->flags & SEC_THREAD_LOCAL)) \
5279 && (segment->p_type == PT_LOAD \
5280 || segment->p_type == PT_TLS \
5281 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5282 && (segment->p_type != PT_DYNAMIC \
5283 || SECTION_SIZE (section, segment) > 0 \
5284 || (segment->p_paddr \
5285 ? segment->p_paddr != section->lma \
5286 : segment->p_vaddr != section->vma) \
5287 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5288 == 0)) \
5289 && ! section->segment_mark)
5291 /* Returns TRUE iff seg1 starts after the end of seg2. */
5292 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5293 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5295 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5296 their VMA address ranges and their LMA address ranges overlap.
5297 It is possible to have overlapping VMA ranges without overlapping LMA
5298 ranges. RedBoot images for example can have both .data and .bss mapped
5299 to the same VMA range, but with the .data section mapped to a different
5300 LMA. */
5301 #define SEGMENT_OVERLAPS(seg1, seg2) \
5302 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5303 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5304 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5305 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5307 /* Initialise the segment mark field. */
5308 for (section = ibfd->sections; section != NULL; section = section->next)
5309 section->segment_mark = FALSE;
5311 /* Scan through the segments specified in the program header
5312 of the input BFD. For this first scan we look for overlaps
5313 in the loadable segments. These can be created by weird
5314 parameters to objcopy. Also, fix some solaris weirdness. */
5315 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5316 i < num_segments;
5317 i++, segment++)
5319 unsigned int j;
5320 Elf_Internal_Phdr *segment2;
5322 if (segment->p_type == PT_INTERP)
5323 for (section = ibfd->sections; section; section = section->next)
5324 if (IS_SOLARIS_PT_INTERP (segment, section))
5326 /* Mininal change so that the normal section to segment
5327 assignment code will work. */
5328 segment->p_vaddr = section->vma;
5329 break;
5332 if (segment->p_type != PT_LOAD)
5333 continue;
5335 /* Determine if this segment overlaps any previous segments. */
5336 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5338 bfd_signed_vma extra_length;
5340 if (segment2->p_type != PT_LOAD
5341 || ! SEGMENT_OVERLAPS (segment, segment2))
5342 continue;
5344 /* Merge the two segments together. */
5345 if (segment2->p_vaddr < segment->p_vaddr)
5347 /* Extend SEGMENT2 to include SEGMENT and then delete
5348 SEGMENT. */
5349 extra_length =
5350 SEGMENT_END (segment, segment->p_vaddr)
5351 - SEGMENT_END (segment2, segment2->p_vaddr);
5353 if (extra_length > 0)
5355 segment2->p_memsz += extra_length;
5356 segment2->p_filesz += extra_length;
5359 segment->p_type = PT_NULL;
5361 /* Since we have deleted P we must restart the outer loop. */
5362 i = 0;
5363 segment = elf_tdata (ibfd)->phdr;
5364 break;
5366 else
5368 /* Extend SEGMENT to include SEGMENT2 and then delete
5369 SEGMENT2. */
5370 extra_length =
5371 SEGMENT_END (segment2, segment2->p_vaddr)
5372 - SEGMENT_END (segment, segment->p_vaddr);
5374 if (extra_length > 0)
5376 segment->p_memsz += extra_length;
5377 segment->p_filesz += extra_length;
5380 segment2->p_type = PT_NULL;
5385 /* The second scan attempts to assign sections to segments. */
5386 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5387 i < num_segments;
5388 i ++, segment ++)
5390 unsigned int section_count;
5391 asection ** sections;
5392 asection * output_section;
5393 unsigned int isec;
5394 bfd_vma matching_lma;
5395 bfd_vma suggested_lma;
5396 unsigned int j;
5397 bfd_size_type amt;
5399 if (segment->p_type == PT_NULL)
5400 continue;
5402 /* Compute how many sections might be placed into this segment. */
5403 for (section = ibfd->sections, section_count = 0;
5404 section != NULL;
5405 section = section->next)
5406 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5407 ++section_count;
5409 /* Allocate a segment map big enough to contain
5410 all of the sections we have selected. */
5411 amt = sizeof (struct elf_segment_map);
5412 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5413 map = bfd_alloc (obfd, amt);
5414 if (map == NULL)
5415 return FALSE;
5417 /* Initialise the fields of the segment map. Default to
5418 using the physical address of the segment in the input BFD. */
5419 map->next = NULL;
5420 map->p_type = segment->p_type;
5421 map->p_flags = segment->p_flags;
5422 map->p_flags_valid = 1;
5423 map->p_paddr = segment->p_paddr;
5424 map->p_paddr_valid = 1;
5426 /* Determine if this segment contains the ELF file header
5427 and if it contains the program headers themselves. */
5428 map->includes_filehdr = (segment->p_offset == 0
5429 && segment->p_filesz >= iehdr->e_ehsize);
5431 map->includes_phdrs = 0;
5433 if (! phdr_included || segment->p_type != PT_LOAD)
5435 map->includes_phdrs =
5436 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5437 && (segment->p_offset + segment->p_filesz
5438 >= ((bfd_vma) iehdr->e_phoff
5439 + iehdr->e_phnum * iehdr->e_phentsize)));
5441 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5442 phdr_included = TRUE;
5445 if (section_count == 0)
5447 /* Special segments, such as the PT_PHDR segment, may contain
5448 no sections, but ordinary, loadable segments should contain
5449 something. They are allowed by the ELF spec however, so only
5450 a warning is produced. */
5451 if (segment->p_type == PT_LOAD)
5452 (*_bfd_error_handler)
5453 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5454 ibfd);
5456 map->count = 0;
5457 *pointer_to_map = map;
5458 pointer_to_map = &map->next;
5460 continue;
5463 /* Now scan the sections in the input BFD again and attempt
5464 to add their corresponding output sections to the segment map.
5465 The problem here is how to handle an output section which has
5466 been moved (ie had its LMA changed). There are four possibilities:
5468 1. None of the sections have been moved.
5469 In this case we can continue to use the segment LMA from the
5470 input BFD.
5472 2. All of the sections have been moved by the same amount.
5473 In this case we can change the segment's LMA to match the LMA
5474 of the first section.
5476 3. Some of the sections have been moved, others have not.
5477 In this case those sections which have not been moved can be
5478 placed in the current segment which will have to have its size,
5479 and possibly its LMA changed, and a new segment or segments will
5480 have to be created to contain the other sections.
5482 4. The sections have been moved, but not by the same amount.
5483 In this case we can change the segment's LMA to match the LMA
5484 of the first section and we will have to create a new segment
5485 or segments to contain the other sections.
5487 In order to save time, we allocate an array to hold the section
5488 pointers that we are interested in. As these sections get assigned
5489 to a segment, they are removed from this array. */
5491 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5492 to work around this long long bug. */
5493 sections = bfd_malloc2 (section_count, sizeof (asection *));
5494 if (sections == NULL)
5495 return FALSE;
5497 /* Step One: Scan for segment vs section LMA conflicts.
5498 Also add the sections to the section array allocated above.
5499 Also add the sections to the current segment. In the common
5500 case, where the sections have not been moved, this means that
5501 we have completely filled the segment, and there is nothing
5502 more to do. */
5503 isec = 0;
5504 matching_lma = 0;
5505 suggested_lma = 0;
5507 for (j = 0, section = ibfd->sections;
5508 section != NULL;
5509 section = section->next)
5511 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5513 output_section = section->output_section;
5515 sections[j ++] = section;
5517 /* The Solaris native linker always sets p_paddr to 0.
5518 We try to catch that case here, and set it to the
5519 correct value. Note - some backends require that
5520 p_paddr be left as zero. */
5521 if (segment->p_paddr == 0
5522 && segment->p_vaddr != 0
5523 && (! bed->want_p_paddr_set_to_zero)
5524 && isec == 0
5525 && output_section->lma != 0
5526 && (output_section->vma == (segment->p_vaddr
5527 + (map->includes_filehdr
5528 ? iehdr->e_ehsize
5529 : 0)
5530 + (map->includes_phdrs
5531 ? (iehdr->e_phnum
5532 * iehdr->e_phentsize)
5533 : 0))))
5534 map->p_paddr = segment->p_vaddr;
5536 /* Match up the physical address of the segment with the
5537 LMA address of the output section. */
5538 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5539 || IS_COREFILE_NOTE (segment, section)
5540 || (bed->want_p_paddr_set_to_zero &&
5541 IS_CONTAINED_BY_VMA (output_section, segment))
5544 if (matching_lma == 0)
5545 matching_lma = output_section->lma;
5547 /* We assume that if the section fits within the segment
5548 then it does not overlap any other section within that
5549 segment. */
5550 map->sections[isec ++] = output_section;
5552 else if (suggested_lma == 0)
5553 suggested_lma = output_section->lma;
5557 BFD_ASSERT (j == section_count);
5559 /* Step Two: Adjust the physical address of the current segment,
5560 if necessary. */
5561 if (isec == section_count)
5563 /* All of the sections fitted within the segment as currently
5564 specified. This is the default case. Add the segment to
5565 the list of built segments and carry on to process the next
5566 program header in the input BFD. */
5567 map->count = section_count;
5568 *pointer_to_map = map;
5569 pointer_to_map = &map->next;
5571 free (sections);
5572 continue;
5574 else
5576 if (matching_lma != 0)
5578 /* At least one section fits inside the current segment.
5579 Keep it, but modify its physical address to match the
5580 LMA of the first section that fitted. */
5581 map->p_paddr = matching_lma;
5583 else
5585 /* None of the sections fitted inside the current segment.
