* elf32-mips.c (mips_elf_calculate_relocation): Restore
[binutils.git] / bfd / elf32-mips.c
blobdd2c55ce0b0a02784ce2ea8588ac97464953a21e
1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
9 This file is part of BFD, the Binary File Descriptor library.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "bfdlink.h"
33 #include "genlink.h"
34 #include "elf-bfd.h"
35 #include "elf/mips.h"
37 /* Get the ECOFF swapping routines. */
38 #include "coff/sym.h"
39 #include "coff/symconst.h"
40 #include "coff/internal.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43 #define ECOFF_32
44 #include "ecoffswap.h"
46 /* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
49 struct mips_got_info
51 /* The global symbol in the GOT with the lowest index in the dynamic
52 symbol table. */
53 struct elf_link_hash_entry *global_gotsym;
54 /* The number of global .got entries. */
55 unsigned int global_gotno;
56 /* The number of local .got entries. */
57 unsigned int local_gotno;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno;
62 /* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
65 struct mips_elf_link_hash_entry
67 struct elf_link_hash_entry root;
69 /* External symbol information. */
70 EXTR esym;
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
73 this symbol. */
74 unsigned int possibly_dynamic_relocs;
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index;
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
82 asection *fn_stub;
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
86 boolean need_fn_stub;
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
90 asection *call_stub;
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection *call_fp_stub;
97 static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
99 static reloc_howto_type *bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd *, bfd_reloc_code_real_type));
101 static reloc_howto_type *mips_rtype_to_howto
102 PARAMS ((unsigned int));
103 static void mips_info_to_howto_rel
104 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
105 static void mips_info_to_howto_rela
106 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
107 static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *));
109 static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *));
111 static void bfd_mips_elf_swap_msym_in
112 PARAMS ((bfd *, const Elf32_External_Msym *, Elf32_Internal_Msym *));
113 static void bfd_mips_elf_swap_msym_out
114 PARAMS ((bfd *, const Elf32_Internal_Msym *, Elf32_External_Msym *));
115 static boolean mips_elf_sym_is_global PARAMS ((bfd *, asymbol *));
116 static boolean mips_elf_create_procedure_table
117 PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *,
118 struct ecoff_debug_info *));
119 static INLINE int elf_mips_isa PARAMS ((flagword));
120 static INLINE int elf_mips_mach PARAMS ((flagword));
121 static INLINE char* elf_mips_abi_name PARAMS ((bfd *));
122 static boolean mips_elf_is_local_label_name
123 PARAMS ((bfd *, const char *));
124 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
125 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
126 static int gptab_compare PARAMS ((const void *, const void *));
127 static void mips_elf_relocate_hi16
128 PARAMS ((bfd *, Elf_Internal_Rela *, Elf_Internal_Rela *, bfd_byte *,
129 bfd_vma));
130 static boolean mips_elf_relocate_got_local
131 PARAMS ((bfd *, bfd *, asection *, Elf_Internal_Rela *,
132 Elf_Internal_Rela *, bfd_byte *, bfd_vma));
133 static void mips_elf_relocate_global_got
134 PARAMS ((bfd *, Elf_Internal_Rela *, bfd_byte *, bfd_vma));
135 static bfd_reloc_status_type mips16_jump_reloc
136 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
137 static bfd_reloc_status_type mips16_gprel_reloc
138 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
139 static boolean mips_elf_create_compact_rel_section
140 PARAMS ((bfd *, struct bfd_link_info *));
141 static boolean mips_elf_create_got_section
142 PARAMS ((bfd *, struct bfd_link_info *));
143 static bfd_reloc_status_type mips_elf_final_gp
144 PARAMS ((bfd *, asymbol *, boolean, char **, bfd_vma *));
145 static bfd_byte *elf32_mips_get_relocated_section_contents
146 PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
147 bfd_byte *, boolean, asymbol **));
148 static asection *mips_elf_create_msym_section
149 PARAMS ((bfd *));
150 static void mips_elf_irix6_finish_dynamic_symbol
151 PARAMS ((bfd *, const char *, Elf_Internal_Sym *));
152 static bfd_vma mips_elf_sign_extend PARAMS ((bfd_vma, int));
153 static boolean mips_elf_overflow_p PARAMS ((bfd_vma, int));
154 static bfd_vma mips_elf_high PARAMS ((bfd_vma));
155 static bfd_vma mips_elf_higher PARAMS ((bfd_vma));
156 static bfd_vma mips_elf_highest PARAMS ((bfd_vma));
157 static bfd_vma mips_elf_global_got_index
158 PARAMS ((bfd *, struct elf_link_hash_entry *));
159 static bfd_vma mips_elf_local_got_index
160 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
161 static bfd_vma mips_elf_got_offset_from_index
162 PARAMS ((bfd *, bfd *, bfd_vma));
163 static boolean mips_elf_record_global_got_symbol
164 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *,
165 struct mips_got_info *));
166 static bfd_vma mips_elf_got_page
167 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *));
168 static boolean mips_elf_next_lo16_addend
169 PARAMS ((const Elf_Internal_Rela *, const Elf_Internal_Rela *, bfd_vma *));
170 static bfd_reloc_status_type mips_elf_calculate_relocation
171 PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *,
172 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
173 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
174 boolean *));
175 static bfd_vma mips_elf_obtain_contents
176 PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *));
177 static boolean mips_elf_perform_relocation
178 PARAMS ((struct bfd_link_info *, reloc_howto_type *,
179 const Elf_Internal_Rela *, bfd_vma,
180 bfd *, asection *, bfd_byte *, boolean));
181 static boolean mips_elf_assign_gp PARAMS ((bfd *, bfd_vma *));
182 static boolean mips_elf_sort_hash_table_f
183 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
184 static boolean mips_elf_sort_hash_table
185 PARAMS ((struct bfd_link_info *, unsigned long));
186 static asection * mips_elf_got_section PARAMS ((bfd *));
187 static struct mips_got_info *mips_elf_got_info
188 PARAMS ((bfd *, asection **));
189 static boolean mips_elf_local_relocation_p
190 PARAMS ((bfd *, const Elf_Internal_Rela *, asection **));
191 static bfd_vma mips_elf_create_local_got_entry
192 PARAMS ((bfd *, struct mips_got_info *, asection *, bfd_vma));
193 static bfd_vma mips_elf_got16_entry
194 PARAMS ((bfd *, struct bfd_link_info *, bfd_vma));
195 static unsigned int mips_elf_create_dynamic_relocation
196 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
197 long, bfd_vma, asection *));
198 static void mips_elf_allocate_dynamic_relocations
199 PARAMS ((bfd *, unsigned int));
200 static boolean mips_elf_stub_section_p
201 PARAMS ((bfd *, asection *));
203 /* The level of IRIX compatibility we're striving for. */
205 typedef enum {
206 ict_none,
207 ict_irix5,
208 ict_irix6
209 } irix_compat_t;
211 /* Nonzero if ABFD is using the N32 ABI. */
213 #define ABI_N32_P(abfd) \
214 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
216 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
217 true, yet. */
218 #define ABI_64_P(abfd) \
219 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
221 /* What version of Irix we are trying to be compatible with. FIXME:
222 At the moment, we never generate "normal" MIPS ELF ABI executables;
223 we always use some version of Irix. */
225 #define IRIX_COMPAT(abfd) \
226 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
228 /* Whether we are trying to be compatible with IRIX at all. */
230 #define SGI_COMPAT(abfd) \
231 (IRIX_COMPAT (abfd) != ict_none)
233 /* The name of the msym section. */
234 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
236 /* The name of the srdata section. */
237 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
239 /* The name of the options section. */
240 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
241 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
243 /* The name of the stub section. */
244 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
245 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
247 /* The name of the dynamic relocation section. */
248 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
250 /* The size of an external REL relocation. */
251 #define MIPS_ELF_REL_SIZE(abfd) \
252 (get_elf_backend_data (abfd)->s->sizeof_rel)
254 /* The size of an external dynamic table entry. */
255 #define MIPS_ELF_DYN_SIZE(abfd) \
256 (get_elf_backend_data (abfd)->s->sizeof_dyn)
258 /* The size of a GOT entry. */
259 #define MIPS_ELF_GOT_SIZE(abfd) \
260 (get_elf_backend_data (abfd)->s->arch_size / 8)
262 /* The size of a symbol-table entry. */
263 #define MIPS_ELF_SYM_SIZE(abfd) \
264 (get_elf_backend_data (abfd)->s->sizeof_sym)
266 /* The default alignment for sections, as a power of two. */
267 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
268 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
270 /* Get word-sized data. */
271 #define MIPS_ELF_GET_WORD(abfd, ptr) \
272 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
274 /* Put out word-sized data. */
275 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
276 (ABI_64_P (abfd) \
277 ? bfd_put_64 (abfd, val, ptr) \
278 : bfd_put_32 (abfd, val, ptr))
280 /* Add a dynamic symbol table-entry. */
281 #ifdef BFD64
282 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
283 (ABI_64_P (elf_hash_table (info)->dynobj) \
284 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
285 : bfd_elf32_add_dynamic_entry (info, tag, val))
286 #else
287 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
288 (ABI_64_P (elf_hash_table (info)->dynobj) \
289 ? (abort (), false) \
290 : bfd_elf32_add_dynamic_entry (info, tag, val))
291 #endif
293 /* The number of local .got entries we reserve. */
294 #define MIPS_RESERVED_GOTNO (2)
296 /* Instructions which appear in a stub. For some reason the stub is
297 slightly different on an SGI system. */
298 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
299 #define STUB_LW(abfd) \
300 (SGI_COMPAT (abfd) \
301 ? (ABI_64_P (abfd) \
302 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
303 : 0x8f998010) /* lw t9,0x8010(gp) */ \
304 : 0x8f998000) /* lw t9,0x8000(gp) */
305 #define STUB_MOVE 0x03e07825 /* move t7,ra */
306 #define STUB_JALR 0x0320f809 /* jal t9 */
307 #define STUB_LI16 0x34180000 /* ori t8,zero,0 */
308 #define MIPS_FUNCTION_STUB_SIZE (16)
310 #if 0
311 /* We no longer try to identify particular sections for the .dynsym
312 section. When we do, we wind up crashing if there are other random
313 sections with relocations. */
315 /* Names of sections which appear in the .dynsym section in an Irix 5
316 executable. */
318 static const char * const mips_elf_dynsym_sec_names[] =
320 ".text",
321 ".init",
322 ".fini",
323 ".data",
324 ".rodata",
325 ".sdata",
326 ".sbss",
327 ".bss",
328 NULL
331 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
332 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
334 /* The number of entries in mips_elf_dynsym_sec_names which go in the
335 text segment. */
337 #define MIPS_TEXT_DYNSYM_SECNO (3)
339 #endif /* 0 */
341 /* The names of the runtime procedure table symbols used on Irix 5. */
343 static const char * const mips_elf_dynsym_rtproc_names[] =
345 "_procedure_table",
346 "_procedure_string_table",
347 "_procedure_table_size",
348 NULL
351 /* These structures are used to generate the .compact_rel section on
352 Irix 5. */
354 typedef struct
356 unsigned long id1; /* Always one? */
357 unsigned long num; /* Number of compact relocation entries. */
358 unsigned long id2; /* Always two? */
359 unsigned long offset; /* The file offset of the first relocation. */
360 unsigned long reserved0; /* Zero? */
361 unsigned long reserved1; /* Zero? */
362 } Elf32_compact_rel;
364 typedef struct
366 bfd_byte id1[4];
367 bfd_byte num[4];
368 bfd_byte id2[4];
369 bfd_byte offset[4];
370 bfd_byte reserved0[4];
371 bfd_byte reserved1[4];
372 } Elf32_External_compact_rel;
374 typedef struct
376 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
377 unsigned int rtype : 4; /* Relocation types. See below. */
378 unsigned int dist2to : 8;
379 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
380 unsigned long konst; /* KONST field. See below. */
381 unsigned long vaddr; /* VADDR to be relocated. */
382 } Elf32_crinfo;
384 typedef struct
386 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
387 unsigned int rtype : 4; /* Relocation types. See below. */
388 unsigned int dist2to : 8;
389 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
390 unsigned long konst; /* KONST field. See below. */
391 } Elf32_crinfo2;
393 typedef struct
395 bfd_byte info[4];
396 bfd_byte konst[4];
397 bfd_byte vaddr[4];
398 } Elf32_External_crinfo;
400 typedef struct
402 bfd_byte info[4];
403 bfd_byte konst[4];
404 } Elf32_External_crinfo2;
406 /* These are the constants used to swap the bitfields in a crinfo. */
408 #define CRINFO_CTYPE (0x1)
409 #define CRINFO_CTYPE_SH (31)
410 #define CRINFO_RTYPE (0xf)
411 #define CRINFO_RTYPE_SH (27)
412 #define CRINFO_DIST2TO (0xff)
413 #define CRINFO_DIST2TO_SH (19)
414 #define CRINFO_RELVADDR (0x7ffff)
415 #define CRINFO_RELVADDR_SH (0)
417 /* A compact relocation info has long (3 words) or short (2 words)
418 formats. A short format doesn't have VADDR field and relvaddr
419 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
420 #define CRF_MIPS_LONG 1
421 #define CRF_MIPS_SHORT 0
423 /* There are 4 types of compact relocation at least. The value KONST
424 has different meaning for each type:
426 (type) (konst)
427 CT_MIPS_REL32 Address in data
428 CT_MIPS_WORD Address in word (XXX)
429 CT_MIPS_GPHI_LO GP - vaddr
430 CT_MIPS_JMPAD Address to jump
433 #define CRT_MIPS_REL32 0xa
434 #define CRT_MIPS_WORD 0xb
435 #define CRT_MIPS_GPHI_LO 0xc
436 #define CRT_MIPS_JMPAD 0xd
438 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
439 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
440 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
441 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
443 static void bfd_elf32_swap_compact_rel_out
444 PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *));
445 static void bfd_elf32_swap_crinfo_out
446 PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *));
448 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
450 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
451 from smaller values. Start with zero, widen, *then* decrement. */
452 #define MINUS_ONE (((bfd_vma)0) - 1)
454 static reloc_howto_type elf_mips_howto_table[] =
456 /* No relocation. */
457 HOWTO (R_MIPS_NONE, /* type */
458 0, /* rightshift */
459 0, /* size (0 = byte, 1 = short, 2 = long) */
460 0, /* bitsize */
461 false, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_dont, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_MIPS_NONE", /* name */
466 false, /* partial_inplace */
467 0, /* src_mask */
468 0, /* dst_mask */
469 false), /* pcrel_offset */
471 /* 16 bit relocation. */
472 HOWTO (R_MIPS_16, /* type */
473 0, /* rightshift */
474 1, /* size (0 = byte, 1 = short, 2 = long) */
475 16, /* bitsize */
476 false, /* pc_relative */
477 0, /* bitpos */
478 complain_overflow_bitfield, /* complain_on_overflow */
479 bfd_elf_generic_reloc, /* special_function */
480 "R_MIPS_16", /* name */
481 true, /* partial_inplace */
482 0xffff, /* src_mask */
483 0xffff, /* dst_mask */
484 false), /* pcrel_offset */
486 /* 32 bit relocation. */
487 HOWTO (R_MIPS_32, /* type */
488 0, /* rightshift */
489 2, /* size (0 = byte, 1 = short, 2 = long) */
490 32, /* bitsize */
491 false, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_bitfield, /* complain_on_overflow */
494 bfd_elf_generic_reloc, /* special_function */
495 "R_MIPS_32", /* name */
496 true, /* partial_inplace */
497 0xffffffff, /* src_mask */
498 0xffffffff, /* dst_mask */
499 false), /* pcrel_offset */
501 /* 32 bit symbol relative relocation. */
502 HOWTO (R_MIPS_REL32, /* type */
503 0, /* rightshift */
504 2, /* size (0 = byte, 1 = short, 2 = long) */
505 32, /* bitsize */
506 false, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_bitfield, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 "R_MIPS_REL32", /* name */
511 true, /* partial_inplace */
512 0xffffffff, /* src_mask */
513 0xffffffff, /* dst_mask */
514 false), /* pcrel_offset */
516 /* 26 bit branch address. */
517 HOWTO (R_MIPS_26, /* type */
518 2, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 26, /* bitsize */
521 false, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont, /* complain_on_overflow */
524 /* This needs complex overflow
525 detection, because the upper four
526 bits must match the PC. */
527 bfd_elf_generic_reloc, /* special_function */
528 "R_MIPS_26", /* name */
529 true, /* partial_inplace */
530 0x3ffffff, /* src_mask */
531 0x3ffffff, /* dst_mask */
532 false), /* pcrel_offset */
534 /* High 16 bits of symbol value. */
535 HOWTO (R_MIPS_HI16, /* type */
536 0, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 16, /* bitsize */
539 false, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 _bfd_mips_elf_hi16_reloc, /* special_function */
543 "R_MIPS_HI16", /* name */
544 true, /* partial_inplace */
545 0xffff, /* src_mask */
546 0xffff, /* dst_mask */
547 false), /* pcrel_offset */
549 /* Low 16 bits of symbol value. */
550 HOWTO (R_MIPS_LO16, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 16, /* bitsize */
554 false, /* pc_relative */
555 0, /* bitpos */
556 complain_overflow_dont, /* complain_on_overflow */
557 _bfd_mips_elf_lo16_reloc, /* special_function */
558 "R_MIPS_LO16", /* name */
559 true, /* partial_inplace */
560 0xffff, /* src_mask */
561 0xffff, /* dst_mask */
562 false), /* pcrel_offset */
564 /* GP relative reference. */
565 HOWTO (R_MIPS_GPREL16, /* type */
566 0, /* rightshift */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
568 16, /* bitsize */
569 false, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_signed, /* complain_on_overflow */
572 _bfd_mips_elf_gprel16_reloc, /* special_function */
573 "R_MIPS_GPREL16", /* name */
574 true, /* partial_inplace */
575 0xffff, /* src_mask */
576 0xffff, /* dst_mask */
577 false), /* pcrel_offset */
579 /* Reference to literal section. */
580 HOWTO (R_MIPS_LITERAL, /* type */
581 0, /* rightshift */
582 2, /* size (0 = byte, 1 = short, 2 = long) */
583 16, /* bitsize */
584 false, /* pc_relative */
585 0, /* bitpos */
586 complain_overflow_signed, /* complain_on_overflow */
587 _bfd_mips_elf_gprel16_reloc, /* special_function */
588 "R_MIPS_LITERAL", /* name */
589 true, /* partial_inplace */
590 0xffff, /* src_mask */
591 0xffff, /* dst_mask */
592 false), /* pcrel_offset */
594 /* Reference to global offset table. */
595 HOWTO (R_MIPS_GOT16, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 16, /* bitsize */
599 false, /* pc_relative */
600 0, /* bitpos */
601 complain_overflow_signed, /* complain_on_overflow */
602 _bfd_mips_elf_got16_reloc, /* special_function */
603 "R_MIPS_GOT16", /* name */
604 false, /* partial_inplace */
605 0, /* src_mask */
606 0xffff, /* dst_mask */
607 false), /* pcrel_offset */
609 /* 16 bit PC relative reference. */
610 HOWTO (R_MIPS_PC16, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 16, /* bitsize */
614 true, /* pc_relative */
615 0, /* bitpos */
616 complain_overflow_signed, /* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_MIPS_PC16", /* name */
619 true, /* partial_inplace */
620 0xffff, /* src_mask */
621 0xffff, /* dst_mask */
622 false), /* pcrel_offset */
624 /* 16 bit call through global offset table. */
625 HOWTO (R_MIPS_CALL16, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 16, /* bitsize */
629 false, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_signed, /* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_MIPS_CALL16", /* name */
634 false, /* partial_inplace */
635 0, /* src_mask */
636 0xffff, /* dst_mask */
637 false), /* pcrel_offset */
639 /* 32 bit GP relative reference. */
640 HOWTO (R_MIPS_GPREL32, /* type */
641 0, /* rightshift */
642 2, /* size (0 = byte, 1 = short, 2 = long) */
643 32, /* bitsize */
644 false, /* pc_relative */
645 0, /* bitpos */
646 complain_overflow_bitfield, /* complain_on_overflow */
647 _bfd_mips_elf_gprel32_reloc, /* special_function */
648 "R_MIPS_GPREL32", /* name */
649 true, /* partial_inplace */
650 0xffffffff, /* src_mask */
651 0xffffffff, /* dst_mask */
652 false), /* pcrel_offset */
654 /* The remaining relocs are defined on Irix 5, although they are
655 not defined by the ABI. */
656 EMPTY_HOWTO (13),
657 EMPTY_HOWTO (14),
658 EMPTY_HOWTO (15),
660 /* A 5 bit shift field. */
661 HOWTO (R_MIPS_SHIFT5, /* type */
662 0, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 5, /* bitsize */
665 false, /* pc_relative */
666 6, /* bitpos */
667 complain_overflow_bitfield, /* complain_on_overflow */
668 bfd_elf_generic_reloc, /* special_function */
669 "R_MIPS_SHIFT5", /* name */
670 true, /* partial_inplace */
671 0x000007c0, /* src_mask */
672 0x000007c0, /* dst_mask */
673 false), /* pcrel_offset */
675 /* A 6 bit shift field. */
676 /* FIXME: This is not handled correctly; a special function is
677 needed to put the most significant bit in the right place. */
678 HOWTO (R_MIPS_SHIFT6, /* type */
679 0, /* rightshift */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
681 6, /* bitsize */
682 false, /* pc_relative */
683 6, /* bitpos */
684 complain_overflow_bitfield, /* complain_on_overflow */
685 bfd_elf_generic_reloc, /* special_function */
686 "R_MIPS_SHIFT6", /* name */
687 true, /* partial_inplace */
688 0x000007c4, /* src_mask */
689 0x000007c4, /* dst_mask */
690 false), /* pcrel_offset */
692 /* A 64 bit relocation. */
693 HOWTO (R_MIPS_64, /* type */
694 0, /* rightshift */
695 4, /* size (0 = byte, 1 = short, 2 = long) */
696 64, /* bitsize */
697 false, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_bitfield, /* complain_on_overflow */
700 mips32_64bit_reloc, /* special_function */
701 "R_MIPS_64", /* name */
702 true, /* partial_inplace */
703 MINUS_ONE, /* src_mask */
704 MINUS_ONE, /* dst_mask */
705 false), /* pcrel_offset */
707 /* Displacement in the global offset table. */
708 HOWTO (R_MIPS_GOT_DISP, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 false, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_MIPS_GOT_DISP", /* name */
717 true, /* partial_inplace */
718 0x0000ffff, /* src_mask */
719 0x0000ffff, /* dst_mask */
720 false), /* pcrel_offset */
722 /* Displacement to page pointer in the global offset table. */
723 HOWTO (R_MIPS_GOT_PAGE, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 false, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_bitfield, /* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_MIPS_GOT_PAGE", /* name */
732 true, /* partial_inplace */
733 0x0000ffff, /* src_mask */
734 0x0000ffff, /* dst_mask */
735 false), /* pcrel_offset */
737 /* Offset from page pointer in the global offset table. */
738 HOWTO (R_MIPS_GOT_OFST, /* type */
739 0, /* rightshift */
740 2, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 false, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_bitfield, /* complain_on_overflow */
745 bfd_elf_generic_reloc, /* special_function */
746 "R_MIPS_GOT_OFST", /* name */
747 true, /* partial_inplace */
748 0x0000ffff, /* src_mask */
749 0x0000ffff, /* dst_mask */
750 false), /* pcrel_offset */
752 /* High 16 bits of displacement in global offset table. */
753 HOWTO (R_MIPS_GOT_HI16, /* type */
754 0, /* rightshift */
755 2, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 false, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 bfd_elf_generic_reloc, /* special_function */
761 "R_MIPS_GOT_HI16", /* name */
762 true, /* partial_inplace */
763 0x0000ffff, /* src_mask */
764 0x0000ffff, /* dst_mask */
765 false), /* pcrel_offset */
767 /* Low 16 bits of displacement in global offset table. */
768 HOWTO (R_MIPS_GOT_LO16, /* type */
769 0, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 16, /* bitsize */
772 false, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_MIPS_GOT_LO16", /* name */
777 true, /* partial_inplace */
778 0x0000ffff, /* src_mask */
779 0x0000ffff, /* dst_mask */
780 false), /* pcrel_offset */
782 /* 64 bit subtraction. Used in the N32 ABI. */
783 HOWTO (R_MIPS_SUB, /* type */
784 0, /* rightshift */
785 4, /* size (0 = byte, 1 = short, 2 = long) */
786 64, /* bitsize */
787 false, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield, /* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_MIPS_SUB", /* name */
792 true, /* partial_inplace */
793 MINUS_ONE, /* src_mask */
794 MINUS_ONE, /* dst_mask */
795 false), /* pcrel_offset */
797 /* Used to cause the linker to insert and delete instructions? */
798 EMPTY_HOWTO (R_MIPS_INSERT_A),
799 EMPTY_HOWTO (R_MIPS_INSERT_B),
800 EMPTY_HOWTO (R_MIPS_DELETE),
802 /* Get the higher value of a 64 bit addend. */
803 HOWTO (R_MIPS_HIGHER, /* type */
804 0, /* rightshift */
805 2, /* size (0 = byte, 1 = short, 2 = long) */
806 16, /* bitsize */
807 false, /* pc_relative */
808 0, /* bitpos */
809 complain_overflow_dont, /* complain_on_overflow */
810 bfd_elf_generic_reloc, /* special_function */
811 "R_MIPS_HIGHER", /* name */
812 true, /* partial_inplace */
813 0, /* src_mask */
814 0xffff, /* dst_mask */
815 false), /* pcrel_offset */
817 /* Get the highest value of a 64 bit addend. */
818 HOWTO (R_MIPS_HIGHEST, /* type */
819 0, /* rightshift */
820 2, /* size (0 = byte, 1 = short, 2 = long) */
821 16, /* bitsize */
822 false, /* pc_relative */
823 0, /* bitpos */
824 complain_overflow_dont, /* complain_on_overflow */
825 bfd_elf_generic_reloc, /* special_function */
826 "R_MIPS_HIGHEST", /* name */
827 true, /* partial_inplace */
828 0, /* src_mask */
829 0xffff, /* dst_mask */
830 false), /* pcrel_offset */
832 /* High 16 bits of displacement in global offset table. */
833 HOWTO (R_MIPS_CALL_HI16, /* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 16, /* bitsize */
837 false, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont, /* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_MIPS_CALL_HI16", /* name */
842 true, /* partial_inplace */
843 0x0000ffff, /* src_mask */
844 0x0000ffff, /* dst_mask */
845 false), /* pcrel_offset */
847 /* Low 16 bits of displacement in global offset table. */
848 HOWTO (R_MIPS_CALL_LO16, /* type */
849 0, /* rightshift */
850 2, /* size (0 = byte, 1 = short, 2 = long) */
851 16, /* bitsize */
852 false, /* pc_relative */
853 0, /* bitpos */
854 complain_overflow_dont, /* complain_on_overflow */
855 bfd_elf_generic_reloc, /* special_function */
856 "R_MIPS_CALL_LO16", /* name */
857 true, /* partial_inplace */
858 0x0000ffff, /* src_mask */
859 0x0000ffff, /* dst_mask */
860 false), /* pcrel_offset */
862 /* Section displacement. */
863 HOWTO (R_MIPS_SCN_DISP, /* type */
864 0, /* rightshift */
865 2, /* size (0 = byte, 1 = short, 2 = long) */
866 32, /* bitsize */
867 false, /* pc_relative */
868 0, /* bitpos */
869 complain_overflow_dont, /* complain_on_overflow */
870 bfd_elf_generic_reloc, /* special_function */
871 "R_MIPS_SCN_DISP", /* name */
872 false, /* partial_inplace */
873 0xffffffff, /* src_mask */
874 0xffffffff, /* dst_mask */
875 false), /* pcrel_offset */
877 EMPTY_HOWTO (R_MIPS_REL16),
878 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE),
879 EMPTY_HOWTO (R_MIPS_PJUMP),
880 EMPTY_HOWTO (R_MIPS_RELGOT),
882 /* Protected jump conversion. This is an optimization hint. No
883 relocation is required for correctness. */
884 HOWTO (R_MIPS_JALR, /* type */
885 0, /* rightshift */
886 0, /* size (0 = byte, 1 = short, 2 = long) */
887 0, /* bitsize */
888 false, /* pc_relative */
889 0, /* bitpos */
890 complain_overflow_dont, /* complain_on_overflow */
891 bfd_elf_generic_reloc, /* special_function */
892 "R_MIPS_JALR", /* name */
893 false, /* partial_inplace */
894 0x00000000, /* src_mask */
895 0x00000000, /* dst_mask */
896 false), /* pcrel_offset */
899 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
900 is a hack to make the linker think that we need 64 bit values. */
901 static reloc_howto_type elf_mips_ctor64_howto =
902 HOWTO (R_MIPS_64, /* type */
903 0, /* rightshift */
904 4, /* size (0 = byte, 1 = short, 2 = long) */
905 32, /* bitsize */
906 false, /* pc_relative */
907 0, /* bitpos */
908 complain_overflow_signed, /* complain_on_overflow */
909 mips32_64bit_reloc, /* special_function */
910 "R_MIPS_64", /* name */
911 true, /* partial_inplace */
912 0xffffffff, /* src_mask */
913 0xffffffff, /* dst_mask */
914 false); /* pcrel_offset */
916 /* The reloc used for the mips16 jump instruction. */
917 static reloc_howto_type elf_mips16_jump_howto =
918 HOWTO (R_MIPS16_26, /* type */
919 2, /* rightshift */
920 2, /* size (0 = byte, 1 = short, 2 = long) */
921 26, /* bitsize */
922 false, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont, /* complain_on_overflow */
925 /* This needs complex overflow
926 detection, because the upper four
927 bits must match the PC. */
928 mips16_jump_reloc, /* special_function */
929 "R_MIPS16_26", /* name */
930 true, /* partial_inplace */
931 0x3ffffff, /* src_mask */
932 0x3ffffff, /* dst_mask */
933 false); /* pcrel_offset */
935 /* The reloc used for the mips16 gprel instruction. */
936 static reloc_howto_type elf_mips16_gprel_howto =
937 HOWTO (R_MIPS16_GPREL, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 16, /* bitsize */
941 false, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_signed, /* complain_on_overflow */
944 mips16_gprel_reloc, /* special_function */
945 "R_MIPS16_GPREL", /* name */
946 true, /* partial_inplace */
947 0x07ff001f, /* src_mask */
948 0x07ff001f, /* dst_mask */
949 false); /* pcrel_offset */
952 /* GNU extension to record C++ vtable hierarchy */
953 static reloc_howto_type elf_mips_gnu_vtinherit_howto =
954 HOWTO (R_MIPS_GNU_VTINHERIT, /* type */
955 0, /* rightshift */
956 2, /* size (0 = byte, 1 = short, 2 = long) */
957 0, /* bitsize */
958 false, /* pc_relative */
959 0, /* bitpos */
960 complain_overflow_dont, /* complain_on_overflow */
961 NULL, /* special_function */
962 "R_MIPS_GNU_VTINHERIT", /* name */
963 false, /* partial_inplace */
964 0, /* src_mask */
965 0, /* dst_mask */
966 false); /* pcrel_offset */
968 /* GNU extension to record C++ vtable member usage */
969 static reloc_howto_type elf_mips_gnu_vtentry_howto =
970 HOWTO (R_MIPS_GNU_VTENTRY, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 0, /* bitsize */
974 false, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont, /* complain_on_overflow */
977 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
978 "R_MIPS_GNU_VTENTRY", /* name */
979 false, /* partial_inplace */
980 0, /* src_mask */
981 0, /* dst_mask */
982 false); /* pcrel_offset */
984 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
985 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
986 the HI16. Here we just save the information we need; we do the
987 actual relocation when we see the LO16. MIPS ELF requires that the
988 LO16 immediately follow the HI16. As a GNU extension, we permit an
989 arbitrary number of HI16 relocs to be associated with a single LO16
990 reloc. This extension permits gcc to output the HI and LO relocs
991 itself. */
993 struct mips_hi16
995 struct mips_hi16 *next;
996 bfd_byte *addr;
997 bfd_vma addend;
1000 /* FIXME: This should not be a static variable. */
1002 static struct mips_hi16 *mips_hi16_list;
1004 bfd_reloc_status_type
1005 _bfd_mips_elf_hi16_reloc (abfd,
1006 reloc_entry,
1007 symbol,
1008 data,
1009 input_section,
1010 output_bfd,
1011 error_message)
1012 bfd *abfd ATTRIBUTE_UNUSED;
1013 arelent *reloc_entry;
1014 asymbol *symbol;
1015 PTR data;
1016 asection *input_section;
1017 bfd *output_bfd;
1018 char **error_message;
1020 bfd_reloc_status_type ret;
1021 bfd_vma relocation;
1022 struct mips_hi16 *n;
1024 /* If we're relocating, and this an external symbol, we don't want
1025 to change anything. */
1026 if (output_bfd != (bfd *) NULL
1027 && (symbol->flags & BSF_SECTION_SYM) == 0
1028 && reloc_entry->addend == 0)
1030 reloc_entry->address += input_section->output_offset;
1031 return bfd_reloc_ok;
1034 ret = bfd_reloc_ok;
1036 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1038 boolean relocateable;
1039 bfd_vma gp;
1041 if (ret == bfd_reloc_undefined)
1042 abort ();
1044 if (output_bfd != NULL)
1045 relocateable = true;
1046 else
1048 relocateable = false;
1049 output_bfd = symbol->section->output_section->owner;
1052 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1053 error_message, &gp);
1054 if (ret != bfd_reloc_ok)
1055 return ret;
1057 relocation = gp - reloc_entry->address;
1059 else
1061 if (bfd_is_und_section (symbol->section)
1062 && output_bfd == (bfd *) NULL)
1063 ret = bfd_reloc_undefined;
1065 if (bfd_is_com_section (symbol->section))
1066 relocation = 0;
1067 else
1068 relocation = symbol->value;
1071 relocation += symbol->section->output_section->vma;
1072 relocation += symbol->section->output_offset;
1073 relocation += reloc_entry->addend;
1075 if (reloc_entry->address > input_section->_cooked_size)
1076 return bfd_reloc_outofrange;
1078 /* Save the information, and let LO16 do the actual relocation. */
1079 n = (struct mips_hi16 *) bfd_malloc (sizeof *n);
1080 if (n == NULL)
1081 return bfd_reloc_outofrange;
1082 n->addr = (bfd_byte *) data + reloc_entry->address;
1083 n->addend = relocation;
1084 n->next = mips_hi16_list;
1085 mips_hi16_list = n;
1087 if (output_bfd != (bfd *) NULL)
1088 reloc_entry->address += input_section->output_offset;
1090 return ret;
1093 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1094 inplace relocation; this function exists in order to do the
1095 R_MIPS_HI16 relocation described above. */
1097 bfd_reloc_status_type
1098 _bfd_mips_elf_lo16_reloc (abfd,
1099 reloc_entry,
1100 symbol,
1101 data,
1102 input_section,
1103 output_bfd,
1104 error_message)
1105 bfd *abfd;
1106 arelent *reloc_entry;
1107 asymbol *symbol;
1108 PTR data;
1109 asection *input_section;
1110 bfd *output_bfd;
1111 char **error_message;
1113 arelent gp_disp_relent;
1115 if (mips_hi16_list != NULL)
1117 struct mips_hi16 *l;
1119 l = mips_hi16_list;
1120 while (l != NULL)
1122 unsigned long insn;
1123 unsigned long val;
1124 unsigned long vallo;
1125 struct mips_hi16 *next;
1127 /* Do the HI16 relocation. Note that we actually don't need
1128 to know anything about the LO16 itself, except where to
1129 find the low 16 bits of the addend needed by the LO16. */
1130 insn = bfd_get_32 (abfd, l->addr);
1131 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1132 & 0xffff);
1133 val = ((insn & 0xffff) << 16) + vallo;
1134 val += l->addend;
1136 /* The low order 16 bits are always treated as a signed
1137 value. Therefore, a negative value in the low order bits
1138 requires an adjustment in the high order bits. We need
1139 to make this adjustment in two ways: once for the bits we
1140 took from the data, and once for the bits we are putting
1141 back in to the data. */
1142 if ((vallo & 0x8000) != 0)
1143 val -= 0x10000;
1144 if ((val & 0x8000) != 0)
1145 val += 0x10000;
1147 insn = (insn &~ 0xffff) | ((val >> 16) & 0xffff);
1148 bfd_put_32 (abfd, insn, l->addr);
1150 if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1152 gp_disp_relent = *reloc_entry;
1153 reloc_entry = &gp_disp_relent;
1154 reloc_entry->addend = l->addend;
1157 next = l->next;
1158 free (l);
1159 l = next;
1162 mips_hi16_list = NULL;
1164 else if (strcmp (bfd_asymbol_name (symbol), "_gp_disp") == 0)
1166 bfd_reloc_status_type ret;
1167 bfd_vma gp, relocation;
1169 /* FIXME: Does this case ever occur? */
1171 ret = mips_elf_final_gp (output_bfd, symbol, true, error_message, &gp);
1172 if (ret != bfd_reloc_ok)
1173 return ret;
1175 relocation = gp - reloc_entry->address;
1176 relocation += symbol->section->output_section->vma;
1177 relocation += symbol->section->output_offset;
1178 relocation += reloc_entry->addend;
1180 if (reloc_entry->address > input_section->_cooked_size)
1181 return bfd_reloc_outofrange;
1183 gp_disp_relent = *reloc_entry;
1184 reloc_entry = &gp_disp_relent;
1185 reloc_entry->addend = relocation - 4;
1188 /* Now do the LO16 reloc in the usual way. */
1189 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1190 input_section, output_bfd, error_message);
1193 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1194 table used for PIC code. If the symbol is an external symbol, the
1195 instruction is modified to contain the offset of the appropriate
1196 entry in the global offset table. If the symbol is a section
1197 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1198 addends are combined to form the real addend against the section
1199 symbol; the GOT16 is modified to contain the offset of an entry in
1200 the global offset table, and the LO16 is modified to offset it
1201 appropriately. Thus an offset larger than 16 bits requires a
1202 modified value in the global offset table.
