PR ld/4424
[binutils.git] / bfd / elflink.c
blobba2f54008b4d42faef29d8171a14ae34934e6854
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
32 /* Define a symbol in a dynamic linkage section. */
34 struct elf_link_hash_entry *
35 _bfd_elf_define_linkage_sym (bfd *abfd,
36 struct bfd_link_info *info,
37 asection *sec,
38 const char *name)
40 struct elf_link_hash_entry *h;
41 struct bfd_link_hash_entry *bh;
42 const struct elf_backend_data *bed;
44 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
45 if (h != NULL)
47 /* Zap symbol defined in an as-needed lib that wasn't linked.
48 This is a symptom of a larger problem: Absolute symbols
49 defined in shared libraries can't be overridden, because we
50 lose the link to the bfd which is via the symbol section. */
51 h->root.type = bfd_link_hash_new;
54 bh = &h->root;
55 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
56 sec, 0, NULL, FALSE,
57 get_elf_backend_data (abfd)->collect,
58 &bh))
59 return NULL;
60 h = (struct elf_link_hash_entry *) bh;
61 h->def_regular = 1;
62 h->type = STT_OBJECT;
63 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
65 bed = get_elf_backend_data (abfd);
66 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
67 return h;
70 bfd_boolean
71 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
73 flagword flags;
74 asection *s;
75 struct elf_link_hash_entry *h;
76 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
77 int ptralign;
79 /* This function may be called more than once. */
80 s = bfd_get_section_by_name (abfd, ".got");
81 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
82 return TRUE;
84 switch (bed->s->arch_size)
86 case 32:
87 ptralign = 2;
88 break;
90 case 64:
91 ptralign = 3;
92 break;
94 default:
95 bfd_set_error (bfd_error_bad_value);
96 return FALSE;
99 flags = bed->dynamic_sec_flags;
101 s = bfd_make_section_with_flags (abfd, ".got", flags);
102 if (s == NULL
103 || !bfd_set_section_alignment (abfd, s, ptralign))
104 return FALSE;
106 if (bed->want_got_plt)
108 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
109 if (s == NULL
110 || !bfd_set_section_alignment (abfd, s, ptralign))
111 return FALSE;
114 if (bed->want_got_sym)
116 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
117 (or .got.plt) section. We don't do this in the linker script
118 because we don't want to define the symbol if we are not creating
119 a global offset table. */
120 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
121 elf_hash_table (info)->hgot = h;
122 if (h == NULL)
123 return FALSE;
126 /* The first bit of the global offset table is the header. */
127 s->size += bed->got_header_size;
129 return TRUE;
132 /* Create a strtab to hold the dynamic symbol names. */
133 static bfd_boolean
134 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
136 struct elf_link_hash_table *hash_table;
138 hash_table = elf_hash_table (info);
139 if (hash_table->dynobj == NULL)
140 hash_table->dynobj = abfd;
142 if (hash_table->dynstr == NULL)
144 hash_table->dynstr = _bfd_elf_strtab_init ();
145 if (hash_table->dynstr == NULL)
146 return FALSE;
148 return TRUE;
151 /* Create some sections which will be filled in with dynamic linking
152 information. ABFD is an input file which requires dynamic sections
153 to be created. The dynamic sections take up virtual memory space
154 when the final executable is run, so we need to create them before
155 addresses are assigned to the output sections. We work out the
156 actual contents and size of these sections later. */
158 bfd_boolean
159 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
161 flagword flags;
162 register asection *s;
163 const struct elf_backend_data *bed;
165 if (! is_elf_hash_table (info->hash))
166 return FALSE;
168 if (elf_hash_table (info)->dynamic_sections_created)
169 return TRUE;
171 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
172 return FALSE;
174 abfd = elf_hash_table (info)->dynobj;
175 bed = get_elf_backend_data (abfd);
177 flags = bed->dynamic_sec_flags;
179 /* A dynamically linked executable has a .interp section, but a
180 shared library does not. */
181 if (info->executable)
183 s = bfd_make_section_with_flags (abfd, ".interp",
184 flags | SEC_READONLY);
185 if (s == NULL)