5586 Change the current segment's physical address to match
5587 the LMA of the first section. */
5588 map->p_paddr = suggested_lma;
5591 /* Offset the segment physical address from the lma
5592 to allow for space taken up by elf headers. */
5593 if (map->includes_filehdr)
5594 map->p_paddr -= iehdr->e_ehsize;
5596 if (map->includes_phdrs)
5598 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5600 /* iehdr->e_phnum is just an estimate of the number
5601 of program headers that we will need. Make a note
5602 here of the number we used and the segment we chose
5603 to hold these headers, so that we can adjust the
5604 offset when we know the correct value. */
5605 phdr_adjust_num = iehdr->e_phnum;
5606 phdr_adjust_seg = map;
5610 /* Step Three: Loop over the sections again, this time assigning
5611 those that fit to the current segment and removing them from the
5612 sections array; but making sure not to leave large gaps. Once all
5613 possible sections have been assigned to the current segment it is
5614 added to the list of built segments and if sections still remain
5615 to be assigned, a new segment is constructed before repeating
5616 the loop. */
5617 isec = 0;
5620 map->count = 0;
5621 suggested_lma = 0;
5623 /* Fill the current segment with sections that fit. */
5624 for (j = 0; j < section_count; j++)
5626 section = sections[j];
5628 if (section == NULL)
5629 continue;
5631 output_section = section->output_section;
5633 BFD_ASSERT (output_section != NULL);
5635 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5636 || IS_COREFILE_NOTE (segment, section))
5638 if (map->count == 0)
5640 /* If the first section in a segment does not start at
5641 the beginning of the segment, then something is
5642 wrong. */
5643 if (output_section->lma !=
5644 (map->p_paddr
5645 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5646 + (map->includes_phdrs
5647 ? iehdr->e_phnum * iehdr->e_phentsize
5648 : 0)))
5649 abort ();
5651 else
5653 asection * prev_sec;
5655 prev_sec = map->sections[map->count - 1];
5657 /* If the gap between the end of the previous section
5658 and the start of this section is more than
5659 maxpagesize then we need to start a new segment. */
5660 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5661 maxpagesize)
5662 < BFD_ALIGN (output_section->lma, maxpagesize))
5663 || ((prev_sec->lma + prev_sec->size)
5664 > output_section->lma))
5666 if (suggested_lma == 0)
5667 suggested_lma = output_section->lma;
5669 continue;
5673 map->sections[map->count++] = output_section;
5674 ++isec;
5675 sections[j] = NULL;
5676 section->segment_mark = TRUE;
5678 else if (suggested_lma == 0)
5679 suggested_lma = output_section->lma;
5682 BFD_ASSERT (map->count > 0);
5684 /* Add the current segment to the list of built segments. */
5685 *pointer_to_map = map;
5686 pointer_to_map = &map->next;
5688 if (isec < section_count)
5690 /* We still have not allocated all of the sections to
5691 segments. Create a new segment here, initialise it
5692 and carry on looping. */
5693 amt = sizeof (struct elf_segment_map);
5694 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5695 map = bfd_alloc (obfd, amt);
5696 if (map == NULL)
5698 free (sections);
5699 return FALSE;
5702 /* Initialise the fields of the segment map. Set the physical
5703 physical address to the LMA of the first section that has
5704 not yet been assigned. */
5705 map->next = NULL;
5706 map->p_type = segment->p_type;
5707 map->p_flags = segment->p_flags;
5708 map->p_flags_valid = 1;
5709 map->p_paddr = suggested_lma;
5710 map->p_paddr_valid = 1;
5711 map->includes_filehdr = 0;
5712 map->includes_phdrs = 0;
5715 while (isec < section_count);
5717 free (sections);
5720 /* The Solaris linker creates program headers in which all the
5721 p_paddr fields are zero. When we try to objcopy or strip such a
5722 file, we get confused. Check for this case, and if we find it
5723 reset the p_paddr_valid fields. */
5724 for (map = map_first; map != NULL; map = map->next)
5725 if (map->p_paddr != 0)
5726 break;
5727 if (map == NULL)
5728 for (map = map_first; map != NULL; map = map->next)
5729 map->p_paddr_valid = 0;
5731 elf_tdata (obfd)->segment_map = map_first;
5733 /* If we had to estimate the number of program headers that were
5734 going to be needed, then check our estimate now and adjust
5735 the offset if necessary. */
5736 if (phdr_adjust_seg != NULL)
5738 unsigned int count;
5740 for (count = 0, map = map_first; map != NULL; map = map->next)
5741 count++;
5743 if (count > phdr_adjust_num)
5744 phdr_adjust_seg->p_paddr
5745 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5748 #undef SEGMENT_END
5749 #undef SECTION_SIZE
5750 #undef IS_CONTAINED_BY_VMA
5751 #undef IS_CONTAINED_BY_LMA
5752 #undef IS_COREFILE_NOTE
5753 #undef IS_SOLARIS_PT_INTERP
5754 #undef INCLUDE_SECTION_IN_SEGMENT
5755 #undef SEGMENT_AFTER_SEGMENT
5756 #undef SEGMENT_OVERLAPS
5757 return TRUE;
5760 /* Copy ELF program header information. */
5762 static bfd_boolean
5763 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5765 Elf_Internal_Ehdr *iehdr;
5766 struct elf_segment_map *map;
5767 struct elf_segment_map *map_first;
5768 struct elf_segment_map **pointer_to_map;
5769 Elf_Internal_Phdr *segment;
5770 unsigned int i;
5771 unsigned int num_segments;
5772 bfd_boolean phdr_included = FALSE;
5774 iehdr = elf_elfheader (ibfd);
5776 map_first = NULL;
5777 pointer_to_map = &map_first;
5779 num_segments = elf_elfheader (ibfd)->e_phnum;
5780 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5781 i < num_segments;
5782 i++, segment++)
5784 asection *section;
5785 unsigned int section_count;
5786 bfd_size_type amt;
5787 Elf_Internal_Shdr *this_hdr;
5789 /* FIXME: Do we need to copy PT_NULL segment? */
5790 if (segment->p_type == PT_NULL)
5791 continue;
5793 /* Compute how many sections are in this segment. */
5794 for (section = ibfd->sections, section_count = 0;
5795 section != NULL;
5796 section = section->next)
5798 this_hdr = &(elf_section_data(section)->this_hdr);
5799 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5800 section_count++;
5803 /* Allocate a segment map big enough to contain
5804 all of the sections we have selected. */
5805 amt = sizeof (struct elf_segment_map);
5806 if (section_count != 0)
5807 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5808 map = bfd_alloc (obfd, amt);
5809 if (map == NULL)
5810 return FALSE;
5812 /* Initialize the fields of the output segment map with the
5813 input segment. */
5814 map->next = NULL;
5815 map->p_type = segment->p_type;
5816 map->p_flags = segment->p_flags;
5817 map->p_flags_valid = 1;
5818 map->p_paddr = segment->p_paddr;
5819 map->p_paddr_valid = 1;
5820 map->p_align = segment->p_align;
5821 map->p_align_valid = 1;
5823 /* Determine if this segment contains the ELF file header
5824 and if it contains the program headers themselves. */
5825 map->includes_filehdr = (segment->p_offset == 0
5826 && segment->p_filesz >= iehdr->e_ehsize);
5828 map->includes_phdrs = 0;
5829 if (! phdr_included || segment->p_type != PT_LOAD)
5831 map->includes_phdrs =
5832 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5833 && (segment->p_offset + segment->p_filesz
5834 >= ((bfd_vma) iehdr->e_phoff
5835 + iehdr->e_phnum * iehdr->e_phentsize)));
5837 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5838 phdr_included = TRUE;
5841 if (section_count != 0)
5843 unsigned int isec = 0;
5845 for (section = ibfd->sections;
5846 section != NULL;
5847 section = section->next)
5849 this_hdr = &(elf_section_data(section)->this_hdr);
5850 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5851 map->sections[isec++] = section->output_section;
5855 map->count = section_count;
5856 *pointer_to_map = map;
5857 pointer_to_map = &map->next;
5860 elf_tdata (obfd)->segment_map = map_first;
5861 return TRUE;
5864 /* Copy private BFD data. This copies or rewrites ELF program header
5865 information. */
5867 static bfd_boolean
5868 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5870 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5871 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5872 return TRUE;
5874 if (elf_tdata (ibfd)->phdr == NULL)
5875 return TRUE;
5877 if (ibfd->xvec == obfd->xvec)
5879 /* Check if any sections in the input BFD covered by ELF program
5880 header are changed. */
5881 Elf_Internal_Phdr *segment;
5882 asection *section, *osec;
5883 unsigned int i, num_segments;
5884 Elf_Internal_Shdr *this_hdr;
5886 /* Initialize the segment mark field. */
5887 for (section = obfd->sections; section != NULL;
5888 section = section->next)
5889 section->segment_mark = FALSE;
5891 num_segments = elf_elfheader (ibfd)->e_phnum;
5892 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5893 i < num_segments;
5894 i++, segment++)
5896 for (section = ibfd->sections;
5897 section != NULL; section = section->next)
5899 /* We mark the output section so that we know it comes
5900 from the input BFD. */
5901 osec = section->output_section;
5902 if (osec)
5903 osec->segment_mark = TRUE;
5905 /* Check if this section is covered by the segment. */
5906 this_hdr = &(elf_section_data(section)->this_hdr);
5907 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5909 /* FIXME: Check if its output section is changed or
5910 removed. What else do we need to check? */
5911 if (osec == NULL
5912 || section->flags != osec->flags
5913 || section->lma != osec->lma
5914 || section->vma != osec->vma
5915 || section->size != osec->size
5916 || section->rawsize != osec->rawsize
5917 || section->alignment_power != osec->alignment_power)
5918 goto rewrite;
5923 /* Check to see if any output section doesn't come from the
5924 input BFD. */
5925 for (section = obfd->sections; section != NULL;
5926 section = section->next)
5928 if (section->segment_mark == FALSE)
5929 goto rewrite;
5930 else
5931 section->segment_mark = FALSE;
5934 return copy_elf_program_header (ibfd, obfd);
5937 rewrite:
5938 return rewrite_elf_program_header (ibfd, obfd);
5941 /* Initialize private output section information from input section. */
5943 bfd_boolean
5944 _bfd_elf_init_private_section_data (bfd *ibfd,
5945 asection *isec,
5946 bfd *obfd,
5947 asection *osec,
5948 struct bfd_link_info *link_info)
5951 Elf_Internal_Shdr *ihdr, *ohdr;
5952 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5954 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5955 || obfd->xvec->flavour != bfd_target_elf_flavour)
5956 return TRUE;
5958 /* Don't copy the output ELF section type from input if the
5959 output BFD section flags have been set to something different.
5960 elf_fake_sections will set ELF section type based on BFD
5961 section flags. */
5962 if (osec->flags == isec->flags
5963 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5964 elf_section_type (osec) = elf_section_type (isec);
5966 /* Set things up for objcopy and relocatable link. The output
5967 SHT_GROUP section will have its elf_next_in_group pointing back
5968 to the input group members. Ignore linker created group section.
5969 See elfNN_ia64_object_p in elfxx-ia64.c. */
5970 if (need_group)
5972 if (elf_sec_group (isec) == NULL
5973 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5975 if (elf_section_flags (isec) & SHF_GROUP)
5976 elf_section_flags (osec) |= SHF_GROUP;
5977 elf_next_in_group (osec) = elf_next_in_group (isec);
5978 elf_group_name (osec) = elf_group_name (isec);
5982 ihdr = &elf_section_data (isec)->this_hdr;
5984 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5985 don't use the output section of the linked-to section since it
5986 may be NULL at this point. */
5987 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5989 ohdr = &elf_section_data (osec)->this_hdr;
5990 ohdr->sh_flags |= SHF_LINK_ORDER;
5991 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5994 osec->use_rela_p = isec->use_rela_p;
5996 return TRUE;
5999 /* Copy private section information. This copies over the entsize
6000 field, and sometimes the info field. */
6002 bfd_boolean
6003 _bfd_elf_copy_private_section_data (bfd *ibfd,
6004 asection *isec,
6005 bfd *obfd,
6006 asection *osec)
6008 Elf_Internal_Shdr *ihdr, *ohdr;
6010 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6011 || obfd->xvec->flavour != bfd_target_elf_flavour)
6012 return TRUE;
6014 ihdr = &elf_section_data (isec)->this_hdr;
6015 ohdr = &elf_section_data (osec)->this_hdr;
6017 ohdr->sh_entsize = ihdr->sh_entsize;
6019 if (ihdr->sh_type == SHT_SYMTAB
6020 || ihdr->sh_type == SHT_DYNSYM
6021 || ihdr->sh_type == SHT_GNU_verneed
6022 || ihdr->sh_type == SHT_GNU_verdef)
6023 ohdr->sh_info = ihdr->sh_info;
6025 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6026 NULL);
6029 /* Copy private header information. */
6031 bfd_boolean
6032 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6034 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6035 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6036 return TRUE;
6038 /* Copy over private BFD data if it has not already been copied.