1204 This implementation suffices for the assembler, but the linker does
1205 not yet know how to create global offset tables. */
1207 bfd_reloc_status_type
1208 _bfd_mips_elf_got16_reloc (abfd,
1209 reloc_entry,
1210 symbol,
1211 data,
1212 input_section,
1213 output_bfd,
1214 error_message)
1215 bfd *abfd;
1216 arelent *reloc_entry;
1217 asymbol *symbol;
1218 PTR data;
1219 asection *input_section;
1220 bfd *output_bfd;
1221 char **error_message;
1223 /* If we're relocating, and this an external symbol, we don't want
1224 to change anything. */
1225 if (output_bfd != (bfd *) NULL
1226 && (symbol->flags & BSF_SECTION_SYM) == 0
1227 && reloc_entry->addend == 0)
1229 reloc_entry->address += input_section->output_offset;
1230 return bfd_reloc_ok;
1233 /* If we're relocating, and this is a local symbol, we can handle it
1234 just like HI16. */
1235 if (output_bfd != (bfd *) NULL
1236 && (symbol->flags & BSF_SECTION_SYM) != 0)
1237 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1238 input_section, output_bfd, error_message);
1240 abort ();
1243 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1244 dangerous relocation. */
1246 static boolean
1247 mips_elf_assign_gp (output_bfd, pgp)
1248 bfd *output_bfd;
1249 bfd_vma *pgp;
1251 unsigned int count;
1252 asymbol **sym;
1253 unsigned int i;
1255 /* If we've already figured out what GP will be, just return it. */
1256 *pgp = _bfd_get_gp_value (output_bfd);
1257 if (*pgp)
1258 return true;
1260 count = bfd_get_symcount (output_bfd);
1261 sym = bfd_get_outsymbols (output_bfd);
1263 /* The linker script will have created a symbol named `_gp' with the
1264 appropriate value. */
1265 if (sym == (asymbol **) NULL)
1266 i = count;
1267 else
1269 for (i = 0; i < count; i++, sym++)
1271 register CONST char *name;
1273 name = bfd_asymbol_name (*sym);
1274 if (*name == '_' && strcmp (name, "_gp") == 0)
1276 *pgp = bfd_asymbol_value (*sym);
1277 _bfd_set_gp_value (output_bfd, *pgp);
1278 break;
1283 if (i >= count)
1285 /* Only get the error once. */
1286 *pgp = 4;
1287 _bfd_set_gp_value (output_bfd, *pgp);
1288 return false;
1291 return true;
1294 /* We have to figure out the gp value, so that we can adjust the
1295 symbol value correctly. We look up the symbol _gp in the output
1296 BFD. If we can't find it, we're stuck. We cache it in the ELF
1297 target data. We don't need to adjust the symbol value for an
1298 external symbol if we are producing relocateable output. */
1300 static bfd_reloc_status_type
1301 mips_elf_final_gp (output_bfd, symbol, relocateable, error_message, pgp)
1302 bfd *output_bfd;
1303 asymbol *symbol;
1304 boolean relocateable;
1305 char **error_message;
1306 bfd_vma *pgp;
1308 if (bfd_is_und_section (symbol->section)
1309 && ! relocateable)
1311 *pgp = 0;
1312 return bfd_reloc_undefined;
1315 *pgp = _bfd_get_gp_value (output_bfd);
1316 if (*pgp == 0
1317 && (! relocateable
1318 || (symbol->flags & BSF_SECTION_SYM) != 0))
1320 if (relocateable)
1322 /* Make up a value. */
1323 *pgp = symbol->section->output_section->vma + 0x4000;
1324 _bfd_set_gp_value (output_bfd, *pgp);
1326 else if (!mips_elf_assign_gp (output_bfd, pgp))
1328 *error_message =
1329 (char *) _("GP relative relocation when _gp not defined");
1330 return bfd_reloc_dangerous;
1334 return bfd_reloc_ok;
1337 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1338 become the offset from the gp register. This function also handles
1339 R_MIPS_LITERAL relocations, although those can be handled more
1340 cleverly because the entries in the .lit8 and .lit4 sections can be
1341 merged. */
1343 static bfd_reloc_status_type gprel16_with_gp PARAMS ((bfd *, asymbol *,
1344 arelent *, asection *,
1345 boolean, PTR, bfd_vma));
1347 bfd_reloc_status_type
1348 _bfd_mips_elf_gprel16_reloc (abfd, reloc_entry, symbol, data, input_section,
1349 output_bfd, error_message)
1350 bfd *abfd;
1351 arelent *reloc_entry;
1352 asymbol *symbol;
1353 PTR data;
1354 asection *input_section;
1355 bfd *output_bfd;
1356 char **error_message;
1358 boolean relocateable;
1359 bfd_reloc_status_type ret;
1360 bfd_vma gp;
1362 /* If we're relocating, and this is an external symbol with no
1363 addend, we don't want to change anything. We will only have an
1364 addend if this is a newly created reloc, not read from an ELF
1365 file. */
1366 if (output_bfd != (bfd *) NULL
1367 && (symbol->flags & BSF_SECTION_SYM) == 0
1368 && reloc_entry->addend == 0)
1370 reloc_entry->address += input_section->output_offset;
1371 return bfd_reloc_ok;
1374 if (output_bfd != (bfd *) NULL)
1375 relocateable = true;
1376 else
1378 relocateable = false;
1379 output_bfd = symbol->section->output_section->owner;
1382 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1383 &gp);
1384 if (ret != bfd_reloc_ok)
1385 return ret;
1387 return gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1388 relocateable, data, gp);
1391 static bfd_reloc_status_type
1392 gprel16_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1394 bfd *abfd;
1395 asymbol *symbol;
1396 arelent *reloc_entry;
1397 asection *input_section;
1398 boolean relocateable;
1399 PTR data;
1400 bfd_vma gp;
1402 bfd_vma relocation;
1403 unsigned long insn;
1404 unsigned long val;
1406 if (bfd_is_com_section (symbol->section))
1407 relocation = 0;
1408 else
1409 relocation = symbol->value;
1411 relocation += symbol->section->output_section->vma;
1412 relocation += symbol->section->output_offset;
1414 if (reloc_entry->address > input_section->_cooked_size)
1415 return bfd_reloc_outofrange;
1417 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1419 /* Set val to the offset into the section or symbol. */
1420 if (reloc_entry->howto->src_mask == 0)
1422 /* This case occurs with the 64-bit MIPS ELF ABI. */
1423 val = reloc_entry->addend;
1425 else
1427 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
1428 if (val & 0x8000)
1429 val -= 0x10000;
1432 /* Adjust val for the final section location and GP value. If we
1433 are producing relocateable output, we don't want to do this for
1434 an external symbol. */
1435 if (! relocateable
1436 || (symbol->flags & BSF_SECTION_SYM) != 0)
1437 val += relocation - gp;
1439 insn = (insn &~ 0xffff) | (val & 0xffff);
1440 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
1442 if (relocateable)
1443 reloc_entry->address += input_section->output_offset;
1445 /* Make sure it fit in 16 bits. */
1446 if (val >= 0x8000 && val < 0xffff8000)
1447 return bfd_reloc_overflow;
1449 return bfd_reloc_ok;
1452 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1453 from the gp register? XXX */
1455 static bfd_reloc_status_type gprel32_with_gp PARAMS ((bfd *, asymbol *,
1456 arelent *, asection *,
1457 boolean, PTR, bfd_vma));
1459 bfd_reloc_status_type
1460 _bfd_mips_elf_gprel32_reloc (abfd,
1461 reloc_entry,
1462 symbol,
1463 data,
1464 input_section,
1465 output_bfd,
1466 error_message)
1467 bfd *abfd;
1468 arelent *reloc_entry;
1469 asymbol *symbol;
1470 PTR data;
1471 asection *input_section;
1472 bfd *output_bfd;
1473 char **error_message;
1475 boolean relocateable;
1476 bfd_reloc_status_type ret;
1477 bfd_vma gp;
1479 /* If we're relocating, and this is an external symbol with no
1480 addend, we don't want to change anything. We will only have an
1481 addend if this is a newly created reloc, not read from an ELF
1482 file. */
1483 if (output_bfd != (bfd *) NULL
1484 && (symbol->flags & BSF_SECTION_SYM) == 0
1485 && reloc_entry->addend == 0)
1487 *error_message = (char *)
1488 _("32bits gp relative relocation occurs for an external symbol");
1489 return bfd_reloc_outofrange;
1492 if (output_bfd != (bfd *) NULL)
1494 relocateable = true;
1495 gp = _bfd_get_gp_value (output_bfd);
1497 else
1499 relocateable = false;
1500 output_bfd = symbol->section->output_section->owner;
1502 ret = mips_elf_final_gp (output_bfd, symbol, relocateable,
1503 error_message, &gp);
1504 if (ret != bfd_reloc_ok)
1505 return ret;
1508 return gprel32_with_gp (abfd, symbol, reloc_entry, input_section,
1509 relocateable, data, gp);
1512 static bfd_reloc_status_type
1513 gprel32_with_gp (abfd, symbol, reloc_entry, input_section, relocateable, data,
1515 bfd *abfd;
1516 asymbol *symbol;
1517 arelent *reloc_entry;
1518 asection *input_section;
1519 boolean relocateable;
1520 PTR data;
1521 bfd_vma gp;
1523 bfd_vma relocation;
1524 unsigned long val;
1526 if (bfd_is_com_section (symbol->section))
1527 relocation = 0;
1528 else
1529 relocation = symbol->value;
1531 relocation += symbol->section->output_section->vma;
1532 relocation += symbol->section->output_offset;
1534 if (reloc_entry->address > input_section->_cooked_size)
1535 return bfd_reloc_outofrange;
1537 if (reloc_entry->howto->src_mask == 0)
1539 /* This case arises with the 64-bit MIPS ELF ABI. */
1540 val = 0;
1542 else
1543 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1545 /* Set val to the offset into the section or symbol. */
1546 val += reloc_entry->addend;
1548 /* Adjust val for the final section location and GP value. If we
1549 are producing relocateable output, we don't want to do this for
1550 an external symbol. */
1551 if (! relocateable
1552 || (symbol->flags & BSF_SECTION_SYM) != 0)
1553 val += relocation - gp;
1555 bfd_put_32 (abfd, val, (bfd_byte *) data + reloc_entry->address);
1557 if (relocateable)
1558 reloc_entry->address += input_section->output_offset;
1560 return bfd_reloc_ok;
1563 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1564 generated when addreses are 64 bits. The upper 32 bits are a simle
1565 sign extension. */
1567 static bfd_reloc_status_type
1568 mips32_64bit_reloc (abfd, reloc_entry, symbol, data, input_section,
1569 output_bfd, error_message)
1570 bfd *abfd;
1571 arelent *reloc_entry;
1572 asymbol *symbol;
1573 PTR data;
1574 asection *input_section;
1575 bfd *output_bfd;
1576 char **error_message;
1578 bfd_reloc_status_type r;
1579 arelent reloc32;
1580 unsigned long val;
1581 bfd_size_type addr;
1583 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1584 input_section, output_bfd, error_message);
1585 if (r != bfd_reloc_continue)
1586 return r;
1588 /* Do a normal 32 bit relocation on the lower 32 bits. */
1589 reloc32 = *reloc_entry;
1590 if (bfd_big_endian (abfd))
1591 reloc32.address += 4;
1592 reloc32.howto = &elf_mips_howto_table[R_MIPS_32];
1593 r = bfd_perform_relocation (abfd, &reloc32, data, input_section,
1594 output_bfd, error_message);
1596 /* Sign extend into the upper 32 bits. */
1597 val = bfd_get_32 (abfd, (bfd_byte *) data + reloc32.address);
1598 if ((val & 0x80000000) != 0)
1599 val = 0xffffffff;
1600 else
1601 val = 0;
1602 addr = reloc_entry->address;
1603 if (bfd_little_endian (abfd))
1604 addr += 4;
1605 bfd_put_32 (abfd, val, (bfd_byte *) data + addr);
1607 return r;
1610 /* Handle a mips16 jump. */
1612 static bfd_reloc_status_type
1613 mips16_jump_reloc (abfd, reloc_entry, symbol, data, input_section,
1614 output_bfd, error_message)
1615 bfd *abfd ATTRIBUTE_UNUSED;
1616 arelent *reloc_entry;
1617 asymbol *symbol;
1618 PTR data ATTRIBUTE_UNUSED;
1619 asection *input_section;
1620 bfd *output_bfd;
1621 char **error_message ATTRIBUTE_UNUSED;
1623 if (output_bfd != (bfd *) NULL
1624 && (symbol->flags & BSF_SECTION_SYM) == 0
1625 && reloc_entry->addend == 0)
1627 reloc_entry->address += input_section->output_offset;
1628 return bfd_reloc_ok;
1631 /* FIXME. */
1633 static boolean warned;
1635 if (! warned)
1636 (*_bfd_error_handler)
1637 (_("Linking mips16 objects into %s format is not supported"),
1638 bfd_get_target (input_section->output_section->owner));
1639 warned = true;
1642 return bfd_reloc_undefined;
1645 /* Handle a mips16 GP relative reloc. */
1647 static bfd_reloc_status_type
1648 mips16_gprel_reloc (abfd, reloc_entry, symbol, data, input_section,
1649 output_bfd, error_message)
1650 bfd *abfd;
1651 arelent *reloc_entry;
1652 asymbol *symbol;
1653 PTR data;
1654 asection *input_section;
1655 bfd *output_bfd;
1656 char **error_message;
1658 boolean relocateable;
1659 bfd_reloc_status_type ret;
1660 bfd_vma gp;
1661 unsigned short extend, insn;
1662 unsigned long final;
1664 /* If we're relocating, and this is an external symbol with no
1665 addend, we don't want to change anything. We will only have an
1666 addend if this is a newly created reloc, not read from an ELF
1667 file. */
1668 if (output_bfd != NULL
1669 && (symbol->flags & BSF_SECTION_SYM) == 0
1670 && reloc_entry->addend == 0)
1672 reloc_entry->address += input_section->output_offset;
1673 return bfd_reloc_ok;
1676 if (output_bfd != NULL)
1677 relocateable = true;
1678 else
1680 relocateable = false;
1681 output_bfd = symbol->section->output_section->owner;
1684 ret = mips_elf_final_gp (output_bfd, symbol, relocateable, error_message,
1685 &gp);
1686 if (ret != bfd_reloc_ok)
1687 return ret;
1689 if (reloc_entry->address > input_section->_cooked_size)
1690 return bfd_reloc_outofrange;
1692 /* Pick up the mips16 extend instruction and the real instruction. */
1693 extend = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address);
1694 insn = bfd_get_16 (abfd, (bfd_byte *) data + reloc_entry->address + 2);
1696 /* Stuff the current addend back as a 32 bit value, do the usual
1697 relocation, and then clean up. */
1698 bfd_put_32 (abfd,
1699 (((extend & 0x1f) << 11)
1700 | (extend & 0x7e0)
1701 | (insn & 0x1f)),
1702 (bfd_byte *) data + reloc_entry->address);
1704 ret = gprel16_with_gp (abfd, symbol, reloc_entry, input_section,
1705 relocateable, data, gp);
1707 final = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1708 bfd_put_16 (abfd,
1709 ((extend & 0xf800)
1710 | ((final >> 11) & 0x1f)
1711 | (final & 0x7e0)),
1712 (bfd_byte *) data + reloc_entry->address);
1713 bfd_put_16 (abfd,
1714 ((insn & 0xffe0)
1715 | (final & 0x1f)),
1716 (bfd_byte *) data + reloc_entry->address + 2);
1718 return ret;
1721 /* Return the ISA for a MIPS e_flags value. */
1723 static INLINE int
1724 elf_mips_isa (flags)
1725 flagword flags;
1727 switch (flags & EF_MIPS_ARCH)
1729 case E_MIPS_ARCH_1:
1730 return 1;
1731 case E_MIPS_ARCH_2:
1732 return 2;
1733 case E_MIPS_ARCH_3:
1734 return 3;
1735 case E_MIPS_ARCH_4:
1736 return 4;
1738 return 4;
1741 /* Return the MACH for a MIPS e_flags value. */
1743 static INLINE int
1744 elf_mips_mach (flags)
1745 flagword flags;
1747 switch (flags & EF_MIPS_MACH)
1749 case E_MIPS_MACH_3900:
1750 return bfd_mach_mips3900;
1752 case E_MIPS_MACH_4010:
1753 return bfd_mach_mips4010;
1755 case E_MIPS_MACH_4100:
1756 return bfd_mach_mips4100;
1758 case E_MIPS_MACH_4111:
1759 return bfd_mach_mips4111;
1761 case E_MIPS_MACH_4650:
1762 return bfd_mach_mips4650;
1764 default:
1765 switch (flags & EF_MIPS_ARCH)
1767 default:
1768 case E_MIPS_ARCH_1:
1769 return bfd_mach_mips3000;
1770 break;
1772 case E_MIPS_ARCH_2:
1773 return bfd_mach_mips6000;
1774 break;
1776 case E_MIPS_ARCH_3:
1777 return bfd_mach_mips4000;
1778 break;
1780 case E_MIPS_ARCH_4:
1781 return bfd_mach_mips8000;
1782 break;
1786 return 0;
1789 /* Return printable name for ABI. */
1791 static INLINE char*
1792 elf_mips_abi_name (abfd)
1793 bfd *abfd;
1795 flagword flags;
1797 if (ABI_N32_P (abfd))
1798 return "N32";
1799 else if (ABI_64_P (abfd))
1800 return "64";
1802 flags = elf_elfheader (abfd)->e_flags;
1803 switch (flags & EF_MIPS_ABI)
1805 case 0:
1806 return "none";
1807 case E_MIPS_ABI_O32:
1808 return "O32";
1809 case E_MIPS_ABI_O64:
1810 return "O64";
1811 case E_MIPS_ABI_EABI32:
1812 return "EABI32";
1813 case E_MIPS_ABI_EABI64:
1814 return "EABI64";
1815 default:
1816 return "unknown abi";
1820 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1822 struct elf_reloc_map {
1823 bfd_reloc_code_real_type bfd_reloc_val;
1824 enum elf_mips_reloc_type elf_reloc_val;
1827 static CONST struct elf_reloc_map mips_reloc_map[] =
1829 { BFD_RELOC_NONE, R_MIPS_NONE, },
1830 { BFD_RELOC_16, R_MIPS_16 },
1831 { BFD_RELOC_32, R_MIPS_32 },
1832 { BFD_RELOC_64, R_MIPS_64 },
1833 { BFD_RELOC_MIPS_JMP, R_MIPS_26 },
1834 { BFD_RELOC_HI16_S, R_MIPS_HI16 },
1835 { BFD_RELOC_LO16, R_MIPS_LO16 },
1836 { BFD_RELOC_MIPS_GPREL, R_MIPS_GPREL16 },
1837 { BFD_RELOC_MIPS_LITERAL, R_MIPS_LITERAL },
1838 { BFD_RELOC_MIPS_GOT16, R_MIPS_GOT16 },
1839 { BFD_RELOC_16_PCREL, R_MIPS_PC16 },
1840 { BFD_RELOC_MIPS_CALL16, R_MIPS_CALL16 },
1841 { BFD_RELOC_MIPS_GPREL32, R_MIPS_GPREL32 },
1842 { BFD_RELOC_MIPS_GOT_HI16, R_MIPS_GOT_HI16 },
1843 { BFD_RELOC_MIPS_GOT_LO16, R_MIPS_GOT_LO16 },
1844 { BFD_RELOC_MIPS_CALL_HI16, R_MIPS_CALL_HI16 },
1845 { BFD_RELOC_MIPS_CALL_LO16, R_MIPS_CALL_LO16 },
1846 { BFD_RELOC_MIPS_SUB, R_MIPS_SUB },
1847 { BFD_RELOC_MIPS_GOT_PAGE, R_MIPS_GOT_PAGE },
1848 { BFD_RELOC_MIPS_GOT_OFST, R_MIPS_GOT_OFST },
1849 { BFD_RELOC_MIPS_GOT_DISP, R_MIPS_GOT_DISP }
1852 /* Given a BFD reloc type, return a howto structure. */
1854 static reloc_howto_type *
1855 bfd_elf32_bfd_reloc_type_lookup (abfd, code)
1856 bfd *abfd;
1857 bfd_reloc_code_real_type code;
1859 unsigned int i;
1861 for (i = 0; i < sizeof (mips_reloc_map) / sizeof (struct elf_reloc_map); i++)
1863 if (mips_reloc_map[i].bfd_reloc_val == code)
1864 return &elf_mips_howto_table[(int) mips_reloc_map[i].elf_reloc_val];
1867 switch (code)
1869 default:
1870 bfd_set_error (bfd_error_bad_value);
1871 return NULL;
1873 case BFD_RELOC_CTOR:
1874 /* We need to handle BFD_RELOC_CTOR specially.
1875 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1876 size of addresses on this architecture. */
1877 if (bfd_arch_bits_per_address (abfd) == 32)
1878 return &elf_mips_howto_table[(int) R_MIPS_32];
1879 else
1880 return &elf_mips_ctor64_howto;
1882 case BFD_RELOC_MIPS16_JMP:
1883 return &elf_mips16_jump_howto;
1884 case BFD_RELOC_MIPS16_GPREL:
1885 return &elf_mips16_gprel_howto;
1886 case BFD_RELOC_VTABLE_INHERIT:
1887 return &elf_mips_gnu_vtinherit_howto;
1888 case BFD_RELOC_VTABLE_ENTRY:
1889 return &elf_mips_gnu_vtentry_howto;
1893 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1895 static reloc_howto_type *
1896 mips_rtype_to_howto (r_type)
1897 unsigned int r_type;
1899 switch (r_type)
1901 case R_MIPS16_26:
1902 return &elf_mips16_jump_howto;
1903 break;
1904 case R_MIPS16_GPREL:
1905 return &elf_mips16_gprel_howto;
1906 break;
1907 case R_MIPS_GNU_VTINHERIT:
1908 return &elf_mips_gnu_vtinherit_howto;
1909 break;
1910 case R_MIPS_GNU_VTENTRY:
1911 return &elf_mips_gnu_vtentry_howto;
1912 break;
1914 default:
1915 BFD_ASSERT (r_type < (unsigned int) R_MIPS_max);
1916 return &elf_mips_howto_table[r_type];
1917 break;
1921 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1923 static void
1924 mips_info_to_howto_rel (abfd, cache_ptr, dst)
1925 bfd *abfd;
1926 arelent *cache_ptr;
1927 Elf32_Internal_Rel *dst;
1929 unsigned int r_type;
1931 r_type = ELF32_R_TYPE (dst->r_info);
1932 cache_ptr->howto = mips_rtype_to_howto (r_type);
1934 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
1935 value for the object file. We get the addend now, rather than
1936 when we do the relocation, because the symbol manipulations done
1937 by the linker may cause us to lose track of the input BFD. */
1938 if (((*cache_ptr->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0
1939 && (r_type == (unsigned int) R_MIPS_GPREL16
1940 || r_type == (unsigned int) R_MIPS_LITERAL))
1941 cache_ptr->addend = elf_gp (abfd);
1944 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
1946 static void
1947 mips_info_to_howto_rela (abfd, cache_ptr, dst)
1948 bfd *abfd;
1949 arelent *cache_ptr;
1950 Elf32_Internal_Rela *dst;
1952 /* Since an Elf32_Internal_Rel is an initial prefix of an
1953 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
1954 above. */
1955 mips_info_to_howto_rel (abfd, cache_ptr, (Elf32_Internal_Rel *) dst);
1957 /* If we ever need to do any extra processing with dst->r_addend
1958 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
1961 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1962 routines swap this structure in and out. They are used outside of
1963 BFD, so they are globally visible. */
1965 void
1966 bfd_mips_elf32_swap_reginfo_in (abfd, ex, in)
1967 bfd *abfd;
1968 const Elf32_External_RegInfo *ex;
1969 Elf32_RegInfo *in;
1971 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
1972 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
1973 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
1974 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
1975 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
1976 in->ri_gp_value = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gp_value);
1979 void
1980 bfd_mips_elf32_swap_reginfo_out (abfd, in, ex)
1981 bfd *abfd;
1982 const Elf32_RegInfo *in;
1983 Elf32_External_RegInfo *ex;
1985 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
1986 (bfd_byte *) ex->ri_gprmask);
1987 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
1988 (bfd_byte *) ex->ri_cprmask[0]);
1989 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
1990 (bfd_byte *) ex->ri_cprmask[1]);
1991 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
1992 (bfd_byte *) ex->ri_cprmask[2]);
1993 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
1994 (bfd_byte *) ex->ri_cprmask[3]);
1995 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gp_value,
1996 (bfd_byte *) ex->ri_gp_value);
1999 /* In the 64 bit ABI, the .MIPS.options section holds register
2000 information in an Elf64_Reginfo structure. These routines swap
2001 them in and out. They are globally visible because they are used
2002 outside of BFD. These routines are here so that gas can call them
2003 without worrying about whether the 64 bit ABI has been included. */
2005 void
2006 bfd_mips_elf64_swap_reginfo_in (abfd, ex, in)
2007 bfd *abfd;
2008 const Elf64_External_RegInfo *ex;
2009 Elf64_Internal_RegInfo *in;
2011 in->ri_gprmask = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_gprmask);
2012 in->ri_pad = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_pad);
2013 in->ri_cprmask[0] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[0]);
2014 in->ri_cprmask[1] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[1]);
2015 in->ri_cprmask[2] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[2]);
2016 in->ri_cprmask[3] = bfd_h_get_32 (abfd, (bfd_byte *) ex->ri_cprmask[3]);
2017 in->ri_gp_value = bfd_h_get_64 (abfd, (bfd_byte *) ex->ri_gp_value);
2020 void
2021 bfd_mips_elf64_swap_reginfo_out (abfd, in, ex)
2022 bfd *abfd;
2023 const Elf64_Internal_RegInfo *in;
2024 Elf64_External_RegInfo *ex;
2026 bfd_h_put_32 (abfd, (bfd_vma) in->ri_gprmask,
2027 (bfd_byte *) ex->ri_gprmask);
2028 bfd_h_put_32 (abfd, (bfd_vma) in->ri_pad,
2029 (bfd_byte *) ex->ri_pad);
2030 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[0],
2031 (bfd_byte *) ex->ri_cprmask[0]);
2032 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[1],
2033 (bfd_byte *) ex->ri_cprmask[1]);
2034 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[2],
2035 (bfd_byte *) ex->ri_cprmask[2]);
2036 bfd_h_put_32 (abfd, (bfd_vma) in->ri_cprmask[3],
2037 (bfd_byte *) ex->ri_cprmask[3]);
2038 bfd_h_put_64 (abfd, (bfd_vma) in->ri_gp_value,
2039 (bfd_byte *) ex->ri_gp_value);
2042 /* Swap an entry in a .gptab section. Note that these routines rely
2043 on the equivalence of the two elements of the union. */
2045 static void
2046 bfd_mips_elf32_swap_gptab_in (abfd, ex, in)
2047 bfd *abfd;
2048 const Elf32_External_gptab *ex;
2049 Elf32_gptab *in;
2051 in->gt_entry.gt_g_value = bfd_h_get_32 (abfd, ex->gt_entry.gt_g_value);
2052 in->gt_entry.gt_bytes = bfd_h_get_32 (abfd, ex->gt_entry.gt_bytes);
2055 static void
2056 bfd_mips_elf32_swap_gptab_out (abfd, in, ex)
2057 bfd *abfd;
2058 const Elf32_gptab *in;
2059 Elf32_External_gptab *ex;
2061 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_g_value,
2062 ex->gt_entry.gt_g_value);
2063 bfd_h_put_32 (abfd, (bfd_vma) in->gt_entry.gt_bytes,
2064 ex->gt_entry.gt_bytes);
2067 static void
2068 bfd_elf32_swap_compact_rel_out (abfd, in, ex)
2069 bfd *abfd;
2070 const Elf32_compact_rel *in;
2071 Elf32_External_compact_rel *ex;
2073 bfd_h_put_32 (abfd, (bfd_vma) in->id1, ex->id1);
2074 bfd_h_put_32 (abfd, (bfd_vma) in->num, ex->num);
2075 bfd_h_put_32 (abfd, (bfd_vma) in->id2, ex->id2);
2076 bfd_h_put_32 (abfd, (bfd_vma) in->offset, ex->offset);
2077 bfd_h_put_32 (abfd, (bfd_vma) in->reserved0, ex->reserved0);
2078 bfd_h_put_32 (abfd, (bfd_vma) in->reserved1, ex->reserved1);
2081 static void
2082 bfd_elf32_swap_crinfo_out (abfd, in, ex)
2083 bfd *abfd;
2084 const Elf32_crinfo *in;
2085 Elf32_External_crinfo *ex;
2087 unsigned long l;
2089 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2090 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2091 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2092 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2093 bfd_h_put_32 (abfd, (bfd_vma) l, ex->info);
2094 bfd_h_put_32 (abfd, (bfd_vma) in->konst, ex->konst);
2095 bfd_h_put_32 (abfd, (bfd_vma) in->vaddr, ex->vaddr);
2098 /* Swap in an options header. */
2100 void
2101 bfd_mips_elf_swap_options_in (abfd, ex, in)
2102 bfd *abfd;
2103 const Elf_External_Options *ex;
2104 Elf_Internal_Options *in;
2106 in->kind = bfd_h_get_8 (abfd, ex->kind);
2107 in->size = bfd_h_get_8 (abfd, ex->size);
2108 in->section = bfd_h_get_16 (abfd, ex->section);
2109 in->info = bfd_h_get_32 (abfd, ex->info);
2112 /* Swap out an options header. */
2114 void
2115 bfd_mips_elf_swap_options_out (abfd, in, ex)
2116 bfd *abfd;
2117 const Elf_Internal_Options *in;
2118 Elf_External_Options *ex;
2120 bfd_h_put_8 (abfd, in->kind, ex->kind);
2121 bfd_h_put_8 (abfd, in->size, ex->size);
2122 bfd_h_put_16 (abfd, in->section, ex->section);
2123 bfd_h_put_32 (abfd, in->info, ex->info);
2126 /* Swap in an MSYM entry. */
2128 static void
2129 bfd_mips_elf_swap_msym_in (abfd, ex, in)
2130 bfd *abfd;
2131 const Elf32_External_Msym *ex;
2132 Elf32_Internal_Msym *in;
2134 in->ms_hash_value = bfd_h_get_32 (abfd, ex->ms_hash_value);
2135 in->ms_info = bfd_h_get_32 (abfd, ex->ms_info);
2138 /* Swap out an MSYM entry. */
2140 static void
2141 bfd_mips_elf_swap_msym_out (abfd, in, ex)
2142 bfd *abfd;
2143 const Elf32_Internal_Msym *in;
2144 Elf32_External_Msym *ex;
2146 bfd_h_put_32 (abfd, in->ms_hash_value, ex->ms_hash_value);
2147 bfd_h_put_32 (abfd, in->ms_info, ex->ms_info);
2151 /* Determine whether a symbol is global for the purposes of splitting
2152 the symbol table into global symbols and local symbols. At least
2153 on Irix 5, this split must be between section symbols and all other
2154 symbols. On most ELF targets the split is between static symbols
2155 and externally visible symbols. */
2157 /*ARGSUSED*/
2158 static boolean
2159 mips_elf_sym_is_global (abfd, sym)
2160 bfd *abfd ATTRIBUTE_UNUSED;
2161 asymbol *sym;
2163 return (sym->flags & BSF_SECTION_SYM) == 0 ? true : false;
2166 /* Set the right machine number for a MIPS ELF file. This is used for
2167 both the 32-bit and the 64-bit ABI. */
2169 boolean
2170 _bfd_mips_elf_object_p (abfd)
2171 bfd *abfd;
2173 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2174 sorted correctly such that local symbols precede global symbols,
2175 and the sh_info field in the symbol table is not always right. */
2176 elf_bad_symtab (abfd) = true;
2178 bfd_default_set_arch_mach (abfd, bfd_arch_mips,
2179 elf_mips_mach (elf_elfheader (abfd)->e_flags));
2180 return true;
2183 /* The final processing done just before writing out a MIPS ELF object
2184 file. This gets the MIPS architecture right based on the machine
2185 number. This is used by both the 32-bit and the 64-bit ABI. */
2187 /*ARGSUSED*/
2188 void
2189 _bfd_mips_elf_final_write_processing (abfd, linker)
2190 bfd *abfd;
2191 boolean linker ATTRIBUTE_UNUSED;
2193 unsigned long val;
2194 unsigned int i;
2195 Elf_Internal_Shdr **hdrpp;
2196 const char *name;
2197 asection *sec;
2199 switch (bfd_get_mach (abfd))
2201 default:
2202 case bfd_mach_mips3000:
2203 val = E_MIPS_ARCH_1;
2204 break;
2206 case bfd_mach_mips3900:
2207 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
2208 break;
2210 case bfd_mach_mips6000:
2211 val = E_MIPS_ARCH_2;
2212 break;
2214 case bfd_mach_mips4000:
2215 case bfd_mach_mips4300:
2216 val = E_MIPS_ARCH_3;
2217 break;
2219 case bfd_mach_mips4010:
2220 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
2221 break;
2223 case bfd_mach_mips4100:
2224 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
2225 break;
2227 case bfd_mach_mips4111:
2228 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
2229 break;
2231 case bfd_mach_mips4650:
2232 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
2233 break;
2235 case bfd_mach_mips8000:
2236 val = E_MIPS_ARCH_4;
2237 break;
2240 elf_elfheader (abfd)->e_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2241 elf_elfheader (abfd)->e_flags |= val;
2243 /* Set the sh_info field for .gptab sections and other appropriate
2244 info for each special section. */
2245 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
2246 i < elf_elfheader (abfd)->e_shnum;
2247 i++, hdrpp++)
2249 switch ((*hdrpp)->sh_type)
2251 case SHT_MIPS_MSYM:
2252 case SHT_MIPS_LIBLIST:
2253 sec = bfd_get_section_by_name (abfd, ".dynstr");
2254 if (sec != NULL)
2255 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2256 break;
2258 case SHT_MIPS_GPTAB:
2259 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2260 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2261 BFD_ASSERT (name != NULL
2262 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
2263 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
2264 BFD_ASSERT (sec != NULL);
2265 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2266 break;
2268 case SHT_MIPS_CONTENT:
2269 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2270 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2271 BFD_ASSERT (name != NULL
2272 && strncmp (name, ".MIPS.content",
2273 sizeof ".MIPS.content" - 1) == 0);
2274 sec = bfd_get_section_by_name (abfd,
2275 name + sizeof ".MIPS.content" - 1);
2276 BFD_ASSERT (sec != NULL);
2277 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2278 break;
2280 case SHT_MIPS_SYMBOL_LIB:
2281 sec = bfd_get_section_by_name (abfd, ".dynsym");
2282 if (sec != NULL)
2283 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2284 sec = bfd_get_section_by_name (abfd, ".liblist");
2285 if (sec != NULL)
2286 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
2287 break;
2289 case SHT_MIPS_EVENTS:
2290 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
2291 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
2292 BFD_ASSERT (name != NULL);
2293 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2294 sec = bfd_get_section_by_name (abfd,
2295 name + sizeof ".MIPS.events" - 1);
2296 else
2298 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
2299 sizeof ".MIPS.post_rel" - 1) == 0);
2300 sec = bfd_get_section_by_name (abfd,
2301 (name
2302 + sizeof ".MIPS.post_rel" - 1));
2304 BFD_ASSERT (sec != NULL);
2305 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
2306 break;
2312 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2314 boolean
2315 _bfd_mips_elf_set_private_flags (abfd, flags)
2316 bfd *abfd;
2317 flagword flags;
2319 BFD_ASSERT (!elf_flags_init (abfd)
2320 || elf_elfheader (abfd)->e_flags == flags);
2322 elf_elfheader (abfd)->e_flags = flags;
2323 elf_flags_init (abfd) = true;
2324 return true;
2327 /* Copy backend specific data from one object module to another */
2329 boolean
2330 _bfd_mips_elf_copy_private_bfd_data (ibfd, obfd)
2331 bfd *ibfd;
2332 bfd *obfd;
2334 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2335 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2336 return true;
2338 BFD_ASSERT (!elf_flags_init (obfd)
2339 || (elf_elfheader (obfd)->e_flags
2340 == elf_elfheader (ibfd)->e_flags));
2342 elf_gp (obfd) = elf_gp (ibfd);
2343 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
2344 elf_flags_init (obfd) = true;
2345 return true;
2348 /* Merge backend specific data from an object file to the output
2349 object file when linking. */
2351 boolean
2352 _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd)
2353 bfd *ibfd;
2354 bfd *obfd;
2356 flagword old_flags;
2357 flagword new_flags;
2358 boolean ok;
2360 /* Check if we have the same endianess */
2361 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2362 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2364 const char *msg;
2366 if (bfd_big_endian (ibfd))
2367 msg = _("%s: compiled for a big endian system and target is little endian");
2368 else
2369 msg = _("%s: compiled for a little endian system and target is big endian");
2371 (*_bfd_error_handler) (msg, bfd_get_filename (ibfd));
2373 bfd_set_error (bfd_error_wrong_format);
2374 return false;
2377 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2378 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2379 return true;
2381 new_flags = elf_elfheader (ibfd)->e_flags;
2382 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
2383 old_flags = elf_elfheader (obfd)->e_flags;
2385 if (! elf_flags_init (obfd))
2387 elf_flags_init (obfd) = true;
2388 elf_elfheader (obfd)->e_flags = new_flags;
2389 elf_elfheader (obfd)->e_ident[EI_CLASS]
2390 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
2392 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2393 && bfd_get_arch_info (obfd)->the_default)
2395 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2396 bfd_get_mach (ibfd)))
2397 return false;
2400 return true;
2403 /* Check flag compatibility. */
2405 new_flags &= ~EF_MIPS_NOREORDER;
2406 old_flags &= ~EF_MIPS_NOREORDER;
2408 if (new_flags == old_flags)
2409 return true;
2411 ok = true;
2413 if ((new_flags & EF_MIPS_PIC) != (old_flags & EF_MIPS_PIC))
2415 new_flags &= ~EF_MIPS_PIC;
2416 old_flags &= ~EF_MIPS_PIC;
2417 (*_bfd_error_handler)
2418 (_("%s: linking PIC files with non-PIC files"),
2419 bfd_get_filename (ibfd));
2420 ok = false;
2423 if ((new_flags & EF_MIPS_CPIC) != (old_flags & EF_MIPS_CPIC))
2425 new_flags &= ~EF_MIPS_CPIC;
2426 old_flags &= ~EF_MIPS_CPIC;
2427 (*_bfd_error_handler)
2428 (_("%s: linking abicalls files with non-abicalls files"),
2429 bfd_get_filename (ibfd));
2430 ok = false;
2433 /* Compare the ISA's. */
2434 if ((new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH))
2435 != (old_flags & (EF_MIPS_ARCH | EF_MIPS_MACH)))
2437 int new_mach = new_flags & EF_MIPS_MACH;
2438 int old_mach = old_flags & EF_MIPS_MACH;
2439 int new_isa = elf_mips_isa (new_flags);
2440 int old_isa = elf_mips_isa (old_flags);
2442 /* If either has no machine specified, just compare the general isa's.