186 return FALSE;
189 /* Create sections to hold version informations. These are removed
190 if they are not needed. */
191 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
192 flags | SEC_READONLY);
193 if (s == NULL
194 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
195 return FALSE;
197 s = bfd_make_section_with_flags (abfd, ".gnu.version",
198 flags | SEC_READONLY);
199 if (s == NULL
200 || ! bfd_set_section_alignment (abfd, s, 1))
201 return FALSE;
203 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
204 flags | SEC_READONLY);
205 if (s == NULL
206 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
207 return FALSE;
209 s = bfd_make_section_with_flags (abfd, ".dynsym",
210 flags | SEC_READONLY);
211 if (s == NULL
212 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
213 return FALSE;
215 s = bfd_make_section_with_flags (abfd, ".dynstr",
216 flags | SEC_READONLY);
217 if (s == NULL)
218 return FALSE;
220 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
221 if (s == NULL
222 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
223 return FALSE;
225 /* The special symbol _DYNAMIC is always set to the start of the
226 .dynamic section. We could set _DYNAMIC in a linker script, but we
227 only want to define it if we are, in fact, creating a .dynamic
228 section. We don't want to define it if there is no .dynamic
229 section, since on some ELF platforms the start up code examines it
230 to decide how to initialize the process. */
231 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
232 return FALSE;
234 if (info->emit_hash)
236 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
243 if (info->emit_gnu_hash)
245 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
246 flags | SEC_READONLY);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
251 4 32-bit words followed by variable count of 64-bit words, then
252 variable count of 32-bit words. */
253 if (bed->s->arch_size == 64)
254 elf_section_data (s)->this_hdr.sh_entsize = 0;
255 else
256 elf_section_data (s)->this_hdr.sh_entsize = 4;
259 /* Let the backend create the rest of the sections. This lets the
260 backend set the right flags. The backend will normally create
261 the .got and .plt sections. */
262 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
263 return FALSE;
265 elf_hash_table (info)->dynamic_sections_created = TRUE;
267 return TRUE;
270 /* Create dynamic sections when linking against a dynamic object. */
272 bfd_boolean
273 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
275 flagword flags, pltflags;
276 struct elf_link_hash_entry *h;
277 asection *s;
278 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
280 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
281 .rel[a].bss sections. */
282 flags = bed->dynamic_sec_flags;
284 pltflags = flags;
285 if (bed->plt_not_loaded)
286 /* We do not clear SEC_ALLOC here because we still want the OS to
287 allocate space for the section; it's just that there's nothing
288 to read in from the object file. */
289 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
290 else
291 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
292 if (bed->plt_readonly)
293 pltflags |= SEC_READONLY;
295 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
298 return FALSE;
300 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
301 .plt section. */
302 if (bed->want_plt_sym)
304 h = _bfd_elf_define_linkage_sym (abfd, info, s,
305 "_PROCEDURE_LINKAGE_TABLE_");
306 elf_hash_table (info)->hplt = h;
307 if (h == NULL)
308 return FALSE;
311 s = bfd_make_section_with_flags (abfd,
312 (bed->default_use_rela_p
313 ? ".rela.plt" : ".rel.plt"),
314 flags | SEC_READONLY);
315 if (s == NULL
316 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
317 return FALSE;
319 if (! _bfd_elf_create_got_section (abfd, info))
320 return FALSE;
322 if (bed->want_dynbss)
324 /* The .dynbss section is a place to put symbols which are defined
325 by dynamic objects, are referenced by regular objects, and are
326 not functions. We must allocate space for them in the process
327 image and use a R_*_COPY reloc to tell the dynamic linker to
328 initialize them at run time. The linker script puts the .dynbss