6039 This must be done here, rather than in the copy_private_bfd_data
6040 entry point, because the latter is called after the section
6041 contents have been set, which means that the program headers have
6042 already been worked out. */
6043 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6045 if (! copy_private_bfd_data (ibfd, obfd))
6046 return FALSE;
6049 return TRUE;
6052 /* Copy private symbol information. If this symbol is in a section
6053 which we did not map into a BFD section, try to map the section
6054 index correctly. We use special macro definitions for the mapped
6055 section indices; these definitions are interpreted by the
6056 swap_out_syms function. */
6058 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6059 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6060 #define MAP_STRTAB (SHN_HIOS + 3)
6061 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6062 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6064 bfd_boolean
6065 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6066 asymbol *isymarg,
6067 bfd *obfd,
6068 asymbol *osymarg)
6070 elf_symbol_type *isym, *osym;
6072 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6073 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6074 return TRUE;
6076 isym = elf_symbol_from (ibfd, isymarg);
6077 osym = elf_symbol_from (obfd, osymarg);
6079 if (isym != NULL
6080 && osym != NULL
6081 && bfd_is_abs_section (isym->symbol.section))
6083 unsigned int shndx;
6085 shndx = isym->internal_elf_sym.st_shndx;
6086 if (shndx == elf_onesymtab (ibfd))
6087 shndx = MAP_ONESYMTAB;
6088 else if (shndx == elf_dynsymtab (ibfd))
6089 shndx = MAP_DYNSYMTAB;
6090 else if (shndx == elf_tdata (ibfd)->strtab_section)
6091 shndx = MAP_STRTAB;
6092 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6093 shndx = MAP_SHSTRTAB;
6094 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6095 shndx = MAP_SYM_SHNDX;
6096 osym->internal_elf_sym.st_shndx = shndx;
6099 return TRUE;
6102 /* Swap out the symbols. */
6104 static bfd_boolean
6105 swap_out_syms (bfd *abfd,
6106 struct bfd_strtab_hash **sttp,
6107 int relocatable_p)
6109 const struct elf_backend_data *bed;
6110 int symcount;
6111 asymbol **syms;
6112 struct bfd_strtab_hash *stt;
6113 Elf_Internal_Shdr *symtab_hdr;
6114 Elf_Internal_Shdr *symtab_shndx_hdr;
6115 Elf_Internal_Shdr *symstrtab_hdr;
6116 bfd_byte *outbound_syms;
6117 bfd_byte *outbound_shndx;
6118 int idx;
6119 bfd_size_type amt;
6120 bfd_boolean name_local_sections;
6122 if (!elf_map_symbols (abfd))
6123 return FALSE;
6125 /* Dump out the symtabs. */
6126 stt = _bfd_elf_stringtab_init ();
6127 if (stt == NULL)
6128 return FALSE;
6130 bed = get_elf_backend_data (abfd);
6131 symcount = bfd_get_symcount (abfd);
6132 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6133 symtab_hdr->sh_type = SHT_SYMTAB;
6134 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6135 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6136 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6137 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6139 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6140 symstrtab_hdr->sh_type = SHT_STRTAB;
6142 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6143 if (outbound_syms == NULL)
6145 _bfd_stringtab_free (stt);
6146 return FALSE;
6148 symtab_hdr->contents = outbound_syms;
6150 outbound_shndx = NULL;
6151 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6152 if (symtab_shndx_hdr->sh_name != 0)
6154 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6155 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6156 sizeof (Elf_External_Sym_Shndx));
6157 if (outbound_shndx == NULL)
6159 _bfd_stringtab_free (stt);
6160 return FALSE;
6163 symtab_shndx_hdr->contents = outbound_shndx;
6164 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6165 symtab_shndx_hdr->sh_size = amt;
6166 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6167 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6170 /* Now generate the data (for "contents"). */
6172 /* Fill in zeroth symbol and swap it out. */
6173 Elf_Internal_Sym sym;
6174 sym.st_name = 0;
6175 sym.st_value = 0;
6176 sym.st_size = 0;
6177 sym.st_info = 0;
6178 sym.st_other = 0;
6179 sym.st_shndx = SHN_UNDEF;
6180 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6181 outbound_syms += bed->s->sizeof_sym;
6182 if (outbound_shndx != NULL)
6183 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6186 name_local_sections
6187 = (bed->elf_backend_name_local_section_symbols
6188 && bed->elf_backend_name_local_section_symbols (abfd));
6190 syms = bfd_get_outsymbols (abfd);
6191 for (idx = 0; idx < symcount; idx++)
6193 Elf_Internal_Sym sym;
6194 bfd_vma value = syms[idx]->value;
6195 elf_symbol_type *type_ptr;
6196 flagword flags = syms[idx]->flags;
6197 int type;
6199 if (!name_local_sections
6200 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6202 /* Local section symbols have no name. */
6203 sym.st_name = 0;
6205 else
6207 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6208 syms[idx]->name,
6209 TRUE, FALSE);
6210 if (sym.st_name == (unsigned long) -1)
6212 _bfd_stringtab_free (stt);
6213 return FALSE;
6217 type_ptr = elf_symbol_from (abfd, syms[idx]);
6219 if ((flags & BSF_SECTION_SYM) == 0
6220 && bfd_is_com_section (syms[idx]->section))
6222 /* ELF common symbols put the alignment into the `value' field,
6223 and the size into the `size' field. This is backwards from
6224 how BFD handles it, so reverse it here. */
6225 sym.st_size = value;
6226 if (type_ptr == NULL
6227 || type_ptr->internal_elf_sym.st_value == 0)
6228 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6229 else
6230 sym.st_value = type_ptr->internal_elf_sym.st_value;
6231 sym.st_shndx = _bfd_elf_section_from_bfd_section
6232 (abfd, syms[idx]->section);
6234 else
6236 asection *sec = syms[idx]->section;
6237 int shndx;
6239 if (sec->output_section)
6241 value += sec->output_offset;
6242 sec = sec->output_section;
6245 /* Don't add in the section vma for relocatable output. */
6246 if (! relocatable_p)
6247 value += sec->vma;
6248 sym.st_value = value;
6249 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6251 if (bfd_is_abs_section (sec)
6252 && type_ptr != NULL
6253 && type_ptr->internal_elf_sym.st_shndx != 0)
6255 /* This symbol is in a real ELF section which we did
6256 not create as a BFD section. Undo the mapping done
6257 by copy_private_symbol_data. */
6258 shndx = type_ptr->internal_elf_sym.st_shndx;
6259 switch (shndx)
6261 case MAP_ONESYMTAB:
6262 shndx = elf_onesymtab (abfd);
6263 break;
6264 case MAP_DYNSYMTAB:
6265 shndx = elf_dynsymtab (abfd);
6266 break;
6267 case MAP_STRTAB:
6268 shndx = elf_tdata (abfd)->strtab_section;
6269 break;
6270 case MAP_SHSTRTAB:
6271 shndx = elf_tdata (abfd)->shstrtab_section;
6272 break;
6273 case MAP_SYM_SHNDX:
6274 shndx = elf_tdata (abfd)->symtab_shndx_section;
6275 break;
6276 default:
6277 break;
6280 else
6282 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6284 if (shndx == -1)
6286 asection *sec2;
6288 /* Writing this would be a hell of a lot easier if
6289 we had some decent documentation on bfd, and
6290 knew what to expect of the library, and what to
6291 demand of applications. For example, it
6292 appears that `objcopy' might not set the
6293 section of a symbol to be a section that is
6294 actually in the output file. */
6295 sec2 = bfd_get_section_by_name (abfd, sec->name);
6296 if (sec2 == NULL)
6298 _bfd_error_handler (_("\
6299 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6300 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6301 sec->name);
6302 bfd_set_error (bfd_error_invalid_operation);
6303 _bfd_stringtab_free (stt);
6304 return FALSE;
6307 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6308 BFD_ASSERT (shndx != -1);
6312 sym.st_shndx = shndx;
6315 if ((flags & BSF_THREAD_LOCAL) != 0)
6316 type = STT_TLS;
6317 else if ((flags & BSF_FUNCTION) != 0)
6318 type = STT_FUNC;
6319 else if ((flags & BSF_OBJECT) != 0)
6320 type = STT_OBJECT;
6321 else
6322 type = STT_NOTYPE;
6324 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6325 type = STT_TLS;
6327 /* Processor-specific types. */
6328 if (type_ptr != NULL
6329 && bed->elf_backend_get_symbol_type)
6330 type = ((*bed->elf_backend_get_symbol_type)
6331 (&type_ptr->internal_elf_sym, type));
6333 if (flags & BSF_SECTION_SYM)
6335 if (flags & BSF_GLOBAL)
6336 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6337 else
6338 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6340 else if (bfd_is_com_section (syms[idx]->section))
6341 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6342 else if (bfd_is_und_section (syms[idx]->section))
6343 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6344 ? STB_WEAK
6345 : STB_GLOBAL),
6346 type);
6347 else if (flags & BSF_FILE)
6348 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6349 else
6351 int bind = STB_LOCAL;
6353 if (flags & BSF_LOCAL)
6354 bind = STB_LOCAL;
6355 else if (flags & BSF_WEAK)
6356 bind = STB_WEAK;
6357 else if (flags & BSF_GLOBAL)
6358 bind = STB_GLOBAL;
6360 sym.st_info = ELF_ST_INFO (bind, type);
6363 if (type_ptr != NULL)
6364 sym.st_other = type_ptr->internal_elf_sym.st_other;
6365 else
6366 sym.st_other = 0;
6368 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6369 outbound_syms += bed->s->sizeof_sym;
6370 if (outbound_shndx != NULL)
6371 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6374 *sttp = stt;
6375 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6376 symstrtab_hdr->sh_type = SHT_STRTAB;
6378 symstrtab_hdr->sh_flags = 0;
6379 symstrtab_hdr->sh_addr = 0;
6380 symstrtab_hdr->sh_entsize = 0;
6381 symstrtab_hdr->sh_link = 0;
6382 symstrtab_hdr->sh_info = 0;
6383 symstrtab_hdr->sh_addralign = 1;
6385 return TRUE;
6388 /* Return the number of bytes required to hold the symtab vector.