2443 Some combinations of machines are ok, if the isa's match. */
2444 if (! new_mach
2445 || ! old_mach
2446 || new_mach == old_mach
2449 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2450 and -mips4 code. They will normally use the same data sizes and
2451 calling conventions. */
2453 if ((new_isa == 1 || new_isa == 2)
2454 ? (old_isa != 1 && old_isa != 2)
2455 : (old_isa == 1 || old_isa == 2))
2457 (*_bfd_error_handler)
2458 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2459 bfd_get_filename (ibfd), new_isa, old_isa);
2460 ok = false;
2464 else
2466 (*_bfd_error_handler)
2467 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2468 bfd_get_filename (ibfd),
2469 elf_mips_mach (new_flags),
2470 elf_mips_mach (old_flags));
2471 ok = false;
2474 new_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2475 old_flags &= ~ (EF_MIPS_ARCH | EF_MIPS_MACH);
2478 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2479 does set EI_CLASS differently from any 32-bit ABI. */
2480 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
2481 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2482 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2484 /* Only error if both are set (to different values). */
2485 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
2486 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
2487 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
2489 (*_bfd_error_handler)
2490 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2491 bfd_get_filename (ibfd),
2492 elf_mips_abi_name (ibfd),
2493 elf_mips_abi_name (obfd));
2494 ok = false;
2496 new_flags &= ~EF_MIPS_ABI;
2497 old_flags &= ~EF_MIPS_ABI;
2500 /* Warn about any other mismatches */
2501 if (new_flags != old_flags)
2503 (*_bfd_error_handler)
2504 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2505 bfd_get_filename (ibfd), (unsigned long) new_flags,
2506 (unsigned long) old_flags);
2507 ok = false;
2510 if (! ok)
2512 bfd_set_error (bfd_error_bad_value);
2513 return false;
2516 return true;
2519 boolean
2520 _bfd_mips_elf_print_private_bfd_data (abfd, ptr)
2521 bfd *abfd;
2522 PTR ptr;
2524 FILE *file = (FILE *) ptr;
2526 BFD_ASSERT (abfd != NULL && ptr != NULL);
2528 /* Print normal ELF private data. */
2529 _bfd_elf_print_private_bfd_data (abfd, ptr);
2531 /* xgettext:c-format */
2532 fprintf (file, _ ("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
2534 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
2535 fprintf (file, _ (" [abi=O32]"));
2536 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
2537 fprintf (file, _ (" [abi=O64]"));
2538 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
2539 fprintf (file, _ (" [abi=EABI32]"));
2540 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
2541 fprintf (file, _ (" [abi=EABI64]"));
2542 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
2543 fprintf (file, _ (" [abi unknown]"));
2544 else if (ABI_N32_P (abfd))
2545 fprintf (file, _ (" [abi=N32]"));
2546 else if (ABI_64_P (abfd))
2547 fprintf (file, _ (" [abi=64]"));
2548 else
2549 fprintf (file, _ (" [no abi set]"));
2551 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
2552 fprintf (file, _ (" [mips1]"));
2553 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
2554 fprintf (file, _ (" [mips2]"));
2555 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
2556 fprintf (file, _ (" [mips3]"));
2557 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
2558 fprintf (file, _ (" [mips4]"));
2559 else
2560 fprintf (file, _ (" [unknown ISA]"));
2562 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
2563 fprintf (file, _ (" [32bitmode]"));
2564 else
2565 fprintf (file, _ (" [not 32bitmode]"));
2567 fputc ('\n', file);
2569 return true;
2572 /* Handle a MIPS specific section when reading an object file. This
2573 is called when elfcode.h finds a section with an unknown type.
2574 This routine supports both the 32-bit and 64-bit ELF ABI.
2576 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2577 how to. */
2579 boolean
2580 _bfd_mips_elf_section_from_shdr (abfd, hdr, name)
2581 bfd *abfd;
2582 Elf_Internal_Shdr *hdr;
2583 char *name;
2585 flagword flags = 0;
2587 /* There ought to be a place to keep ELF backend specific flags, but
2588 at the moment there isn't one. We just keep track of the
2589 sections by their name, instead. Fortunately, the ABI gives
2590 suggested names for all the MIPS specific sections, so we will
2591 probably get away with this. */
2592 switch (hdr->sh_type)
2594 case SHT_MIPS_LIBLIST:
2595 if (strcmp (name, ".liblist") != 0)
2596 return false;
2597 break;
2598 case SHT_MIPS_MSYM:
2599 if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) != 0)
2600 return false;
2601 break;
2602 case SHT_MIPS_CONFLICT:
2603 if (strcmp (name, ".conflict") != 0)
2604 return false;
2605 break;
2606 case SHT_MIPS_GPTAB:
2607 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
2608 return false;
2609 break;
2610 case SHT_MIPS_UCODE:
2611 if (strcmp (name, ".ucode") != 0)
2612 return false;
2613 break;
2614 case SHT_MIPS_DEBUG:
2615 if (strcmp (name, ".mdebug") != 0)
2616 return false;
2617 flags = SEC_DEBUGGING;
2618 break;
2619 case SHT_MIPS_REGINFO:
2620 if (strcmp (name, ".reginfo") != 0
2621 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
2622 return false;
2623 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
2624 break;
2625 case SHT_MIPS_IFACE:
2626 if (strcmp (name, ".MIPS.interfaces") != 0)
2627 return false;
2628 break;
2629 case SHT_MIPS_CONTENT:
2630 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2631 return false;
2632 break;
2633 case SHT_MIPS_OPTIONS:
2634 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
2635 return false;
2636 break;
2637 case SHT_MIPS_DWARF:
2638 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
2639 return false;
2640 break;
2641 case SHT_MIPS_SYMBOL_LIB:
2642 if (strcmp (name, ".MIPS.symlib") != 0)
2643 return false;
2644 break;
2645 case SHT_MIPS_EVENTS:
2646 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2647 && strncmp (name, ".MIPS.post_rel",
2648 sizeof ".MIPS.post_rel" - 1) != 0)
2649 return false;
2650 break;
2651 default:
2652 return false;
2655 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
2656 return false;
2658 if (flags)
2660 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
2661 (bfd_get_section_flags (abfd,
2662 hdr->bfd_section)
2663 | flags)))
2664 return false;
2667 /* FIXME: We should record sh_info for a .gptab section. */
2669 /* For a .reginfo section, set the gp value in the tdata information
2670 from the contents of this section. We need the gp value while
2671 processing relocs, so we just get it now. The .reginfo section
2672 is not used in the 64-bit MIPS ELF ABI. */
2673 if (hdr->sh_type == SHT_MIPS_REGINFO)
2675 Elf32_External_RegInfo ext;
2676 Elf32_RegInfo s;
2678 if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext,
2679 (file_ptr) 0, sizeof ext))
2680 return false;
2681 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
2682 elf_gp (abfd) = s.ri_gp_value;
2685 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2686 set the gp value based on what we find. We may see both
2687 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2688 they should agree. */
2689 if (hdr->sh_type == SHT_MIPS_OPTIONS)
2691 bfd_byte *contents, *l, *lend;
2693 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
2694 if (contents == NULL)
2695 return false;
2696 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
2697 (file_ptr) 0, hdr->sh_size))
2699 free (contents);
2700 return false;
2702 l = contents;
2703 lend = contents + hdr->sh_size;
2704 while (l + sizeof (Elf_External_Options) <= lend)
2706 Elf_Internal_Options intopt;
2708 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2709 &intopt);
2710 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2712 Elf64_Internal_RegInfo intreg;
2714 bfd_mips_elf64_swap_reginfo_in
2715 (abfd,
2716 ((Elf64_External_RegInfo *)
2717 (l + sizeof (Elf_External_Options))),
2718 &intreg);
2719 elf_gp (abfd) = intreg.ri_gp_value;
2721 else if (intopt.kind == ODK_REGINFO)
2723 Elf32_RegInfo intreg;
2725 bfd_mips_elf32_swap_reginfo_in
2726 (abfd,
2727 ((Elf32_External_RegInfo *)
2728 (l + sizeof (Elf_External_Options))),
2729 &intreg);
2730 elf_gp (abfd) = intreg.ri_gp_value;
2732 l += intopt.size;
2734 free (contents);
2737 return true;
2740 /* Set the correct type for a MIPS ELF section. We do this by the
2741 section name, which is a hack, but ought to work. This routine is
2742 used by both the 32-bit and the 64-bit ABI. */
2744 boolean
2745 _bfd_mips_elf_fake_sections (abfd, hdr, sec)
2746 bfd *abfd;
2747 Elf32_Internal_Shdr *hdr;
2748 asection *sec;
2750 register const char *name;
2752 name = bfd_get_section_name (abfd, sec);
2754 if (strcmp (name, ".liblist") == 0)
2756 hdr->sh_type = SHT_MIPS_LIBLIST;
2757 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
2758 /* The sh_link field is set in final_write_processing. */
2760 else if (strcmp (name, ".conflict") == 0)
2761 hdr->sh_type = SHT_MIPS_CONFLICT;
2762 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
2764 hdr->sh_type = SHT_MIPS_GPTAB;
2765 hdr->sh_entsize = sizeof (Elf32_External_gptab);
2766 /* The sh_info field is set in final_write_processing. */
2768 else if (strcmp (name, ".ucode") == 0)
2769 hdr->sh_type = SHT_MIPS_UCODE;
2770 else if (strcmp (name, ".mdebug") == 0)
2772 hdr->sh_type = SHT_MIPS_DEBUG;
2773 /* In a shared object on Irix 5.3, the .mdebug section has an
2774 entsize of 0. FIXME: Does this matter? */
2775 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2776 hdr->sh_entsize = 0;
2777 else
2778 hdr->sh_entsize = 1;
2780 else if (strcmp (name, ".reginfo") == 0)
2782 hdr->sh_type = SHT_MIPS_REGINFO;
2783 /* In a shared object on Irix 5.3, the .reginfo section has an
2784 entsize of 0x18. FIXME: Does this matter? */
2785 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
2786 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
2787 else
2788 hdr->sh_entsize = 1;
2790 else if (SGI_COMPAT (abfd)
2791 && (strcmp (name, ".hash") == 0
2792 || strcmp (name, ".dynamic") == 0
2793 || strcmp (name, ".dynstr") == 0))
2795 hdr->sh_entsize = 0;
2796 #if 0
2797 /* This isn't how the Irix 6 linker behaves. */
2798 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
2799 #endif
2801 else if (strcmp (name, ".got") == 0
2802 || strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0
2803 || strcmp (name, ".sdata") == 0
2804 || strcmp (name, ".sbss") == 0
2805 || strcmp (name, ".lit4") == 0
2806 || strcmp (name, ".lit8") == 0)
2807 hdr->sh_flags |= SHF_MIPS_GPREL;
2808 else if (strcmp (name, ".MIPS.interfaces") == 0)
2810 hdr->sh_type = SHT_MIPS_IFACE;
2811 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2813 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
2815 hdr->sh_type = SHT_MIPS_CONTENT;
2816 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2817 /* The sh_info field is set in final_write_processing. */
2819 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2821 hdr->sh_type = SHT_MIPS_OPTIONS;
2822 hdr->sh_entsize = 1;
2823 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2825 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
2826 hdr->sh_type = SHT_MIPS_DWARF;
2827 else if (strcmp (name, ".MIPS.symlib") == 0)
2829 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
2830 /* The sh_link and sh_info fields are set in
2831 final_write_processing. */
2833 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2834 || strncmp (name, ".MIPS.post_rel",
2835 sizeof ".MIPS.post_rel" - 1) == 0)
2837 hdr->sh_type = SHT_MIPS_EVENTS;
2838 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
2839 /* The sh_link field is set in final_write_processing. */
2841 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (abfd)) == 0)
2843 hdr->sh_type = SHT_MIPS_MSYM;
2844 hdr->sh_flags |= SHF_ALLOC;
2845 hdr->sh_entsize = 8;
2848 /* The generic elf_fake_sections will set up REL_HDR using the
2849 default kind of relocations. But, we may actually need both
2850 kinds of relocations, so we set up the second header here. */
2851 if ((sec->flags & SEC_RELOC) != 0)
2853 struct bfd_elf_section_data *esd;
2855 esd = elf_section_data (sec);
2856 BFD_ASSERT (esd->rel_hdr2 == NULL);
2857 esd->rel_hdr2
2858 = (Elf_Internal_Shdr *) bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2859 if (!esd->rel_hdr2)
2860 return false;
2861 _bfd_elf_init_reloc_shdr (abfd, esd->rel_hdr2, sec,
2862 !elf_section_data (sec)->use_rela_p);
2865 return true;
2868 /* Given a BFD section, try to locate the corresponding ELF section
2869 index. This is used by both the 32-bit and the 64-bit ABI.
2870 Actually, it's not clear to me that the 64-bit ABI supports these,
2871 but for non-PIC objects we will certainly want support for at least
2872 the .scommon section. */
2874 boolean
2875 _bfd_mips_elf_section_from_bfd_section (abfd, hdr, sec, retval)
2876 bfd *abfd ATTRIBUTE_UNUSED;
2877 Elf32_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
2878 asection *sec;
2879 int *retval;
2881 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
2883 *retval = SHN_MIPS_SCOMMON;
2884 return true;
2886 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
2888 *retval = SHN_MIPS_ACOMMON;
2889 return true;
2891 return false;
2894 /* When are writing out the .options or .MIPS.options section,
2895 remember the bytes we are writing out, so that we can install the
2896 GP value in the section_processing routine. */
2898 boolean
2899 _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count)
2900 bfd *abfd;
2901 sec_ptr section;
2902 PTR location;
2903 file_ptr offset;
2904 bfd_size_type count;
2906 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
2908 bfd_byte *c;
2910 if (elf_section_data (section) == NULL)
2912 section->used_by_bfd =
2913 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
2914 if (elf_section_data (section) == NULL)
2915 return false;
2917 c = (bfd_byte *) elf_section_data (section)->tdata;
2918 if (c == NULL)
2920 bfd_size_type size;
2922 if (section->_cooked_size != 0)
2923 size = section->_cooked_size;
2924 else
2925 size = section->_raw_size;
2926 c = (bfd_byte *) bfd_zalloc (abfd, size);
2927 if (c == NULL)
2928 return false;
2929 elf_section_data (section)->tdata = (PTR) c;
2932 memcpy (c + offset, location, count);
2935 return _bfd_elf_set_section_contents (abfd, section, location, offset,
2936 count);
2939 /* Work over a section just before writing it out. This routine is
2940 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
2941 sections that need the SHF_MIPS_GPREL flag by name; there has to be
2942 a better way. */
2944 boolean
2945 _bfd_mips_elf_section_processing (abfd, hdr)
2946 bfd *abfd;
2947 Elf_Internal_Shdr *hdr;
2949 if (hdr->sh_type == SHT_MIPS_REGINFO
2950 && hdr->sh_size > 0)
2952 bfd_byte buf[4];
2954 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
2955 BFD_ASSERT (hdr->contents == NULL);
2957 if (bfd_seek (abfd,
2958 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
2959 SEEK_SET) == -1)
2960 return false;
2961 bfd_h_put_32 (abfd, (bfd_vma) elf_gp (abfd), buf);
2962 if (bfd_write (buf, (bfd_size_type) 1, (bfd_size_type) 4, abfd) != 4)
2963 return false;
2966 if (hdr->sh_type == SHT_MIPS_OPTIONS
2967 && hdr->bfd_section != NULL
2968 && elf_section_data (hdr->bfd_section) != NULL
2969 && elf_section_data (hdr->bfd_section)->tdata != NULL)
2971 bfd_byte *contents, *l, *lend;
2973 /* We stored the section contents in the elf_section_data tdata
2974 field in the set_section_contents routine. We save the
2975 section contents so that we don't have to read them again.
2976 At this point we know that elf_gp is set, so we can look
2977 through the section contents to see if there is an
2978 ODK_REGINFO structure. */
2980 contents = (bfd_byte *) elf_section_data (hdr->bfd_section)->tdata;
2981 l = contents;
2982 lend = contents + hdr->sh_size;
2983 while (l + sizeof (Elf_External_Options) <= lend)
2985 Elf_Internal_Options intopt;
2987 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
2988 &intopt);
2989 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
2991 bfd_byte buf[8];
2993 if (bfd_seek (abfd,
2994 (hdr->sh_offset
2995 + (l - contents)
2996 + sizeof (Elf_External_Options)
2997 + (sizeof (Elf64_External_RegInfo) - 8)),
2998 SEEK_SET) == -1)
2999 return false;
3000 bfd_h_put_64 (abfd, elf_gp (abfd), buf);
3001 if (bfd_write (buf, 1, 8, abfd) != 8)
3002 return false;
3004 else if (intopt.kind == ODK_REGINFO)
3006 bfd_byte buf[4];
3008 if (bfd_seek (abfd,
3009 (hdr->sh_offset
3010 + (l - contents)
3011 + sizeof (Elf_External_Options)
3012 + (sizeof (Elf32_External_RegInfo) - 4)),
3013 SEEK_SET) == -1)
3014 return false;
3015 bfd_h_put_32 (abfd, elf_gp (abfd), buf);
3016 if (bfd_write (buf, 1, 4, abfd) != 4)
3017 return false;
3019 l += intopt.size;
3023 if (hdr->bfd_section != NULL)
3025 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
3027 if (strcmp (name, ".sdata") == 0
3028 || strcmp (name, ".lit8") == 0
3029 || strcmp (name, ".lit4") == 0)
3031 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3032 hdr->sh_type = SHT_PROGBITS;
3034 else if (strcmp (name, ".sbss") == 0)
3036 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3037 hdr->sh_type = SHT_NOBITS;
3039 else if (strcmp (name, MIPS_ELF_SRDATA_SECTION_NAME (abfd)) == 0)
3041 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
3042 hdr->sh_type = SHT_PROGBITS;
3044 else if (strcmp (name, ".compact_rel") == 0)
3046 hdr->sh_flags = 0;
3047 hdr->sh_type = SHT_PROGBITS;
3049 else if (strcmp (name, ".rtproc") == 0)
3051 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
3053 unsigned int adjust;
3055 adjust = hdr->sh_size % hdr->sh_addralign;
3056 if (adjust != 0)
3057 hdr->sh_size += hdr->sh_addralign - adjust;
3062 return true;
3066 /* MIPS ELF uses two common sections. One is the usual one, and the
3067 other is for small objects. All the small objects are kept
3068 together, and then referenced via the gp pointer, which yields
3069 faster assembler code. This is what we use for the small common
3070 section. This approach is copied from ecoff.c. */
3071 static asection mips_elf_scom_section;
3072 static asymbol mips_elf_scom_symbol;
3073 static asymbol *mips_elf_scom_symbol_ptr;
3075 /* MIPS ELF also uses an acommon section, which represents an
3076 allocated common symbol which may be overridden by a
3077 definition in a shared library. */
3078 static asection mips_elf_acom_section;
3079 static asymbol mips_elf_acom_symbol;
3080 static asymbol *mips_elf_acom_symbol_ptr;
3082 /* The Irix 5 support uses two virtual sections, which represent
3083 text/data symbols defined in dynamic objects. */
3084 static asection mips_elf_text_section;
3085 static asection *mips_elf_text_section_ptr;
3086 static asymbol mips_elf_text_symbol;
3087 static asymbol *mips_elf_text_symbol_ptr;
3089 static asection mips_elf_data_section;
3090 static asection *mips_elf_data_section_ptr;
3091 static asymbol mips_elf_data_symbol;
3092 static asymbol *mips_elf_data_symbol_ptr;
3094 /* Handle the special MIPS section numbers that a symbol may use.
3095 This is used for both the 32-bit and the 64-bit ABI. */
3097 void
3098 _bfd_mips_elf_symbol_processing (abfd, asym)
3099 bfd *abfd;
3100 asymbol *asym;
3102 elf_symbol_type *elfsym;
3104 elfsym = (elf_symbol_type *) asym;
3105 switch (elfsym->internal_elf_sym.st_shndx)
3107 case SHN_MIPS_ACOMMON:
3108 /* This section is used in a dynamically linked executable file.
3109 It is an allocated common section. The dynamic linker can
3110 either resolve these symbols to something in a shared
3111 library, or it can just leave them here. For our purposes,
3112 we can consider these symbols to be in a new section. */
3113 if (mips_elf_acom_section.name == NULL)
3115 /* Initialize the acommon section. */
3116 mips_elf_acom_section.name = ".acommon";
3117 mips_elf_acom_section.flags = SEC_ALLOC;
3118 mips_elf_acom_section.output_section = &mips_elf_acom_section;
3119 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
3120 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
3121 mips_elf_acom_symbol.name = ".acommon";
3122 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
3123 mips_elf_acom_symbol.section = &mips_elf_acom_section;
3124 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
3126 asym->section = &mips_elf_acom_section;
3127 break;
3129 case SHN_COMMON:
3130 /* Common symbols less than the GP size are automatically
3131 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3132 if (asym->value > elf_gp_size (abfd)
3133 || IRIX_COMPAT (abfd) == ict_irix6)
3134 break;
3135 /* Fall through. */
3136 case SHN_MIPS_SCOMMON:
3137 if (mips_elf_scom_section.name == NULL)
3139 /* Initialize the small common section. */
3140 mips_elf_scom_section.name = ".scommon";
3141 mips_elf_scom_section.flags = SEC_IS_COMMON;
3142 mips_elf_scom_section.output_section = &mips_elf_scom_section;
3143 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
3144 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
3145 mips_elf_scom_symbol.name = ".scommon";
3146 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
3147 mips_elf_scom_symbol.section = &mips_elf_scom_section;
3148 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
3150 asym->section = &mips_elf_scom_section;
3151 asym->value = elfsym->internal_elf_sym.st_size;
3152 break;
3154 case SHN_MIPS_SUNDEFINED:
3155 asym->section = bfd_und_section_ptr;
3156 break;
3158 #if 0 /* for SGI_COMPAT */
3159 case SHN_MIPS_TEXT:
3160 asym->section = mips_elf_text_section_ptr;
3161 break;
3163 case SHN_MIPS_DATA:
3164 asym->section = mips_elf_data_section_ptr;
3165 break;
3166 #endif
3170 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3171 segments. */
3174 _bfd_mips_elf_additional_program_headers (abfd)
3175 bfd *abfd;
3177 asection *s;
3178 int ret = 0;
3180 if (!SGI_COMPAT (abfd))
3181 return 0;
3183 /* See if we need a PT_MIPS_REGINFO segment. */
3184 s = bfd_get_section_by_name (abfd, ".reginfo");
3185 if (s && (s->flags & SEC_LOAD))
3186 ++ret;
3188 /* See if we need a PT_MIPS_OPTIONS segment. */
3189 if (IRIX_COMPAT (abfd) == ict_irix6
3190 && bfd_get_section_by_name (abfd,
3191 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
3192 ++ret;
3194 /* See if we need a PT_MIPS_RTPROC segment. */
3195 if (IRIX_COMPAT (abfd) == ict_irix5
3196 && bfd_get_section_by_name (abfd, ".dynamic")
3197 && bfd_get_section_by_name (abfd, ".mdebug"))
3198 ++ret;
3200 return ret;
3203 /* Modify the segment map for an Irix 5 executable. */
3205 boolean
3206 _bfd_mips_elf_modify_segment_map (abfd)
3207 bfd *abfd;
3209 asection *s;
3210 struct elf_segment_map *m, **pm;
3212 if (! SGI_COMPAT (abfd))
3213 return true;
3215 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3216 segment. */
3217 s = bfd_get_section_by_name (abfd, ".reginfo");
3218 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3220 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3221 if (m->p_type == PT_MIPS_REGINFO)
3222 break;
3223 if (m == NULL)
3225 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3226 if (m == NULL)
3227 return false;
3229 m->p_type = PT_MIPS_REGINFO;
3230 m->count = 1;
3231 m->sections[0] = s;
3233 /* We want to put it after the PHDR and INTERP segments. */
3234 pm = &elf_tdata (abfd)->segment_map;
3235 while (*pm != NULL
3236 && ((*pm)->p_type == PT_PHDR
3237 || (*pm)->p_type == PT_INTERP))
3238 pm = &(*pm)->next;
3240 m->next = *pm;
3241 *pm = m;
3245 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3246 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3247 PT_OPTIONS segement immediately following the program header
3248 table. */
3249 if (IRIX_COMPAT (abfd) == ict_irix6)
3251 asection *s;
3253 for (s = abfd->sections; s; s = s->next)
3254 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
3255 break;
3257 if (s)
3259 struct elf_segment_map *options_segment;
3261 /* Usually, there's a program header table. But, sometimes
3262 there's not (like when running the `ld' testsuite). So,
3263 if there's no program header table, we just put the
3264 options segement at the end. */
3265 for (pm = &elf_tdata (abfd)->segment_map;
3266 *pm != NULL;
3267 pm = &(*pm)->next)
3268 if ((*pm)->p_type == PT_PHDR)
3269 break;
3271 options_segment = bfd_zalloc (abfd,
3272 sizeof (struct elf_segment_map));
3273 options_segment->next = *pm;
3274 options_segment->p_type = PT_MIPS_OPTIONS;
3275 options_segment->p_flags = PF_R;
3276 options_segment->p_flags_valid = true;
3277 options_segment->count = 1;
3278 options_segment->sections[0] = s;
3279 *pm = options_segment;
3282 else
3284 /* If there are .dynamic and .mdebug sections, we make a room
3285 for the RTPROC header. FIXME: Rewrite without section names. */
3286 if (bfd_get_section_by_name (abfd, ".interp") == NULL
3287 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
3288 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
3290 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3291 if (m->p_type == PT_MIPS_RTPROC)
3292 break;
3293 if (m == NULL)
3295 m = (struct elf_segment_map *) bfd_zalloc (abfd, sizeof *m);
3296 if (m == NULL)
3297 return false;
3299 m->p_type = PT_MIPS_RTPROC;
3301 s = bfd_get_section_by_name (abfd, ".rtproc");
3302 if (s == NULL)
3304 m->count = 0;
3305 m->p_flags = 0;
3306 m->p_flags_valid = 1;
3308 else
3310 m->count = 1;
3311 m->sections[0] = s;
3314 /* We want to put it after the DYNAMIC segment. */
3315 pm = &elf_tdata (abfd)->segment_map;
3316 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
3317 pm = &(*pm)->next;
3318 if (*pm != NULL)
3319 pm = &(*pm)->next;
3321 m->next = *pm;
3322 *pm = m;
3326 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3327 .dynstr, .dynsym, and .hash sections, and everything in
3328 between. */
3329 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
3330 if ((*pm)->p_type == PT_DYNAMIC)
3331 break;
3332 m = *pm;
3333 if (m != NULL
3334 && m->count == 1
3335 && strcmp (m->sections[0]->name, ".dynamic") == 0)
3337 static const char *sec_names[] =
3338 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3339 bfd_vma low, high;
3340 unsigned int i, c;
3341 struct elf_segment_map *n;
3343 low = 0xffffffff;
3344 high = 0;
3345 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
3347 s = bfd_get_section_by_name (abfd, sec_names[i]);
3348 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3350 bfd_size_type sz;
3352 if (low > s->vma)
3353 low = s->vma;
3354 sz = s->_cooked_size;
3355 if (sz == 0)
3356 sz = s->_raw_size;
3357 if (high < s->vma + sz)
3358 high = s->vma + sz;
3362 c = 0;
3363 for (s = abfd->sections; s != NULL; s = s->next)
3364 if ((s->flags & SEC_LOAD) != 0
3365 && s->vma >= low
3366 && ((s->vma
3367 + (s->_cooked_size != 0 ? s->_cooked_size : s->_raw_size))
3368 <= high))
3369 ++c;
3371 n = ((struct elf_segment_map *)
3372 bfd_zalloc (abfd, sizeof *n + (c - 1) * sizeof (asection *)));
3373 if (n == NULL)
3374 return false;
3375 *n = *m;
3376 n->count = c;
3378 i = 0;
3379 for (s = abfd->sections; s != NULL; s = s->next)
3381 if ((s->flags & SEC_LOAD) != 0
3382 && s->vma >= low
3383 && ((s->vma
3384 + (s->_cooked_size != 0 ?