329 section into the .bss section of the final image. */
330 s = bfd_make_section_with_flags (abfd, ".dynbss",
331 (SEC_ALLOC
332 | SEC_LINKER_CREATED));
333 if (s == NULL)
334 return FALSE;
336 /* The .rel[a].bss section holds copy relocs. This section is not
337 normally needed. We need to create it here, though, so that the
338 linker will map it to an output section. We can't just create it
339 only if we need it, because we will not know whether we need it
340 until we have seen all the input files, and the first time the
341 main linker code calls BFD after examining all the input files
342 (size_dynamic_sections) the input sections have already been
343 mapped to the output sections. If the section turns out not to
344 be needed, we can discard it later. We will never need this
345 section when generating a shared object, since they do not use
346 copy relocs. */
347 if (! info->shared)
349 s = bfd_make_section_with_flags (abfd,
350 (bed->default_use_rela_p
351 ? ".rela.bss" : ".rel.bss"),
352 flags | SEC_READONLY);
353 if (s == NULL
354 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
355 return FALSE;
359 return TRUE;
362 /* Record a new dynamic symbol. We record the dynamic symbols as we
363 read the input files, since we need to have a list of all of them
364 before we can determine the final sizes of the output sections.
365 Note that we may actually call this function even though we are not
366 going to output any dynamic symbols; in some cases we know that a
367 symbol should be in the dynamic symbol table, but only if there is
368 one. */
370 bfd_boolean
371 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
372 struct elf_link_hash_entry *h)
374 if (h->dynindx == -1)
376 struct elf_strtab_hash *dynstr;
377 char *p;
378 const char *name;
379 bfd_size_type indx;
381 /* XXX: The ABI draft says the linker must turn hidden and
382 internal symbols into STB_LOCAL symbols when producing the
383 DSO. However, if ld.so honors st_other in the dynamic table,
384 this would not be necessary. */
385 switch (ELF_ST_VISIBILITY (h->other))
387 case STV_INTERNAL:
388 case STV_HIDDEN:
389 if (h->root.type != bfd_link_hash_undefined
390 && h->root.type != bfd_link_hash_undefweak)
392 h->forced_local = 1;
393 if (!elf_hash_table (info)->is_relocatable_executable)
394 return TRUE;
397 default:
398 break;
401 h->dynindx = elf_hash_table (info)->dynsymcount;
402 ++elf_hash_table (info)->dynsymcount;
404 dynstr = elf_hash_table (info)->dynstr;
405 if (dynstr == NULL)
407 /* Create a strtab to hold the dynamic symbol names. */
408 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
409 if (dynstr == NULL)
410 return FALSE;
413 /* We don't put any version information in the dynamic string
414 table. */
415 name = h->root.root.string;
416 p = strchr (name, ELF_VER_CHR);
417 if (p != NULL)
418 /* We know that the p points into writable memory. In fact,
419 there are only a few symbols that have read-only names, being
420 those like _GLOBAL_OFFSET_TABLE_ that are created specially
421 by the backends. Most symbols will have names pointing into
422 an ELF string table read from a file, or to objalloc memory. */
423 *p = 0;
425 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
427 if (p != NULL)
428 *p = ELF_VER_CHR;
430 if (indx == (bfd_size_type) -1)
431 return FALSE;
432 h->dynstr_index = indx;
435 return TRUE;
438 /* Mark a symbol dynamic. */
440 void
441 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
442 struct elf_link_hash_entry *h,
443 Elf_Internal_Sym *sym)
445 struct bfd_elf_dynamic_list *d = info->dynamic_list;
447 /* It may be called more than once on the same H. */
448 if(h->dynamic || info->relocatable)
449 return;
451 if ((info->dynamic_data
452 && (h->type == STT_OBJECT
453 || (sym != NULL
454 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
455 || (d != NULL
456 && h->root.type == bfd_link_hash_new
457 && (*d->match) (&d->head, NULL, h->root.root.string)))
458 h->dynamic = 1;
461 /* Record an assignment to a symbol made by a linker script. We need
462 this in case some dynamic object refers to this symbol. */
464 bfd_boolean
465 bfd_elf_record_link_assignment (bfd *output_bfd,
466 struct bfd_link_info *info,
467 const char *name,
468 bfd_boolean provide,