6390 Note that we base it on the count plus 1, since we will null terminate
6391 the vector allocated based on this size. However, the ELF symbol table
6392 always has a dummy entry as symbol #0, so it ends up even. */
6394 long
6395 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6397 long symcount;
6398 long symtab_size;
6399 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6401 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6402 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6403 if (symcount > 0)
6404 symtab_size -= sizeof (asymbol *);
6406 return symtab_size;
6409 long
6410 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6412 long symcount;
6413 long symtab_size;
6414 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6416 if (elf_dynsymtab (abfd) == 0)
6418 bfd_set_error (bfd_error_invalid_operation);
6419 return -1;
6422 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6423 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6424 if (symcount > 0)
6425 symtab_size -= sizeof (asymbol *);
6427 return symtab_size;
6430 long
6431 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6432 sec_ptr asect)
6434 return (asect->reloc_count + 1) * sizeof (arelent *);
6437 /* Canonicalize the relocs. */
6439 long
6440 _bfd_elf_canonicalize_reloc (bfd *abfd,
6441 sec_ptr section,
6442 arelent **relptr,
6443 asymbol **symbols)
6445 arelent *tblptr;
6446 unsigned int i;
6447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6449 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6450 return -1;
6452 tblptr = section->relocation;
6453 for (i = 0; i < section->reloc_count; i++)
6454 *relptr++ = tblptr++;
6456 *relptr = NULL;
6458 return section->reloc_count;
6461 long
6462 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6465 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6467 if (symcount >= 0)
6468 bfd_get_symcount (abfd) = symcount;
6469 return symcount;
6472 long
6473 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6474 asymbol **allocation)
6476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6477 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6479 if (symcount >= 0)
6480 bfd_get_dynamic_symcount (abfd) = symcount;
6481 return symcount;
6484 /* Return the size required for the dynamic reloc entries. Any loadable
6485 section that was actually installed in the BFD, and has type SHT_REL
6486 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6487 dynamic reloc section. */
6489 long
6490 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6492 long ret;
6493 asection *s;
6495 if (elf_dynsymtab (abfd) == 0)
6497 bfd_set_error (bfd_error_invalid_operation);
6498 return -1;
6501 ret = sizeof (arelent *);
6502 for (s = abfd->sections; s != NULL; s = s->next)
6503 if ((s->flags & SEC_LOAD) != 0
6504 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6505 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6506 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6507 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6508 * sizeof (arelent *));
6510 return ret;
6513 /* Canonicalize the dynamic relocation entries. Note that we return the
6514 dynamic relocations as a single block, although they are actually
6515 associated with particular sections; the interface, which was
6516 designed for SunOS style shared libraries, expects that there is only
6517 one set of dynamic relocs. Any loadable section that was actually
6518 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6519 dynamic symbol table, is considered to be a dynamic reloc section. */
6521 long
6522 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6523 arelent **storage,
6524 asymbol **syms)
6526 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6527 asection *s;
6528 long ret;
6530 if (elf_dynsymtab (abfd) == 0)
6532 bfd_set_error (bfd_error_invalid_operation);
6533 return -1;
6536 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6537 ret = 0;
6538 for (s = abfd->sections; s != NULL; s = s->next)
6540 if ((s->flags & SEC_LOAD) != 0
6541 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6542 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6543 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6545 arelent *p;
6546 long count, i;
6548 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6549 return -1;
6550 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6551 p = s->relocation;
6552 for (i = 0; i < count; i++)
6553 *storage++ = p++;
6554 ret += count;
6558 *storage = NULL;
6560 return ret;
6563 /* Read in the version information. */
6565 bfd_boolean
6566 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6568 bfd_byte *contents = NULL;
6569 unsigned int freeidx = 0;
6571 if (elf_dynverref (abfd) != 0)
6573 Elf_Internal_Shdr *hdr;
6574 Elf_External_Verneed *everneed;
6575 Elf_Internal_Verneed *iverneed;
6576 unsigned int i;
6577 bfd_byte *contents_end;
6579 hdr = &elf_tdata (abfd)->dynverref_hdr;
6581 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6582 sizeof (Elf_Internal_Verneed));
6583 if (elf_tdata (abfd)->verref == NULL)
6584 goto error_return;
6586 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6588 contents = bfd_malloc (hdr->sh_size);
6589 if (contents == NULL)
6591 error_return_verref:
6592 elf_tdata (abfd)->verref = NULL;
6593 elf_tdata (abfd)->cverrefs = 0;
6594 goto error_return;
6596 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6597 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6598 goto error_return_verref;
6600 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6601 goto error_return_verref;
6603 BFD_ASSERT (sizeof (Elf_External_Verneed)
6604 == sizeof (Elf_External_Vernaux));
6605 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6606 everneed = (Elf_External_Verneed *) contents;
6607 iverneed = elf_tdata (abfd)->verref;
6608 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6610 Elf_External_Vernaux *evernaux;
6611 Elf_Internal_Vernaux *ivernaux;
6612 unsigned int j;
6614 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6616 iverneed->vn_bfd = abfd;
6618 iverneed->vn_filename =
6619 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6620 iverneed->vn_file);
6621 if (iverneed->vn_filename == NULL)
6622 goto error_return_verref;
6624 if (iverneed->vn_cnt == 0)
6625 iverneed->vn_auxptr = NULL;
6626 else
6628 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6629 sizeof (Elf_Internal_Vernaux));
6630 if (iverneed->vn_auxptr == NULL)
6631 goto error_return_verref;
6634 if (iverneed->vn_aux
6635 > (size_t) (contents_end - (bfd_byte *) everneed))
6636 goto error_return_verref;
6638 evernaux = ((Elf_External_Vernaux *)
6639 ((bfd_byte *) everneed + iverneed->vn_aux));
6640 ivernaux = iverneed->vn_auxptr;
6641 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6643 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6645 ivernaux->vna_nodename =
6646 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6647 ivernaux->vna_name);
6648 if (ivernaux->vna_nodename == NULL)
6649 goto error_return_verref;
6651 if (j + 1 < iverneed->vn_cnt)
6652 ivernaux->vna_nextptr = ivernaux + 1;
6653 else
6654 ivernaux->vna_nextptr = NULL;
6656 if (ivernaux->vna_next
6657 > (size_t) (contents_end - (bfd_byte *) evernaux))
6658 goto error_return_verref;
6660 evernaux = ((Elf_External_Vernaux *)
6661 ((bfd_byte *) evernaux + ivernaux->vna_next));
6663 if (ivernaux->vna_other > freeidx)
6664 freeidx = ivernaux->vna_other;
6667 if (i + 1 < hdr->sh_info)
6668 iverneed->vn_nextref = iverneed + 1;
6669 else
6670 iverneed->vn_nextref = NULL;
6672 if (iverneed->vn_next
6673 > (size_t) (contents_end - (bfd_byte *) everneed))
6674 goto error_return_verref;
6676 everneed = ((Elf_External_Verneed *)
6677 ((bfd_byte *) everneed + iverneed->vn_next));
6680 free (contents);
6681 contents = NULL;
6684 if (elf_dynverdef (abfd) != 0)
6686 Elf_Internal_Shdr *hdr;
6687 Elf_External_Verdef *everdef;
6688 Elf_Internal_Verdef *iverdef;
6689 Elf_Internal_Verdef *iverdefarr;
6690 Elf_Internal_Verdef iverdefmem;
6691 unsigned int i;
6692 unsigned int maxidx;
6693 bfd_byte *contents_end_def, *contents_end_aux;
6695 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6697 contents = bfd_malloc (hdr->sh_size);
6698 if (contents == NULL)
6699 goto error_return;
6700 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6701 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6702 goto error_return;
6704 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6705 goto error_return;
6707 BFD_ASSERT (sizeof (Elf_External_Verdef)
6708 >= sizeof (Elf_External_Verdaux));
6709 contents_end_def = contents + hdr->sh_size
6710 - sizeof (Elf_External_Verdef);
6711 contents_end_aux = contents + hdr->sh_size
6712 - sizeof (Elf_External_Verdaux);
6714 /* We know the number of entries in the section but not the maximum
6715 index. Therefore we have to run through all entries and find
6716 the maximum. */
6717 everdef = (Elf_External_Verdef *) contents;
6718 maxidx = 0;
6719 for (i = 0; i < hdr->sh_info; ++i)
6721 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6723 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6724 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6726 if (iverdefmem.vd_next
6727 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6728 goto error_return;
6730 everdef = ((Elf_External_Verdef *)
6731 ((bfd_byte *) everdef + iverdefmem.vd_next));
6734 if (default_imported_symver)
6736 if (freeidx > maxidx)
6737 maxidx = ++freeidx;
6738 else
6739 freeidx = ++maxidx;
6741 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6742 sizeof (Elf_Internal_Verdef));
6743 if (elf_tdata (abfd)->verdef == NULL)
6744 goto error_return;
6746 elf_tdata (abfd)->cverdefs = maxidx;
6748 everdef = (Elf_External_Verdef *) contents;
6749 iverdefarr = elf_tdata (abfd)->verdef;
6750 for (i = 0; i < hdr->sh_info; i++)
6752 Elf_External_Verdaux *everdaux;
6753 Elf_Internal_Verdaux *iverdaux;
6754 unsigned int j;
6756 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6758 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6760 error_return_verdef:
6761 elf_tdata (abfd)->verdef = NULL;
6762 elf_tdata (abfd)->cverdefs = 0;
6763 goto error_return;
6766 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6767 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6769 iverdef->vd_bfd = abfd;
6771 if (iverdef->vd_cnt == 0)
6772 iverdef->vd_auxptr = NULL;
6773 else
6775 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6776 sizeof (Elf_Internal_Verdaux));
6777 if (iverdef->vd_auxptr == NULL)
6778 goto error_return_verdef;
6781 if (iverdef->vd_aux
6782 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6783 goto error_return_verdef;
6785 everdaux = ((Elf_External_Verdaux *)
6786 ((bfd_byte *) everdef + iverdef->vd_aux));
6787 iverdaux = iverdef->vd_auxptr;
6788 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6790 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6792 iverdaux->vda_nodename =
6793 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6794 iverdaux->vda_name);
6795 if (iverdaux->vda_nodename == NULL)
6796 goto error_return_verdef;
6798 if (j + 1 < iverdef->vd_cnt)
6799 iverdaux->vda_nextptr = iverdaux + 1;
6800 else
6801 iverdaux->vda_nextptr = NULL;
6803 if (iverdaux->vda_next
6804 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6805 goto error_return_verdef;
6807 everdaux = ((Elf_External_Verdaux *)
6808 ((bfd_byte *) everdaux + iverdaux->vda_next));
6811 if (iverdef->vd_cnt)
6812 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6814 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6815 iverdef->vd_nextdef = iverdef + 1;
6816 else
6817 iverdef->vd_nextdef = NULL;
6819 everdef = ((Elf_External_Verdef *)
6820 ((bfd_byte *) everdef + iverdef->vd_next));
6823 free (contents);
6824 contents = NULL;
6826 else if (default_imported_symver)
6828 if (freeidx < 3)
6829 freeidx = 3;
6830 else
6831 freeidx++;
6833 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6834 sizeof (Elf_Internal_Verdef));
6835 if (elf_tdata (abfd)->verdef == NULL)
6836 goto error_return;
6838 elf_tdata (abfd)->cverdefs = freeidx;
6841 /* Create a default version based on the soname. */
6842 if (default_imported_symver)
6844 Elf_Internal_Verdef *iverdef;
6845 Elf_Internal_Verdaux *iverdaux;
6847 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6849 iverdef->vd_version = VER_DEF_CURRENT;
6850 iverdef->vd_flags = 0;
6851 iverdef->vd_ndx = freeidx;
6852 iverdef->vd_cnt = 1;
6854 iverdef->vd_bfd = abfd;
6856 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6857 if (iverdef->vd_nodename == NULL)
6858 goto error_return_verdef;
6859 iverdef->vd_nextdef = NULL;
6860 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6861 if (iverdef->vd_auxptr == NULL)
6862 goto error_return_verdef;
6864 iverdaux = iverdef->vd_auxptr;
6865 iverdaux->vda_nodename = iverdef->vd_nodename;
6866 iverdaux->vda_nextptr = NULL;
6869 return TRUE;
6871 error_return:
6872 if (contents != NULL)
6873 free (contents);
6874 return FALSE;
6877 asymbol *
6878 _bfd_elf_make_empty_symbol (bfd *abfd)
6880 elf_symbol_type *newsym;
6881 bfd_size_type amt = sizeof (elf_symbol_type);
6883 newsym = bfd_zalloc (abfd, amt);
6884 if (!newsym)
6885 return NULL;
6886 else
6888 newsym->symbol.the_bfd = abfd;
6889 return &newsym->symbol;
6893 void
6894 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6895 asymbol *symbol,
6896 symbol_info *ret)
6898 bfd_symbol_info (symbol, ret);
6901 /* Return whether a symbol name implies a local symbol. Most targets
6902 use this function for the is_local_label_name entry point, but some
6903 override it. */
6905 bfd_boolean
6906 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6907 const char *name)
6909 /* Normal local symbols start with ``.L''. */
6910 if (name[0] == '.' && name[1] == 'L')
6911 return TRUE;
6913 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6914 DWARF debugging symbols starting with ``..''. */
6915 if (name[0] == '.' && name[1] == '.')