3385 s->_cooked_size : s->_raw_size))
3386 <= high))
3388 n->sections[i] = s;
3389 ++i;
3393 *pm = n;
3397 return true;
3400 /* The structure of the runtime procedure descriptor created by the
3401 loader for use by the static exception system. */
3403 typedef struct runtime_pdr {
3404 bfd_vma adr; /* memory address of start of procedure */
3405 long regmask; /* save register mask */
3406 long regoffset; /* save register offset */
3407 long fregmask; /* save floating point register mask */
3408 long fregoffset; /* save floating point register offset */
3409 long frameoffset; /* frame size */
3410 short framereg; /* frame pointer register */
3411 short pcreg; /* offset or reg of return pc */
3412 long irpss; /* index into the runtime string table */
3413 long reserved;
3414 struct exception_info *exception_info;/* pointer to exception array */
3415 } RPDR, *pRPDR;
3416 #define cbRPDR sizeof(RPDR)
3417 #define rpdNil ((pRPDR) 0)
3419 /* Swap RPDR (runtime procedure table entry) for output. */
3421 static void ecoff_swap_rpdr_out
3422 PARAMS ((bfd *, const RPDR *, struct rpdr_ext *));
3424 static void
3425 ecoff_swap_rpdr_out (abfd, in, ex)
3426 bfd *abfd;
3427 const RPDR *in;
3428 struct rpdr_ext *ex;
3430 /* ecoff_put_off was defined in ecoffswap.h. */
3431 ecoff_put_off (abfd, in->adr, (bfd_byte *) ex->p_adr);
3432 bfd_h_put_32 (abfd, in->regmask, (bfd_byte *) ex->p_regmask);
3433 bfd_h_put_32 (abfd, in->regoffset, (bfd_byte *) ex->p_regoffset);
3434 bfd_h_put_32 (abfd, in->fregmask, (bfd_byte *) ex->p_fregmask);
3435 bfd_h_put_32 (abfd, in->fregoffset, (bfd_byte *) ex->p_fregoffset);
3436 bfd_h_put_32 (abfd, in->frameoffset, (bfd_byte *) ex->p_frameoffset);
3438 bfd_h_put_16 (abfd, in->framereg, (bfd_byte *) ex->p_framereg);
3439 bfd_h_put_16 (abfd, in->pcreg, (bfd_byte *) ex->p_pcreg);
3441 bfd_h_put_32 (abfd, in->irpss, (bfd_byte *) ex->p_irpss);
3442 #if 0 /* FIXME */
3443 ecoff_put_off (abfd, in->exception_info, (bfd_byte *) ex->p_exception_info);
3444 #endif
3447 /* Read ECOFF debugging information from a .mdebug section into a
3448 ecoff_debug_info structure. */
3450 boolean
3451 _bfd_mips_elf_read_ecoff_info (abfd, section, debug)
3452 bfd *abfd;
3453 asection *section;
3454 struct ecoff_debug_info *debug;
3456 HDRR *symhdr;
3457 const struct ecoff_debug_swap *swap;
3458 char *ext_hdr = NULL;
3460 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3461 memset (debug, 0, sizeof(*debug));
3463 ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size);
3464 if (ext_hdr == NULL && swap->external_hdr_size != 0)
3465 goto error_return;
3467 if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
3468 swap->external_hdr_size)
3469 == false)
3470 goto error_return;
3472 symhdr = &debug->symbolic_header;
3473 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
3475 /* The symbolic header contains absolute file offsets and sizes to
3476 read. */
3477 #define READ(ptr, offset, count, size, type) \
3478 if (symhdr->count == 0) \
3479 debug->ptr = NULL; \
3480 else \
3482 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3483 if (debug->ptr == NULL) \
3484 goto error_return; \
3485 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3486 || (bfd_read (debug->ptr, size, symhdr->count, \
3487 abfd) != size * symhdr->count)) \
3488 goto error_return; \
3491 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
3492 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
3493 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
3494 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
3495 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
3496 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
3497 union aux_ext *);
3498 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
3499 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
3500 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
3501 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
3502 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
3503 #undef READ
3505 debug->fdr = NULL;
3506 debug->adjust = NULL;
3508 return true;
3510 error_return:
3511 if (ext_hdr != NULL)
3512 free (ext_hdr);
3513 if (debug->line != NULL)
3514 free (debug->line);
3515 if (debug->external_dnr != NULL)
3516 free (debug->external_dnr);
3517 if (debug->external_pdr != NULL)
3518 free (debug->external_pdr);
3519 if (debug->external_sym != NULL)
3520 free (debug->external_sym);
3521 if (debug->external_opt != NULL)
3522 free (debug->external_opt);
3523 if (debug->external_aux != NULL)
3524 free (debug->external_aux);
3525 if (debug->ss != NULL)
3526 free (debug->ss);
3527 if (debug->ssext != NULL)
3528 free (debug->ssext);
3529 if (debug->external_fdr != NULL)
3530 free (debug->external_fdr);
3531 if (debug->external_rfd != NULL)
3532 free (debug->external_rfd);
3533 if (debug->external_ext != NULL)
3534 free (debug->external_ext);
3535 return false;
3538 /* MIPS ELF local labels start with '$', not 'L'. */
3540 /*ARGSUSED*/
3541 static boolean
3542 mips_elf_is_local_label_name (abfd, name)
3543 bfd *abfd;
3544 const char *name;
3546 if (name[0] == '$')
3547 return true;
3549 /* On Irix 6, the labels go back to starting with '.', so we accept
3550 the generic ELF local label syntax as well. */
3551 return _bfd_elf_is_local_label_name (abfd, name);
3554 /* MIPS ELF uses a special find_nearest_line routine in order the
3555 handle the ECOFF debugging information. */
3557 struct mips_elf_find_line
3559 struct ecoff_debug_info d;
3560 struct ecoff_find_line i;
3563 boolean
3564 _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
3565 functionname_ptr, line_ptr)
3566 bfd *abfd;
3567 asection *section;
3568 asymbol **symbols;
3569 bfd_vma offset;
3570 const char **filename_ptr;
3571 const char **functionname_ptr;
3572 unsigned int *line_ptr;
3574 asection *msec;
3576 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
3577 filename_ptr, functionname_ptr,
3578 line_ptr))
3579 return true;
3581 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
3582 filename_ptr, functionname_ptr,
3583 line_ptr,
3584 ABI_64_P (abfd) ? 8 : 0))
3585 return true;
3587 msec = bfd_get_section_by_name (abfd, ".mdebug");
3588 if (msec != NULL)
3590 flagword origflags;
3591 struct mips_elf_find_line *fi;
3592 const struct ecoff_debug_swap * const swap =
3593 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
3595 /* If we are called during a link, mips_elf_final_link may have
3596 cleared the SEC_HAS_CONTENTS field. We force it back on here
3597 if appropriate (which it normally will be). */
3598 origflags = msec->flags;
3599 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
3600 msec->flags |= SEC_HAS_CONTENTS;
3602 fi = elf_tdata (abfd)->find_line_info;
3603 if (fi == NULL)
3605 bfd_size_type external_fdr_size;
3606 char *fraw_src;
3607 char *fraw_end;
3608 struct fdr *fdr_ptr;
3610 fi = ((struct mips_elf_find_line *)
3611 bfd_zalloc (abfd, sizeof (struct mips_elf_find_line)));
3612 if (fi == NULL)
3614 msec->flags = origflags;
3615 return false;
3618 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
3620 msec->flags = origflags;
3621 return false;
3624 /* Swap in the FDR information. */
3625 fi->d.fdr = ((struct fdr *)
3626 bfd_alloc (abfd,
3627 (fi->d.symbolic_header.ifdMax *
3628 sizeof (struct fdr))));
3629 if (fi->d.fdr == NULL)
3631 msec->flags = origflags;
3632 return false;
3634 external_fdr_size = swap->external_fdr_size;
3635 fdr_ptr = fi->d.fdr;
3636 fraw_src = (char *) fi->d.external_fdr;
3637 fraw_end = (fraw_src
3638 + fi->d.symbolic_header.ifdMax * external_fdr_size);
3639 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
3640 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
3642 elf_tdata (abfd)->find_line_info = fi;
3644 /* Note that we don't bother to ever free this information.
3645 find_nearest_line is either called all the time, as in
3646 objdump -l, so the information should be saved, or it is
3647 rarely called, as in ld error messages, so the memory
3648 wasted is unimportant. Still, it would probably be a
3649 good idea for free_cached_info to throw it away. */
3652 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
3653 &fi->i, filename_ptr, functionname_ptr,
3654 line_ptr))
3656 msec->flags = origflags;
3657 return true;
3660 msec->flags = origflags;
3663 /* Fall back on the generic ELF find_nearest_line routine. */
3665 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
3666 filename_ptr, functionname_ptr,
3667 line_ptr);
3670 /* The mips16 compiler uses a couple of special sections to handle
3671 floating point arguments.
3673 Section names that look like .mips16.fn.FNNAME contain stubs that
3674 copy floating point arguments from the fp regs to the gp regs and
3675 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3676 call should be redirected to the stub instead. If no 32 bit
3677 function calls FNNAME, the stub should be discarded. We need to
3678 consider any reference to the function, not just a call, because
3679 if the address of the function is taken we will need the stub,
3680 since the address might be passed to a 32 bit function.
3682 Section names that look like .mips16.call.FNNAME contain stubs
3683 that copy floating point arguments from the gp regs to the fp
3684 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3685 then any 16 bit function that calls FNNAME should be redirected
3686 to the stub instead. If FNNAME is not a 32 bit function, the
3687 stub should be discarded.
3689 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3690 which call FNNAME and then copy the return value from the fp regs
3691 to the gp regs. These stubs store the return value in $18 while
3692 calling FNNAME; any function which might call one of these stubs
3693 must arrange to save $18 around the call. (This case is not
3694 needed for 32 bit functions that call 16 bit functions, because
3695 16 bit functions always return floating point values in both
3696 $f0/$f1 and $2/$3.)
3698 Note that in all cases FNNAME might be defined statically.
3699 Therefore, FNNAME is not used literally. Instead, the relocation
3700 information will indicate which symbol the section is for.
3702 We record any stubs that we find in the symbol table. */
3704 #define FN_STUB ".mips16.fn."
3705 #define CALL_STUB ".mips16.call."
3706 #define CALL_FP_STUB ".mips16.call.fp."
3708 /* MIPS ELF linker hash table. */
3710 struct mips_elf_link_hash_table
3712 struct elf_link_hash_table root;
3713 #if 0
3714 /* We no longer use this. */
3715 /* String section indices for the dynamic section symbols. */
3716 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
3717 #endif
3718 /* The number of .rtproc entries. */
3719 bfd_size_type procedure_count;
3720 /* The size of the .compact_rel section (if SGI_COMPAT). */
3721 bfd_size_type compact_rel_size;
3722 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3723 entry is set to the address of __rld_obj_head as in Irix 5. */
3724 boolean use_rld_obj_head;
3725 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3726 bfd_vma rld_value;
3727 /* This is set if we see any mips16 stub sections. */
3728 boolean mips16_stubs_seen;
3731 /* Look up an entry in a MIPS ELF linker hash table. */
3733 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3734 ((struct mips_elf_link_hash_entry *) \
3735 elf_link_hash_lookup (&(table)->root, (string), (create), \
3736 (copy), (follow)))
3738 /* Traverse a MIPS ELF linker hash table. */
3740 #define mips_elf_link_hash_traverse(table, func, info) \
3741 (elf_link_hash_traverse \
3742 (&(table)->root, \
3743 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3744 (info)))
3746 /* Get the MIPS ELF linker hash table from a link_info structure. */
3748 #define mips_elf_hash_table(p) \
3749 ((struct mips_elf_link_hash_table *) ((p)->hash))
3751 static boolean mips_elf_output_extsym
3752 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
3754 /* Create an entry in a MIPS ELF linker hash table. */
3756 static struct bfd_hash_entry *
3757 mips_elf_link_hash_newfunc (entry, table, string)
3758 struct bfd_hash_entry *entry;
3759 struct bfd_hash_table *table;
3760 const char *string;
3762 struct mips_elf_link_hash_entry *ret =
3763 (struct mips_elf_link_hash_entry *) entry;
3765 /* Allocate the structure if it has not already been allocated by a
3766 subclass. */
3767 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3768 ret = ((struct mips_elf_link_hash_entry *)
3769 bfd_hash_allocate (table,
3770 sizeof (struct mips_elf_link_hash_entry)));
3771 if (ret == (struct mips_elf_link_hash_entry *) NULL)
3772 return (struct bfd_hash_entry *) ret;
3774 /* Call the allocation method of the superclass. */
3775 ret = ((struct mips_elf_link_hash_entry *)
3776 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3777 table, string));
3778 if (ret != (struct mips_elf_link_hash_entry *) NULL)
3780 /* Set local fields. */
3781 memset (&ret->esym, 0, sizeof (EXTR));
3782 /* We use -2 as a marker to indicate that the information has
3783 not been set. -1 means there is no associated ifd. */
3784 ret->esym.ifd = -2;
3785 ret->possibly_dynamic_relocs = 0;
3786 ret->min_dyn_reloc_index = 0;
3787 ret->fn_stub = NULL;
3788 ret->need_fn_stub = false;
3789 ret->call_stub = NULL;
3790 ret->call_fp_stub = NULL;
3793 return (struct bfd_hash_entry *) ret;
3796 /* Create a MIPS ELF linker hash table. */
3798 struct bfd_link_hash_table *
3799 _bfd_mips_elf_link_hash_table_create (abfd)
3800 bfd *abfd;
3802 struct mips_elf_link_hash_table *ret;
3804 ret = ((struct mips_elf_link_hash_table *)
3805 bfd_alloc (abfd, sizeof (struct mips_elf_link_hash_table)));
3806 if (ret == (struct mips_elf_link_hash_table *) NULL)
3807 return NULL;
3809 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
3810 mips_elf_link_hash_newfunc))
3812 bfd_release (abfd, ret);
3813 return NULL;
3816 #if 0
3817 /* We no longer use this. */
3818 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
3819 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
3820 #endif
3821 ret->procedure_count = 0;
3822 ret->compact_rel_size = 0;
3823 ret->use_rld_obj_head = false;
3824 ret->rld_value = 0;
3825 ret->mips16_stubs_seen = false;
3827 return &ret->root.root;
3830 /* Hook called by the linker routine which adds symbols from an object
3831 file. We must handle the special MIPS section numbers here. */
3833 /*ARGSUSED*/
3834 boolean
3835 _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
3836 bfd *abfd;
3837 struct bfd_link_info *info;
3838 const Elf_Internal_Sym *sym;
3839 const char **namep;
3840 flagword *flagsp ATTRIBUTE_UNUSED;
3841 asection **secp;
3842 bfd_vma *valp;
3844 if (SGI_COMPAT (abfd)
3845 && (abfd->flags & DYNAMIC) != 0
3846 && strcmp (*namep, "_rld_new_interface") == 0)
3848 /* Skip Irix 5 rld entry name. */
3849 *namep = NULL;
3850 return true;
3853 switch (sym->st_shndx)
3855 case SHN_COMMON:
3856 /* Common symbols less than the GP size are automatically
3857 treated as SHN_MIPS_SCOMMON symbols. */
3858 if (sym->st_size > elf_gp_size (abfd)
3859 || IRIX_COMPAT (abfd) == ict_irix6)
3860 break;
3861 /* Fall through. */
3862 case SHN_MIPS_SCOMMON:
3863 *secp = bfd_make_section_old_way (abfd, ".scommon");
3864 (*secp)->flags |= SEC_IS_COMMON;
3865 *valp = sym->st_size;
3866 break;
3868 case SHN_MIPS_TEXT:
3869 /* This section is used in a shared object. */
3870 if (mips_elf_text_section_ptr == NULL)
3872 /* Initialize the section. */
3873 mips_elf_text_section.name = ".text";
3874 mips_elf_text_section.flags = SEC_NO_FLAGS;
3875 mips_elf_text_section.output_section = NULL;
3876 mips_elf_text_section.symbol = &mips_elf_text_symbol;
3877 mips_elf_text_section.symbol_ptr_ptr = &mips_elf_text_symbol_ptr;
3878 mips_elf_text_symbol.name = ".text";
3879 mips_elf_text_symbol.flags = BSF_SECTION_SYM;
3880 mips_elf_text_symbol.section = &mips_elf_text_section;
3881 mips_elf_text_symbol_ptr = &mips_elf_text_symbol;
3882 mips_elf_text_section_ptr = &mips_elf_text_section;
3884 /* This code used to do *secp = bfd_und_section_ptr if
3885 info->shared. I don't know why, and that doesn't make sense,
3886 so I took it out. */
3887 *secp = mips_elf_text_section_ptr;
3888 break;
3890 case SHN_MIPS_ACOMMON:
3891 /* Fall through. XXX Can we treat this as allocated data? */
3892 case SHN_MIPS_DATA:
3893 /* This section is used in a shared object. */
3894 if (mips_elf_data_section_ptr == NULL)
3896 /* Initialize the section. */
3897 mips_elf_data_section.name = ".data";
3898 mips_elf_data_section.flags = SEC_NO_FLAGS;
3899 mips_elf_data_section.output_section = NULL;
3900 mips_elf_data_section.symbol = &mips_elf_data_symbol;
3901 mips_elf_data_section.symbol_ptr_ptr = &mips_elf_data_symbol_ptr;
3902 mips_elf_data_symbol.name = ".data";
3903 mips_elf_data_symbol.flags = BSF_SECTION_SYM;
3904 mips_elf_data_symbol.section = &mips_elf_data_section;
3905 mips_elf_data_symbol_ptr = &mips_elf_data_symbol;
3906 mips_elf_data_section_ptr = &mips_elf_data_section;
3908 /* This code used to do *secp = bfd_und_section_ptr if
3909 info->shared. I don't know why, and that doesn't make sense,
3910 so I took it out. */
3911 *secp = mips_elf_data_section_ptr;
3912 break;
3914 case SHN_MIPS_SUNDEFINED:
3915 *secp = bfd_und_section_ptr;
3916 break;
3919 if (SGI_COMPAT (abfd)
3920 && ! info->shared
3921 && info->hash->creator == abfd->xvec
3922 && strcmp (*namep, "__rld_obj_head") == 0)
3924 struct elf_link_hash_entry *h;
3926 /* Mark __rld_obj_head as dynamic. */
3927 h = NULL;
3928 if (! (_bfd_generic_link_add_one_symbol
3929 (info, abfd, *namep, BSF_GLOBAL, *secp,
3930 (bfd_vma) *valp, (const char *) NULL, false,
3931 get_elf_backend_data (abfd)->collect,
3932 (struct bfd_link_hash_entry **) &h)))
3933 return false;
3934 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
3935 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3936 h->type = STT_OBJECT;
3938 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
3939 return false;
3941 mips_elf_hash_table (info)->use_rld_obj_head = true;
3944 /* If this is a mips16 text symbol, add 1 to the value to make it
3945 odd. This will cause something like .word SYM to come up with
3946 the right value when it is loaded into the PC. */
3947 if (sym->st_other == STO_MIPS16)
3948 ++*valp;
3950 return true;
3953 /* Structure used to pass information to mips_elf_output_extsym. */
3955 struct extsym_info
3957 bfd *abfd;
3958 struct bfd_link_info *info;
3959 struct ecoff_debug_info *debug;
3960 const struct ecoff_debug_swap *swap;
3961 boolean failed;
3964 /* This routine is used to write out ECOFF debugging external symbol
3965 information. It is called via mips_elf_link_hash_traverse. The
3966 ECOFF external symbol information must match the ELF external
3967 symbol information. Unfortunately, at this point we don't know
3968 whether a symbol is required by reloc information, so the two
3969 tables may wind up being different. We must sort out the external
3970 symbol information before we can set the final size of the .mdebug
3971 section, and we must set the size of the .mdebug section before we
3972 can relocate any sections, and we can't know which symbols are
3973 required by relocation until we relocate the sections.
3974 Fortunately, it is relatively unlikely that any symbol will be
3975 stripped but required by a reloc. In particular, it can not happen
3976 when generating a final executable. */
3978 static boolean
3979 mips_elf_output_extsym (h, data)
3980 struct mips_elf_link_hash_entry *h;
3981 PTR data;
3983 struct extsym_info *einfo = (struct extsym_info *) data;
3984 boolean strip;
3985 asection *sec, *output_section;
3987 if (h->root.indx == -2)
3988 strip = false;
3989 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3990 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
3991 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3992 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
3993 strip = true;
3994 else if (einfo->info->strip == strip_all
3995 || (einfo->info->strip == strip_some
3996 && bfd_hash_lookup (einfo->info->keep_hash,
3997 h->root.root.root.string,
3998 false, false) == NULL))
3999 strip = true;
4000 else
4001 strip = false;
4003 if (strip)
4004 return true;
4006 if (h->esym.ifd == -2)
4008 h->esym.jmptbl = 0;
4009 h->esym.cobol_main = 0;
4010 h->esym.weakext = 0;
4011 h->esym.reserved = 0;
4012 h->esym.ifd = ifdNil;
4013 h->esym.asym.value = 0;
4014 h->esym.asym.st = stGlobal;
4016 if (SGI_COMPAT (einfo->abfd)
4017 && (h->root.root.type == bfd_link_hash_undefined
4018 || h->root.root.type == bfd_link_hash_undefweak))
4020 const char *name;
4022 /* Use undefined class. Also, set class and type for some
4023 special symbols. */
4024 name = h->root.root.root.string;
4025 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
4026 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
4028 h->esym.asym.sc = scData;
4029 h->esym.asym.st = stLabel;
4030 h->esym.asym.value = 0;
4032 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
4034 h->esym.asym.sc = scAbs;
4035 h->esym.asym.st = stLabel;
4036 h->esym.asym.value =
4037 mips_elf_hash_table (einfo->info)->procedure_count;
4039 else if (strcmp (name, "_gp_disp") == 0)
4041 h->esym.asym.sc = scAbs;
4042 h->esym.asym.st = stLabel;
4043 h->esym.asym.value = elf_gp (einfo->abfd);
4045 else
4046 h->esym.asym.sc = scUndefined;
4048 else if (h->root.root.type != bfd_link_hash_defined
4049 && h->root.root.type != bfd_link_hash_defweak)
4050 h->esym.asym.sc = scAbs;
4051 else
4053 const char *name;
4055 sec = h->root.root.u.def.section;
4056 output_section = sec->output_section;
4058 /* When making a shared library and symbol h is the one from
4059 the another shared library, OUTPUT_SECTION may be null. */
4060 if (output_section == NULL)
4061 h->esym.asym.sc = scUndefined;
4062 else
4064 name = bfd_section_name (output_section->owner, output_section);
4066 if (strcmp (name, ".text") == 0)
4067 h->esym.asym.sc = scText;
4068 else if (strcmp (name, ".data") == 0)
4069 h->esym.asym.sc = scData;
4070 else if (strcmp (name, ".sdata") == 0)
4071 h->esym.asym.sc = scSData;
4072 else if (strcmp (name, ".rodata") == 0
4073 || strcmp (name, ".rdata") == 0)
4074 h->esym.asym.sc = scRData;
4075 else if (strcmp (name, ".bss") == 0)
4076 h->esym.asym.sc = scBss;
4077 else if (strcmp (name, ".sbss") == 0)
4078 h->esym.asym.sc = scSBss;
4079 else if (strcmp (name, ".init") == 0)
4080 h->esym.asym.sc = scInit;
4081 else if (strcmp (name, ".fini") == 0)
4082 h->esym.asym.sc = scFini;
4083 else
4084 h->esym.asym.sc = scAbs;
4088 h->esym.asym.reserved = 0;
4089 h->esym.asym.index = indexNil;
4092 if (h->root.root.type == bfd_link_hash_common)
4093 h->esym.asym.value = h->root.root.u.c.size;
4094 else if (h->root.root.type == bfd_link_hash_defined
4095 || h->root.root.type == bfd_link_hash_defweak)
4097 if (h->esym.asym.sc == scCommon)
4098 h->esym.asym.sc = scBss;
4099 else if (h->esym.asym.sc == scSCommon)
4100 h->esym.asym.sc = scSBss;
4102 sec = h->root.root.u.def.section;
4103 output_section = sec->output_section;
4104 if (output_section != NULL)
4105 h->esym.asym.value = (h->root.root.u.def.value
4106 + sec->output_offset
4107 + output_section->vma);
4108 else
4109 h->esym.asym.value = 0;
4111 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
4113 /* Set type and value for a symbol with a function stub. */
4114 h->esym.asym.st = stProc;
4115 sec = h->root.root.u.def.section;
4116 if (sec == NULL)
4117 h->esym.asym.value = 0;
4118 else
4120 output_section = sec->output_section;
4121 if (output_section != NULL)
4122 h->esym.asym.value = (h->root.plt.offset
4123 + sec->output_offset
4124 + output_section->vma);
4125 else
4126 h->esym.asym.value = 0;
4128 #if 0 /* FIXME? */
4129 h->esym.ifd = 0;
4130 #endif
4133 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
4134 h->root.root.root.string,
4135 &h->esym))
4137 einfo->failed = true;
4138 return false;
4141 return true;
4144 /* Create a runtime procedure table from the .mdebug section. */
4146 static boolean
4147 mips_elf_create_procedure_table (handle, abfd, info, s, debug)
4148 PTR handle;
4149 bfd *abfd;
4150 struct bfd_link_info *info;
4151 asection *s;
4152 struct ecoff_debug_info *debug;
4154 const struct ecoff_debug_swap *swap;
4155 HDRR *hdr = &debug->symbolic_header;
4156 RPDR *rpdr, *rp;
4157 struct rpdr_ext *erp;
4158 PTR rtproc;
4159 struct pdr_ext *epdr;
4160 struct sym_ext *esym;
4161 char *ss, **sv;
4162 char *str;
4163 unsigned long size, count;
4164 unsigned long sindex;
4165 unsigned long i;
4166 PDR pdr;
4167 SYMR sym;
4168 const char *no_name_func = _("static procedure (no name)");
4170 epdr = NULL;
4171 rpdr = NULL;
4172 esym = NULL;
4173 ss = NULL;
4174 sv = NULL;
4176 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4178 sindex = strlen (no_name_func) + 1;
4179 count = hdr->ipdMax;
4180 if (count > 0)
4182 size = swap->external_pdr_size;
4184 epdr = (struct pdr_ext *) bfd_malloc (size * count);
4185 if (epdr == NULL)
4186 goto error_return;
4188 if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr))
4189 goto error_return;
4191 size = sizeof (RPDR);
4192 rp = rpdr = (RPDR *) bfd_malloc (size * count);
4193 if (rpdr == NULL)
4194 goto error_return;
4196 sv = (char **) bfd_malloc (sizeof (char *) * count);
4197 if (sv == NULL)
4198 goto error_return;
4200 count = hdr->isymMax;
4201 size = swap->external_sym_size;
4202 esym = (struct sym_ext *) bfd_malloc (size * count);
4203 if (esym == NULL)
4204 goto error_return;
4206 if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym))
4207 goto error_return;
4209 count = hdr->issMax;
4210 ss = (char *) bfd_malloc (count);
4211 if (ss == NULL)
4212 goto error_return;
4213 if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss))
4214 goto error_return;
4216 count = hdr->ipdMax;
4217 for (i = 0; i < count; i++, rp++)
4219 (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr);
4220 (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym);
4221 rp->adr = sym.value;
4222 rp->regmask = pdr.regmask;
4223 rp->regoffset = pdr.regoffset;
4224 rp->fregmask = pdr.fregmask;
4225 rp->fregoffset = pdr.fregoffset;
4226 rp->frameoffset = pdr.frameoffset;
4227 rp->framereg = pdr.framereg;
4228 rp->pcreg = pdr.pcreg;
4229 rp->irpss = sindex;
4230 sv[i] = ss + sym.iss;
4231 sindex += strlen (sv[i]) + 1;
4235 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
4236 size = BFD_ALIGN (size, 16);
4237 rtproc = (PTR) bfd_alloc (abfd, size);
4238 if (rtproc == NULL)
4240 mips_elf_hash_table (info)->procedure_count = 0;
4241 goto error_return;
4244 mips_elf_hash_table (info)->procedure_count = count + 2;
4246 erp = (struct rpdr_ext *) rtproc;
4247 memset (erp, 0, sizeof (struct rpdr_ext));
4248 erp++;
4249 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
4250 strcpy (str, no_name_func);
4251 str += strlen (no_name_func) + 1;
4252 for (i = 0; i < count; i++)
4254 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
4255 strcpy (str, sv[i]);
4256 str += strlen (sv[i]) + 1;
4258 ecoff_put_off (abfd, (bfd_vma) -1, (bfd_byte *) (erp + count)->p_adr);
4260 /* Set the size and contents of .rtproc section. */
4261 s->_raw_size = size;
4262 s->contents = (bfd_byte *) rtproc;
4264 /* Skip this section later on (I don't think this currently
4265 matters, but someday it might). */
4266 s->link_order_head = (struct bfd_link_order *) NULL;
4268 if (epdr != NULL)
4269 free (epdr);
4270 if (rpdr != NULL)
4271 free (rpdr);
4272 if (esym != NULL)
4273 free (esym);
4274 if (ss != NULL)
4275 free (ss);
4276 if (sv != NULL)
4277 free (sv);
4279 return true;
4281 error_return:
4282 if (epdr != NULL)
4283 free (epdr);
4284 if (rpdr != NULL)
4285 free (rpdr);
4286 if (esym != NULL)
4287 free (esym);
4288 if (ss != NULL)
4289 free (ss);
4290 if (sv != NULL)
4291 free (sv);
4292 return false;
4295 /* A comparison routine used to sort .gptab entries. */
4297 static int
4298 gptab_compare (p1, p2)
4299 const PTR p1;
4300 const PTR p2;
4302 const Elf32_gptab *a1 = (const Elf32_gptab *) p1;
4303 const Elf32_gptab *a2 = (const Elf32_gptab *) p2;
4305 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
4308 /* We need to use a special link routine to handle the .reginfo and
4309 the .mdebug sections. We need to merge all instances of these
4310 sections together, not write them all out sequentially. */
4312 boolean
4313 _bfd_mips_elf_final_link (abfd, info)
4314 bfd *abfd;
4315 struct bfd_link_info *info;
4317 asection **secpp;
4318 asection *o;
4319 struct bfd_link_order *p;
4320 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
4321 asection *rtproc_sec;
4322 Elf32_RegInfo reginfo;
4323 struct ecoff_debug_info debug;
4324 const struct ecoff_debug_swap *swap
4325 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
4326 HDRR *symhdr = &debug.symbolic_header;
4327 PTR mdebug_handle = NULL;
4329 /* If all the things we linked together were PIC, but we're
4330 producing an executable (rather than a shared object), then the
4331 resulting file is CPIC (i.e., it calls PIC code.) */
4332 if (!info->shared
4333 && !info->relocateable
4334 && elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
4336 elf_elfheader (abfd)->e_flags &= ~EF_MIPS_PIC;
4337 elf_elfheader (abfd)->e_flags |= EF_MIPS_CPIC;
4340 /* We'd carefully arranged the dynamic symbol indices, and then the
4341 generic size_dynamic_sections renumbered them out from under us.