469 bfd_boolean hidden)
471 struct elf_link_hash_entry *h, *hv;
472 struct elf_link_hash_table *htab;
473 const struct elf_backend_data *bed;
475 if (!is_elf_hash_table (info->hash))
476 return TRUE;
478 htab = elf_hash_table (info);
479 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
480 if (h == NULL)
481 return provide;
483 switch (h->root.type)
485 case bfd_link_hash_defined:
486 case bfd_link_hash_defweak:
487 case bfd_link_hash_common:
488 break;
489 case bfd_link_hash_undefweak:
490 case bfd_link_hash_undefined:
491 /* Since we're defining the symbol, don't let it seem to have not
492 been defined. record_dynamic_symbol and size_dynamic_sections
493 may depend on this. */
494 h->root.type = bfd_link_hash_new;
495 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
496 bfd_link_repair_undef_list (&htab->root);
497 break;
498 case bfd_link_hash_new:
499 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
500 h->non_elf = 0;
501 break;
502 case bfd_link_hash_indirect:
503 /* We had a versioned symbol in a dynamic library. We make the
504 the versioned symbol point to this one. */
505 bed = get_elf_backend_data (output_bfd);
506 hv = h;
507 while (hv->root.type == bfd_link_hash_indirect
508 || hv->root.type == bfd_link_hash_warning)
509 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
510 /* We don't need to update h->root.u since linker will set them
511 later. */
512 h->root.type = bfd_link_hash_undefined;
513 hv->root.type = bfd_link_hash_indirect;
514 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
515 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
516 break;
517 case bfd_link_hash_warning:
518 abort ();
519 break;
522 /* If this symbol is being provided by the linker script, and it is
523 currently defined by a dynamic object, but not by a regular
524 object, then mark it as undefined so that the generic linker will
525 force the correct value. */
526 if (provide
527 && h->def_dynamic
528 && !h->def_regular)
529 h->root.type = bfd_link_hash_undefined;
531 /* If this symbol is not being provided by the linker script, and it is
532 currently defined by a dynamic object, but not by a regular object,
533 then clear out any version information because the symbol will not be
534 associated with the dynamic object any more. */
535 if (!provide
536 && h->def_dynamic
537 && !h->def_regular)
538 h->verinfo.verdef = NULL;
540 h->def_regular = 1;
542 if (provide && hidden)
544 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
546 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
547 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
550 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
551 and executables. */
552 if (!info->relocatable
553 && h->dynindx != -1
554 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
555 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
556 h->forced_local = 1;
558 if ((h->def_dynamic
559 || h->ref_dynamic
560 || info->shared
561 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
562 && h->dynindx == -1)
564 if (! bfd_elf_link_record_dynamic_symbol (info, h))
565 return FALSE;
567 /* If this is a weak defined symbol, and we know a corresponding
568 real symbol from the same dynamic object, make sure the real
569 symbol is also made into a dynamic symbol. */
570 if (h->u.weakdef != NULL
571 && h->u.weakdef->dynindx == -1)
573 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
574 return FALSE;
578 return TRUE;
581 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
582 success, and 2 on a failure caused by attempting to record a symbol
583 in a discarded section, eg. a discarded link-once section symbol. */
586 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
587 bfd *input_bfd,
588 long input_indx)
590 bfd_size_type amt;
591 struct elf_link_local_dynamic_entry *entry;
592 struct elf_link_hash_table *eht;
593 struct elf_strtab_hash *dynstr;
594 unsigned long dynstr_index;
595 char *name;
596 Elf_External_Sym_Shndx eshndx;
597 char esym[sizeof (Elf64_External_Sym)];
599 if (! is_elf_hash_table (info->hash))
600 return 0;
602 /* See if the entry exists already. */
603 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
604 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