6916 return TRUE;
6918 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6919 emitting DWARF debugging output. I suspect this is actually a
6920 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6921 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6922 underscore to be emitted on some ELF targets). For ease of use,
6923 we treat such symbols as local. */
6924 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6925 return TRUE;
6927 return FALSE;
6930 alent *
6931 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6932 asymbol *symbol ATTRIBUTE_UNUSED)
6934 abort ();
6935 return NULL;
6938 bfd_boolean
6939 _bfd_elf_set_arch_mach (bfd *abfd,
6940 enum bfd_architecture arch,
6941 unsigned long machine)
6943 /* If this isn't the right architecture for this backend, and this
6944 isn't the generic backend, fail. */
6945 if (arch != get_elf_backend_data (abfd)->arch
6946 && arch != bfd_arch_unknown
6947 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6948 return FALSE;
6950 return bfd_default_set_arch_mach (abfd, arch, machine);
6953 /* Find the function to a particular section and offset,
6954 for error reporting. */
6956 static bfd_boolean
6957 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6958 asection *section,
6959 asymbol **symbols,
6960 bfd_vma offset,
6961 const char **filename_ptr,
6962 const char **functionname_ptr)
6964 const char *filename;
6965 asymbol *func, *file;
6966 bfd_vma low_func;
6967 asymbol **p;
6968 /* ??? Given multiple file symbols, it is impossible to reliably
6969 choose the right file name for global symbols. File symbols are
6970 local symbols, and thus all file symbols must sort before any
6971 global symbols. The ELF spec may be interpreted to say that a
6972 file symbol must sort before other local symbols, but currently
6973 ld -r doesn't do this. So, for ld -r output, it is possible to
6974 make a better choice of file name for local symbols by ignoring
6975 file symbols appearing after a given local symbol. */
6976 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6978 filename = NULL;
6979 func = NULL;
6980 file = NULL;
6981 low_func = 0;
6982 state = nothing_seen;
6984 for (p = symbols; *p != NULL; p++)
6986 elf_symbol_type *q;
6988 q = (elf_symbol_type *) *p;
6990 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6992 default:
6993 break;
6994 case STT_FILE:
6995 file = &q->symbol;
6996 if (state == symbol_seen)
6997 state = file_after_symbol_seen;
6998 continue;
6999 case STT_NOTYPE:
7000 case STT_FUNC:
7001 if (bfd_get_section (&q->symbol) == section
7002 && q->symbol.value >= low_func
7003 && q->symbol.value <= offset)
7005 func = (asymbol *) q;
7006 low_func = q->symbol.value;
7007 filename = NULL;
7008 if (file != NULL
7009 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7010 || state != file_after_symbol_seen))
7011 filename = bfd_asymbol_name (file);
7013 break;
7015 if (state == nothing_seen)
7016 state = symbol_seen;
7019 if (func == NULL)
7020 return FALSE;
7022 if (filename_ptr)
7023 *filename_ptr = filename;
7024 if (functionname_ptr)
7025 *functionname_ptr = bfd_asymbol_name (func);
7027 return TRUE;
7030 /* Find the nearest line to a particular section and offset,
7031 for error reporting. */
7033 bfd_boolean
7034 _bfd_elf_find_nearest_line (bfd *abfd,
7035 asection *section,
7036 asymbol **symbols,
7037 bfd_vma offset,
7038 const char **filename_ptr,
7039 const char **functionname_ptr,
7040 unsigned int *line_ptr)
7042 bfd_boolean found;
7044 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7045 filename_ptr, functionname_ptr,
7046 line_ptr))
7048 if (!*functionname_ptr)
7049 elf_find_function (abfd, section, symbols, offset,
7050 *filename_ptr ? NULL : filename_ptr,
7051 functionname_ptr);
7053 return TRUE;
7056 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7057 filename_ptr, functionname_ptr,
7058 line_ptr, 0,
7059 &elf_tdata (abfd)->dwarf2_find_line_info))
7061 if (!*functionname_ptr)
7062 elf_find_function (abfd, section, symbols, offset,
7063 *filename_ptr ? NULL : filename_ptr,
7064 functionname_ptr);
7066 return TRUE;
7069 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7070 &found, filename_ptr,
7071 functionname_ptr, line_ptr,
7072 &elf_tdata (abfd)->line_info))
7073 return FALSE;
7074 if (found && (*functionname_ptr || *line_ptr))
7075 return TRUE;
7077 if (symbols == NULL)
7078 return FALSE;
7080 if (! elf_find_function (abfd, section, symbols, offset,
7081 filename_ptr, functionname_ptr))
7082 return FALSE;
7084 *line_ptr = 0;
7085 return TRUE;
7088 /* Find the line for a symbol. */
7090 bfd_boolean
7091 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7092 const char **filename_ptr, unsigned int *line_ptr)
7094 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7095 filename_ptr, line_ptr, 0,
7096 &elf_tdata (abfd)->dwarf2_find_line_info);
7099 /* After a call to bfd_find_nearest_line, successive calls to
7100 bfd_find_inliner_info can be used to get source information about
7101 each level of function inlining that terminated at the address
7102 passed to bfd_find_nearest_line. Currently this is only supported
7103 for DWARF2 with appropriate DWARF3 extensions. */
7105 bfd_boolean
7106 _bfd_elf_find_inliner_info (bfd *abfd,
7107 const char **filename_ptr,
7108 const char **functionname_ptr,
7109 unsigned int *line_ptr)
7111 bfd_boolean found;
7112 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7113 functionname_ptr, line_ptr,
7114 & elf_tdata (abfd)->dwarf2_find_line_info);
7115 return found;
7119 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7121 int ret;
7123 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7124 if (!info->relocatable)
7125 ret += get_program_header_size (abfd, info);
7126 return ret;
7129 bfd_boolean
7130 _bfd_elf_set_section_contents (bfd *abfd,
7131 sec_ptr section,
7132 const void *location,
7133 file_ptr offset,
7134 bfd_size_type count)
7136 Elf_Internal_Shdr *hdr;
7137 bfd_signed_vma pos;
7139 if (! abfd->output_has_begun
7140 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7141 return FALSE;
7143 hdr = &elf_section_data (section)->this_hdr;
7144 pos = hdr->sh_offset + offset;
7145 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7146 || bfd_bwrite (location, count, abfd) != count)
7147 return FALSE;
7149 return TRUE;
7152 void
7153 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7154 arelent *cache_ptr ATTRIBUTE_UNUSED,
7155 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7157 abort ();
7160 /* Try to convert a non-ELF reloc into an ELF one. */
7162 bfd_boolean
7163 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7165 /* Check whether we really have an ELF howto. */
7167 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7169 bfd_reloc_code_real_type code;
7170 reloc_howto_type *howto;
7172 /* Alien reloc: Try to determine its type to replace it with an
7173 equivalent ELF reloc. */
7175 if (areloc->howto->pc_relative)
7177 switch (areloc->howto->bitsize)
7179 case 8:
7180 code = BFD_RELOC_8_PCREL;
7181 break;
7182 case 12:
7183 code = BFD_RELOC_12_PCREL;
7184 break;
7185 case 16:
7186 code = BFD_RELOC_16_PCREL;
7187 break;
7188 case 24:
7189 code = BFD_RELOC_24_PCREL;
7190 break;
7191 case 32:
7192 code = BFD_RELOC_32_PCREL;
7193 break;
7194 case 64:
7195 code = BFD_RELOC_64_PCREL;
7196 break;
7197 default:
7198 goto fail;
7201 howto = bfd_reloc_type_lookup (abfd, code);
7203 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7205 if (howto->pcrel_offset)
7206 areloc->addend += areloc->address;
7207 else
7208 areloc->addend -= areloc->address; /* addend is unsigned!! */
7211 else
7213 switch (areloc->howto->bitsize)
7215 case 8:
7216 code = BFD_RELOC_8;
7217 break;
7218 case 14:
7219 code = BFD_RELOC_14;
7220 break;
7221 case 16:
7222 code = BFD_RELOC_16;
7223 break;
7224 case 26:
7225 code = BFD_RELOC_26;
7226 break;
7227 case 32:
7228 code = BFD_RELOC_32;
7229 break;
7230 case 64:
7231 code = BFD_RELOC_64;
7232 break;
7233 default:
7234 goto fail;
7237 howto = bfd_reloc_type_lookup (abfd, code);
7240 if (howto)
7241 areloc->howto = howto;
7242 else
7243 goto fail;
7246 return TRUE;
7248 fail:
7249 (*_bfd_error_handler)
7250 (_("%B: unsupported relocation type %s"),
7251 abfd, areloc->howto->name);
7252 bfd_set_error (bfd_error_bad_value);
7253 return FALSE;
7256 bfd_boolean
7257 _bfd_elf_close_and_cleanup (bfd *abfd)
7259 if (bfd_get_format (abfd) == bfd_object)
7261 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7262 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7263 _bfd_dwarf2_cleanup_debug_info (abfd);
7266 return _bfd_generic_close_and_cleanup (abfd);
7269 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7270 in the relocation's offset. Thus we cannot allow any sort of sanity
7271 range-checking to interfere. There is nothing else to do in processing
7272 this reloc. */
7274 bfd_reloc_status_type
7275 _bfd_elf_rel_vtable_reloc_fn
7276 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7277 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7278 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7279 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7281 return bfd_reloc_ok;
7284 /* Elf core file support. Much of this only works on native
7285 toolchains, since we rely on knowing the
7286 machine-dependent procfs structure in order to pick
7287 out details about the corefile. */
7289 #ifdef HAVE_SYS_PROCFS_H
7290 # include <sys/procfs.h>
7291 #endif
7293 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7295 static int
7296 elfcore_make_pid (bfd *abfd)
7298 return ((elf_tdata (abfd)->core_lwpid << 16)
7299 + (elf_tdata (abfd)->core_pid));
7302 /* If there isn't a section called NAME, make one, using
7303 data from SECT. Note, this function will generate a
7304 reference to NAME, so you shouldn't deallocate or
7305 overwrite it. */
7307 static bfd_boolean
7308 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7310 asection *sect2;
7312 if (bfd_get_section_by_name (abfd, name) != NULL)
7313 return TRUE;
7315 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7316 if (sect2 == NULL)
7317 return FALSE;
7319 sect2->size = sect->size;
7320 sect2->filepos = sect->filepos;
7321 sect2->alignment_power = sect->alignment_power;
7322 return TRUE;
7325 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7326 actually creates up to two pseudosections:
7327 - For the single-threaded case, a section named NAME, unless
7328 such a section already exists.
7329 - For the multi-threaded case, a section named "NAME/PID", where
7330 PID is elfcore_make_pid (abfd).
7331 Both pseudosections have identical contents. */
7332 bfd_boolean
7333 _bfd_elfcore_make_pseudosection (bfd *abfd,
7334 char *name,
7335 size_t size,
7336 ufile_ptr filepos)
7338 char buf[100];
7339 char *threaded_name;
7340 size_t len;
7341 asection *sect;
7343 /* Build the section name. */
7345 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7346 len = strlen (buf) + 1;
7347 threaded_name = bfd_alloc (abfd, len);
7348 if (threaded_name == NULL)
7349 return FALSE;
7350 memcpy (threaded_name, buf, len);
7352 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7353 SEC_HAS_CONTENTS);
7354 if (sect == NULL)
7355 return FALSE;
7356 sect->size = size;
7357 sect->filepos = filepos;
7358 sect->alignment_power = 2;
7360 return elfcore_maybe_make_sect (abfd, name, sect);
7363 /* prstatus_t exists on:
7364 solaris 2.5+
7365 linux 2.[01] + glibc
7366 unixware 4.2
7369 #if defined (HAVE_PRSTATUS_T)
7371 static bfd_boolean
7372 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7374 size_t size;
7375 int offset;
7377 if (note->descsz == sizeof (prstatus_t))
7379 prstatus_t prstat;
7381 size = sizeof (prstat.pr_reg);
7382 offset = offsetof (prstatus_t, pr_reg);
7383 memcpy (&prstat, note->descdata, sizeof (prstat));
7385 /* Do not overwrite the core signal if it
7386 has already been set by another thread. */
7387 if (elf_tdata (abfd)->core_signal == 0)
7388 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7389 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7391 /* pr_who exists on:
7392 solaris 2.5+
7393 unixware 4.2
7394 pr_who doesn't exist on:
7395 linux 2.[01]
7397 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7398 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7399 #endif
7401 #if defined (HAVE_PRSTATUS32_T)
7402 else if (note->descsz == sizeof (prstatus32_t))
7404 /* 64-bit host, 32-bit corefile */
7405 prstatus32_t prstat;
7407 size = sizeof (prstat.pr_reg);
7408 offset = offsetof (prstatus32_t, pr_reg);
7409 memcpy (&prstat, note->descdata, sizeof (prstat));
7411 /* Do not overwrite the core signal if it
7412 has already been set by another thread. */
7413 if (elf_tdata (abfd)->core_signal == 0)
7414 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7415 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7417 /* pr_who exists on:
7418 solaris 2.5+
7419 unixware 4.2
7420 pr_who doesn't exist on:
7421 linux 2.[01]
7423 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7424 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7425 #endif
7427 #endif /* HAVE_PRSTATUS32_T */
7428 else
7430 /* Fail - we don't know how to handle any other
7431 note size (ie. data object type). */
7432 return TRUE;
7435 /* Make a ".reg/999" section and a ".reg" section. */
7436 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7437 size, note->descpos + offset);
7439 #endif /* defined (HAVE_PRSTATUS_T) */
7441 /* Create a pseudosection containing the exact contents of NOTE. */
7442 static bfd_boolean
7443 elfcore_make_note_pseudosection (bfd *abfd,
7444 char *name,
7445 Elf_Internal_Note *note)
7447 return _bfd_elfcore_make_pseudosection (abfd, name,
7448 note->descsz, note->descpos);
7451 /* There isn't a consistent prfpregset_t across platforms,
7452 but it doesn't matter, because we don't have to pick this
7453 data structure apart. */
7455 static bfd_boolean
7456 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7458 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7461 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7462 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7463 literally. */
7465 static bfd_boolean
7466 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7468 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7471 #if defined (HAVE_PRPSINFO_T)
7472 typedef prpsinfo_t elfcore_psinfo_t;
7473 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7474 typedef prpsinfo32_t elfcore_psinfo32_t;
7475 #endif
7476 #endif
7478 #if defined (HAVE_PSINFO_T)
7479 typedef psinfo_t elfcore_psinfo_t;
7480 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7481 typedef psinfo32_t elfcore_psinfo32_t;
7482 #endif
7483 #endif
7485 /* return a malloc'ed copy of a string at START which is at
7486 most MAX bytes long, possibly without a terminating '\0'.