4342 Rather than trying somehow to prevent the renumbering, just do
4343 the sort again. */
4344 if (elf_hash_table (info)->dynamic_sections_created)
4346 bfd *dynobj;
4347 asection *got;
4348 struct mips_got_info *g;
4350 /* When we resort, we must tell mips_elf_sort_hash_table what
4351 the lowest index it may use is. That's the number of section
4352 symbols we're going to add. The generic ELF linker only
4353 adds these symbols when building a shared object. Note that
4354 we count the sections after (possibly) removing the .options
4355 section above. */
4356 if (!mips_elf_sort_hash_table (info, (info->shared
4357 ? bfd_count_sections (abfd) + 1
4358 : 1)))
4359 return false;
4361 /* Make sure we didn't grow the global .got region. */
4362 dynobj = elf_hash_table (info)->dynobj;
4363 got = bfd_get_section_by_name (dynobj, ".got");
4364 g = (struct mips_got_info *) elf_section_data (got)->tdata;
4366 if (g->global_gotsym != NULL)
4367 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
4368 - g->global_gotsym->dynindx)
4369 <= g->global_gotno);
4372 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4373 include it, even though we don't process it quite right. (Some
4374 entries are supposed to be merged.) Empirically, we seem to be
4375 better off including it then not. */
4376 if (IRIX_COMPAT (abfd) == ict_irix5)
4377 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
4379 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4381 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
4382 if (p->type == bfd_indirect_link_order)
4383 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
4384 (*secpp)->link_order_head = NULL;
4385 *secpp = (*secpp)->next;
4386 --abfd->section_count;
4388 break;
4392 /* Get a value for the GP register. */
4393 if (elf_gp (abfd) == 0)
4395 struct bfd_link_hash_entry *h;
4397 h = bfd_link_hash_lookup (info->hash, "_gp", false, false, true);
4398 if (h != (struct bfd_link_hash_entry *) NULL
4399 && h->type == bfd_link_hash_defined)
4400 elf_gp (abfd) = (h->u.def.value
4401 + h->u.def.section->output_section->vma
4402 + h->u.def.section->output_offset);
4403 else if (info->relocateable)
4405 bfd_vma lo;
4407 /* Find the GP-relative section with the lowest offset. */
4408 lo = (bfd_vma) -1;
4409 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4410 if (o->vma < lo
4411 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
4412 lo = o->vma;
4414 /* And calculate GP relative to that. */
4415 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
4417 else
4419 /* If the relocate_section function needs to do a reloc
4420 involving the GP value, it should make a reloc_dangerous
4421 callback to warn that GP is not defined. */
4425 /* Go through the sections and collect the .reginfo and .mdebug
4426 information. */
4427 reginfo_sec = NULL;
4428 mdebug_sec = NULL;
4429 gptab_data_sec = NULL;
4430 gptab_bss_sec = NULL;
4431 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4433 if (strcmp (o->name, ".reginfo") == 0)
4435 memset (&reginfo, 0, sizeof reginfo);
4437 /* We have found the .reginfo section in the output file.
4438 Look through all the link_orders comprising it and merge
4439 the information together. */
4440 for (p = o->link_order_head;
4441 p != (struct bfd_link_order *) NULL;
4442 p = p->next)
4444 asection *input_section;
4445 bfd *input_bfd;
4446 Elf32_External_RegInfo ext;
4447 Elf32_RegInfo sub;
4449 if (p->type != bfd_indirect_link_order)
4451 if (p->type == bfd_fill_link_order)
4452 continue;
4453 abort ();
4456 input_section = p->u.indirect.section;
4457 input_bfd = input_section->owner;
4459 /* The linker emulation code has probably clobbered the
4460 size to be zero bytes. */
4461 if (input_section->_raw_size == 0)
4462 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
4464 if (! bfd_get_section_contents (input_bfd, input_section,
4465 (PTR) &ext,
4466 (file_ptr) 0,
4467 sizeof ext))
4468 return false;
4470 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
4472 reginfo.ri_gprmask |= sub.ri_gprmask;
4473 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
4474 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
4475 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
4476 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
4478 /* ri_gp_value is set by the function
4479 mips_elf32_section_processing when the section is
4480 finally written out. */
4482 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4483 elf_link_input_bfd ignores this section. */
4484 input_section->flags &=~ SEC_HAS_CONTENTS;
4487 /* Size has been set in mips_elf_always_size_sections */
4488 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
4490 /* Skip this section later on (I don't think this currently
4491 matters, but someday it might). */
4492 o->link_order_head = (struct bfd_link_order *) NULL;
4494 reginfo_sec = o;
4497 if (strcmp (o->name, ".mdebug") == 0)
4499 struct extsym_info einfo;
4501 /* We have found the .mdebug section in the output file.
4502 Look through all the link_orders comprising it and merge
4503 the information together. */
4504 symhdr->magic = swap->sym_magic;
4505 /* FIXME: What should the version stamp be? */
4506 symhdr->vstamp = 0;
4507 symhdr->ilineMax = 0;
4508 symhdr->cbLine = 0;
4509 symhdr->idnMax = 0;
4510 symhdr->ipdMax = 0;
4511 symhdr->isymMax = 0;
4512 symhdr->ioptMax = 0;
4513 symhdr->iauxMax = 0;
4514 symhdr->issMax = 0;
4515 symhdr->issExtMax = 0;
4516 symhdr->ifdMax = 0;
4517 symhdr->crfd = 0;
4518 symhdr->iextMax = 0;
4520 /* We accumulate the debugging information itself in the
4521 debug_info structure. */
4522 debug.line = NULL;
4523 debug.external_dnr = NULL;
4524 debug.external_pdr = NULL;
4525 debug.external_sym = NULL;
4526 debug.external_opt = NULL;
4527 debug.external_aux = NULL;
4528 debug.ss = NULL;
4529 debug.ssext = debug.ssext_end = NULL;
4530 debug.external_fdr = NULL;
4531 debug.external_rfd = NULL;
4532 debug.external_ext = debug.external_ext_end = NULL;
4534 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
4535 if (mdebug_handle == (PTR) NULL)
4536 return false;
4538 if (SGI_COMPAT (abfd))
4540 asection *s;
4541 EXTR esym;
4542 bfd_vma last;
4543 unsigned int i;
4544 static const char * const name[] =
4545 { ".text", ".init", ".fini", ".data",
4546 ".rodata", ".sdata", ".sbss", ".bss" };
4547 static const int sc[] = { scText, scInit, scFini, scData,
4548 scRData, scSData, scSBss, scBss };
4550 esym.jmptbl = 0;
4551 esym.cobol_main = 0;
4552 esym.weakext = 0;
4553 esym.reserved = 0;
4554 esym.ifd = ifdNil;
4555 esym.asym.iss = issNil;
4556 esym.asym.st = stLocal;
4557 esym.asym.reserved = 0;
4558 esym.asym.index = indexNil;
4559 last = 0;
4560 for (i = 0; i < 8; i++)
4562 esym.asym.sc = sc[i];
4563 s = bfd_get_section_by_name (abfd, name[i]);
4564 if (s != NULL)
4566 esym.asym.value = s->vma;
4567 last = s->vma + s->_raw_size;
4569 else
4570 esym.asym.value = last;
4572 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
4573 name[i], &esym))
4574 return false;
4578 for (p = o->link_order_head;
4579 p != (struct bfd_link_order *) NULL;
4580 p = p->next)
4582 asection *input_section;
4583 bfd *input_bfd;
4584 const struct ecoff_debug_swap *input_swap;
4585 struct ecoff_debug_info input_debug;
4586 char *eraw_src;
4587 char *eraw_end;
4589 if (p->type != bfd_indirect_link_order)
4591 if (p->type == bfd_fill_link_order)
4592 continue;
4593 abort ();
4596 input_section = p->u.indirect.section;
4597 input_bfd = input_section->owner;
4599 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
4600 || (get_elf_backend_data (input_bfd)
4601 ->elf_backend_ecoff_debug_swap) == NULL)
4603 /* I don't know what a non MIPS ELF bfd would be
4604 doing with a .mdebug section, but I don't really
4605 want to deal with it. */
4606 continue;
4609 input_swap = (get_elf_backend_data (input_bfd)
4610 ->elf_backend_ecoff_debug_swap);
4612 BFD_ASSERT (p->size == input_section->_raw_size);
4614 /* The ECOFF linking code expects that we have already
4615 read in the debugging information and set up an
4616 ecoff_debug_info structure, so we do that now. */
4617 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
4618 &input_debug))
4619 return false;
4621 if (! (bfd_ecoff_debug_accumulate
4622 (mdebug_handle, abfd, &debug, swap, input_bfd,
4623 &input_debug, input_swap, info)))
4624 return false;
4626 /* Loop through the external symbols. For each one with
4627 interesting information, try to find the symbol in
4628 the linker global hash table and save the information
4629 for the output external symbols. */
4630 eraw_src = input_debug.external_ext;
4631 eraw_end = (eraw_src
4632 + (input_debug.symbolic_header.iextMax
4633 * input_swap->external_ext_size));
4634 for (;
4635 eraw_src < eraw_end;
4636 eraw_src += input_swap->external_ext_size)
4638 EXTR ext;
4639 const char *name;
4640 struct mips_elf_link_hash_entry *h;
4642 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
4643 if (ext.asym.sc == scNil
4644 || ext.asym.sc == scUndefined
4645 || ext.asym.sc == scSUndefined)
4646 continue;
4648 name = input_debug.ssext + ext.asym.iss;
4649 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
4650 name, false, false, true);
4651 if (h == NULL || h->esym.ifd != -2)
4652 continue;
4654 if (ext.ifd != -1)
4656 BFD_ASSERT (ext.ifd
4657 < input_debug.symbolic_header.ifdMax);
4658 ext.ifd = input_debug.ifdmap[ext.ifd];
4661 h->esym = ext;
4664 /* Free up the information we just read. */
4665 free (input_debug.line);
4666 free (input_debug.external_dnr);
4667 free (input_debug.external_pdr);
4668 free (input_debug.external_sym);
4669 free (input_debug.external_opt);
4670 free (input_debug.external_aux);
4671 free (input_debug.ss);
4672 free (input_debug.ssext);
4673 free (input_debug.external_fdr);
4674 free (input_debug.external_rfd);
4675 free (input_debug.external_ext);
4677 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4678 elf_link_input_bfd ignores this section. */
4679 input_section->flags &=~ SEC_HAS_CONTENTS;
4682 if (SGI_COMPAT (abfd) && info->shared)
4684 /* Create .rtproc section. */
4685 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
4686 if (rtproc_sec == NULL)
4688 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
4689 | SEC_LINKER_CREATED | SEC_READONLY);
4691 rtproc_sec = bfd_make_section (abfd, ".rtproc");
4692 if (rtproc_sec == NULL
4693 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
4694 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
4695 return false;
4698 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
4699 info, rtproc_sec, &debug))
4700 return false;
4703 /* Build the external symbol information. */
4704 einfo.abfd = abfd;
4705 einfo.info = info;
4706 einfo.debug = &debug;
4707 einfo.swap = swap;
4708 einfo.failed = false;
4709 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
4710 mips_elf_output_extsym,
4711 (PTR) &einfo);
4712 if (einfo.failed)
4713 return false;
4715 /* Set the size of the .mdebug section. */
4716 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
4718 /* Skip this section later on (I don't think this currently
4719 matters, but someday it might). */
4720 o->link_order_head = (struct bfd_link_order *) NULL;
4722 mdebug_sec = o;
4725 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
4727 const char *subname;
4728 unsigned int c;
4729 Elf32_gptab *tab;
4730 Elf32_External_gptab *ext_tab;
4731 unsigned int i;
4733 /* The .gptab.sdata and .gptab.sbss sections hold
4734 information describing how the small data area would
4735 change depending upon the -G switch. These sections
4736 not used in executables files. */
4737 if (! info->relocateable)
4739 asection **secpp;
4741 for (p = o->link_order_head;
4742 p != (struct bfd_link_order *) NULL;
4743 p = p->next)
4745 asection *input_section;
4747 if (p->type != bfd_indirect_link_order)
4749 if (p->type == bfd_fill_link_order)
4750 continue;
4751 abort ();
4754 input_section = p->u.indirect.section;
4756 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4757 elf_link_input_bfd ignores this section. */
4758 input_section->flags &=~ SEC_HAS_CONTENTS;
4761 /* Skip this section later on (I don't think this
4762 currently matters, but someday it might). */
4763 o->link_order_head = (struct bfd_link_order *) NULL;
4765 /* Really remove the section. */
4766 for (secpp = &abfd->sections;
4767 *secpp != o;
4768 secpp = &(*secpp)->next)
4770 *secpp = (*secpp)->next;
4771 --abfd->section_count;
4773 continue;
4776 /* There is one gptab for initialized data, and one for
4777 uninitialized data. */
4778 if (strcmp (o->name, ".gptab.sdata") == 0)
4779 gptab_data_sec = o;
4780 else if (strcmp (o->name, ".gptab.sbss") == 0)
4781 gptab_bss_sec = o;
4782 else
4784 (*_bfd_error_handler)
4785 (_("%s: illegal section name `%s'"),
4786 bfd_get_filename (abfd), o->name);
4787 bfd_set_error (bfd_error_nonrepresentable_section);
4788 return false;
4791 /* The linker script always combines .gptab.data and
4792 .gptab.sdata into .gptab.sdata, and likewise for
4793 .gptab.bss and .gptab.sbss. It is possible that there is
4794 no .sdata or .sbss section in the output file, in which
4795 case we must change the name of the output section. */
4796 subname = o->name + sizeof ".gptab" - 1;
4797 if (bfd_get_section_by_name (abfd, subname) == NULL)
4799 if (o == gptab_data_sec)
4800 o->name = ".gptab.data";
4801 else
4802 o->name = ".gptab.bss";
4803 subname = o->name + sizeof ".gptab" - 1;
4804 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
4807 /* Set up the first entry. */
4808 c = 1;
4809 tab = (Elf32_gptab *) bfd_malloc (c * sizeof (Elf32_gptab));
4810 if (tab == NULL)
4811 return false;
4812 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
4813 tab[0].gt_header.gt_unused = 0;
4815 /* Combine the input sections. */
4816 for (p = o->link_order_head;
4817 p != (struct bfd_link_order *) NULL;
4818 p = p->next)
4820 asection *input_section;
4821 bfd *input_bfd;
4822 bfd_size_type size;
4823 unsigned long last;
4824 bfd_size_type gpentry;
4826 if (p->type != bfd_indirect_link_order)
4828 if (p->type == bfd_fill_link_order)
4829 continue;
4830 abort ();
4833 input_section = p->u.indirect.section;
4834 input_bfd = input_section->owner;
4836 /* Combine the gptab entries for this input section one
4837 by one. We know that the input gptab entries are
4838 sorted by ascending -G value. */
4839 size = bfd_section_size (input_bfd, input_section);
4840 last = 0;
4841 for (gpentry = sizeof (Elf32_External_gptab);
4842 gpentry < size;
4843 gpentry += sizeof (Elf32_External_gptab))
4845 Elf32_External_gptab ext_gptab;
4846 Elf32_gptab int_gptab;
4847 unsigned long val;
4848 unsigned long add;
4849 boolean exact;
4850 unsigned int look;
4852 if (! (bfd_get_section_contents
4853 (input_bfd, input_section, (PTR) &ext_gptab,
4854 gpentry, sizeof (Elf32_External_gptab))))
4856 free (tab);
4857 return false;
4860 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
4861 &int_gptab);
4862 val = int_gptab.gt_entry.gt_g_value;
4863 add = int_gptab.gt_entry.gt_bytes - last;
4865 exact = false;
4866 for (look = 1; look < c; look++)
4868 if (tab[look].gt_entry.gt_g_value >= val)
4869 tab[look].gt_entry.gt_bytes += add;
4871 if (tab[look].gt_entry.gt_g_value == val)
4872 exact = true;
4875 if (! exact)
4877 Elf32_gptab *new_tab;
4878 unsigned int max;
4880 /* We need a new table entry. */
4881 new_tab = ((Elf32_gptab *)
4882 bfd_realloc ((PTR) tab,
4883 (c + 1) * sizeof (Elf32_gptab)));
4884 if (new_tab == NULL)
4886 free (tab);
4887 return false;
4889 tab = new_tab;
4890 tab[c].gt_entry.gt_g_value = val;
4891 tab[c].gt_entry.gt_bytes = add;
4893 /* Merge in the size for the next smallest -G
4894 value, since that will be implied by this new
4895 value. */
4896 max = 0;
4897 for (look = 1; look < c; look++)
4899 if (tab[look].gt_entry.gt_g_value < val
4900 && (max == 0
4901 || (tab[look].gt_entry.gt_g_value
4902 > tab[max].gt_entry.gt_g_value)))
4903 max = look;
4905 if (max != 0)
4906 tab[c].gt_entry.gt_bytes +=
4907 tab[max].gt_entry.gt_bytes;
4909 ++c;
4912 last = int_gptab.gt_entry.gt_bytes;
4915 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4916 elf_link_input_bfd ignores this section. */
4917 input_section->flags &=~ SEC_HAS_CONTENTS;
4920 /* The table must be sorted by -G value. */
4921 if (c > 2)
4922 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
4924 /* Swap out the table. */
4925 ext_tab = ((Elf32_External_gptab *)
4926 bfd_alloc (abfd, c * sizeof (Elf32_External_gptab)));
4927 if (ext_tab == NULL)
4929 free (tab);
4930 return false;
4933 for (i = 0; i < c; i++)
4934 bfd_mips_elf32_swap_gptab_out (abfd, tab + i, ext_tab + i);
4935 free (tab);
4937 o->_raw_size = c * sizeof (Elf32_External_gptab);
4938 o->contents = (bfd_byte *) ext_tab;
4940 /* Skip this section later on (I don't think this currently
4941 matters, but someday it might). */
4942 o->link_order_head = (struct bfd_link_order *) NULL;
4946 /* Invoke the regular ELF backend linker to do all the work. */
4947 if (ABI_64_P (abfd))
4949 #ifdef BFD64
4950 if (!bfd_elf64_bfd_final_link (abfd, info))
4951 return false;
4952 #else
4953 abort ();
4954 return false;
4955 #endif /* BFD64 */
4957 else if (!bfd_elf32_bfd_final_link (abfd, info))
4958 return false;
4960 /* Now write out the computed sections. */
4962 if (reginfo_sec != (asection *) NULL)
4964 Elf32_External_RegInfo ext;
4966 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
4967 if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext,
4968 (file_ptr) 0, sizeof ext))
4969 return false;
4972 if (mdebug_sec != (asection *) NULL)
4974 BFD_ASSERT (abfd->output_has_begun);
4975 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
4976 swap, info,
4977 mdebug_sec->filepos))
4978 return false;
4980 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
4983 if (gptab_data_sec != (asection *) NULL)
4985 if (! bfd_set_section_contents (abfd, gptab_data_sec,
4986 gptab_data_sec->contents,
4987 (file_ptr) 0,
4988 gptab_data_sec->_raw_size))
4989 return false;
4992 if (gptab_bss_sec != (asection *) NULL)
4994 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
4995 gptab_bss_sec->contents,
4996 (file_ptr) 0,
4997 gptab_bss_sec->_raw_size))
4998 return false;
5001 if (SGI_COMPAT (abfd))
5003 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
5004 if (rtproc_sec != NULL)
5006 if (! bfd_set_section_contents (abfd, rtproc_sec,
5007 rtproc_sec->contents,
5008 (file_ptr) 0,
5009 rtproc_sec->_raw_size))
5010 return false;
5014 return true;
5017 /* Handle a MIPS ELF HI16 reloc. */
5019 static void
5020 mips_elf_relocate_hi16 (input_bfd, relhi, rello, contents, addend)
5021 bfd *input_bfd;
5022 Elf_Internal_Rela *relhi;
5023 Elf_Internal_Rela *rello;
5024 bfd_byte *contents;
5025 bfd_vma addend;
5027 bfd_vma insn;
5028 bfd_vma addlo;
5030 insn = bfd_get_32 (input_bfd, contents + relhi->r_offset);
5032 addlo = bfd_get_32 (input_bfd, contents + rello->r_offset);
5033 addlo &= 0xffff;
5035 addend += ((insn & 0xffff) << 16) + addlo;
5037 if ((addlo & 0x8000) != 0)
5038 addend -= 0x10000;
5039 if ((addend & 0x8000) != 0)
5040 addend += 0x10000;
5042 bfd_put_32 (input_bfd,
5043 (insn & 0xffff0000) | ((addend >> 16) & 0xffff),
5044 contents + relhi->r_offset);
5047 /* Handle a MIPS ELF local GOT16 reloc. */
5049 static boolean
5050 mips_elf_relocate_got_local (output_bfd, input_bfd, sgot, relhi, rello,
5051 contents, addend)
5052 bfd *output_bfd;
5053 bfd *input_bfd;
5054 asection *sgot;
5055 Elf_Internal_Rela *relhi;
5056 Elf_Internal_Rela *rello;
5057 bfd_byte *contents;
5058 bfd_vma addend;
5060 unsigned int assigned_gotno;
5061 unsigned int i;
5062 bfd_vma insn;
5063 bfd_vma addlo;
5064 bfd_vma address;
5065 bfd_vma hipage;
5066 bfd_byte *got_contents;
5067 struct mips_got_info *g;
5069 insn = bfd_get_32 (input_bfd, contents + relhi->r_offset);
5071 addlo = bfd_get_32 (input_bfd, contents + rello->r_offset);
5072 addlo &= 0xffff;
5074 addend += ((insn & 0xffff) << 16) + addlo;
5076 if ((addlo & 0x8000) != 0)
5077 addend -= 0x10000;
5078 if ((addend & 0x8000) != 0)
5079 addend += 0x10000;
5081 /* Get a got entry representing requested hipage. */
5082 BFD_ASSERT (elf_section_data (sgot) != NULL);
5083 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5084 BFD_ASSERT (g != NULL);
5086 assigned_gotno = g->assigned_gotno;
5087 got_contents = sgot->contents;
5088 hipage = addend & 0xffff0000;
5090 for (i = MIPS_RESERVED_GOTNO; i < assigned_gotno; i++)
5092 address = bfd_get_32 (input_bfd, got_contents + i * 4);
5093 if (hipage == (address & 0xffff0000))
5094 break;
5097 if (i == assigned_gotno)
5099 if (assigned_gotno >= g->local_gotno)
5101 (*_bfd_error_handler)
5102 (_("more got entries are needed for hipage relocations"));
5103 bfd_set_error (bfd_error_bad_value);
5104 return false;
5107 bfd_put_32 (input_bfd, hipage, got_contents + assigned_gotno * 4);
5108 ++g->assigned_gotno;
5111 i = - ELF_MIPS_GP_OFFSET (output_bfd) + i * 4;
5112 bfd_put_32 (input_bfd, (insn & 0xffff0000) | (i & 0xffff),
5113 contents + relhi->r_offset);
5115 return true;
5118 /* Handle MIPS ELF CALL16 reloc and global GOT16 reloc. */
5120 static void
5121 mips_elf_relocate_global_got (input_bfd, rel, contents, offset)
5122 bfd *input_bfd;
5123 Elf_Internal_Rela *rel;
5124 bfd_byte *contents;
5125 bfd_vma offset;
5127 bfd_vma insn;
5129 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
5130 bfd_put_32 (input_bfd,
5131 (insn & 0xffff0000) | (offset & 0xffff),
5132 contents + rel->r_offset);
5135 /* Returns the GOT section for ABFD. */
5137 static asection *
5138 mips_elf_got_section (abfd)
5139 bfd *abfd;
5141 return bfd_get_section_by_name (abfd, ".got");
5144 /* Returns the GOT information associated with the link indicated by
5145 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5146 section. */
5148 static struct mips_got_info *
5149 mips_elf_got_info (abfd, sgotp)
5150 bfd *abfd;
5151 asection **sgotp;
5153 asection *sgot;
5154 struct mips_got_info *g;
5156 sgot = mips_elf_got_section (abfd);
5157 BFD_ASSERT (sgot != NULL);
5158 BFD_ASSERT (elf_section_data (sgot) != NULL);
5159 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
5160 BFD_ASSERT (g != NULL);
5162 if (sgotp)
5163 *sgotp = sgot;
5164 return g;
5167 /* Return whether a relocation is against a local symbol. */
5169 static boolean
5170 mips_elf_local_relocation_p (input_bfd, relocation, local_sections)
5171 bfd *input_bfd;
5172 const Elf_Internal_Rela *relocation;
5173 asection **local_sections;
5175 unsigned long r_symndx;
5176 Elf_Internal_Shdr *symtab_hdr;
5178 r_symndx = ELF32_R_SYM (relocation->r_info);
5179 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5180 if (! elf_bad_symtab (input_bfd))
5181 return r_symndx < symtab_hdr->sh_info;
5182 else
5184 /* The symbol table does not follow the rule that local symbols
5185 must come before globals. */
5186 return local_sections[r_symndx] != NULL;
5190 /* Sign-extend VALUE, which has the indicated number of BITS. */
5192 static bfd_vma
5193 mips_elf_sign_extend (value, bits)
5194 bfd_vma value;
5195 int bits;
5197 if (value & (1 << (bits - 1)))
5198 /* VALUE is negative. */
5199 value |= ((bfd_vma) - 1) << bits;
5201 return value;
5204 /* Return non-zero if the indicated VALUE has overflowed the maximum
5205 range expressable by a signed number with the indicated number of
5206 BITS. */
5208 static boolean
5209 mips_elf_overflow_p (value, bits)
5210 bfd_vma value;
5211 int bits;
5213 bfd_signed_vma svalue = (bfd_signed_vma) value;
5215 if (svalue > (1 << (bits - 1)) - 1)
5216 /* The value is too big. */
5217 return true;
5218 else if (svalue < -(1 << (bits - 1)))
5219 /* The value is too small. */
5220 return true;
5222 /* All is well. */
5223 return false;
5226 /* Calculate the %high function. */
5228 static bfd_vma
5229 mips_elf_high (value)
5230 bfd_vma value;
5232 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5235 /* Calculate the %higher function. */
5237 static bfd_vma
5238 mips_elf_higher (value)
5239 bfd_vma value ATTRIBUTE_UNUSED;
5241 #ifdef BFD64
5242 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5243 #else
5244 abort ();
5245 return (bfd_vma) -1;
5246 #endif
5249 /* Calculate the %highest function. */
5251 static bfd_vma
5252 mips_elf_highest (value)
5253 bfd_vma value ATTRIBUTE_UNUSED;
5255 #ifdef BFD64
5256 return ((value + (bfd_vma) 0x800080008000) > 48) & 0xffff;
5257 #else
5258 abort ();
5259 return (bfd_vma) -1;
5260 #endif
5263 /* Returns the GOT index for the global symbol indicated by H. */
5265 static bfd_vma
5266 mips_elf_global_got_index (abfd, h)
5267 bfd *abfd;
5268 struct elf_link_hash_entry *h;
5270 bfd_vma index;
5271 asection *sgot;
5272 struct mips_got_info *g;
5274 g = mips_elf_got_info (abfd, &sgot);
5276 /* Once we determine the global GOT entry with the lowest dynamic
5277 symbol table index, we must put all dynamic symbols with greater
5278 indices into the GOT. That makes it easy to calculate the GOT
5279 offset. */
5280 BFD_ASSERT (h->dynindx >= g->global_gotsym->dynindx);
5281 index = ((h->dynindx - g->global_gotsym->dynindx + g->local_gotno)
5282 * MIPS_ELF_GOT_SIZE (abfd));
5283 BFD_ASSERT (index < sgot->_raw_size);
5285 return index;
5288 /* Returns the offset for the entry at the INDEXth position
5289 in the GOT. */
5291 static bfd_vma
5292 mips_elf_got_offset_from_index (dynobj, output_bfd, index)
5293 bfd *dynobj;
5294 bfd *output_bfd;
5295 bfd_vma index;
5297 asection *sgot;
5298 bfd_vma gp;
5300 sgot = mips_elf_got_section (dynobj);
5301 gp = _bfd_get_gp_value (output_bfd);
5302 return (sgot->output_section->vma + sgot->output_offset + index -
5303 gp);
5306 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5307 symbol table index lower than any we've seen to date, record it for
5308 posterity. */
5310 static boolean
5311 mips_elf_record_global_got_symbol (h, info, g)
5312 struct elf_link_hash_entry *h;
5313 struct bfd_link_info *info;
5314 struct mips_got_info *g ATTRIBUTE_UNUSED;
5316 /* A global symbol in the GOT must also be in the dynamic symbol
5317 table. */
5318 if (h->dynindx == -1
5319 && !bfd_elf32_link_record_dynamic_symbol (info, h))
5320 return false;
5322 /* If we've already marked this entry as need GOT space, we don't
5323 need to do it again. */
5324 if (h->got.offset != (bfd_vma) - 1)
5325 return true;
5327 /* By setting this to a value other than -1, we are indicating that
5328 there needs to be a GOT entry for H. */
5329 h->got.offset = 0;
5331 return true;
5334 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5335 the dynamic symbols. */
5337 struct mips_elf_hash_sort_data
5339 /* The symbol in the global GOT with the lowest dynamic symbol table
5340 index. */
5341 struct elf_link_hash_entry *low;
5342 /* The least dynamic symbol table index corresponding to a symbol
5343 with a GOT entry. */
5344 long min_got_dynindx;
5345 /* The greatest dynamic symbol table index not corresponding to a
5346 symbol without a GOT entry. */
5347 long max_non_got_dynindx;
5350 /* If H needs a GOT entry, assign it the highest available dynamic
5351 index. Otherwise, assign it the lowest available dynamic
5352 index. */
5354 static boolean
5355 mips_elf_sort_hash_table_f (h, data)
5356 struct mips_elf_link_hash_entry *h;
5357 PTR data;
5359 struct mips_elf_hash_sort_data *hsd
5360 = (struct mips_elf_hash_sort_data *) data;
5362 /* Symbols without dynamic symbol table entries aren't interesting
5363 at all. */
5364 if (h->root.dynindx == -1)
5365 return true;
5367 if (h->root.got.offset != 0)
5368 h->root.dynindx = hsd->max_non_got_dynindx++;
5369 else
5371 h->root.dynindx = --hsd->min_got_dynindx;
5372 hsd->low = (struct elf_link_hash_entry *) h;
5375 return true;
5378 /* Sort the dynamic symbol table so that symbols that need GOT entries
5379 appear towards the end. This reduces the amount of GOT space
5380 required. MAX_LOCAL is used to set the number of local symbols
5381 known to be in the dynamic symbol table. During
5382 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5383 section symbols are added and the count is higher. */
5385 static boolean
5386 mips_elf_sort_hash_table (info, max_local)
5387 struct bfd_link_info *info;
5388 unsigned long max_local;
5390 struct mips_elf_hash_sort_data hsd;
5391 struct mips_got_info *g;
5392 bfd *dynobj;
5394 dynobj = elf_hash_table (info)->dynobj;
5396 hsd.low = NULL;
5397 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount;
5398 hsd.max_non_got_dynindx = max_local;
5399 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
5400 elf_hash_table (info)),
5401 mips_elf_sort_hash_table_f,
5402 &hsd);
5404 /* There shoud have been enough room in the symbol table to
5405 accomodate both the GOT and non-GOT symbols. */
5406 BFD_ASSERT (hsd.min_got_dynindx == hsd.max_non_got_dynindx);
5408 /* Now we know which dynamic symbol has the lowest dynamic symbol
5409 table index in the GOT. */
5410 g = mips_elf_got_info (dynobj, NULL);
5411 g->global_gotsym = hsd.low;
5413 return true;
5416 /* Create a local GOT entry for VALUE. Return the index of the entry,
5417 or -1 if it could not be created. */
5419 static bfd_vma
5420 mips_elf_create_local_got_entry (abfd, g, sgot, value)
5421 bfd *abfd;
5422 struct mips_got_info *g;
5423 asection *sgot;
5424 bfd_vma value;
5426 if (g->assigned_gotno >= g->local_gotno)
5428 /* We didn't allocate enough space in the GOT. */
5429 (*_bfd_error_handler)
5430 (_("not enough GOT space for local GOT entries"));
5431 bfd_set_error (bfd_error_bad_value);
5432 return (bfd_vma) -1;
5435 MIPS_ELF_PUT_WORD (abfd, value,
5436 (sgot->contents
5437 + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno));
5438 return MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
5441 /* Returns the GOT offset at which the indicated address can be found.