605 return 1;
607 amt = sizeof (*entry);
608 entry = bfd_alloc (input_bfd, amt);
609 if (entry == NULL)
610 return 0;
612 /* Go find the symbol, so that we can find it's name. */
613 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
614 1, input_indx, &entry->isym, esym, &eshndx))
616 bfd_release (input_bfd, entry);
617 return 0;
620 if (entry->isym.st_shndx != SHN_UNDEF
621 && (entry->isym.st_shndx < SHN_LORESERVE
622 || entry->isym.st_shndx > SHN_HIRESERVE))
624 asection *s;
626 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
627 if (s == NULL || bfd_is_abs_section (s->output_section))
629 /* We can still bfd_release here as nothing has done another
630 bfd_alloc. We can't do this later in this function. */
631 bfd_release (input_bfd, entry);
632 return 2;
636 name = (bfd_elf_string_from_elf_section
637 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
638 entry->isym.st_name));
640 dynstr = elf_hash_table (info)->dynstr;
641 if (dynstr == NULL)
643 /* Create a strtab to hold the dynamic symbol names. */
644 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
645 if (dynstr == NULL)
646 return 0;
649 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
650 if (dynstr_index == (unsigned long) -1)
651 return 0;
652 entry->isym.st_name = dynstr_index;
654 eht = elf_hash_table (info);
656 entry->next = eht->dynlocal;
657 eht->dynlocal = entry;
658 entry->input_bfd = input_bfd;
659 entry->input_indx = input_indx;
660 eht->dynsymcount++;
662 /* Whatever binding the symbol had before, it's now local. */
663 entry->isym.st_info
664 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
666 /* The dynindx will be set at the end of size_dynamic_sections. */
668 return 1;
671 /* Return the dynindex of a local dynamic symbol. */
673 long
674 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
675 bfd *input_bfd,
676 long input_indx)
678 struct elf_link_local_dynamic_entry *e;
680 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
681 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
682 return e->dynindx;
683 return -1;
686 /* This function is used to renumber the dynamic symbols, if some of
687 them are removed because they are marked as local. This is called
688 via elf_link_hash_traverse. */
690 static bfd_boolean
691 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
692 void *data)
694 size_t *count = data;
696 if (h->root.type == bfd_link_hash_warning)
697 h = (struct elf_link_hash_entry *) h->root.u.i.link;
699 if (h->forced_local)
700 return TRUE;
702 if (h->dynindx != -1)
703 h->dynindx = ++(*count);
705 return TRUE;
709 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
710 STB_LOCAL binding. */
712 static bfd_boolean
713 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
714 void *data)
716 size_t *count = data;
718 if (h->root.type == bfd_link_hash_warning)
719 h = (struct elf_link_hash_entry *) h->root.u.i.link;
721 if (!h->forced_local)
722 return TRUE;
724 if (h->dynindx != -1)
725 h->dynindx = ++(*count);
727 return TRUE;
730 /* Return true if the dynamic symbol for a given section should be
731 omitted when creating a shared library. */
732 bfd_boolean
733 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
734 struct bfd_link_info *info,
735 asection *p)
737 struct elf_link_hash_table *htab;
739 switch (elf_section_data (p)->this_hdr.sh_type)
741 case SHT_PROGBITS:
742 case SHT_NOBITS:
743 /* If sh_type is yet undecided, assume it could be
744 SHT_PROGBITS/SHT_NOBITS. */
745 case SHT_NULL:
746 htab = elf_hash_table (info);
747 if (p == htab->tls_sec)
748 return FALSE;
750 if (htab->text_index_section != NULL)
751 return p != htab->text_index_section && p != htab->data_index_section;
753 if (strcmp (p->name, ".got") == 0
754 || strcmp (p->name, ".got.plt") == 0
755 || strcmp (p->name, ".plt") == 0)
757 asection *ip;
759 if (htab->dynobj != NULL
760 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
761 && (ip->flags & SEC_LINKER_CREATED)
762 && ip->output_section == p)
763 return TRUE;
765 return FALSE;
767 /* There shouldn't be section relative relocations
768 against any other section. */
769 default:
770 return TRUE;
774 /* Assign dynsym indices. In a shared library we generate a section