7487 the copy will always have a terminating '\0'. */
7489 char *
7490 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7492 char *dups;
7493 char *end = memchr (start, '\0', max);
7494 size_t len;
7496 if (end == NULL)
7497 len = max;
7498 else
7499 len = end - start;
7501 dups = bfd_alloc (abfd, len + 1);
7502 if (dups == NULL)
7503 return NULL;
7505 memcpy (dups, start, len);
7506 dups[len] = '\0';
7508 return dups;
7511 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7512 static bfd_boolean
7513 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7515 if (note->descsz == sizeof (elfcore_psinfo_t))
7517 elfcore_psinfo_t psinfo;
7519 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7521 elf_tdata (abfd)->core_program
7522 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7523 sizeof (psinfo.pr_fname));
7525 elf_tdata (abfd)->core_command
7526 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7527 sizeof (psinfo.pr_psargs));
7529 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7530 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7532 /* 64-bit host, 32-bit corefile */
7533 elfcore_psinfo32_t psinfo;
7535 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7537 elf_tdata (abfd)->core_program
7538 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7539 sizeof (psinfo.pr_fname));
7541 elf_tdata (abfd)->core_command
7542 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7543 sizeof (psinfo.pr_psargs));
7545 #endif
7547 else
7549 /* Fail - we don't know how to handle any other
7550 note size (ie. data object type). */
7551 return TRUE;
7554 /* Note that for some reason, a spurious space is tacked
7555 onto the end of the args in some (at least one anyway)
7556 implementations, so strip it off if it exists. */
7559 char *command = elf_tdata (abfd)->core_command;
7560 int n = strlen (command);
7562 if (0 < n && command[n - 1] == ' ')
7563 command[n - 1] = '\0';
7566 return TRUE;
7568 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7570 #if defined (HAVE_PSTATUS_T)
7571 static bfd_boolean
7572 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7574 if (note->descsz == sizeof (pstatus_t)
7575 #if defined (HAVE_PXSTATUS_T)
7576 || note->descsz == sizeof (pxstatus_t)
7577 #endif
7580 pstatus_t pstat;
7582 memcpy (&pstat, note->descdata, sizeof (pstat));
7584 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7586 #if defined (HAVE_PSTATUS32_T)
7587 else if (note->descsz == sizeof (pstatus32_t))
7589 /* 64-bit host, 32-bit corefile */
7590 pstatus32_t pstat;
7592 memcpy (&pstat, note->descdata, sizeof (pstat));
7594 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7596 #endif
7597 /* Could grab some more details from the "representative"
7598 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7599 NT_LWPSTATUS note, presumably. */
7601 return TRUE;
7603 #endif /* defined (HAVE_PSTATUS_T) */
7605 #if defined (HAVE_LWPSTATUS_T)
7606 static bfd_boolean
7607 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7609 lwpstatus_t lwpstat;
7610 char buf[100];
7611 char *name;
7612 size_t len;
7613 asection *sect;
7615 if (note->descsz != sizeof (lwpstat)
7616 #if defined (HAVE_LWPXSTATUS_T)
7617 && note->descsz != sizeof (lwpxstatus_t)
7618 #endif
7620 return TRUE;
7622 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7624 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7625 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7627 /* Make a ".reg/999" section. */
7629 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7630 len = strlen (buf) + 1;
7631 name = bfd_alloc (abfd, len);
7632 if (name == NULL)
7633 return FALSE;
7634 memcpy (name, buf, len);
7636 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7637 if (sect == NULL)
7638 return FALSE;
7640 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7641 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7642 sect->filepos = note->descpos
7643 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7644 #endif
7646 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7647 sect->size = sizeof (lwpstat.pr_reg);
7648 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7649 #endif
7651 sect->alignment_power = 2;
7653 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7654 return FALSE;
7656 /* Make a ".reg2/999" section */
7658 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7659 len = strlen (buf) + 1;
7660 name = bfd_alloc (abfd, len);
7661 if (name == NULL)
7662 return FALSE;
7663 memcpy (name, buf, len);
7665 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7666 if (sect == NULL)
7667 return FALSE;
7669 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7670 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7671 sect->filepos = note->descpos
7672 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7673 #endif
7675 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7676 sect->size = sizeof (lwpstat.pr_fpreg);
7677 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7678 #endif
7680 sect->alignment_power = 2;
7682 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7684 #endif /* defined (HAVE_LWPSTATUS_T) */
7686 #if defined (HAVE_WIN32_PSTATUS_T)
7687 static bfd_boolean
7688 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7690 char buf[30];
7691 char *name;
7692 size_t len;
7693 asection *sect;
7694 win32_pstatus_t pstatus;
7696 if (note->descsz < sizeof (pstatus))
7697 return TRUE;
7699 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7701 switch (pstatus.data_type)
7703 case NOTE_INFO_PROCESS:
7704 /* FIXME: need to add ->core_command. */
7705 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7706 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7707 break;
7709 case NOTE_INFO_THREAD:
7710 /* Make a ".reg/999" section. */
7711 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7713 len = strlen (buf) + 1;
7714 name = bfd_alloc (abfd, len);
7715 if (name == NULL)
7716 return FALSE;
7718 memcpy (name, buf, len);
7720 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7721 if (sect == NULL)
7722 return FALSE;
7724 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7725 sect->filepos = (note->descpos
7726 + offsetof (struct win32_pstatus,
7727 data.thread_info.thread_context));
7728 sect->alignment_power = 2;
7730 if (pstatus.data.thread_info.is_active_thread)
7731 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7732 return FALSE;
7733 break;
7735 case NOTE_INFO_MODULE:
7736 /* Make a ".module/xxxxxxxx" section. */
7737 sprintf (buf, ".module/%08lx",
7738 (long) pstatus.data.module_info.base_address);
7740 len = strlen (buf) + 1;
7741 name = bfd_alloc (abfd, len);
7742 if (name == NULL)
7743 return FALSE;
7745 memcpy (name, buf, len);
7747 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7749 if (sect == NULL)
7750 return FALSE;
7752 sect->size = note->descsz;
7753 sect->filepos = note->descpos;
7754 sect->alignment_power = 2;
7755 break;
7757 default:
7758 return TRUE;
7761 return TRUE;
7763 #endif /* HAVE_WIN32_PSTATUS_T */
7765 static bfd_boolean
7766 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7768 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7770 switch (note->type)
7772 default:
7773 return TRUE;
7775 case NT_PRSTATUS:
7776 if (bed->elf_backend_grok_prstatus)
7777 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7778 return TRUE;
7779 #if defined (HAVE_PRSTATUS_T)
7780 return elfcore_grok_prstatus (abfd, note);
7781 #else
7782 return TRUE;
7783 #endif
7785 #if defined (HAVE_PSTATUS_T)
7786 case NT_PSTATUS:
7787 return elfcore_grok_pstatus (abfd, note);
7788 #endif
7790 #if defined (HAVE_LWPSTATUS_T)
7791 case NT_LWPSTATUS:
7792 return elfcore_grok_lwpstatus (abfd, note);
7793 #endif
7795 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7796 return elfcore_grok_prfpreg (abfd, note);
7798 #if defined (HAVE_WIN32_PSTATUS_T)
7799 case NT_WIN32PSTATUS:
7800 return elfcore_grok_win32pstatus (abfd, note);
7801 #endif
7803 case NT_PRXFPREG: /* Linux SSE extension */
7804 if (note->namesz == 6
7805 && strcmp (note->namedata, "LINUX") == 0)
7806 return elfcore_grok_prxfpreg (abfd, note);
7807 else
7808 return TRUE;
7810 case NT_PRPSINFO:
7811 case NT_PSINFO:
7812 if (bed->elf_backend_grok_psinfo)
7813 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7814 return TRUE;
7815 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7816 return elfcore_grok_psinfo (abfd, note);
7817 #else
7818 return TRUE;
7819 #endif
7821 case NT_AUXV:
7823 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7824 SEC_HAS_CONTENTS);
7826 if (sect == NULL)
7827 return FALSE;
7828 sect->size = note->descsz;
7829 sect->filepos = note->descpos;
7830 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7832 return TRUE;
7837 static bfd_boolean
7838 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7840 char *cp;
7842 cp = strchr (note->namedata, '@');
7843 if (cp != NULL)
7845 *lwpidp = atoi(cp + 1);
7846 return TRUE;
7848 return FALSE;
7851 static bfd_boolean
7852 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7855 /* Signal number at offset 0x08. */
7856 elf_tdata (abfd)->core_signal
7857 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7859 /* Process ID at offset 0x50. */
7860 elf_tdata (abfd)->core_pid
7861 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7863 /* Command name at 0x7c (max 32 bytes, including nul). */
7864 elf_tdata (abfd)->core_command
7865 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7867 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7868 note);
7871 static bfd_boolean
7872 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7874 int lwp;
7876 if (elfcore_netbsd_get_lwpid (note, &lwp))
7877 elf_tdata (abfd)->core_lwpid = lwp;
7879 if (note->type == NT_NETBSDCORE_PROCINFO)
7881 /* NetBSD-specific core "procinfo". Note that we expect to
7882 find this note before any of the others, which is fine,
7883 since the kernel writes this note out first when it
7884 creates a core file. */
7886 return elfcore_grok_netbsd_procinfo (abfd, note);
7889 /* As of Jan 2002 there are no other machine-independent notes
7890 defined for NetBSD core files. If the note type is less
7891 than the start of the machine-dependent note types, we don't
7892 understand it. */
7894 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7895 return TRUE;
7898 switch (bfd_get_arch (abfd))
7900 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7901 PT_GETFPREGS == mach+2. */
7903 case bfd_arch_alpha:
7904 case bfd_arch_sparc:
7905 switch (note->type)
7907 case NT_NETBSDCORE_FIRSTMACH+0:
7908 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7910 case NT_NETBSDCORE_FIRSTMACH+2:
7911 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7913 default:
7914 return TRUE;
7917 /* On all other arch's, PT_GETREGS == mach+1 and
7918 PT_GETFPREGS == mach+3. */
7920 default:
7921 switch (note->type)
7923 case NT_NETBSDCORE_FIRSTMACH+1:
7924 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7926 case NT_NETBSDCORE_FIRSTMACH+3:
7927 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7929 default:
7930 return TRUE;
7933 /* NOTREACHED */
7936 static bfd_boolean
7937 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7939 void *ddata = note->descdata;
7940 char buf[100];
7941 char *name;
7942 asection *sect;
7943 short sig;
7944 unsigned flags;
7946 /* nto_procfs_status 'pid' field is at offset 0. */
7947 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7949 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7950 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7952 /* nto_procfs_status 'flags' field is at offset 8. */
7953 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7955 /* nto_procfs_status 'what' field is at offset 14. */
7956 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7958 elf_tdata (abfd)->core_signal = sig;
7959 elf_tdata (abfd)->core_lwpid = *tid;
7962 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7963 do not come from signals so we make sure we set the current
7964 thread just in case. */
7965 if (flags & 0x00000080)
7966 elf_tdata (abfd)->core_lwpid = *tid;
7968 /* Make a ".qnx_core_status/%d" section. */
7969 sprintf (buf, ".qnx_core_status/%ld", *tid);
7971 name = bfd_alloc (abfd, strlen (buf) + 1);
7972 if (name == NULL)
7973 return FALSE;
7974 strcpy (name, buf);
7976 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7977 if (sect == NULL)
7978 return FALSE;