5442 If there is not yet a GOT entry for this value, create one. Returns
5443 -1 if no satisfactory GOT offset can be found. */
5445 static bfd_vma
5446 mips_elf_local_got_index (abfd, info, value)
5447 bfd *abfd;
5448 struct bfd_link_info *info;
5449 bfd_vma value;
5451 asection *sgot;
5452 struct mips_got_info *g;
5453 bfd_byte *entry;
5455 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5457 /* Look to see if we already have an appropriate entry. */
5458 for (entry = (sgot->contents
5459 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5460 entry != sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5461 entry += MIPS_ELF_GOT_SIZE (abfd))
5463 bfd_vma address = MIPS_ELF_GET_WORD (abfd, entry);
5464 if (address == value)
5465 return entry - sgot->contents;
5468 return mips_elf_create_local_got_entry (abfd, g, sgot, value);
5471 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5472 are supposed to be placed at small offsets in the GOT, i.e.,
5473 within 32KB of GP. Return the index into the GOT for this page,
5474 and store the offset from this entry to the desired address in
5475 OFFSETP, if it is non-NULL. */
5477 static bfd_vma
5478 mips_elf_got_page (abfd, info, value, offsetp)
5479 bfd *abfd;
5480 struct bfd_link_info *info;
5481 bfd_vma value;
5482 bfd_vma *offsetp;
5484 asection *sgot;
5485 struct mips_got_info *g;
5486 bfd_byte *entry;
5487 bfd_byte *last_entry;
5488 bfd_vma index;
5489 bfd_vma address;
5491 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5493 /* Look to see if we aleady have an appropriate entry. */
5494 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5495 for (entry = (sgot->contents
5496 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5497 entry != last_entry;
5498 entry += MIPS_ELF_GOT_SIZE (abfd))
5500 address = MIPS_ELF_GET_WORD (abfd, entry);
5502 if (!mips_elf_overflow_p (value - address, 16))
5504 /* This entry will serve as the page pointer. We can add a
5505 16-bit number to it to get the actual address. */
5506 index = entry - sgot->contents;
5507 break;
5511 /* If we didn't have an appropriate entry, we create one now. */
5512 if (entry == last_entry)
5513 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5515 if (offsetp)
5517 address = MIPS_ELF_GET_WORD (abfd, entry);
5518 *offsetp = value - address;
5521 return index;
5524 /* Find a GOT entry whose higher-order 16 bits are the same as those
5525 for value. Return the index into the GOT for this entry. */
5527 static bfd_vma
5528 mips_elf_got16_entry (abfd, info, value)
5529 bfd *abfd;
5530 struct bfd_link_info *info;
5531 bfd_vma value;
5533 asection *sgot;
5534 struct mips_got_info *g;
5535 bfd_byte *entry;
5536 bfd_byte *last_entry;
5537 bfd_vma index;
5538 bfd_vma address;
5540 value &= 0xffff0000;
5541 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
5543 /* Look to see if we already have an appropriate entry. */
5544 last_entry = sgot->contents + MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno;
5545 for (entry = (sgot->contents
5546 + MIPS_ELF_GOT_SIZE (abfd) * MIPS_RESERVED_GOTNO);
5547 entry != last_entry;
5548 entry += MIPS_ELF_GOT_SIZE (abfd))
5550 address = MIPS_ELF_GET_WORD (abfd, entry);
5551 if ((address & 0xffff0000) == value)
5553 /* This entry has the right high-order 16 bits. */
5554 index = MIPS_ELF_GOT_SIZE (abfd) * (entry - sgot->contents);
5555 break;
5559 /* If we didn't have an appropriate entry, we create one now. */
5560 if (entry == last_entry)
5561 index = mips_elf_create_local_got_entry (abfd, g, sgot, value);
5563 return index;
5566 /* Sets *ADDENDP to the addend for the first R_MIPS_LO16 relocation
5567 found, beginning with RELOCATION. RELEND is one-past-the-end of
5568 the relocation table. */
5570 static boolean
5571 mips_elf_next_lo16_addend (relocation, relend, addendp)
5572 const Elf_Internal_Rela *relocation;
5573 const Elf_Internal_Rela *relend;
5574 bfd_vma *addendp;
5576 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5577 immediately following. However, for the IRIX6 ABI, the next
5578 relocation may be a composed relocation consisting of several
5579 relocations for the same address. In that case, the R_MIPS_LO16
5580 relocation may occur as one of these. We permit a similar
5581 extension in general, as that is useful for GCC. */
5582 while (relocation < relend)
5584 if (ELF32_R_TYPE (relocation->r_info) == R_MIPS_LO16)
5586 *addendp = relocation->r_addend;
5587 return true;
5590 ++relocation;
5593 /* We didn't find it. */
5594 bfd_set_error (bfd_error_bad_value);
5595 return false;
5598 /* Create a rel.dyn relocation for the dynamic linker to resolve. The
5599 relocatin is against the symbol with the dynamic symbol table index
5600 DYNINDX. REL is the original relocation, which is now being made
5601 dynamic. */
5603 static unsigned int
5604 mips_elf_create_dynamic_relocation (output_bfd, info, rel, dynindx,
5605 addend, input_section)
5606 bfd *output_bfd;
5607 struct bfd_link_info *info;
5608 const Elf_Internal_Rela *rel;
5609 long dynindx;
5610 bfd_vma addend;
5611 asection *input_section;
5613 Elf_Internal_Rel outrel;
5614 boolean skip;
5615 asection *sreloc;
5616 bfd *dynobj;
5617 int r_type;
5619 r_type = ELF32_R_TYPE (rel->r_info);
5620 dynobj = elf_hash_table (info)->dynobj;
5621 sreloc
5622 = bfd_get_section_by_name (dynobj,
5623 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd));
5624 BFD_ASSERT (sreloc != NULL);
5626 skip = false;
5628 /* The symbol for the relocation is the same as it was for the
5629 original relocation. */
5630 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_REL32);
5632 /* The offset for the dynamic relocation is the same as for the
5633 original relocation, adjusted by the offset at which the original
5634 section is output. */
5635 if (elf_section_data (input_section)->stab_info == NULL)
5636 outrel.r_offset = rel->r_offset;
5637 else
5639 bfd_vma off;
5641 off = (_bfd_stab_section_offset
5642 (output_bfd, &elf_hash_table (info)->stab_info,
5643 input_section,
5644 &elf_section_data (input_section)->stab_info,
5645 rel->r_offset));
5646 if (off == (bfd_vma) -1)
5647 skip = true;
5648 outrel.r_offset = off;
5650 outrel.r_offset += (input_section->output_section->vma
5651 + input_section->output_offset);
5653 /* If we've decided to skip this relocation, just output an emtpy
5654 record. */
5655 if (skip)
5656 memset (&outrel, 0, sizeof (outrel));
5658 if (ABI_64_P (output_bfd))
5660 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5661 (output_bfd, &outrel,
5662 (sreloc->contents
5663 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5665 else
5666 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
5667 (((Elf32_External_Rel *)
5668 sreloc->contents)
5669 + sreloc->reloc_count));
5670 ++sreloc->reloc_count;
5672 /* Make sure the output section is writable. The dynamic linker
5673 will be writing to it. */
5674 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5675 |= SHF_WRITE;
5677 /* On IRIX5, make an entry of compact relocation info. */
5678 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
5680 asection* scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5681 bfd_byte *cr;
5683 if (scpt)
5685 Elf32_crinfo cptrel;
5687 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5688 cptrel.vaddr = (rel->r_offset
5689 + input_section->output_section->vma
5690 + input_section->output_offset);
5691 if (r_type == R_MIPS_REL32)
5692 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5693 else
5694 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5695 mips_elf_set_cr_dist2to (cptrel, 0);
5696 cptrel.konst = addend;
5698 cr = (scpt->contents
5699 + sizeof (Elf32_External_compact_rel));
5700 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5701 ((Elf32_External_crinfo *) cr
5702 + scpt->reloc_count));
5703 ++scpt->reloc_count;
5707 return sreloc->reloc_count - 1;
5710 /* Calculate the value produced by the RELOCATION (which comes from
5711 the INPUT_BFD). The ADDEND is the addend to use for this
5712 RELOCATION; RELOCATION->R_ADDEND is ignored.
5714 The result of the relocation calculation is stored in VALUEP.
5715 REQUIRE_JALXP indicates whether or not the opcode used with this
5716 relocation must be JALX.
5718 This function returns bfd_reloc_continue if the caller need take no
5719 further action regarding this relocation, bfd_reloc_notsupported if
5720 something goes dramatically wrong, bfd_reloc_overflow if an
5721 overflow occurs, and bfd_reloc_ok to indicate success. */
5723 static bfd_reloc_status_type
5724 mips_elf_calculate_relocation (abfd,
5725 input_bfd,
5726 input_section,
5727 info,
5728 relocation,
5729 addend,
5730 howto,
5731 local_syms,
5732 local_sections,
5733 valuep,
5734 namep,
5735 require_jalxp)
5736 bfd *abfd;
5737 bfd *input_bfd;
5738 asection *input_section;
5739 struct bfd_link_info *info;
5740 const Elf_Internal_Rela *relocation;
5741 bfd_vma addend;
5742 reloc_howto_type *howto;
5743 Elf_Internal_Sym *local_syms;
5744 asection **local_sections;
5745 bfd_vma *valuep;
5746 const char **namep;
5747 boolean *require_jalxp;
5749 /* The eventual value we will return. */
5750 bfd_vma value;
5751 /* The address of the symbol against which the relocation is
5752 occurring. */
5753 bfd_vma symbol = 0;
5754 /* The final GP value to be used for the relocatable, executable, or
5755 shared object file being produced. */
5756 bfd_vma gp = (bfd_vma) - 1;
5757 /* The place (section offset or address) of the storage unit being
5758 relocated. */
5759 bfd_vma p;
5760 /* The value of GP used to create the relocatable object. */
5761 bfd_vma gp0 = (bfd_vma) - 1;
5762 /* The offset into the global offset table at which the address of
5763 the relocation entry symbol, adjusted by the addend, resides
5764 during execution. */
5765 bfd_vma g = (bfd_vma) - 1;
5766 /* The section in which the symbol referenced by the relocation is
5767 located. */
5768 asection *sec = NULL;
5769 struct mips_elf_link_hash_entry* h = NULL;
5770 /* True if the symbol referred to by this relocation is a local
5771 symbol. */
5772 boolean local_p;
5773 /* True if the symbol referred to by this relocation is "_gp_disp". */
5774 boolean gp_disp_p = false;
5775 Elf_Internal_Shdr *symtab_hdr;
5776 size_t extsymoff;
5777 unsigned long r_symndx;
5778 int r_type;
5779 /* True if overflow occurred during the calculation of the
5780 relocation value. */
5781 boolean overflowed_p;
5782 /* True if this relocation refers to a MIPS16 function. */
5783 boolean target_is_16_bit_code_p = false;
5785 /* Parse the relocation. */
5786 r_symndx = ELF32_R_SYM (relocation->r_info);
5787 r_type = ELF32_R_TYPE (relocation->r_info);
5788 p = (input_section->output_section->vma
5789 + input_section->output_offset
5790 + relocation->r_offset);
5792 /* Assume that there will be no overflow. */
5793 overflowed_p = false;
5795 /* Figure out whether or not the symbol is local, and get the offset
5796 used in the array of hash table entries. */
5797 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5798 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5799 local_sections);
5800 if (! elf_bad_symtab (input_bfd))
5801 extsymoff = symtab_hdr->sh_info;
5802 else
5804 /* The symbol table does not follow the rule that local symbols
5805 must come before globals. */
5806 extsymoff = 0;
5809 /* Figure out the value of the symbol. */
5810 if (local_p)
5812 Elf_Internal_Sym *sym;
5814 sym = local_syms + r_symndx;
5815 sec = local_sections[r_symndx];
5817 symbol = sec->output_section->vma + sec->output_offset;
5818 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5819 symbol += sym->st_value;
5821 /* MIPS16 text labels should be treated as odd. */
5822 if (sym->st_other == STO_MIPS16)
5823 ++symbol;
5825 /* Record the name of this symbol, for our caller. */
5826 *namep = bfd_elf_string_from_elf_section (input_bfd,
5827 symtab_hdr->sh_link,
5828 sym->st_name);
5829 if (*namep == '\0')
5830 *namep = bfd_section_name (input_bfd, sec);
5832 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
5834 else
5836 /* For global symbols we look up the symbol in the hash-table. */
5837 h = ((struct mips_elf_link_hash_entry *)
5838 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5839 /* Find the real hash-table entry for this symbol. */
5840 while (h->root.type == bfd_link_hash_indirect
5841 || h->root.type == bfd_link_hash_warning)
5842 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5844 /* Record the name of this symbol, for our caller. */
5845 *namep = h->root.root.root.string;
5847 /* See if this is the special _gp_disp symbol. Note that such a
5848 symbol must always be a global symbol. */
5849 if (strcmp (h->root.root.root.string, "_gp_disp") == 0)
5851 /* Relocations against _gp_disp are permitted only with
5852 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5853 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
5854 return bfd_reloc_notsupported;
5856 gp_disp_p = true;
5858 /* If this symbol is defined, calculate its address. Note that
5859 _gp_disp is a magic symbol, always implicitly defined by the
5860 linker, so it's inappropriate to check to see whether or not
5861 its defined. */
5862 else if ((h->root.root.type == bfd_link_hash_defined
5863 || h->root.root.type == bfd_link_hash_defweak)
5864 && h->root.root.u.def.section)
5866 sec = h->root.root.u.def.section;
5867 if (sec->output_section)
5868 symbol = (h->root.root.u.def.value
5869 + sec->output_section->vma
5870 + sec->output_offset);
5871 else
5872 symbol = h->root.root.u.def.value;
5874 else if (h->root.root.type == bfd_link_hash_undefweak)
5875 /* We allow relocations against undefined weak symbols, giving
5876 it the value zero, so that you can undefined weak functions
5877 and check to see if they exist by looking at their
5878 addresses. */
5879 symbol = 0;
5880 else if (info->shared && !info->symbolic && !info->no_undefined)
5881 relocation = 0;
5882 else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0)
5884 /* If this is a dynamic link, we should have created a
5885 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5886 Otherwise, we should define the symbol with a value of 0.
5887 FIXME: It should probably get into the symbol table
5888 somehow as well. */
5889 BFD_ASSERT (! info->shared);
5890 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5891 relocation = 0;
5893 else
5895 (*info->callbacks->undefined_symbol)
5896 (info, h->root.root.root.string, input_bfd,
5897 input_section, relocation->r_offset);
5898 return bfd_reloc_undefined;
5901 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
5904 /* If this is a 32-bit call to a 16-bit function with a stub, we
5905 need to redirect the call to the stub, unless we're already *in*
5906 a stub. */
5907 if (r_type != R_MIPS16_26 && !info->relocateable
5908 && ((h != NULL && h->fn_stub != NULL)
5909 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
5910 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5911 && !mips_elf_stub_section_p (input_bfd, input_section))
5913 /* This is a 32-bit call to a 16-bit function. We should
5914 have already noticed that we were going to need the
5915 stub. */
5916 if (local_p)
5917 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5918 else
5920 BFD_ASSERT (h->need_fn_stub);
5921 sec = h->fn_stub;
5924 symbol = sec->output_section->vma + sec->output_offset;
5926 /* If this is a 16-bit call to a 32-bit function with a stub, we
5927 need to redirect the call to the stub. */
5928 else if (r_type == R_MIPS16_26 && !info->relocateable
5929 && h != NULL
5930 && (h->call_stub != NULL || h->call_fp_stub != NULL)
5931 && !target_is_16_bit_code_p)
5933 /* If both call_stub and call_fp_stub are defined, we can figure
5934 out which one to use by seeing which one appears in the input
5935 file. */
5936 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5938 asection *o;
5940 sec = NULL;
5941 for (o = input_bfd->sections; o != NULL; o = o->next)
5943 if (strncmp (bfd_get_section_name (input_bfd, o),
5944 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5946 sec = h->call_fp_stub;
5947 break;
5950 if (sec == NULL)
5951 sec = h->call_stub;
5953 else if (h->call_stub != NULL)
5954 sec = h->call_stub;
5955 else
5956 sec = h->call_fp_stub;
5958 BFD_ASSERT (sec->_raw_size > 0);
5959 symbol = sec->output_section->vma + sec->output_offset;
5962 /* Calls from 16-bit code to 32-bit code and vice versa require the
5963 special jalx instruction. */
5964 *require_jalxp = (!info->relocateable
5965 && ((r_type == R_MIPS16_26) != target_is_16_bit_code_p));
5967 /* If we haven't already determined the GOT offset, or the GP value,
5968 and we're going to need it, get it now. */
5969 switch (r_type)
5971 case R_MIPS_CALL16:
5972 case R_MIPS_GOT16:
5973 case R_MIPS_GOT_DISP:
5974 case R_MIPS_GOT_HI16:
5975 case R_MIPS_CALL_HI16:
5976 case R_MIPS_GOT_LO16:
5977 case R_MIPS_CALL_LO16:
5978 /* Find the index into the GOT where this value is located. */
5979 if (h)
5981 BFD_ASSERT (addend == 0);
5982 g = mips_elf_global_got_index
5983 (elf_hash_table (info)->dynobj,
5984 (struct elf_link_hash_entry*) h);
5986 else
5988 g = mips_elf_local_got_index (abfd, info, symbol + addend);
5989 if (g == (bfd_vma) -1)
5990 return false;
5993 /* Convert GOT indices to actual offsets. */
5994 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
5995 abfd, g);
5996 break;
5998 case R_MIPS_HI16:
5999 case R_MIPS_LO16:
6000 case R_MIPS_GPREL16:
6001 case R_MIPS_GPREL32:
6002 gp0 = _bfd_get_gp_value (input_bfd);
6003 gp = _bfd_get_gp_value (abfd);
6004 break;
6006 default:
6007 break;
6010 /* Figure out what kind of relocation is being performed. */
6011 switch (r_type)
6013 case R_MIPS_NONE:
6014 return bfd_reloc_continue;
6016 case R_MIPS_16:
6017 value = symbol + mips_elf_sign_extend (addend, 16);
6018 overflowed_p = mips_elf_overflow_p (value, 16);
6019 break;
6021 case R_MIPS_32:
6022 case R_MIPS_REL32:
6023 case R_MIPS_64:
6024 /* If we're creating a shared library, or this relocation is
6025 against a symbol in a shared library, then we can't know
6026 where the symbol will end up. So, we create a relocation
6027 record in the output, and leave the job up to the dynamic
6028 linker. */
6029 if (info->shared || !sec->output_section)
6031 unsigned int reloc_index;
6033 BFD_ASSERT (h != NULL);
6034 reloc_index
6035 = mips_elf_create_dynamic_relocation (abfd,
6036 info,
6037 relocation,
6038 h->root.dynindx,
6039 addend,
6040 input_section);
6041 if (h->min_dyn_reloc_index == 0
6042 || reloc_index < h->min_dyn_reloc_index)
6043 h->min_dyn_reloc_index = reloc_index;
6044 value = symbol + addend;
6046 else
6048 if (r_type != R_MIPS_REL32)
6049 value = symbol + addend;
6050 else
6051 value = addend;
6053 value &= howto->dst_mask;
6054 break;
6056 case R_MIPS16_26:
6057 /* The calculation for R_MIPS_26 is just the same as for an
6058 R_MIPS_26. It's only the storage of the relocated field into
6059 the output file that's different. That's handled in
6060 mips_elf_perform_relocation. So, we just fall through to the
6061 R_MIPS_26 case here. */
6062 case R_MIPS_26:
6063 if (local_p)
6064 value = (((addend << 2) | (p & 0xf0000000)) + symbol) >> 2;
6065 else
6066 value = (mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2;
6067 value &= howto->dst_mask;
6068 break;
6070 case R_MIPS_HI16:
6071 if (!gp_disp_p)
6073 value = mips_elf_high (addend + symbol);
6074 value &= howto->dst_mask;
6076 else
6078 value = mips_elf_high (addend + gp - p);
6079 overflowed_p = mips_elf_overflow_p (value, 16);
6081 break;
6083 case R_MIPS_LO16:
6084 if (!gp_disp_p)
6085 value = (symbol + addend) & howto->dst_mask;
6086 else
6088 value = addend + gp - p + 4;
6089 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6090 for overflow. But, on, say, Irix 5, relocations against
6091 _gp_disp are normally generated from the .cpload
6092 pseudo-op. It generates code that normally looks like
6093 this:
6095 lui $gp,%hi(_gp_disp)
6096 addiu $gp,$gp,%lo(_gp_disp)
6097 addu $gp,$gp,$t9
6099 Here $t9 holds the address of the function being called,
6100 as required by the MIPS ELF ABI. The R_MIPS_LO16
6101 relocation can easily overflow in this situation, but the
6102 R_MIPS_HI16 relocation will handle the overflow.
6103 Therefore, we consider this a bug in the MIPS ABI, and do
6104 not check for overflow here. */
6106 break;
6108 case R_MIPS_LITERAL:
6109 /* Because we don't merge literal sections, we can handle this
6110 just like R_MIPS_GPREL16. In the long run, we should merge
6111 shared literals, and then we will need to additional work
6112 here. */
6114 /* Fall through. */
6116 case R_MIPS16_GPREL:
6117 /* The R_MIPS16_GPREL performs the same calculation as
6118 R_MIPS_GPREL16, but stores the relocated bits in a different
6119 order. We don't need to do anything special here; the
6120 differences are handled in mips_elf_perform_relocation. */
6121 case R_MIPS_GPREL16:
6122 if (local_p)
6123 value = mips_elf_sign_extend (addend, 16) + symbol + gp0 - gp;
6124 else
6125 value = mips_elf_sign_extend (addend, 16) + symbol - gp;
6126 overflowed_p = mips_elf_overflow_p (value, 16);
6127 break;
6129 case R_MIPS_GOT16:
6130 if (local_p)
6132 value = mips_elf_got16_entry (abfd, info, symbol + addend);
6133 if (value == (bfd_vma) -1)
6134 return false;
6135 value
6136 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6137 abfd,
6138 value);
6139 overflowed_p = mips_elf_overflow_p (value, 16);
6140 break;
6143 /* Fall through. */
6145 case R_MIPS_CALL16:
6146 case R_MIPS_GOT_DISP:
6147 value = g;
6148 overflowed_p = mips_elf_overflow_p (value, 16);
6149 break;
6151 case R_MIPS_GPREL32:
6152 value = (addend + symbol + gp0 - gp) & howto->dst_mask;
6153 break;
6155 case R_MIPS_PC16:
6156 value = mips_elf_sign_extend (addend, 16) + symbol - p;
6157 overflowed_p = mips_elf_overflow_p (value, 16);
6158 break;
6160 case R_MIPS_GOT_HI16:
6161 case R_MIPS_CALL_HI16:
6162 /* We're allowed to handle these two relocations identically.
6163 The dynamic linker is allowed to handle the CALL relocations
6164 differently by creating a lazy evaluation stub. */
6165 value = g;
6166 value = mips_elf_high (value);
6167 value &= howto->dst_mask;
6168 break;
6170 case R_MIPS_GOT_LO16:
6171 case R_MIPS_CALL_LO16:
6172 value = g & howto->dst_mask;
6173 break;
6175 case R_MIPS_GOT_PAGE:
6176 value = mips_elf_got_page (abfd, info, symbol + addend, NULL);
6177 if (value == (bfd_vma) -1)
6178 return false;
6179 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
6180 abfd,
6181 value);
6182 overflowed_p = mips_elf_overflow_p (value, 16);
6183 break;
6185 case R_MIPS_GOT_OFST:
6186 mips_elf_got_page (abfd, info, symbol + addend, &value);
6187 overflowed_p = mips_elf_overflow_p (value, 16);
6188 break;
6190 case R_MIPS_SUB:
6191 value = symbol - addend;
6192 value &= howto->dst_mask;
6193 break;
6195 case R_MIPS_HIGHER:
6196 value = mips_elf_higher (addend + symbol);
6197 value &= howto->dst_mask;
6198 break;
6200 case R_MIPS_HIGHEST:
6201 value = mips_elf_highest (addend + symbol);
6202 value &= howto->dst_mask;
6203 break;
6205 case R_MIPS_SCN_DISP:
6206 value = symbol + addend - sec->output_offset;
6207 value &= howto->dst_mask;
6208 break;
6210 case R_MIPS_PJUMP:
6211 case R_MIPS_JALR:
6212 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6213 hint; we could improve performance by honoring that hint. */
6214 return bfd_reloc_continue;
6216 case R_MIPS_GNU_VTINHERIT:
6217 case R_MIPS_GNU_VTENTRY:
6218 /* We don't do anything with these at present. */
6219 return bfd_reloc_continue;
6221 default:
6222 /* An unrecognized relocation type. */
6223 return bfd_reloc_notsupported;
6226 /* Store the VALUE for our caller. */
6227 *valuep = value;
6228 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6231 /* Obtain the field relocated by RELOCATION. */
6233 static bfd_vma
6234 mips_elf_obtain_contents (howto, relocation, input_bfd, contents)
6235 reloc_howto_type *howto;
6236 const Elf_Internal_Rela *relocation;
6237 bfd *input_bfd;
6238 bfd_byte *contents;
6240 bfd_vma x;
6241 bfd_byte *location = contents + relocation->r_offset;
6243 /* Obtain the bytes. */
6244 x = bfd_get (8 * bfd_get_reloc_size (howto), input_bfd, location);
6246 if ((ELF32_R_TYPE (relocation->r_info) == R_MIPS16_26
6247 || ELF32_R_TYPE (relocation->r_info) == R_MIPS16_GPREL)
6248 && bfd_little_endian (input_bfd))
6249 /* The two 16-bit words will be reversed on a little-endian
6250 system. See mips_elf_perform_relocation for more details. */
6251 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6253 return x;
6256 /* It has been determined that the result of the RELOCATION is the
6257 VALUE. Use HOWTO to place VALUE into the output file at the
6258 appropriate position. The SECTION is the section to which the
6259 relocation applies. If REQUIRE_JALX is true, then the opcode used
6260 for the relocation must be either JAL or JALX, and it is
6261 unconditionally converted to JALX.
6263 Returns false if anything goes wrong. */
6265 static boolean
6266 mips_elf_perform_relocation (info, howto, relocation, value,
6267 input_bfd, input_section,
6268 contents, require_jalx)
6269 struct bfd_link_info *info;
6270 reloc_howto_type *howto;
6271 const Elf_Internal_Rela *relocation;
6272 bfd_vma value;
6273 bfd *input_bfd;
6274 asection *input_section;
6275 bfd_byte *contents;
6276 boolean require_jalx;
6278 bfd_vma x;
6279 bfd_byte *location;
6280 int r_type = ELF32_R_TYPE (relocation->r_info);
6282 /* Figure out where the relocation is occurring. */
6283 location = contents + relocation->r_offset;
6285 /* Obtain the current value. */
6286 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6288 /* Clear the field we are setting. */
6289 x &= ~howto->dst_mask;
6291 /* If this is the R_MIPS16_26 relocation, we must store the
6292 value in a funny way. */
6293 if (r_type == R_MIPS16_26)
6295 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6296 Most mips16 instructions are 16 bits, but these instructions
6297 are 32 bits.
6299 The format of these instructions is:
6301 +--------------+--------------------------------+
6302 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6303 +--------------+--------------------------------+
6304 ! Immediate 15:0 !
6305 +-----------------------------------------------+
6307 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6308 Note that the immediate value in the first word is swapped.
6310 When producing a relocateable object file, R_MIPS16_26 is
6311 handled mostly like R_MIPS_26. In particular, the addend is
6312 stored as a straight 26-bit value in a 32-bit instruction.
6313 (gas makes life simpler for itself by never adjusting a
6314 R_MIPS16_26 reloc to be against a section, so the addend is
6315 always zero). However, the 32 bit instruction is stored as 2
6316 16-bit values, rather than a single 32-bit value. In a
6317 big-endian file, the result is the same; in a little-endian
6318 file, the two 16-bit halves of the 32 bit value are swapped.
6319 This is so that a disassembler can recognize the jal
6320 instruction.
6322 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6323 instruction stored as two 16-bit values. The addend A is the
6324 contents of the targ26 field. The calculation is the same as
6325 R_MIPS_26. When storing the calculated value, reorder the
6326 immediate value as shown above, and don't forget to store the
6327 value as two 16-bit values.
6329 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6330 defined as
6332 big-endian:
6333 +--------+----------------------+
6334 | | |
6335 | | targ26-16 |
6336 |31 26|25 0|
6337 +--------+----------------------+
6339 little-endian:
6340 +----------+------+-------------+
6341 | | | |
6342 | sub1 | | sub2 |
6343 |0 9|10 15|16 31|
6344 +----------+--------------------+
6345 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6346 ((sub1 << 16) | sub2)).
6348 When producing a relocateable object file, the calculation is
6349 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6350 When producing a fully linked file, the calculation is
6351 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6352 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6354 if (!info->relocateable)
6355 /* Shuffle the bits according to the formula above. */
6356 value = (((value & 0x1f0000) << 5)
6357 | ((value & 0x3e00000) >> 5)
6358 | (value & 0xffff));
6361 else if (r_type == R_MIPS16_GPREL)
6363 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6364 mode. A typical instruction will have a format like this:
6366 +--------------+--------------------------------+
6367 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6368 +--------------+--------------------------------+
6369 ! Major ! rx ! ry ! Imm 4:0 !
6370 +--------------+--------------------------------+
6372 EXTEND is the five bit value 11110. Major is the instruction
6373 opcode.
6375 This is handled exactly like R_MIPS_GPREL16, except that the
6376 addend is retrieved and stored as shown in this diagram; that
6377 is, the Imm fields above replace the V-rel16 field.
6379 All we need to do here is shuffle the bits appropriately. As
6380 above, the two 16-bit halves must be swapped on a
6381 little-endian system. */
6382 value = (((value & 0x7e0) << 16)
6383 | ((value & 0xf800) << 5)
6384 | (value & 0x1f));
6387 /* Set the field. */
6388 x |= (value & howto->dst_mask);
6390 /* If required, turn JAL into JALX. */
6391 if (require_jalx)
6393 boolean ok;
6394 bfd_vma opcode = x >> 26;
6395 bfd_vma jalx_opcode;
6397 /* Check to see if the opcode is already JAL or JALX. */
6398 if (r_type == R_MIPS16_26)
6400 ok = ((opcode == 0x6) || (opcode == 0x7));
6401 jalx_opcode = 0x7;
6403 else
6405 ok = ((opcode == 0x3) || (opcode == 0x1d));
6406 jalx_opcode = 0x1d;
6409 /* If the opcode is not JAL or JALX, there's a problem. */
6410 if (!ok)
6412 (*_bfd_error_handler)
6413 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6414 bfd_get_filename (input_bfd),
6415 input_section->name,
6416 (unsigned long) relocation->r_offset);
6417 bfd_set_error (bfd_error_bad_value);
6418 return false;
6421 /* Make this the JALX opcode. */
6422 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6425 /* Swap the high- and low-order 16 bits on little-endian systems
6426 when doing a MIPS16 relocation. */
6427 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
6428 && bfd_little_endian (input_bfd))
6429 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
6431 /* Put the value into the output. */
6432 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6433 return true;
6436 /* Returns true if SECTION is a MIPS16 stub section. */
6438 static boolean
6439 mips_elf_stub_section_p (abfd, section)
6440 bfd *abfd ATTRIBUTE_UNUSED;
6441 asection *section;
6443 const char *name = bfd_get_section_name (abfd, section);
6445 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
6446 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6447 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
6450 /* Relocate a MIPS ELF section. */
6452 boolean
6453 _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section,
6454 contents, relocs, local_syms, local_sections)
6455 bfd *output_bfd;
6456 struct bfd_link_info *info;
6457 bfd *input_bfd;
6458 asection *input_section;
6459 bfd_byte *contents;
6460 Elf_Internal_Rela *relocs;
6461 Elf_Internal_Sym *local_syms;
6462 asection **local_sections;
6464 Elf_Internal_Rela *rel;
6465 const Elf_Internal_Rela *relend;
6466 bfd_vma addend;
6467 bfd_vma last_hi16_addend;
6468 boolean use_saved_addend_p = false;
6469 boolean last_hi16_addend_valid_p = false;
6470 struct elf_backend_data *bed;
6472 bed = get_elf_backend_data (output_bfd);
6473 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6474 for (rel = relocs; rel < relend; ++rel)
6476 const char *name;
6477 bfd_vma value;
6478 reloc_howto_type *howto;
6479 boolean require_jalx;
6480 /* True if the relocation is a RELA relocation, rather than a
6481 REL relocation. */
6482 boolean rela_relocation_p = true;
6483 int r_type = ELF32_R_TYPE (rel->r_info);
6485 /* Find the relocation howto for this relocation. */
6486 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6487 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6488 64-bit code, but make sure all their addresses are in the
6489 lowermost or uppermost 32-bit section of the 64-bit address
6490 space. Thus, when they use an R_MIPS_64 they mean what is
6491 usually meant by R_MIPS_32, with the exception that the
6492 stored value is sign-extended to 64 bits. */
6493 howto = elf_mips_howto_table + R_MIPS_32;
6494 else
6495 howto = mips_rtype_to_howto (r_type);
6497 if (!use_saved_addend_p)
6499 Elf_Internal_Shdr *rel_hdr;
6501 /* If these relocations were originally of the REL variety,
6502 we must pull the addend out of the field that will be
6503 relocated. Otherwise, we simply use the contents of the
6504 RELA relocation. To determine which flavor or relocation
6505 this is, we depend on the fact that the INPUT_SECTION's
6506 REL_HDR is read before its REL_HDR2. */
6507 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6508 if ((size_t) (rel - relocs)
6509 >= (rel_hdr->sh_size / rel_hdr->sh_entsize
6510 * bed->s->int_rels_per_ext_rel))
6511 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6512 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6514 /* Note that this is a REL relocation. */
6515 rela_relocation_p = false;
6517 /* Get the addend, which is stored in the input file. */
6518 addend = mips_elf_obtain_contents (howto,
6519 rel,
6520 input_bfd,
6521 contents);
6522 addend &= howto->src_mask;
6524 /* For some kinds of relocations, the ADDEND is a
6525 combination of the addend stored in two different
6526 relocations. */
6527 if (r_type == R_MIPS_HI16
6528 || (r_type == R_MIPS_GOT16
6529 && mips_elf_local_relocation_p (input_bfd, rel,
6530 local_sections)))
6532 /* Scan ahead to find a matching R_MIPS_LO16
6533 relocation. */
6534 bfd_vma l;
6536 if (!mips_elf_next_lo16_addend (rel, relend, &l))
6537 return false;
6539 /* Save the high-order bit for later. When we
6540 encounter the R_MIPS_LO16 relocation we will need
6541 them again. */
6542 addend <<= 16;
6543 last_hi16_addend = addend;
6544 last_hi16_addend_valid_p = true;
6546 /* Compute the combined addend. */
6547 addend |= l;
6549 else if (r_type == R_MIPS_LO16)
6551 /* Used the saved HI16 addend. */
6552 if (!last_hi16_addend_valid_p)
6554 bfd_set_error (bfd_error_bad_value);
6555 return false;
6557 addend |= last_hi16_addend;
6559 else if (r_type == R_MIPS16_GPREL)
6561 /* The addend is scrambled in the object file. See
6562 mips_elf_perform_relocation for details on the
6563 format. */
6564 addend = (((addend & 0x1f0000) >> 5)
6565 | ((addend & 0x7e00000) >> 16)
6566 | (addend & 0x1f));
6568 else if (r_type == R_MIPS16_26
6569 || r_type == R_MIPS16_26)
6570 /* The addend is stored without its two least
6571 significant bits (which are always zero.) */
6572 addend <<= 2;
6574 else
6575 addend = rel->r_addend;
6578 if (info->relocateable)
6580 Elf_Internal_Sym *sym;
6581 unsigned long r_symndx;
6583 /* Since we're just relocating, all we need to do is copy
6584 the relocations back out to the object file, unless
6585 they're against a section symbol, in which case we need
6586 to adjust by the section offset, or unless they're GP
6587 relative in which case we need to adjust by the amount
6588 that we're adjusting GP in this relocateable object. */
6590 if (!mips_elf_local_relocation_p (input_bfd, rel, local_sections))
6591 /* There's nothing to do for non-local relocations. */
6592 continue;
6594 r_symndx = ELF32_R_SYM (rel->r_info);
6595 sym = local_syms + r_symndx;
6596 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6597 /* Adjust the addend appropriately. */
6598 addend += local_sections[r_symndx]->output_offset;
6600 if (r_type == R_MIPS16_GPREL
6601 || r_type == R_MIPS_GPREL16
6602 || r_type == R_MIPS_GPREL32)
6603 addend -= (_bfd_get_gp_value (output_bfd)
6604 - _bfd_get_gp_value (input_bfd));
6606 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6607 then we only want to write out the high-order 16 bits.
6608 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6609 if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16)
6610 addend >>= 16;
6611 /* If the relocation is for an R_MIPS_26 relocation, then
6612 the two low-order bits are not stored in the object file;
6613 they are implicitly zero. */
6614 else if (r_type == R_MIPS_26 || r_type == R_MIPS16_26)
6615 addend >>= 2;
6617 if (rela_relocation_p)
6618 /* If this is a RELA relocation, just update the addend.