775 symbol for each output section, which come first. Next come symbols
776 which have been forced to local binding. Then all of the back-end
777 allocated local dynamic syms, followed by the rest of the global
778 symbols. */
780 static unsigned long
781 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
782 struct bfd_link_info *info,
783 unsigned long *section_sym_count)
785 unsigned long dynsymcount = 0;
787 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
789 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
790 asection *p;
791 for (p = output_bfd->sections; p ; p = p->next)
792 if ((p->flags & SEC_EXCLUDE) == 0
793 && (p->flags & SEC_ALLOC) != 0
794 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
795 elf_section_data (p)->dynindx = ++dynsymcount;
796 else
797 elf_section_data (p)->dynindx = 0;
799 *section_sym_count = dynsymcount;
801 elf_link_hash_traverse (elf_hash_table (info),
802 elf_link_renumber_local_hash_table_dynsyms,
803 &dynsymcount);
805 if (elf_hash_table (info)->dynlocal)
807 struct elf_link_local_dynamic_entry *p;
808 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
809 p->dynindx = ++dynsymcount;
812 elf_link_hash_traverse (elf_hash_table (info),
813 elf_link_renumber_hash_table_dynsyms,
814 &dynsymcount);
816 /* There is an unused NULL entry at the head of the table which
817 we must account for in our count. Unless there weren't any
818 symbols, which means we'll have no table at all. */
819 if (dynsymcount != 0)
820 ++dynsymcount;
822 elf_hash_table (info)->dynsymcount = dynsymcount;
823 return dynsymcount;
826 /* This function is called when we want to define a new symbol. It
827 handles the various cases which arise when we find a definition in
828 a dynamic object, or when there is already a definition in a
829 dynamic object. The new symbol is described by NAME, SYM, PSEC,
830 and PVALUE. We set SYM_HASH to the hash table entry. We set
831 OVERRIDE if the old symbol is overriding a new definition. We set
832 TYPE_CHANGE_OK if it is OK for the type to change. We set
833 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
834 change, we mean that we shouldn't warn if the type or size does
835 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
836 object is overridden by a regular object. */
838 bfd_boolean
839 _bfd_elf_merge_symbol (bfd *abfd,
840 struct bfd_link_info *info,
841 const char *name,
842 Elf_Internal_Sym *sym,
843 asection **psec,
844 bfd_vma *pvalue,
845 unsigned int *pold_alignment,
846 struct elf_link_hash_entry **sym_hash,
847 bfd_boolean *skip,
848 bfd_boolean *override,
849 bfd_boolean *type_change_ok,
850 bfd_boolean *size_change_ok)
852 asection *sec, *oldsec;
853 struct elf_link_hash_entry *h;
854 struct elf_link_hash_entry *flip;
855 int bind;
856 bfd *oldbfd;
857 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
858 bfd_boolean newweak, oldweak;
859 const struct elf_backend_data *bed;
861 *skip = FALSE;
862 *override = FALSE;
864 sec = *psec;
865 bind = ELF_ST_BIND (sym->st_info);
867 /* Silently discard TLS symbols from --just-syms. There's no way to
868 combine a static TLS block with a new TLS block for this executable. */
869 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
870 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
872 *skip = TRUE;
873 return TRUE;
876 if (! bfd_is_und_section (sec))
877 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
878 else
879 h = ((struct elf_link_hash_entry *)
880 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
881 if (h == NULL)
882 return FALSE;
883 *sym_hash = h;
885 /* This code is for coping with dynamic objects, and is only useful
886 if we are doing an ELF link. */
887 if (info->hash->creator != abfd->xvec)
888 return TRUE;
890 /* For merging, we only care about real symbols. */
892 while (h->root.type == bfd_link_hash_indirect
893 || h->root.type == bfd_link_hash_warning)
894 h = (struct elf_link_hash_entry *) h->root.u.i.link;
896 /* We have to check it for every instance since the first few may be
897 refereences and not all compilers emit symbol type for undefined
898 symbols. */
899 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
901 /* If we just created the symbol, mark it as being an ELF symbol.