7980 sect->size = note->descsz;
7981 sect->filepos = note->descpos;
7982 sect->alignment_power = 2;
7984 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7987 static bfd_boolean
7988 elfcore_grok_nto_regs (bfd *abfd,
7989 Elf_Internal_Note *note,
7990 long tid,
7991 char *base)
7993 char buf[100];
7994 char *name;
7995 asection *sect;
7997 /* Make a "(base)/%d" section. */
7998 sprintf (buf, "%s/%ld", base, tid);
8000 name = bfd_alloc (abfd, strlen (buf) + 1);
8001 if (name == NULL)
8002 return FALSE;
8003 strcpy (name, buf);
8005 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8006 if (sect == NULL)
8007 return FALSE;
8009 sect->size = note->descsz;
8010 sect->filepos = note->descpos;
8011 sect->alignment_power = 2;
8013 /* This is the current thread. */
8014 if (elf_tdata (abfd)->core_lwpid == tid)
8015 return elfcore_maybe_make_sect (abfd, base, sect);
8017 return TRUE;
8020 #define BFD_QNT_CORE_INFO 7
8021 #define BFD_QNT_CORE_STATUS 8
8022 #define BFD_QNT_CORE_GREG 9
8023 #define BFD_QNT_CORE_FPREG 10
8025 static bfd_boolean
8026 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8028 /* Every GREG section has a STATUS section before it. Store the
8029 tid from the previous call to pass down to the next gregs
8030 function. */
8031 static long tid = 1;
8033 switch (note->type)
8035 case BFD_QNT_CORE_INFO:
8036 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8037 case BFD_QNT_CORE_STATUS:
8038 return elfcore_grok_nto_status (abfd, note, &tid);
8039 case BFD_QNT_CORE_GREG:
8040 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8041 case BFD_QNT_CORE_FPREG:
8042 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8043 default:
8044 return TRUE;
8048 /* Function: elfcore_write_note
8050 Inputs:
8051 buffer to hold note
8052 name of note
8053 type of note
8054 data for note
8055 size of data for note
8057 Return:
8058 End of buffer containing note. */
8060 char *
8061 elfcore_write_note (bfd *abfd,
8062 char *buf,
8063 int *bufsiz,
8064 const char *name,
8065 int type,
8066 const void *input,
8067 int size)
8069 Elf_External_Note *xnp;
8070 size_t namesz;
8071 size_t pad;
8072 size_t newspace;
8073 char *p, *dest;
8075 namesz = 0;
8076 pad = 0;
8077 if (name != NULL)
8079 const struct elf_backend_data *bed;
8081 namesz = strlen (name) + 1;
8082 bed = get_elf_backend_data (abfd);
8083 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8086 newspace = 12 + namesz + pad + size;
8088 p = realloc (buf, *bufsiz + newspace);
8089 dest = p + *bufsiz;
8090 *bufsiz += newspace;
8091 xnp = (Elf_External_Note *) dest;
8092 H_PUT_32 (abfd, namesz, xnp->namesz);
8093 H_PUT_32 (abfd, size, xnp->descsz);
8094 H_PUT_32 (abfd, type, xnp->type);
8095 dest = xnp->name;
8096 if (name != NULL)
8098 memcpy (dest, name, namesz);
8099 dest += namesz;
8100 while (pad != 0)
8102 *dest++ = '\0';
8103 --pad;
8106 memcpy (dest, input, size);
8107 return p;
8110 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8111 char *
8112 elfcore_write_prpsinfo (bfd *abfd,
8113 char *buf,
8114 int *bufsiz,
8115 const char *fname,
8116 const char *psargs)
8118 int note_type;
8119 char *note_name = "CORE";
8121 #if defined (HAVE_PSINFO_T)
8122 psinfo_t data;
8123 note_type = NT_PSINFO;
8124 #else
8125 prpsinfo_t data;
8126 note_type = NT_PRPSINFO;
8127 #endif
8129 memset (&data, 0, sizeof (data));
8130 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8131 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8132 return elfcore_write_note (abfd, buf, bufsiz,
8133 note_name, note_type, &data, sizeof (data));
8135 #endif /* PSINFO_T or PRPSINFO_T */
8137 #if defined (HAVE_PRSTATUS_T)
8138 char *
8139 elfcore_write_prstatus (bfd *abfd,
8140 char *buf,
8141 int *bufsiz,
8142 long pid,
8143 int cursig,
8144 const void *gregs)
8146 prstatus_t prstat;
8147 char *note_name = "CORE";
8149 memset (&prstat, 0, sizeof (prstat));
8150 prstat.pr_pid = pid;
8151 prstat.pr_cursig = cursig;
8152 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8153 return elfcore_write_note (abfd, buf, bufsiz,
8154 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8156 #endif /* HAVE_PRSTATUS_T */
8158 #if defined (HAVE_LWPSTATUS_T)
8159 char *
8160 elfcore_write_lwpstatus (bfd *abfd,
8161 char *buf,
8162 int *bufsiz,
8163 long pid,
8164 int cursig,
8165 const void *gregs)
8167 lwpstatus_t lwpstat;
8168 char *note_name = "CORE";
8170 memset (&lwpstat, 0, sizeof (lwpstat));
8171 lwpstat.pr_lwpid = pid >> 16;
8172 lwpstat.pr_cursig = cursig;
8173 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8174 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8175 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8176 #if !defined(gregs)
8177 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8178 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8179 #else
8180 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8181 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8182 #endif
8183 #endif
8184 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8185 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8187 #endif /* HAVE_LWPSTATUS_T */
8189 #if defined (HAVE_PSTATUS_T)
8190 char *
8191 elfcore_write_pstatus (bfd *abfd,
8192 char *buf,
8193 int *bufsiz,
8194 long pid,
8195 int cursig ATTRIBUTE_UNUSED,
8196 const void *gregs ATTRIBUTE_UNUSED)
8198 pstatus_t pstat;
8199 char *note_name = "CORE";
8201 memset (&pstat, 0, sizeof (pstat));
8202 pstat.pr_pid = pid & 0xffff;
8203 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8204 NT_PSTATUS, &pstat, sizeof (pstat));
8205 return buf;
8207 #endif /* HAVE_PSTATUS_T */
8209 char *
8210 elfcore_write_prfpreg (bfd *abfd,
8211 char *buf,
8212 int *bufsiz,
8213 const void *fpregs,
8214 int size)
8216 char *note_name = "CORE";
8217 return elfcore_write_note (abfd, buf, bufsiz,
8218 note_name, NT_FPREGSET, fpregs, size);
8221 char *
8222 elfcore_write_prxfpreg (bfd *abfd,
8223 char *buf,
8224 int *bufsiz,
8225 const void *xfpregs,
8226 int size)
8228 char *note_name = "LINUX";
8229 return elfcore_write_note (abfd, buf, bufsiz,
8230 note_name, NT_PRXFPREG, xfpregs, size);
8233 static bfd_boolean
8234 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8236 char *buf;
8237 char *p;
8239 if (size <= 0)
8240 return TRUE;
8242 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8243 return FALSE;
8245 buf = bfd_malloc (size);
8246 if (buf == NULL)
8247 return FALSE;
8249 if (bfd_bread (buf, size, abfd) != size)
8251 error:
8252 free (buf);
8253 return FALSE;
8256 p = buf;
8257 while (p < buf + size)
8259 /* FIXME: bad alignment assumption. */
8260 Elf_External_Note *xnp = (Elf_External_Note *) p;
8261 Elf_Internal_Note in;
8263 in.type = H_GET_32 (abfd, xnp->type);
8265 in.namesz = H_GET_32 (abfd, xnp->namesz);
8266 in.namedata = xnp->name;
8268 in.descsz = H_GET_32 (abfd, xnp->descsz);
8269 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8270 in.descpos = offset + (in.descdata - buf);
8272 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8274 if (! elfcore_grok_netbsd_note (abfd, &in))
8275 goto error;
8277 else if (strncmp (in.namedata, "QNX", 3) == 0)
8279 if (! elfcore_grok_nto_note (abfd, &in))
8280 goto error;
8282 else
8284 if (! elfcore_grok_note (abfd, &in))
8285 goto error;
8288 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8291 free (buf);
8292 return TRUE;
8295 /* Providing external access to the ELF program header table. */
8297 /* Return an upper bound on the number of bytes required to store a
8298 copy of ABFD's program header table entries. Return -1 if an error
8299 occurs; bfd_get_error will return an appropriate code. */
8301 long
8302 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8304 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8306 bfd_set_error (bfd_error_wrong_format);
8307 return -1;
8310 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8313 /* Copy ABFD's program header table entries to *PHDRS. The entries
8314 will be stored as an array of Elf_Internal_Phdr structures, as
8315 defined in include/elf/internal.h. To find out how large the
8316 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8318 Return the number of program header table entries read, or -1 if an
8319 error occurs; bfd_get_error will return an appropriate code. */
8322 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8324 int num_phdrs;
8326 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8328 bfd_set_error (bfd_error_wrong_format);
8329 return -1;
8332 num_phdrs = elf_elfheader (abfd)->e_phnum;
8333 memcpy (phdrs, elf_tdata (abfd)->phdr,
8334 num_phdrs * sizeof (Elf_Internal_Phdr));
8336 return num_phdrs;
8339 void
8340 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8342 #ifdef BFD64
8343 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8345 i_ehdrp = elf_elfheader (abfd);
8346 if (i_ehdrp == NULL)
8347 sprintf_vma (buf, value);
8348 else
8350 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8352 #if BFD_HOST_64BIT_LONG
8353 sprintf (buf, "%016lx", value);
8354 #else
8355 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8356 _bfd_int64_low (value));
8357 #endif
8359 else
8360 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8362 #else
8363 sprintf_vma (buf, value);
8364 #endif
8367 void
8368 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8370 #ifdef BFD64
8371 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8373 i_ehdrp = elf_elfheader (abfd);
8374 if (i_ehdrp == NULL)
8375 fprintf_vma ((FILE *) stream, value);
8376 else
8378 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8380 #if BFD_HOST_64BIT_LONG
8381 fprintf ((FILE *) stream, "%016lx", value);
8382 #else
8383 fprintf ((FILE *) stream, "%08lx%08lx",
8384 _bfd_int64_high (value), _bfd_int64_low (value));
8385 #endif
8387 else
8388 fprintf ((FILE *) stream, "%08lx",
8389 (unsigned long) (value & 0xffffffff));
8391 #else
8392 fprintf_vma ((FILE *) stream, value);
8393 #endif
8396 enum elf_reloc_type_class
8397 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8399 return reloc_class_normal;
8402 /* For RELA architectures, return the relocation value for a
8403 relocation against a local symbol. */
8405 bfd_vma
8406 _bfd_elf_rela_local_sym (bfd *abfd,
8407 Elf_Internal_Sym *sym,
8408 asection **psec,
8409 Elf_Internal_Rela *rel)
8411 asection *sec = *psec;
8412 bfd_vma relocation;
8414 relocation = (sec->output_section->vma
8415 + sec->output_offset
8416 + sym->st_value);
8417 if ((sec->flags & SEC_MERGE)
8418 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8419 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8421 rel->r_addend =
8422 _bfd_merged_section_offset (abfd, psec,
8423 elf_section_data (sec)->sec_info,
8424 sym->st_value + rel->r_addend);
8425 if (sec != *psec)
8427 /* If we have changed the section, and our original section is
8428 marked with SEC_EXCLUDE, it means that the original
8429 SEC_MERGE section has been completely subsumed in some
8430 other SEC_MERGE section. In this case, we need to leave
8431 some info around for --emit-relocs. */
8432 if ((sec->flags & SEC_EXCLUDE) != 0)
8433 sec->kept_section = *psec;
8434 sec = *psec;
8436 rel->r_addend -= relocation;
8437 rel->r_addend += sec->output_section->vma + sec->output_offset;
8439 return relocation;
8442 bfd_vma
8443 _bfd_elf_rel_local_sym (bfd *abfd,
8444 Elf_Internal_Sym *sym,
8445 asection **psec,
8446 bfd_vma addend)
8448 asection *sec = *psec;
8450 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8451 return sym->st_value + addend;
8453 return _bfd_merged_section_offset (abfd, psec,
8454 elf_section_data (sec)->sec_info,
8455 sym->st_value + addend);
8458 bfd_vma
8459 _bfd_elf_section_offset (bfd *abfd,
8460 struct bfd_link_info *info,
8461 asection *sec,
8462 bfd_vma offset)
8464 switch (sec->sec_info_type)
8466 case ELF_INFO_TYPE_STABS:
8467 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8468 offset);
8469 case ELF_INFO_TYPE_EH_FRAME:
8470 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8471 default:
8472 return offset;
8476 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8477 reconstruct an ELF file by reading the segments out of remote memory
8478 based on the ELF file header at EHDR_VMA and the ELF program headers it
8479 points to. If not null, *LOADBASEP is filled in with the difference
8480 between the VMAs from which the segments were read, and the VMAs the
8481 file headers (and hence BFD's idea of each section's VMA) put them at.