6619 We have to cast away constness for REL. */
6620 rel->r_addend = addend;
6621 else
6623 /* Otherwise, we have to write the value back out. Note
6624 that we use the source mask, rather than the
6625 destination mask because the place to which we are
6626 writing will be source of the addend in the final
6627 link. */
6628 addend &= howto->src_mask;
6629 if (!mips_elf_perform_relocation (info, howto, rel, addend,
6630 input_bfd, input_section,
6631 contents, false))
6632 return false;
6635 /* Go on to the next relocation. */
6636 continue;
6639 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6640 relocations for the same offset. In that case we are
6641 supposed to treat the output of each relocation as the addend
6642 for the next. */
6643 if (rel + 1 < relend
6644 && rel->r_offset == rel[1].r_offset
6645 && ELF32_R_TYPE (rel[1].r_info) != R_MIPS_NONE)
6646 use_saved_addend_p = true;
6647 else
6648 use_saved_addend_p = false;
6650 /* Figure out what value we are supposed to relocate. */
6651 switch (mips_elf_calculate_relocation (output_bfd,
6652 input_bfd,
6653 input_section,
6654 info,
6655 rel,
6656 addend,
6657 howto,
6658 local_syms,
6659 local_sections,
6660 &value,
6661 &name,
6662 &require_jalx))
6664 case bfd_reloc_continue:
6665 /* There's nothing to do. */
6666 continue;
6668 case bfd_reloc_undefined:
6669 /* mips_elf_calculate_relocation already called the
6670 undefined_symbol callback. There's no real point in
6671 trying to perform the relocation at this point, so we
6672 just skip ahead to the next relocation. */
6673 continue;
6675 case bfd_reloc_notsupported:
6676 abort ();
6677 break;
6679 case bfd_reloc_overflow:
6680 if (use_saved_addend_p)
6681 /* Ignore overflow until we reach the last relocation for
6682 a given location. */
6684 else
6686 BFD_ASSERT (name != NULL);
6687 if (! ((*info->callbacks->reloc_overflow)
6688 (info, name, howto->name, (bfd_vma) 0,
6689 input_bfd, input_section, rel->r_offset)))
6690 return false;
6692 break;
6694 case bfd_reloc_ok:
6695 break;
6697 default:
6698 abort ();
6699 break;
6702 /* If we've got another relocation for the address, keep going
6703 until we reach the last one. */
6704 if (use_saved_addend_p)
6706 addend = value;
6707 continue;
6710 if (r_type == R_MIPS_64 && !ABI_64_P (output_bfd))
6711 /* See the comment above about using R_MIPS_64 in the 32-bit
6712 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6713 that calculated the right value. Now, however, we
6714 sign-extend the 32-bit result to 64-bits, and store it as a
6715 64-bit value. We are especially generous here in that we
6716 go to extreme lengths to support this usage on systems with
6717 only a 32-bit VMA. */
6719 #ifdef BFD64
6720 /* Just sign-extend the value, and then fall through to the
6721 normal case, using the R_MIPS_64 howto. That will store
6722 the 64-bit value into a 64-bit area. */
6723 value = mips_elf_sign_extend (value, 64);
6724 howto = elf_mips_howto_table + R_MIPS_64;
6725 #else /* !BFD64 */
6726 /* In the 32-bit VMA case, we must handle sign-extension and
6727 endianness manually. */
6728 bfd_vma sign_bits;
6729 bfd_vma low_bits;
6730 bfd_vma high_bits;
6732 if (value & 0x80000000)
6733 sign_bits = 0xffffffff;
6734 else
6735 sign_bits = 0;
6737 /* If only a 32-bit VMA is available do two separate
6738 stores. */
6739 if (bfd_big_endian (input_bfd))
6741 /* Store the sign-bits (which are most significant)
6742 first. */
6743 low_bits = sign_bits;
6744 high_bits = value;
6746 else
6748 low_bits = value;
6749 high_bits = sign_bits;
6751 bfd_put_32 (input_bfd, low_bits,
6752 contents + rel->r_offset);
6753 bfd_put_32 (input_bfd, high_bits,
6754 contents + rel->r_offset + 4);
6755 continue;
6756 #endif /* !BFD64 */
6759 /* Actually perform the relocation. */
6760 if (!mips_elf_perform_relocation (info, howto, rel, value, input_bfd,
6761 input_section, contents,
6762 require_jalx))
6763 return false;
6766 return true;
6769 /* This hook function is called before the linker writes out a global
6770 symbol. We mark symbols as small common if appropriate. This is
6771 also where we undo the increment of the value for a mips16 symbol. */
6773 /*ARGSIGNORED*/
6774 boolean
6775 _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
6776 bfd *abfd ATTRIBUTE_UNUSED;
6777 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6778 const char *name ATTRIBUTE_UNUSED;
6779 Elf_Internal_Sym *sym;
6780 asection *input_sec;
6782 /* If we see a common symbol, which implies a relocatable link, then
6783 if a symbol was small common in an input file, mark it as small
6784 common in the output file. */
6785 if (sym->st_shndx == SHN_COMMON
6786 && strcmp (input_sec->name, ".scommon") == 0)
6787 sym->st_shndx = SHN_MIPS_SCOMMON;
6789 if (sym->st_other == STO_MIPS16
6790 && (sym->st_value & 1) != 0)
6791 --sym->st_value;
6793 return true;
6796 /* Functions for the dynamic linker. */
6798 /* The name of the dynamic interpreter. This is put in the .interp
6799 section. */
6801 #define ELF_DYNAMIC_INTERPRETER(abfd) \
6802 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
6803 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
6804 : "/usr/lib/libc.so.1")
6806 /* Create dynamic sections when linking against a dynamic object. */
6808 boolean
6809 _bfd_mips_elf_create_dynamic_sections (abfd, info)
6810 bfd *abfd;
6811 struct bfd_link_info *info;
6813 struct elf_link_hash_entry *h;
6814 flagword flags;
6815 register asection *s;
6816 const char * const *namep;
6818 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6819 | SEC_LINKER_CREATED | SEC_READONLY);
6821 /* Mips ABI requests the .dynamic section to be read only. */
6822 s = bfd_get_section_by_name (abfd, ".dynamic");
6823 if (s != NULL)
6825 if (! bfd_set_section_flags (abfd, s, flags))
6826 return false;
6829 /* We need to create .got section. */
6830 if (! mips_elf_create_got_section (abfd, info))
6831 return false;
6833 /* Create the .msym section on IRIX6. It is used by the dynamic
6834 linker to speed up dynamic relocations, and to avoid computing
6835 the ELF hash for symbols. */
6836 if (IRIX_COMPAT (abfd) == ict_irix6
6837 && !mips_elf_create_msym_section (abfd))
6838 return false;
6840 /* Create .stub section. */
6841 if (bfd_get_section_by_name (abfd,
6842 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
6844 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
6845 if (s == NULL
6846 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
6847 || ! bfd_set_section_alignment (abfd, s,
6848 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6849 return false;
6852 if (IRIX_COMPAT (abfd) == ict_irix5
6853 && !info->shared
6854 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6856 s = bfd_make_section (abfd, ".rld_map");
6857 if (s == NULL
6858 || ! bfd_set_section_flags (abfd, s, flags & ~SEC_READONLY)
6859 || ! bfd_set_section_alignment (abfd, s,
6860 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6861 return false;
6864 /* On IRIX5, we adjust add some additional symbols and change the
6865 alignments of several sections. There is no ABI documentation
6866 indicating that this is necessary on IRIX6, nor any evidence that
6867 the linker takes such action. */
6868 if (IRIX_COMPAT (abfd) == ict_irix5)
6870 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6872 h = NULL;
6873 if (! (_bfd_generic_link_add_one_symbol
6874 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr,
6875 (bfd_vma) 0, (const char *) NULL, false,
6876 get_elf_backend_data (abfd)->collect,
6877 (struct bfd_link_hash_entry **) &h)))
6878 return false;
6879 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6880 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6881 h->type = STT_SECTION;
6883 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
6884 return false;
6887 /* We need to create a .compact_rel section. */
6888 if (! mips_elf_create_compact_rel_section (abfd, info))
6889 return false;
6891 /* Change aligments of some sections. */
6892 s = bfd_get_section_by_name (abfd, ".hash");
6893 if (s != NULL)
6894 bfd_set_section_alignment (abfd, s, 4);
6895 s = bfd_get_section_by_name (abfd, ".dynsym");
6896 if (s != NULL)
6897 bfd_set_section_alignment (abfd, s, 4);
6898 s = bfd_get_section_by_name (abfd, ".dynstr");
6899 if (s != NULL)
6900 bfd_set_section_alignment (abfd, s, 4);
6901 s = bfd_get_section_by_name (abfd, ".reginfo");
6902 if (s != NULL)
6903 bfd_set_section_alignment (abfd, s, 4);
6904 s = bfd_get_section_by_name (abfd, ".dynamic");
6905 if (s != NULL)
6906 bfd_set_section_alignment (abfd, s, 4);
6909 if (!info->shared)
6911 h = NULL;
6912 if (! (_bfd_generic_link_add_one_symbol
6913 (info, abfd, "_DYNAMIC_LINK", BSF_GLOBAL, bfd_abs_section_ptr,
6914 (bfd_vma) 0, (const char *) NULL, false,
6915 get_elf_backend_data (abfd)->collect,
6916 (struct bfd_link_hash_entry **) &h)))
6917 return false;
6918 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6919 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6920 h->type = STT_SECTION;
6922 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
6923 return false;
6925 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6927 /* __rld_map is a four byte word located in the .data section
6928 and is filled in by the rtld to contain a pointer to
6929 the _r_debug structure. Its symbol value will be set in
6930 mips_elf_finish_dynamic_symbol. */
6931 s = bfd_get_section_by_name (abfd, ".rld_map");
6932 BFD_ASSERT (s != NULL);
6934 h = NULL;
6935 if (! (_bfd_generic_link_add_one_symbol
6936 (info, abfd, "__rld_map", BSF_GLOBAL, s,
6937 (bfd_vma) 0, (const char *) NULL, false,
6938 get_elf_backend_data (abfd)->collect,
6939 (struct bfd_link_hash_entry **) &h)))
6940 return false;
6941 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
6942 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
6943 h->type = STT_OBJECT;
6945 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
6946 return false;
6950 return true;
6953 /* Create the .compact_rel section. */
6955 static boolean
6956 mips_elf_create_compact_rel_section (abfd, info)
6957 bfd *abfd;
6958 struct bfd_link_info *info ATTRIBUTE_UNUSED;
6960 flagword flags;
6961 register asection *s;
6963 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
6965 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
6966 | SEC_READONLY);
6968 s = bfd_make_section (abfd, ".compact_rel");
6969 if (s == NULL
6970 || ! bfd_set_section_flags (abfd, s, flags)
6971 || ! bfd_set_section_alignment (abfd, s,
6972 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6973 return false;
6975 s->_raw_size = sizeof (Elf32_External_compact_rel);
6978 return true;
6981 /* Create the .got section to hold the global offset table. */
6983 static boolean
6984 mips_elf_create_got_section (abfd, info)
6985 bfd *abfd;
6986 struct bfd_link_info *info;
6988 flagword flags;
6989 register asection *s;
6990 struct elf_link_hash_entry *h;
6991 struct mips_got_info *g;
6993 /* This function may be called more than once. */
6994 if (mips_elf_got_section (abfd))
6995 return true;
6997 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6998 | SEC_LINKER_CREATED);
7000 s = bfd_make_section (abfd, ".got");
7001 if (s == NULL
7002 || ! bfd_set_section_flags (abfd, s, flags)
7003 || ! bfd_set_section_alignment (abfd, s, 4))
7004 return false;
7006 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
7007 linker script because we don't want to define the symbol if we
7008 are not creating a global offset table. */
7009 h = NULL;
7010 if (! (_bfd_generic_link_add_one_symbol
7011 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
7012 (bfd_vma) 0, (const char *) NULL, false,
7013 get_elf_backend_data (abfd)->collect,
7014 (struct bfd_link_hash_entry **) &h)))
7015 return false;
7016 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
7017 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
7018 h->type = STT_OBJECT;
7020 if (info->shared
7021 && ! bfd_elf32_link_record_dynamic_symbol (info, h))
7022 return false;
7024 /* The first several global offset table entries are reserved. */
7025 s->_raw_size = MIPS_RESERVED_GOTNO * MIPS_ELF_GOT_SIZE (abfd);
7027 g = (struct mips_got_info *) bfd_alloc (abfd,
7028 sizeof (struct mips_got_info));
7029 if (g == NULL)
7030 return false;
7031 g->global_gotsym = NULL;
7032 g->local_gotno = MIPS_RESERVED_GOTNO;
7033 g->assigned_gotno = MIPS_RESERVED_GOTNO;
7034 if (elf_section_data (s) == NULL)
7036 s->used_by_bfd =
7037 (PTR) bfd_zalloc (abfd, sizeof (struct bfd_elf_section_data));
7038 if (elf_section_data (s) == NULL)
7039 return false;
7041 elf_section_data (s)->tdata = (PTR) g;
7042 elf_section_data (s)->this_hdr.sh_flags
7043 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7045 return true;
7048 /* Returns the .msym section for ABFD, creating it if it does not
7049 already exist. Returns NULL to indicate error. */
7051 static asection *
7052 mips_elf_create_msym_section (abfd)
7053 bfd *abfd;
7055 asection *s;
7057 s = bfd_get_section_by_name (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7058 if (!s)
7060 s = bfd_make_section (abfd, MIPS_ELF_MSYM_SECTION_NAME (abfd));
7061 if (!s
7062 || !bfd_set_section_flags (abfd, s,
7063 SEC_ALLOC
7064 | SEC_LOAD
7065 | SEC_HAS_CONTENTS
7066 | SEC_LINKER_CREATED
7067 | SEC_READONLY)
7068 || !bfd_set_section_alignment (abfd, s,
7069 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7070 return NULL;
7073 return s;
7076 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7078 static void
7079 mips_elf_allocate_dynamic_relocations (abfd, n)
7080 bfd *abfd;
7081 unsigned int n;
7083 asection *s;
7085 s = bfd_get_section_by_name (abfd, MIPS_ELF_REL_DYN_SECTION_NAME (abfd));
7086 BFD_ASSERT (s != NULL);
7088 if (s->_raw_size == 0)
7090 /* Make room for a null element. */
7091 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
7092 ++s->reloc_count;
7094 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
7097 /* Look through the relocs for a section during the first phase, and
7098 allocate space in the global offset table. */
7100 boolean
7101 _bfd_mips_elf_check_relocs (abfd, info, sec, relocs)
7102 bfd *abfd;
7103 struct bfd_link_info *info;
7104 asection *sec;
7105 const Elf_Internal_Rela *relocs;
7107 const char *name;
7108 bfd *dynobj;
7109 Elf_Internal_Shdr *symtab_hdr;
7110 struct elf_link_hash_entry **sym_hashes;
7111 struct mips_got_info *g;
7112 size_t extsymoff;
7113 const Elf_Internal_Rela *rel;
7114 const Elf_Internal_Rela *rel_end;
7115 asection *sgot;
7116 asection *sreloc;
7117 struct elf_backend_data *bed;
7119 if (info->relocateable)
7120 return true;
7122 dynobj = elf_hash_table (info)->dynobj;
7123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7124 sym_hashes = elf_sym_hashes (abfd);
7125 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7127 /* Check for the mips16 stub sections. */
7129 name = bfd_get_section_name (abfd, sec);
7130 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
7132 unsigned long r_symndx;
7134 /* Look at the relocation information to figure out which symbol
7135 this is for. */
7137 r_symndx = ELF32_R_SYM (relocs->r_info);
7139 if (r_symndx < extsymoff
7140 || sym_hashes[r_symndx - extsymoff] == NULL)
7142 asection *o;
7144 /* This stub is for a local symbol. This stub will only be
7145 needed if there is some relocation in this BFD, other
7146 than a 16 bit function call, which refers to this symbol. */
7147 for (o = abfd->sections; o != NULL; o = o->next)
7149 Elf_Internal_Rela *sec_relocs;
7150 const Elf_Internal_Rela *r, *rend;
7152 /* We can ignore stub sections when looking for relocs. */
7153 if ((o->flags & SEC_RELOC) == 0
7154 || o->reloc_count == 0
7155 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
7156 sizeof FN_STUB - 1) == 0
7157 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
7158 sizeof CALL_STUB - 1) == 0
7159 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
7160 sizeof CALL_FP_STUB - 1) == 0)
7161 continue;
7163 sec_relocs = (_bfd_elf32_link_read_relocs
7164 (abfd, o, (PTR) NULL,
7165 (Elf_Internal_Rela *) NULL,
7166 info->keep_memory));
7167 if (sec_relocs == NULL)
7168 return false;
7170 rend = sec_relocs + o->reloc_count;
7171 for (r = sec_relocs; r < rend; r++)
7172 if (ELF32_R_SYM (r->r_info) == r_symndx
7173 && ELF32_R_TYPE (r->r_info) != R_MIPS16_26)
7174 break;
7176 if (! info->keep_memory)
7177 free (sec_relocs);
7179 if (r < rend)
7180 break;
7183 if (o == NULL)
7185 /* There is no non-call reloc for this stub, so we do
7186 not need it. Since this function is called before
7187 the linker maps input sections to output sections, we
7188 can easily discard it by setting the SEC_EXCLUDE
7189 flag. */
7190 sec->flags |= SEC_EXCLUDE;
7191 return true;
7194 /* Record this stub in an array of local symbol stubs for
7195 this BFD. */
7196 if (elf_tdata (abfd)->local_stubs == NULL)
7198 unsigned long symcount;
7199 asection **n;
7201 if (elf_bad_symtab (abfd))
7202 symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
7203 else
7204 symcount = symtab_hdr->sh_info;
7205 n = (asection **) bfd_zalloc (abfd,
7206 symcount * sizeof (asection *));
7207 if (n == NULL)
7208 return false;
7209 elf_tdata (abfd)->local_stubs = n;
7212 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7214 /* We don't need to set mips16_stubs_seen in this case.
7215 That flag is used to see whether we need to look through
7216 the global symbol table for stubs. We don't need to set
7217 it here, because we just have a local stub. */
7219 else
7221 struct mips_elf_link_hash_entry *h;
7223 h = ((struct mips_elf_link_hash_entry *)
7224 sym_hashes[r_symndx - extsymoff]);
7226 /* H is the symbol this stub is for. */
7228 h->fn_stub = sec;
7229 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7232 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
7233 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7235 unsigned long r_symndx;
7236 struct mips_elf_link_hash_entry *h;
7237 asection **loc;
7239 /* Look at the relocation information to figure out which symbol
7240 this is for. */
7242 r_symndx = ELF32_R_SYM (relocs->r_info);
7244 if (r_symndx < extsymoff
7245 || sym_hashes[r_symndx - extsymoff] == NULL)
7247 /* This stub was actually built for a static symbol defined
7248 in the same file. We assume that all static symbols in
7249 mips16 code are themselves mips16, so we can simply
7250 discard this stub. Since this function is called before
7251 the linker maps input sections to output sections, we can
7252 easily discard it by setting the SEC_EXCLUDE flag. */
7253 sec->flags |= SEC_EXCLUDE;
7254 return true;
7257 h = ((struct mips_elf_link_hash_entry *)
7258 sym_hashes[r_symndx - extsymoff]);
7260 /* H is the symbol this stub is for. */
7262 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
7263 loc = &h->call_fp_stub;
7264 else
7265 loc = &h->call_stub;
7267 /* If we already have an appropriate stub for this function, we
7268 don't need another one, so we can discard this one. Since
7269 this function is called before the linker maps input sections
7270 to output sections, we can easily discard it by setting the
7271 SEC_EXCLUDE flag. We can also discard this section if we
7272 happen to already know that this is a mips16 function; it is
7273 not necessary to check this here, as it is checked later, but
7274 it is slightly faster to check now. */
7275 if (*loc != NULL || h->root.other == STO_MIPS16)
7277 sec->flags |= SEC_EXCLUDE;
7278 return true;
7281 *loc = sec;
7282 mips_elf_hash_table (info)->mips16_stubs_seen = true;
7285 if (dynobj == NULL)
7287 sgot = NULL;
7288 g = NULL;
7290 else
7292 sgot = mips_elf_got_section (dynobj);
7293 if (sgot == NULL)
7294 g = NULL;
7295 else
7297 BFD_ASSERT (elf_section_data (sgot) != NULL);
7298 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
7299 BFD_ASSERT (g != NULL);
7303 sreloc = NULL;
7304 bed = get_elf_backend_data (abfd);
7305 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7306 for (rel = relocs; rel < rel_end; ++rel)
7308 unsigned long r_symndx;
7309 int r_type;
7310 struct elf_link_hash_entry *h;
7312 r_symndx = ELF32_R_SYM (rel->r_info);
7313 r_type = ELF32_R_TYPE (rel->r_info);
7315 if (r_symndx < extsymoff)
7316 h = NULL;
7317 else
7319 h = sym_hashes[r_symndx - extsymoff];
7321 /* This may be an indirect symbol created because of a version. */
7322 if (h != NULL)
7324 while (h->root.type == bfd_link_hash_indirect)
7325 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7329 /* Some relocs require a global offset table. */
7330 if (dynobj == NULL || sgot == NULL)
7332 switch (r_type)
7334 case R_MIPS_GOT16:
7335 case R_MIPS_CALL16:
7336 case R_MIPS_CALL_HI16:
7337 case R_MIPS_CALL_LO16:
7338 case R_MIPS_GOT_HI16:
7339 case R_MIPS_GOT_LO16:
7340 case R_MIPS_GOT_PAGE:
7341 case R_MIPS_GOT_OFST:
7342 case R_MIPS_GOT_DISP:
7343 if (dynobj == NULL)
7344 elf_hash_table (info)->dynobj = dynobj = abfd;
7345 if (! mips_elf_create_got_section (dynobj, info))
7346 return false;
7347 g = mips_elf_got_info (dynobj, &sgot);
7348 break;
7350 case R_MIPS_32:
7351 case R_MIPS_REL32:
7352 case R_MIPS_64:
7353 if (dynobj == NULL
7354 && (info->shared || h != NULL)
7355 && (sec->flags & SEC_ALLOC) != 0)
7356 elf_hash_table (info)->dynobj = dynobj = abfd;
7357 break;
7359 default:
7360 break;
7364 if (!h && (r_type == R_MIPS_CALL_LO16
7365 || r_type == R_MIPS_GOT_LO16
7366 || r_type == R_MIPS_GOT_DISP
7367 || r_type == R_MIPS_GOT16))
7369 /* We may need a local GOT entry for this relocation. We
7370 don't count R_MIPS_GOT_PAGE because we can estimate the
7371 maximum number of pages needed by looking at the size of
7372 the segment. We don't count R_MIPS_GOT_HI16, or
7373 R_MIPS_CALL_HI16 because these are always followed by an
7374 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
7376 This estimation is very conservative since we can merge
7377 duplicate entries in the GOT. In order to be less
7378 conservative, we could actually build the GOT here,
7379 rather than in relocate_section. */
7380 g->local_gotno++;
7381 sgot->_raw_size += MIPS_ELF_GOT_SIZE (dynobj);
7384 switch (r_type)
7386 case R_MIPS_CALL16:
7387 if (h == NULL)
7389 (*_bfd_error_handler)
7390 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7391 bfd_get_filename (abfd), (unsigned long) rel->r_offset);
7392 bfd_set_error (bfd_error_bad_value);
7393 return false;
7395 /* Fall through. */
7397 case R_MIPS_CALL_HI16:
7398 case R_MIPS_CALL_LO16:
7399 if (h != NULL)
7401 /* This symbol requires a global offset table entry. */
7402 if (!mips_elf_record_global_got_symbol (h, info, g))
7403 return false;
7405 /* We need a stub, not a plt entry for the undefined
7406 function. But we record it as if it needs plt. See
7407 elf_adjust_dynamic_symbol in elflink.h. */
7408 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
7409 h->type = STT_FUNC;
7411 break;
7413 case R_MIPS_GOT16:
7414 case R_MIPS_GOT_HI16:
7415 case R_MIPS_GOT_LO16:
7416 case R_MIPS_GOT_DISP:
7417 /* This symbol requires a global offset table entry. */
7418 if (h && !mips_elf_record_global_got_symbol (h, info, g))
7419 return false;
7420 break;
7422 case R_MIPS_32:
7423 case R_MIPS_REL32:
7424 case R_MIPS_64:
7425 if ((info->shared || h != NULL)
7426 && (sec->flags & SEC_ALLOC) != 0)
7428 if (sreloc == NULL)
7430 const char *name = MIPS_ELF_REL_DYN_SECTION_NAME (dynobj);
7432 sreloc = bfd_get_section_by_name (dynobj, name);
7433 if (sreloc == NULL)
7435 sreloc = bfd_make_section (dynobj, name);
7436 if (sreloc == NULL
7437 || ! bfd_set_section_flags (dynobj, sreloc,
7438 (SEC_ALLOC
7439 | SEC_LOAD
7440 | SEC_HAS_CONTENTS
7441 | SEC_IN_MEMORY
7442 | SEC_LINKER_CREATED
7443 | SEC_READONLY))
7444 || ! bfd_set_section_alignment (dynobj, sreloc,
7446 return false;
7449 if (info->shared)
7450 /* When creating a shared object, we must copy these
7451 reloc types into the output file as R_MIPS_REL32
7452 relocs. We make room for this reloc in the
7453 .rel.dyn reloc section. */
7454 mips_elf_allocate_dynamic_relocations (dynobj, 1);
7455 else
7457 struct mips_elf_link_hash_entry *hmips;
7459 /* We only need to copy this reloc if the symbol is
7460 defined in a dynamic object. */
7461 hmips = (struct mips_elf_link_hash_entry *) h;
7462 ++hmips->possibly_dynamic_relocs;
7465 /* Even though we don't directly need a GOT entry for
7466 this symbol, a symbol must have a dynamic symbol
7467 table index greater that DT_GOTSYM if there are
7468 dynamic relocations against it. */
7469 if (!mips_elf_record_global_got_symbol (h, info, g))
7470 return false;
7473 if (SGI_COMPAT (dynobj))
7474 mips_elf_hash_table (info)->compact_rel_size +=
7475 sizeof (Elf32_External_crinfo);
7476 break;
7478 case R_MIPS_26:
7479 case R_MIPS_GPREL16:
7480 case R_MIPS_LITERAL:
7481 case R_MIPS_GPREL32:
7482 if (SGI_COMPAT (dynobj))
7483 mips_elf_hash_table (info)->compact_rel_size +=
7484 sizeof (Elf32_External_crinfo);
7485 break;
7487 /* This relocation describes the C++ object vtable hierarchy.
7488 Reconstruct it for later use during GC. */
7489 case R_MIPS_GNU_VTINHERIT:
7490 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7491 return false;
7492 break;
7494 /* This relocation describes which C++ vtable entries are actually
7495 used. Record for later use during GC. */
7496 case R_MIPS_GNU_VTENTRY:
7497 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7498 return false;
7499 break;
7501 default:
7502 break;
7505 /* If this reloc is not a 16 bit call, and it has a global
7506 symbol, then we will need the fn_stub if there is one.
7507 References from a stub section do not count. */
7508 if (h != NULL
7509 && r_type != R_MIPS16_26
7510 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
7511 sizeof FN_STUB - 1) != 0
7512 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
7513 sizeof CALL_STUB - 1) != 0
7514 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
7515 sizeof CALL_FP_STUB - 1) != 0)
7517 struct mips_elf_link_hash_entry *mh;
7519 mh = (struct mips_elf_link_hash_entry *) h;
7520 mh->need_fn_stub = true;
7524 return true;
7527 /* Return the section that should be marked against GC for a given
7528 relocation. */
7530 asection *
7531 _bfd_mips_elf_gc_mark_hook (abfd, info, rel, h, sym)
7532 bfd *abfd;
7533 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7534 Elf_Internal_Rela *rel;
7535 struct elf_link_hash_entry *h;
7536 Elf_Internal_Sym *sym;
7538 /* ??? Do mips16 stub sections need to be handled special? */
7540 if (h != NULL)
7542 switch (ELF32_R_TYPE (rel->r_info))
7544 case R_MIPS_GNU_VTINHERIT:
7545 case R_MIPS_GNU_VTENTRY:
7546 break;
7548 default:
7549 switch (h->root.type)
7551 case bfd_link_hash_defined:
7552 case bfd_link_hash_defweak:
7553 return h->root.u.def.section;
7555 case bfd_link_hash_common:
7556 return h->root.u.c.p->section;
7558 default:
7559 break;
7563 else
7565 if (!(elf_bad_symtab (abfd)
7566 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7567 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
7568 && sym->st_shndx != SHN_COMMON))
7570 return bfd_section_from_elf_index (abfd, sym->st_shndx);
7574 return NULL;
7577 /* Update the got entry reference counts for the section being removed. */
7579 boolean
7580 _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs)
7581 bfd *abfd ATTRIBUTE_UNUSED;
7582 struct bfd_link_info *info ATTRIBUTE_UNUSED;
7583 asection *sec ATTRIBUTE_UNUSED;
7584 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
7586 #if 0
7587 Elf_Internal_Shdr *symtab_hdr;
7588 struct elf_link_hash_entry **sym_hashes;
7589 bfd_signed_vma *local_got_refcounts;
7590 const Elf_Internal_Rela *rel, *relend;
7591 unsigned long r_symndx;
7592 struct elf_link_hash_entry *h;
7594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7595 sym_hashes = elf_sym_hashes (abfd);
7596 local_got_refcounts = elf_local_got_refcounts (abfd);
7598 relend = relocs + sec->reloc_count;
7599 for (rel = relocs; rel < relend; rel++)
7600 switch (ELF32_R_TYPE (rel->r_info))
7602 case R_MIPS_GOT16:
7603 case R_MIPS_CALL16:
7604 case R_MIPS_CALL_HI16:
7605 case R_MIPS_CALL_LO16:
7606 case R_MIPS_GOT_HI16:
7607 case R_MIPS_GOT_LO16:
7608 /* ??? It would seem that the existing MIPS code does no sort
7609 of reference counting or whatnot on its GOT and PLT entries,
7610 so it is not possible to garbage collect them at this time. */
7611 break;
7613 default:
7614 break;
7616 #endif
7618 return true;
7622 /* Adjust a symbol defined by a dynamic object and referenced by a
7623 regular object. The current definition is in some section of the
7624 dynamic object, but we're not including those sections. We have to
7625 change the definition to something the rest of the link can
7626 understand. */
7628 boolean
7629 _bfd_mips_elf_adjust_dynamic_symbol (info, h)
7630 struct bfd_link_info *info;
7631 struct elf_link_hash_entry *h;
7633 bfd *dynobj;
7634 struct mips_elf_link_hash_entry *hmips;
7635 asection *s;
7637 dynobj = elf_hash_table (info)->dynobj;
7639 /* Make sure we know what is going on here. */
7640 BFD_ASSERT (dynobj != NULL
7641 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
7642 || h->weakdef != NULL
7643 || ((h->elf_link_hash_flags
7644 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
7645 && (h->elf_link_hash_flags
7646 & ELF_LINK_HASH_REF_REGULAR) != 0
7647 && (h->elf_link_hash_flags
7648 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
7650 /* If this symbol is defined in a dynamic object, we need to copy
7651 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7652 file. */
7653 hmips = (struct mips_elf_link_hash_entry *) h;
7654 if (! info->relocateable
7655 && hmips->possibly_dynamic_relocs != 0
7656 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7657 mips_elf_allocate_dynamic_relocations (dynobj,
7658 hmips->possibly_dynamic_relocs);
7660 /* For a function, create a stub, if needed. */
7661 if (h->type == STT_FUNC
7662 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
7664 if (! elf_hash_table (info)->dynamic_sections_created)
7665 return true;
7667 /* If this symbol is not defined in a regular file, then set
7668 the symbol to the stub location. This is required to make
7669 function pointers compare as equal between the normal
7670 executable and the shared library. */
7671 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
7673 /* We need .stub section. */
7674 s = bfd_get_section_by_name (dynobj,
7675 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7676 BFD_ASSERT (s != NULL);
7678 h->root.u.def.section = s;
7679 h->root.u.def.value = s->_raw_size;
7681 /* XXX Write this stub address somewhere. */
7682 h->plt.offset = s->_raw_size;
7684 /* Make room for this stub code. */
7685 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7687 /* The last half word of the stub will be filled with the index
7688 of this symbol in .dynsym section. */
7689 return true;
7693 /* If this is a weak symbol, and there is a real definition, the
7694 processor independent code will have arranged for us to see the
7695 real definition first, and we can just use the same value. */
7696 if (h->weakdef != NULL)
7698 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
7699 || h->weakdef->root.type == bfd_link_hash_defweak);
7700 h->root.u.def.section = h->weakdef->root.u.def.section;
7701 h->root.u.def.value = h->weakdef->root.u.def.value;
7702 return true;
7705 /* This is a reference to a symbol defined by a dynamic object which
7706 is not a function. */
7708 return true;
7711 /* This function is called after all the input files have been read,
7712 and the input sections have been assigned to output sections. We
7713 check for any mips16 stub sections that we can discard. */
7715 static boolean mips_elf_check_mips16_stubs
7716 PARAMS ((struct mips_elf_link_hash_entry *, PTR));
7718 boolean
7719 _bfd_mips_elf_always_size_sections (output_bfd, info)
7720 bfd *output_bfd;
7721 struct bfd_link_info *info;
7723 asection *ri;
7725 /* The .reginfo section has a fixed size. */
7726 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7727 if (ri != NULL)
7728 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7730 if (info->relocateable
7731 || ! mips_elf_hash_table (info)->mips16_stubs_seen)
7732 return true;
7734 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7735 mips_elf_check_mips16_stubs,
7736 (PTR) NULL);
7738 return true;
7741 /* Check the mips16 stubs for a particular symbol, and see if we can
7742 discard them. */
7744 /*ARGSUSED*/
7745 static boolean
7746 mips_elf_check_mips16_stubs (h, data)
7747 struct mips_elf_link_hash_entry *h;
7748 PTR data ATTRIBUTE_UNUSED;
7750 if (h->fn_stub != NULL
7751 && ! h->need_fn_stub)
7753 /* We don't need the fn_stub; the only references to this symbol
7754 are 16 bit calls. Clobber the size to 0 to prevent it from
7755 being included in the link. */
7756 h->fn_stub->_raw_size = 0;
7757 h->fn_stub->_cooked_size = 0;
7758 h->fn_stub->flags &= ~ SEC_RELOC;
7759 h->fn_stub->reloc_count = 0;
7760 h->fn_stub->flags |= SEC_EXCLUDE;
7763 if (h->call_stub != NULL
7764 && h->root.other == STO_MIPS16)
7766 /* We don't need the call_stub; this is a 16 bit function, so
7767 calls from other 16 bit functions are OK. Clobber the size
7768 to 0 to prevent it from being included in the link. */
7769 h->call_stub->_raw_size = 0;
7770 h->call_stub->_cooked_size = 0;
7771 h->call_stub->flags &= ~ SEC_RELOC;
7772 h->call_stub->reloc_count = 0;
7773 h->call_stub->flags |= SEC_EXCLUDE;
7776 if (h->call_fp_stub != NULL
7777 && h->root.other == STO_MIPS16)
7779 /* We don't need the call_stub; this is a 16 bit function, so
7780 calls from other 16 bit functions are OK. Clobber the size
7781 to 0 to prevent it from being included in the link. */
7782 h->call_fp_stub->_raw_size = 0;
7783 h->call_fp_stub->_cooked_size = 0;
7784 h->call_fp_stub->flags &= ~ SEC_RELOC;
7785 h->call_fp_stub->reloc_count = 0;
7786 h->call_fp_stub->flags |= SEC_EXCLUDE;
7789 return true;
7792 /* Set the sizes of the dynamic sections. */
7794 boolean
7795 _bfd_mips_elf_size_dynamic_sections (output_bfd, info)
7796 bfd *output_bfd;
7797 struct bfd_link_info *info;
7799 bfd *dynobj;
7800 asection *s;
7801 boolean reltext;
7802 struct mips_got_info *g = NULL;
7804 dynobj = elf_hash_table (info)->dynobj;
7805 BFD_ASSERT (dynobj != NULL);
7807 if (elf_hash_table (info)->dynamic_sections_created)
7809 /* Set the contents of the .interp section to the interpreter. */
7810 if (! info->shared)
7812 s = bfd_get_section_by_name (dynobj, ".interp");
7813 BFD_ASSERT (s != NULL);
7814 s->_raw_size
7815 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7816 s->contents
7817 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7821 /* The check_relocs and adjust_dynamic_symbol entry points have
7822 determined the sizes of the various dynamic sections. Allocate
7823 memory for them. */
7824 reltext = false;
7825 for (s = dynobj->sections; s != NULL; s = s->next)
7827 const char *name;
7828 boolean strip;
7830 /* It's OK to base decisions on the section name, because none
7831 of the dynobj section names depend upon the input files. */
7832 name = bfd_get_section_name (dynobj, s);
7834 if ((s->flags & SEC_LINKER_CREATED) == 0)
7835 continue;
7837 strip = false;
7839 if (strncmp (name, ".rel", 4) == 0)
7841 if (s->_raw_size == 0)
7843 /* We only strip the section if the output section name
7844 has the same name. Otherwise, there might be several
7845 input sections for this output section. FIXME: This
7846 code is probably not needed these days anyhow, since
7847 the linker now does not create empty output sections. */
7848 if (s->output_section != NULL
7849 && strcmp (name,
7850 bfd_get_section_name (s->output_section->owner,
7851 s->output_section)) == 0)
7852 strip = true;
7854 else
7856 const char *outname;
7857 asection *target;
7859 /* If this relocation section applies to a read only
7860 section, then we probably need a DT_TEXTREL entry.