902 Other than that, there is nothing to do--there is no merge issue
903 with a newly defined symbol--so we just return. */
905 if (h->root.type == bfd_link_hash_new)
907 h->non_elf = 0;
908 return TRUE;
911 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
912 existing symbol. */
914 switch (h->root.type)
916 default:
917 oldbfd = NULL;
918 oldsec = NULL;
919 break;
921 case bfd_link_hash_undefined:
922 case bfd_link_hash_undefweak:
923 oldbfd = h->root.u.undef.abfd;
924 oldsec = NULL;
925 break;
927 case bfd_link_hash_defined:
928 case bfd_link_hash_defweak:
929 oldbfd = h->root.u.def.section->owner;
930 oldsec = h->root.u.def.section;
931 break;
933 case bfd_link_hash_common:
934 oldbfd = h->root.u.c.p->section->owner;
935 oldsec = h->root.u.c.p->section;
936 break;
939 /* In cases involving weak versioned symbols, we may wind up trying
940 to merge a symbol with itself. Catch that here, to avoid the
941 confusion that results if we try to override a symbol with
942 itself. The additional tests catch cases like
943 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
944 dynamic object, which we do want to handle here. */
945 if (abfd == oldbfd
946 && ((abfd->flags & DYNAMIC) == 0
947 || !h->def_regular))
948 return TRUE;
950 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
951 respectively, is from a dynamic object. */
953 newdyn = (abfd->flags & DYNAMIC) != 0;
955 olddyn = FALSE;
956 if (oldbfd != NULL)
957 olddyn = (oldbfd->flags & DYNAMIC) != 0;
958 else if (oldsec != NULL)
960 /* This handles the special SHN_MIPS_{TEXT,DATA} section
961 indices used by MIPS ELF. */
962 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
965 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
966 respectively, appear to be a definition rather than reference. */
968 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
970 olddef = (h->root.type != bfd_link_hash_undefined
971 && h->root.type != bfd_link_hash_undefweak
972 && h->root.type != bfd_link_hash_common);
974 bed = get_elf_backend_data (abfd);
975 /* When we try to create a default indirect symbol from the dynamic
976 definition with the default version, we skip it if its type and
977 the type of existing regular definition mismatch. We only do it
978 if the existing regular definition won't be dynamic. */
979 if (pold_alignment == NULL
980 && !info->shared
981 && !info->export_dynamic
982 && !h->ref_dynamic
983 && newdyn
984 && newdef
985 && !olddyn
986 && (olddef || h->root.type == bfd_link_hash_common)
987 && ELF_ST_TYPE (sym->st_info) != h->type
988 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
989 && h->type != STT_NOTYPE
990 && !(bed->is_function_type (ELF_ST_TYPE (sym->st_info))
991 && bed->is_function_type (h->type)))
993 *skip = TRUE;
994 return TRUE;
997 /* Check TLS symbol. We don't check undefined symbol introduced by
998 "ld -u". */
999 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1000 && ELF_ST_TYPE (sym->st_info) != h->type
1001 && oldbfd != NULL)
1003 bfd *ntbfd, *tbfd;
1004 bfd_boolean ntdef, tdef;
1005 asection *ntsec, *tsec;
1007 if (h->type == STT_TLS)
1009 ntbfd = abfd;
1010 ntsec = sec;
1011 ntdef = newdef;
1012 tbfd = oldbfd;
1013 tsec = oldsec;
1014 tdef = olddef;
1016 else
1018 ntbfd = oldbfd;
1019 ntsec = oldsec;
1020 ntdef = olddef;
1021 tbfd = abfd;
1022 tsec = sec;
1023 tdef = newdef;
1026 if (tdef && ntdef)
1027 (*_bfd_error_handler)
1028 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1029 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1030 else if (!tdef && !ntdef)
1031 (*_bfd_error_handler)