8483 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8484 remote memory at target address VMA into the local buffer at MYADDR; it
8485 should return zero on success or an `errno' code on failure. TEMPL must
8486 be a BFD for an ELF target with the word size and byte order found in
8487 the remote memory. */
8489 bfd *
8490 bfd_elf_bfd_from_remote_memory
8491 (bfd *templ,
8492 bfd_vma ehdr_vma,
8493 bfd_vma *loadbasep,
8494 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8496 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8497 (templ, ehdr_vma, loadbasep, target_read_memory);
8500 long
8501 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8502 long symcount ATTRIBUTE_UNUSED,
8503 asymbol **syms ATTRIBUTE_UNUSED,
8504 long dynsymcount,
8505 asymbol **dynsyms,
8506 asymbol **ret)
8508 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8509 asection *relplt;
8510 asymbol *s;
8511 const char *relplt_name;
8512 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8513 arelent *p;
8514 long count, i, n;
8515 size_t size;
8516 Elf_Internal_Shdr *hdr;
8517 char *names;
8518 asection *plt;
8520 *ret = NULL;
8522 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8523 return 0;
8525 if (dynsymcount <= 0)
8526 return 0;
8528 if (!bed->plt_sym_val)
8529 return 0;
8531 relplt_name = bed->relplt_name;
8532 if (relplt_name == NULL)
8533 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8534 relplt = bfd_get_section_by_name (abfd, relplt_name);
8535 if (relplt == NULL)
8536 return 0;
8538 hdr = &elf_section_data (relplt)->this_hdr;
8539 if (hdr->sh_link != elf_dynsymtab (abfd)
8540 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8541 return 0;
8543 plt = bfd_get_section_by_name (abfd, ".plt");
8544 if (plt == NULL)
8545 return 0;
8547 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8548 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8549 return -1;
8551 count = relplt->size / hdr->sh_entsize;
8552 size = count * sizeof (asymbol);
8553 p = relplt->relocation;
8554 for (i = 0; i < count; i++, s++, p++)
8555 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8557 s = *ret = bfd_malloc (size);
8558 if (s == NULL)
8559 return -1;
8561 names = (char *) (s + count);
8562 p = relplt->relocation;
8563 n = 0;
8564 for (i = 0; i < count; i++, s++, p++)
8566 size_t len;
8567 bfd_vma addr;
8569 addr = bed->plt_sym_val (i, plt, p);
8570 if (addr == (bfd_vma) -1)
8571 continue;
8573 *s = **p->sym_ptr_ptr;
8574 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8575 we are defining a symbol, ensure one of them is set. */
8576 if ((s->flags & BSF_LOCAL) == 0)
8577 s->flags |= BSF_GLOBAL;
8578 s->section = plt;
8579 s->value = addr - plt->vma;
8580 s->name = names;
8581 len = strlen ((*p->sym_ptr_ptr)->name);
8582 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8583 names += len;
8584 memcpy (names, "@plt", sizeof ("@plt"));
8585 names += sizeof ("@plt");
8586 ++n;
8589 return n;
8592 /* Sort symbol by binding and section. We want to put definitions
8593 sorted by section at the beginning. */
8595 static int
8596 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8598 const Elf_Internal_Sym *s1;
8599 const Elf_Internal_Sym *s2;
8600 int shndx;
8602 /* Make sure that undefined symbols are at the end. */
8603 s1 = (const Elf_Internal_Sym *) arg1;
8604 if (s1->st_shndx == SHN_UNDEF)
8605 return 1;
8606 s2 = (const Elf_Internal_Sym *) arg2;
8607 if (s2->st_shndx == SHN_UNDEF)
8608 return -1;
8610 /* Sorted by section index. */
8611 shndx = s1->st_shndx - s2->st_shndx;
8612 if (shndx != 0)
8613 return shndx;
8615 /* Sorted by binding. */
8616 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8619 struct elf_symbol
8621 Elf_Internal_Sym *sym;
8622 const char *name;
8625 static int
8626 elf_sym_name_compare (const void *arg1, const void *arg2)
8628 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8629 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8630 return strcmp (s1->name, s2->name);
8633 /* Check if 2 sections define the same set of local and global
8634 symbols. */
8636 bfd_boolean
8637 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8639 bfd *bfd1, *bfd2;
8640 const struct elf_backend_data *bed1, *bed2;
8641 Elf_Internal_Shdr *hdr1, *hdr2;
8642 bfd_size_type symcount1, symcount2;
8643 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8644 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8645 Elf_Internal_Sym *isymend;
8646 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8647 bfd_size_type count1, count2, i;
8648 int shndx1, shndx2;
8649 bfd_boolean result;
8651 bfd1 = sec1->owner;
8652 bfd2 = sec2->owner;
8654 /* If both are .gnu.linkonce sections, they have to have the same
8655 section name. */
8656 if (strncmp (sec1->name, ".gnu.linkonce",
8657 sizeof ".gnu.linkonce" - 1) == 0
8658 && strncmp (sec2->name, ".gnu.linkonce",
8659 sizeof ".gnu.linkonce" - 1) == 0)
8660 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8661 sec2->name + sizeof ".gnu.linkonce") == 0;
8663 /* Both sections have to be in ELF. */
8664 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8665 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8666 return FALSE;
8668 if (elf_section_type (sec1) != elf_section_type (sec2))
8669 return FALSE;
8671 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8672 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8674 /* If both are members of section groups, they have to have the
8675 same group name. */
8676 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8677 return FALSE;
8680 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8681 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8682 if (shndx1 == -1 || shndx2 == -1)
8683 return FALSE;
8685 bed1 = get_elf_backend_data (bfd1);
8686 bed2 = get_elf_backend_data (bfd2);
8687 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8688 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8689 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8690 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8692 if (symcount1 == 0 || symcount2 == 0)
8693 return FALSE;
8695 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8696 NULL, NULL, NULL);
8697 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8698 NULL, NULL, NULL);
8700 result = FALSE;
8701 if (isymbuf1 == NULL || isymbuf2 == NULL)
8702 goto done;
8704 /* Sort symbols by binding and section. Global definitions are at
8705 the beginning. */
8706 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8707 elf_sort_elf_symbol);
8708 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8709 elf_sort_elf_symbol);
8711 /* Count definitions in the section. */
8712 count1 = 0;
8713 for (isym = isymbuf1, isymend = isym + symcount1;
8714 isym < isymend; isym++)
8716 if (isym->st_shndx == (unsigned int) shndx1)
8718 if (count1 == 0)
8719 isymstart1 = isym;
8720 count1++;
8723 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8724 break;
8727 count2 = 0;
8728 for (isym = isymbuf2, isymend = isym + symcount2;
8729 isym < isymend; isym++)
8731 if (isym->st_shndx == (unsigned int) shndx2)
8733 if (count2 == 0)
8734 isymstart2 = isym;
8735 count2++;
8738 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8739 break;
8742 if (count1 == 0 || count2 == 0 || count1 != count2)
8743 goto done;
8745 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8746 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8748 if (symtable1 == NULL || symtable2 == NULL)
8749 goto done;
8751 symp = symtable1;
8752 for (isym = isymstart1, isymend = isym + count1;
8753 isym < isymend; isym++)
8755 symp->sym = isym;
8756 symp->name = bfd_elf_string_from_elf_section (bfd1,
8757 hdr1->sh_link,
8758 isym->st_name);
8759 symp++;
8762 symp = symtable2;
8763 for (isym = isymstart2, isymend = isym + count1;
8764 isym < isymend; isym++)
8766 symp->sym = isym;
8767 symp->name = bfd_elf_string_from_elf_section (bfd2,
8768 hdr2->sh_link,
8769 isym->st_name);
8770 symp++;
8773 /* Sort symbol by name. */
8774 qsort (symtable1, count1, sizeof (struct elf_symbol),
8775 elf_sym_name_compare);
8776 qsort (symtable2, count1, sizeof (struct elf_symbol),
8777 elf_sym_name_compare);
8779 for (i = 0; i < count1; i++)
8780 /* Two symbols must have the same binding, type and name. */
8781 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8782 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8783 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8784 goto done;
8786 result = TRUE;
8788 done:
8789 if (symtable1)
8790 free (symtable1);
8791 if (symtable2)
8792 free (symtable2);
8793 if (isymbuf1)
8794 free (isymbuf1);
8795 if (isymbuf2)
8796 free (isymbuf2);
8798 return result;
8801 /* It is only used by x86-64 so far. */
8802 asection _bfd_elf_large_com_section
8803 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8804 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8806 /* Return TRUE if 2 section types are compatible. */
8808 bfd_boolean
8809 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8810 bfd *bbfd, const asection *bsec)
8812 if (asec == NULL
8813 || bsec == NULL
8814 || abfd->xvec->flavour != bfd_target_elf_flavour
8815 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8816 return TRUE;
8818 return elf_section_type (asec) == elf_section_type (bsec);