7861 If the relocation section is .rel.dyn, we always
7862 assert a DT_TEXTREL entry rather than testing whether
7863 there exists a relocation to a read only section or
7864 not. */
7865 outname = bfd_get_section_name (output_bfd,
7866 s->output_section);
7867 target = bfd_get_section_by_name (output_bfd, outname + 4);
7868 if ((target != NULL
7869 && (target->flags & SEC_READONLY) != 0
7870 && (target->flags & SEC_ALLOC) != 0)
7871 || strcmp (outname,
7872 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) == 0)
7873 reltext = true;
7875 /* We use the reloc_count field as a counter if we need
7876 to copy relocs into the output file. */
7877 if (strcmp (name,
7878 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd)) != 0)
7879 s->reloc_count = 0;
7882 else if (strncmp (name, ".got", 4) == 0)
7884 int i;
7885 bfd_size_type loadable_size = 0;
7886 bfd_size_type local_gotno;
7887 struct _bfd *sub;
7889 BFD_ASSERT (elf_section_data (s) != NULL);
7890 g = (struct mips_got_info *) elf_section_data (s)->tdata;
7891 BFD_ASSERT (g != NULL);
7893 /* Calculate the total loadable size of the output. That
7894 will give us the maximum number of GOT_PAGE entries
7895 required. */
7896 for (sub = info->input_bfds; sub; sub = sub->link_next)
7898 asection *subsection;
7900 for (subsection = sub->sections;
7901 subsection;
7902 subsection = subsection->next)
7904 if ((subsection->flags & SEC_ALLOC) == 0)
7905 continue;
7906 loadable_size += (subsection->_raw_size + 0xf) & ~0xf;
7909 loadable_size += MIPS_FUNCTION_STUB_SIZE;
7911 /* Assume there are two loadable segments consisting of
7912 contiguous sections. Is 5 enough? */
7913 local_gotno = (loadable_size >> 16) + 5;
7914 g->local_gotno += local_gotno;
7915 s->_raw_size += local_gotno * MIPS_ELF_GOT_SIZE (dynobj);
7917 /* There has to be a global GOT entry for every symbol with
7918 a dynamic symbol table index of DT_MIPS_GOTSYM or
7919 higher. Therefore, it make sense to put those symbols
7920 that need GOT entries at the end of the symbol table. We
7921 do that here. */
7922 if (!mips_elf_sort_hash_table (info, 1))
7923 return false;
7925 if (g->global_gotsym != NULL)
7926 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7927 else
7928 /* If there are no global symbols, or none requiring
7929 relocations, then GLOBAL_GOTSYM will be NULL. */
7930 i = 0;
7931 g->global_gotno = i;
7932 s->_raw_size += i * MIPS_ELF_GOT_SIZE (dynobj);
7934 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7936 /* Irix rld assumes that the function stub isn't at the end
7937 of .text section. So put a dummy. XXX */
7938 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
7940 else if (! info->shared
7941 && ! mips_elf_hash_table (info)->use_rld_obj_head
7942 && strncmp (name, ".rld_map", 8) == 0)
7944 /* We add a room for __rld_map. It will be filled in by the
7945 rtld to contain a pointer to the _r_debug structure. */
7946 s->_raw_size += 4;
7948 else if (SGI_COMPAT (output_bfd)
7949 && strncmp (name, ".compact_rel", 12) == 0)
7950 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
7951 else if (strcmp (name, MIPS_ELF_MSYM_SECTION_NAME (output_bfd))
7952 == 0)
7953 s->_raw_size = (sizeof (Elf32_External_Msym)
7954 * (elf_hash_table (info)->dynsymcount
7955 + bfd_count_sections (output_bfd)));
7956 else if (strncmp (name, ".init", 5) != 0)
7958 /* It's not one of our sections, so don't allocate space. */
7959 continue;
7962 if (strip)
7964 _bfd_strip_section_from_output (s);
7965 continue;
7968 /* Allocate memory for the section contents. */
7969 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
7970 if (s->contents == NULL && s->_raw_size != 0)
7972 bfd_set_error (bfd_error_no_memory);
7973 return false;
7977 if (elf_hash_table (info)->dynamic_sections_created)
7979 /* Add some entries to the .dynamic section. We fill in the
7980 values later, in elf_mips_finish_dynamic_sections, but we
7981 must add the entries now so that we get the correct size for
7982 the .dynamic section. The DT_DEBUG entry is filled in by the
7983 dynamic linker and used by the debugger. */
7984 if (! info->shared)
7986 if (SGI_COMPAT (output_bfd))
7988 /* SGI object has the equivalence of DT_DEBUG in the
7989 DT_MIPS_RLD_MAP entry. */
7990 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7991 return false;
7993 else
7994 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7995 return false;
7998 if (reltext)
8000 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8001 return false;
8004 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8005 return false;
8007 if (bfd_get_section_by_name (dynobj,
8008 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)))
8010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8011 return false;
8013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8014 return false;
8016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8017 return false;
8020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0))
8021 return false;
8023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0))
8024 return false;
8026 if (bfd_get_section_by_name (dynobj, ".conflict") != NULL)
8028 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0))
8029 return false;
8031 s = bfd_get_section_by_name (dynobj, ".liblist");
8032 BFD_ASSERT (s != NULL);
8034 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0))
8035 return false;
8038 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8039 return false;
8041 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8042 return false;
8044 #if 0
8045 /* Time stamps in executable files are a bad idea. */
8046 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
8047 return false;
8048 #endif
8050 #if 0 /* FIXME */
8051 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
8052 return false;
8053 #endif
8055 #if 0 /* FIXME */
8056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
8057 return false;
8058 #endif
8060 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8061 return false;
8063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8064 return false;
8066 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8067 return false;
8069 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8070 return false;
8072 if (g != NULL && g->global_gotsym != NULL
8073 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8074 return false;
8076 if (IRIX_COMPAT (dynobj) == ict_irix5
8077 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8078 return false;
8080 if (IRIX_COMPAT (dynobj) == ict_irix6
8081 && (bfd_get_section_by_name
8082 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8083 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8084 return false;
8086 if (bfd_get_section_by_name (dynobj,
8087 MIPS_ELF_MSYM_SECTION_NAME (dynobj))
8088 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_MSYM, 0))
8089 return false;
8092 return true;
8095 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8096 adjust it appropriately now. */
8098 static void
8099 mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym)
8100 bfd *abfd ATTRIBUTE_UNUSED;
8101 const char *name;
8102 Elf_Internal_Sym *sym;
8104 /* The linker script takes care of providing names and values for
8105 these, but we must place them into the right sections. */
8106 static const char* const text_section_symbols[] = {
8107 "_ftext",
8108 "_etext",
8109 "__dso_displacement",
8110 "__elf_header",
8111 "__program_header_table",
8112 NULL
8115 static const char* const data_section_symbols[] = {
8116 "_fdata",
8117 "_edata",
8118 "_end",
8119 "_fbss",
8120 NULL
8123 const char* const *p;
8124 int i;
8126 for (i = 0; i < 2; ++i)
8127 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8129 ++p)
8130 if (strcmp (*p, name) == 0)
8132 /* All of these symbols are given type STT_SECTION by the
8133 IRIX6 linker. */
8134 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8136 /* The IRIX linker puts these symbols in special sections. */
8137 if (i == 0)
8138 sym->st_shndx = SHN_MIPS_TEXT;
8139 else
8140 sym->st_shndx = SHN_MIPS_DATA;
8142 break;
8146 /* Finish up dynamic symbol handling. We set the contents of various
8147 dynamic sections here. */
8149 boolean
8150 _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
8151 bfd *output_bfd;
8152 struct bfd_link_info *info;
8153 struct elf_link_hash_entry *h;
8154 Elf_Internal_Sym *sym;
8156 bfd *dynobj;
8157 bfd_vma gval;
8158 asection *sgot;
8159 asection *smsym;
8160 struct mips_got_info *g;
8161 const char *name;
8162 struct mips_elf_link_hash_entry *mh;
8164 dynobj = elf_hash_table (info)->dynobj;
8165 gval = sym->st_value;
8166 mh = (struct mips_elf_link_hash_entry *) h;
8168 if (h->plt.offset != (bfd_vma) -1)
8170 asection *s;
8171 bfd_byte *p;
8172 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
8174 /* This symbol has a stub. Set it up. */
8176 BFD_ASSERT (h->dynindx != -1);
8178 s = bfd_get_section_by_name (dynobj,
8179 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8180 BFD_ASSERT (s != NULL);
8182 /* Fill the stub. */
8183 p = stub;
8184 bfd_put_32 (output_bfd, STUB_LW(output_bfd), p);
8185 p += 4;
8186 bfd_put_32 (output_bfd, STUB_MOVE, p);
8187 p += 4;
8189 /* FIXME: Can h->dynindex be more than 64K? */
8190 if (h->dynindx & 0xffff0000)
8191 return false;
8193 bfd_put_32 (output_bfd, STUB_JALR, p);
8194 p += 4;
8195 bfd_put_32 (output_bfd, STUB_LI16 + h->dynindx, p);
8197 BFD_ASSERT (h->plt.offset <= s->_raw_size);
8198 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8200 /* Mark the symbol as undefined. plt.offset != -1 occurs
8201 only for the referenced symbol. */
8202 sym->st_shndx = SHN_UNDEF;
8204 /* The run-time linker uses the st_value field of the symbol
8205 to reset the global offset table entry for this external
8206 to its stub address when unlinking a shared object. */
8207 gval = s->output_section->vma + s->output_offset + h->plt.offset;
8208 sym->st_value = gval;
8211 BFD_ASSERT (h->dynindx != -1);
8213 sgot = mips_elf_got_section (dynobj);
8214 BFD_ASSERT (sgot != NULL);
8215 BFD_ASSERT (elf_section_data (sgot) != NULL);
8216 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8217 BFD_ASSERT (g != NULL);
8219 /* Run through the global symbol table, creating GOT entries for all
8220 the symbols that need them. */
8221 if (g->global_gotsym != NULL
8222 && h->dynindx >= g->global_gotsym->dynindx)
8224 bfd_vma offset;
8225 bfd_vma value;
8227 if (sym->st_value)
8228 value = sym->st_value;
8229 else
8230 /* For an entity defined in a shared object, this will be
8231 NULL. (For functions in shared objects for
8232 which we have created stubs, ST_VALUE will be non-NULL.
8233 That's because such the functions are now no longer defined
8234 in a shared object.) */
8235 value = h->root.u.def.value;
8237 offset = mips_elf_global_got_index (dynobj, h);
8238 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8241 /* Create a .msym entry, if appropriate. */
8242 smsym = bfd_get_section_by_name (dynobj,
8243 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8244 if (smsym)
8246 Elf32_Internal_Msym msym;
8248 msym.ms_hash_value = bfd_elf_hash (h->root.root.string);
8249 /* It is undocumented what the `1' indicates, but IRIX6 uses
8250 this value. */
8251 msym.ms_info = ELF32_MS_INFO (mh->min_dyn_reloc_index, 1);
8252 bfd_mips_elf_swap_msym_out
8253 (dynobj, &msym,
8254 ((Elf32_External_Msym *) smsym->contents) + h->dynindx);
8257 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8258 name = h->root.root.string;
8259 if (strcmp (name, "_DYNAMIC") == 0
8260 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
8261 sym->st_shndx = SHN_ABS;
8262 else if (strcmp (name, "_DYNAMIC_LINK") == 0)
8264 sym->st_shndx = SHN_ABS;
8265 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8266 sym->st_value = 1;
8268 else if (SGI_COMPAT (output_bfd))
8270 if (strcmp (name, "_gp_disp") == 0)
8272 sym->st_shndx = SHN_ABS;
8273 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8274 sym->st_value = elf_gp (output_bfd);
8276 else if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8277 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8279 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8280 sym->st_other = STO_PROTECTED;
8281 sym->st_value = 0;
8282 sym->st_shndx = SHN_MIPS_DATA;
8284 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8286 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8287 sym->st_other = STO_PROTECTED;
8288 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8289 sym->st_shndx = SHN_ABS;
8291 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8293 if (h->type == STT_FUNC)
8294 sym->st_shndx = SHN_MIPS_TEXT;
8295 else if (h->type == STT_OBJECT)
8296 sym->st_shndx = SHN_MIPS_DATA;
8300 /* Handle the IRIX6-specific symbols. */
8301 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8302 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8304 if (SGI_COMPAT (output_bfd)
8305 && ! info->shared)
8307 if (! mips_elf_hash_table (info)->use_rld_obj_head
8308 && strcmp (name, "__rld_map") == 0)
8310 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8311 BFD_ASSERT (s != NULL);
8312 sym->st_value = s->output_section->vma + s->output_offset;
8313 bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents);
8314 if (mips_elf_hash_table (info)->rld_value == 0)
8315 mips_elf_hash_table (info)->rld_value = sym->st_value;
8317 else if (mips_elf_hash_table (info)->use_rld_obj_head
8318 && strcmp (name, "__rld_obj_head") == 0)
8320 /* IRIX6 does not use a .rld_map section. */
8321 if (IRIX_COMPAT (output_bfd) == ict_irix5)
8322 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8323 != NULL);
8324 mips_elf_hash_table (info)->rld_value = sym->st_value;
8328 /* If this is a mips16 symbol, force the value to be even. */
8329 if (sym->st_other == STO_MIPS16
8330 && (sym->st_value & 1) != 0)
8331 --sym->st_value;
8333 return true;
8336 /* Finish up the dynamic sections. */
8338 boolean
8339 _bfd_mips_elf_finish_dynamic_sections (output_bfd, info)
8340 bfd *output_bfd;
8341 struct bfd_link_info *info;
8343 bfd *dynobj;
8344 asection *sdyn;
8345 asection *sgot;
8346 struct mips_got_info *g;
8348 dynobj = elf_hash_table (info)->dynobj;
8350 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8352 sgot = mips_elf_got_section (dynobj);
8353 if (sgot == NULL)
8354 g = NULL;
8355 else
8357 BFD_ASSERT (elf_section_data (sgot) != NULL);
8358 g = (struct mips_got_info *) elf_section_data (sgot)->tdata;
8359 BFD_ASSERT (g != NULL);
8362 if (elf_hash_table (info)->dynamic_sections_created)
8364 bfd_byte *b;
8366 BFD_ASSERT (sdyn != NULL);
8367 BFD_ASSERT (g != NULL);
8369 for (b = sdyn->contents;
8370 b < sdyn->contents + sdyn->_raw_size;
8371 b += MIPS_ELF_DYN_SIZE (dynobj))
8373 Elf_Internal_Dyn dyn;
8374 const char *name;
8375 size_t elemsize;
8376 asection *s;
8377 boolean swap_out_p;
8379 /* Read in the current dynamic entry. */
8380 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8382 /* Assume that we're going to modify it and write it out. */
8383 swap_out_p = true;
8385 switch (dyn.d_tag)
8387 case DT_RELENT:
8388 s = (bfd_get_section_by_name
8389 (dynobj,
8390 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj)));
8391 BFD_ASSERT (s != NULL);
8392 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8393 break;
8395 case DT_STRSZ:
8396 /* Rewrite DT_STRSZ. */
8397 dyn.d_un.d_val =
8398 _bfd_stringtab_size (elf_hash_table (info)->dynstr);
8399 break;
8401 case DT_PLTGOT:
8402 name = ".got";
8403 goto get_vma;
8404 case DT_MIPS_CONFLICT:
8405 name = ".conflict";
8406 goto get_vma;
8407 case DT_MIPS_LIBLIST:
8408 name = ".liblist";
8409 get_vma:
8410 s = bfd_get_section_by_name (output_bfd, name);
8411 BFD_ASSERT (s != NULL);
8412 dyn.d_un.d_ptr = s->vma;
8413 break;
8415 case DT_MIPS_RLD_VERSION:
8416 dyn.d_un.d_val = 1; /* XXX */
8417 break;
8419 case DT_MIPS_FLAGS:
8420 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8421 break;
8423 case DT_MIPS_CONFLICTNO:
8424 name = ".conflict";
8425 elemsize = sizeof (Elf32_Conflict);
8426 goto set_elemno;
8428 case DT_MIPS_LIBLISTNO:
8429 name = ".liblist";
8430 elemsize = sizeof (Elf32_Lib);
8431 set_elemno:
8432 s = bfd_get_section_by_name (output_bfd, name);
8433 if (s != NULL)
8435 if (s->_cooked_size != 0)
8436 dyn.d_un.d_val = s->_cooked_size / elemsize;
8437 else
8438 dyn.d_un.d_val = s->_raw_size / elemsize;
8440 else
8441 dyn.d_un.d_val = 0;
8442 break;
8444 case DT_MIPS_TIME_STAMP:
8445 time ((time_t *) &dyn.d_un.d_val);
8446 break;
8448 case DT_MIPS_ICHECKSUM:
8449 /* XXX FIXME: */
8450 swap_out_p = false;
8451 break;
8453 case DT_MIPS_IVERSION:
8454 /* XXX FIXME: */
8455 swap_out_p = false;
8456 break;
8458 case DT_MIPS_BASE_ADDRESS:
8459 s = output_bfd->sections;
8460 BFD_ASSERT (s != NULL);
8461 dyn.d_un.d_ptr = s->vma & ~(0xffff);
8462 break;
8464 case DT_MIPS_LOCAL_GOTNO:
8465 dyn.d_un.d_val = g->local_gotno;
8466 break;
8468 case DT_MIPS_SYMTABNO:
8469 name = ".dynsym";
8470 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8471 s = bfd_get_section_by_name (output_bfd, name);
8472 BFD_ASSERT (s != NULL);
8474 if (s->_cooked_size != 0)
8475 dyn.d_un.d_val = s->_cooked_size / elemsize;
8476 else
8477 dyn.d_un.d_val = s->_raw_size / elemsize;
8478 break;
8480 case DT_MIPS_UNREFEXTNO:
8481 /* The index into the dynamic symbol table which is the
8482 entry of the first external symbol that is not
8483 referenced within the same object. */
8484 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8485 break;
8487 case DT_MIPS_GOTSYM:
8488 dyn.d_un.d_val = g->global_gotsym->dynindx;
8489 break;
8491 case DT_MIPS_HIPAGENO:
8492 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
8493 break;
8495 case DT_MIPS_RLD_MAP:
8496 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8497 break;
8499 case DT_MIPS_OPTIONS:
8500 s = (bfd_get_section_by_name
8501 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8502 dyn.d_un.d_ptr = s->vma;
8503 break;
8505 case DT_MIPS_MSYM:
8506 s = (bfd_get_section_by_name
8507 (output_bfd, MIPS_ELF_MSYM_SECTION_NAME (output_bfd)));
8508 dyn.d_un.d_ptr = s->vma;
8509 break;
8511 default:
8512 swap_out_p = false;
8513 break;
8516 if (swap_out_p)
8517 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8518 (dynobj, &dyn, b);
8522 /* The first entry of the global offset table will be filled at
8523 runtime. The second entry will be used by some runtime loaders.
8524 This isn't the case of Irix rld. */
8525 if (sgot != NULL && sgot->_raw_size > 0)
8527 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8528 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8529 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8532 if (sgot != NULL)
8533 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8534 = MIPS_ELF_GOT_SIZE (output_bfd);
8537 asection *smsym;
8538 asection *s;
8539 Elf32_compact_rel cpt;
8541 /* ??? The section symbols for the output sections were set up in
8542 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8543 symbols. Should we do so? */
8545 smsym = bfd_get_section_by_name (dynobj,
8546 MIPS_ELF_MSYM_SECTION_NAME (dynobj));
8547 if (smsym != NULL)
8549 Elf32_Internal_Msym msym;
8551 msym.ms_hash_value = 0;
8552 msym.ms_info = ELF32_MS_INFO (0, 1);
8554 for (s = output_bfd->sections; s != NULL; s = s->next)
8556 long dynindx = elf_section_data (s)->dynindx;
8558 bfd_mips_elf_swap_msym_out
8559 (output_bfd, &msym,
8560 (((Elf32_External_Msym *) smsym->contents)
8561 + dynindx));
8565 if (SGI_COMPAT (output_bfd))
8567 /* Write .compact_rel section out. */
8568 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8569 if (s != NULL)
8571 cpt.id1 = 1;
8572 cpt.num = s->reloc_count;
8573 cpt.id2 = 2;
8574 cpt.offset = (s->output_section->filepos
8575 + sizeof (Elf32_External_compact_rel));
8576 cpt.reserved0 = 0;
8577 cpt.reserved1 = 0;
8578 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8579 ((Elf32_External_compact_rel *)
8580 s->contents));
8582 /* Clean up a dummy stub function entry in .text. */
8583 s = bfd_get_section_by_name (dynobj,
8584 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8585 if (s != NULL)
8587 file_ptr dummy_offset;
8589 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
8590 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
8591 memset (s->contents + dummy_offset, 0,
8592 MIPS_FUNCTION_STUB_SIZE);
8597 /* Clean up a first relocation in .rel.dyn. */
8598 s = bfd_get_section_by_name (dynobj,
8599 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj));
8600 if (s != NULL && s->_raw_size > 0)
8601 memset (s->contents, 0, MIPS_ELF_REL_SIZE (dynobj));
8604 return true;
8607 /* This is almost identical to bfd_generic_get_... except that some
8608 MIPS relocations need to be handled specially. Sigh. */
8610 static bfd_byte *
8611 elf32_mips_get_relocated_section_contents (abfd, link_info, link_order, data,
8612 relocateable, symbols)
8613 bfd *abfd;
8614 struct bfd_link_info *link_info;
8615 struct bfd_link_order *link_order;
8616 bfd_byte *data;
8617 boolean relocateable;
8618 asymbol **symbols;
8620 /* Get enough memory to hold the stuff */
8621 bfd *input_bfd = link_order->u.indirect.section->owner;
8622 asection *input_section = link_order->u.indirect.section;
8624 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8625 arelent **reloc_vector = NULL;
8626 long reloc_count;
8628 if (reloc_size < 0)
8629 goto error_return;
8631 reloc_vector = (arelent **) bfd_malloc (reloc_size);
8632 if (reloc_vector == NULL && reloc_size != 0)
8633 goto error_return;
8635 /* read in the section */
8636 if (!bfd_get_section_contents (input_bfd,
8637 input_section,
8638 (PTR) data,
8640 input_section->_raw_size))
8641 goto error_return;
8643 /* We're not relaxing the section, so just copy the size info */
8644 input_section->_cooked_size = input_section->_raw_size;
8645 input_section->reloc_done = true;
8647 reloc_count = bfd_canonicalize_reloc (input_bfd,
8648 input_section,
8649 reloc_vector,
8650 symbols);
8651 if (reloc_count < 0)
8652 goto error_return;
8654 if (reloc_count > 0)
8656 arelent **parent;
8657 /* for mips */
8658 int gp_found;
8659 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8662 struct bfd_hash_entry *h;
8663 struct bfd_link_hash_entry *lh;
8664 /* Skip all this stuff if we aren't mixing formats. */
8665 if (abfd && input_bfd
8666 && abfd->xvec == input_bfd->xvec)
8667 lh = 0;
8668 else
8670 h = bfd_hash_lookup (&link_info->hash->table, "_gp", false, false);
8671 lh = (struct bfd_link_hash_entry *) h;
8673 lookup:
8674 if (lh)
8676 switch (lh->type)
8678 case bfd_link_hash_undefined:
8679 case bfd_link_hash_undefweak:
8680 case bfd_link_hash_common:
8681 gp_found = 0;
8682 break;
8683 case bfd_link_hash_defined:
8684 case bfd_link_hash_defweak:
8685 gp_found = 1;
8686 gp = lh->u.def.value;
8687 break;
8688 case bfd_link_hash_indirect:
8689 case bfd_link_hash_warning:
8690 lh = lh->u.i.link;
8691 /* @@FIXME ignoring warning for now */
8692 goto lookup;
8693 case bfd_link_hash_new:
8694 default:
8695 abort ();
8698 else
8699 gp_found = 0;
8701 /* end mips */
8702 for (parent = reloc_vector; *parent != (arelent *) NULL;
8703 parent++)
8705 char *error_message = (char *) NULL;
8706 bfd_reloc_status_type r;
8708 /* Specific to MIPS: Deal with relocation types that require
8709 knowing the gp of the output bfd. */
8710 asymbol *sym = *(*parent)->sym_ptr_ptr;
8711 if (bfd_is_abs_section (sym->section) && abfd)
8713 /* The special_function wouldn't get called anyways. */
8715 else if (!gp_found)
8717 /* The gp isn't there; let the special function code
8718 fall over on its own. */
8720 else if ((*parent)->howto->special_function
8721 == _bfd_mips_elf_gprel16_reloc)
8723 /* bypass special_function call */
8724 r = gprel16_with_gp (input_bfd, sym, *parent, input_section,
8725 relocateable, (PTR) data, gp);
8726 goto skip_bfd_perform_relocation;
8728 /* end mips specific stuff */
8730 r = bfd_perform_relocation (input_bfd,
8731 *parent,
8732 (PTR) data,
8733 input_section,
8734 relocateable ? abfd : (bfd *) NULL,
8735 &error_message);
8736 skip_bfd_perform_relocation:
8738 if (relocateable)
8740 asection *os = input_section->output_section;
8742 /* A partial link, so keep the relocs */
8743 os->orelocation[os->reloc_count] = *parent;
8744 os->reloc_count++;
8747 if (r != bfd_reloc_ok)
8749 switch (r)
8751 case bfd_reloc_undefined:
8752 if (!((*link_info->callbacks->undefined_symbol)
8753 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8754 input_bfd, input_section, (*parent)->address)))
8755 goto error_return;
8756 break;
8757 case bfd_reloc_dangerous:
8758 BFD_ASSERT (error_message != (char *) NULL);
8759 if (!((*link_info->callbacks->reloc_dangerous)
8760 (link_info, error_message, input_bfd, input_section,
8761 (*parent)->address)))
8762 goto error_return;
8763 break;
8764 case bfd_reloc_overflow:
8765 if (!((*link_info->callbacks->reloc_overflow)
8766 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8767 (*parent)->howto->name, (*parent)->addend,
8768 input_bfd, input_section, (*parent)->address)))
8769 goto error_return;
8770 break;
8771 case bfd_reloc_outofrange:
8772 default:
8773 abort ();
8774 break;
8780 if (reloc_vector != NULL)
8781 free (reloc_vector);
8782 return data;
8784 error_return:
8785 if (reloc_vector != NULL)
8786 free (reloc_vector);
8787 return NULL;
8789 #define bfd_elf32_bfd_get_relocated_section_contents \
8790 elf32_mips_get_relocated_section_contents
8792 /* ECOFF swapping routines. These are used when dealing with the
8793 .mdebug section, which is in the ECOFF debugging format. */
8794 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap =
8796 /* Symbol table magic number. */
8797 magicSym,
8798 /* Alignment of debugging information. E.g., 4. */
8800 /* Sizes of external symbolic information. */
8801 sizeof (struct hdr_ext),
8802 sizeof (struct dnr_ext),
8803 sizeof (struct pdr_ext),
8804 sizeof (struct sym_ext),
8805 sizeof (struct opt_ext),
8806 sizeof (struct fdr_ext),
8807 sizeof (struct rfd_ext),
8808 sizeof (struct ext_ext),
8809 /* Functions to swap in external symbolic data. */
8810 ecoff_swap_hdr_in,
8811 ecoff_swap_dnr_in,
8812 ecoff_swap_pdr_in,
8813 ecoff_swap_sym_in,
8814 ecoff_swap_opt_in,
8815 ecoff_swap_fdr_in,
8816 ecoff_swap_rfd_in,
8817 ecoff_swap_ext_in,
8818 _bfd_ecoff_swap_tir_in,
8819 _bfd_ecoff_swap_rndx_in,
8820 /* Functions to swap out external symbolic data. */
8821 ecoff_swap_hdr_out,
8822 ecoff_swap_dnr_out,
8823 ecoff_swap_pdr_out,
8824 ecoff_swap_sym_out,
8825 ecoff_swap_opt_out,
8826 ecoff_swap_fdr_out,
8827 ecoff_swap_rfd_out,
8828 ecoff_swap_ext_out,
8829 _bfd_ecoff_swap_tir_out,
8830 _bfd_ecoff_swap_rndx_out,
8831 /* Function to read in symbolic data. */
8832 _bfd_mips_elf_read_ecoff_info
8835 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
8836 #define TARGET_LITTLE_NAME "elf32-littlemips"
8837 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
8838 #define TARGET_BIG_NAME "elf32-bigmips"
8839 #define ELF_ARCH bfd_arch_mips
8840 #define ELF_MACHINE_CODE EM_MIPS
8842 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
8843 a value of 0x1000, and we are compatible. */
8844 #define ELF_MAXPAGESIZE 0x1000
8846 #define elf_backend_collect true
8847 #define elf_backend_type_change_ok true
8848 #define elf_backend_can_gc_sections true
8849 #define elf_info_to_howto mips_info_to_howto_rela
8850 #define elf_info_to_howto_rel mips_info_to_howto_rel
8851 #define elf_backend_sym_is_global mips_elf_sym_is_global
8852 #define elf_backend_object_p _bfd_mips_elf_object_p
8853 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
8854 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
8855 #define elf_backend_section_from_bfd_section \
8856 _bfd_mips_elf_section_from_bfd_section
8857 #define elf_backend_section_processing _bfd_mips_elf_section_processing
8858 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
8859 #define elf_backend_additional_program_headers \
8860 _bfd_mips_elf_additional_program_headers
8861 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
8862 #define elf_backend_final_write_processing \
8863 _bfd_mips_elf_final_write_processing
8864 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
8865 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
8866 #define elf_backend_create_dynamic_sections \
8867 _bfd_mips_elf_create_dynamic_sections
8868 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
8869 #define elf_backend_adjust_dynamic_symbol \
8870 _bfd_mips_elf_adjust_dynamic_symbol
8871 #define elf_backend_always_size_sections \
8872 _bfd_mips_elf_always_size_sections
8873 #define elf_backend_size_dynamic_sections \
8874 _bfd_mips_elf_size_dynamic_sections
8875 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
8876 #define elf_backend_link_output_symbol_hook \
8877 _bfd_mips_elf_link_output_symbol_hook
8878 #define elf_backend_finish_dynamic_symbol \
8879 _bfd_mips_elf_finish_dynamic_symbol
8880 #define elf_backend_finish_dynamic_sections \
8881 _bfd_mips_elf_finish_dynamic_sections
8882 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
8883 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
8885 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
8886 #define elf_backend_plt_header_size 0
8888 #define bfd_elf32_bfd_is_local_label_name \
8889 mips_elf_is_local_label_name
8890 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
8891 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
8892 #define bfd_elf32_bfd_link_hash_table_create \
8893 _bfd_mips_elf_link_hash_table_create
8894 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
8895 #define bfd_elf32_bfd_copy_private_bfd_data \
8896 _bfd_mips_elf_copy_private_bfd_data
8897 #define bfd_elf32_bfd_merge_private_bfd_data \
8898 _bfd_mips_elf_merge_private_bfd_data
8899 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
8900 #define bfd_elf32_bfd_print_private_bfd_data \
8901 _bfd_mips_elf_print_private_bfd_data
8902 #include "elf32-target.h"