1032 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1033 tbfd, ntbfd, h->root.root.string);
1034 else if (tdef)
1035 (*_bfd_error_handler)
1036 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1037 tbfd, tsec, ntbfd, h->root.root.string);
1038 else
1039 (*_bfd_error_handler)
1040 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1041 tbfd, ntbfd, ntsec, h->root.root.string);
1043 bfd_set_error (bfd_error_bad_value);
1044 return FALSE;
1047 /* We need to remember if a symbol has a definition in a dynamic
1048 object or is weak in all dynamic objects. Internal and hidden
1049 visibility will make it unavailable to dynamic objects. */
1050 if (newdyn && !h->dynamic_def)
1052 if (!bfd_is_und_section (sec))
1053 h->dynamic_def = 1;
1054 else
1056 /* Check if this symbol is weak in all dynamic objects. If it
1057 is the first time we see it in a dynamic object, we mark
1058 if it is weak. Otherwise, we clear it. */
1059 if (!h->ref_dynamic)
1061 if (bind == STB_WEAK)
1062 h->dynamic_weak = 1;
1064 else if (bind != STB_WEAK)
1065 h->dynamic_weak = 0;
1069 /* If the old symbol has non-default visibility, we ignore the new
1070 definition from a dynamic object. */
1071 if (newdyn
1072 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1073 && !bfd_is_und_section (sec))
1075 *skip = TRUE;
1076 /* Make sure this symbol is dynamic. */
1077 h->ref_dynamic = 1;
1078 /* A protected symbol has external availability. Make sure it is
1079 recorded as dynamic.
1081 FIXME: Should we check type and size for protected symbol? */
1082 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1083 return bfd_elf_link_record_dynamic_symbol (info, h);
1084 else
1085 return TRUE;
1087 else if (!newdyn
1088 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1089 && h->def_dynamic)
1091 /* If the new symbol with non-default visibility comes from a
1092 relocatable file and the old definition comes from a dynamic
1093 object, we remove the old definition. */
1094 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1096 /* Handle the case where the old dynamic definition is
1097 default versioned. We need to copy the symbol info from
1098 the symbol with default version to the normal one if it
1099 was referenced before. */
1100 if (h->ref_regular)
1102 const struct elf_backend_data *bed
1103 = get_elf_backend_data (abfd);
1104 struct elf_link_hash_entry *vh = *sym_hash;
1105 vh->root.type = h->root.type;
1106 h->root.type = bfd_link_hash_indirect;
1107 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1108 /* Protected symbols will override the dynamic definition
1109 with default version. */
1110 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1112 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1113 vh->dynamic_def = 1;
1114 vh->ref_dynamic = 1;
1116 else
1118 h->root.type = vh->root.type;
1119 vh->ref_dynamic = 0;
1120 /* We have to hide it here since it was made dynamic
1121 global with extra bits when the symbol info was
1122 copied from the old dynamic definition. */
1123 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1125 h = vh;
1127 else
1128 h = *sym_hash;
1131 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1132 && bfd_is_und_section (sec))
1134 /* If the new symbol is undefined and the old symbol was
1135 also undefined before, we need to make sure
1136 _bfd_generic_link_add_one_symbol doesn't mess
1137 up the linker hash table undefs list. Since the old
1138 definition came from a dynamic object, it is still on the
1139 undefs list. */
1140 h->root.type = bfd_link_hash_undefined;
1141 h->root.u.undef.abfd = abfd;
1143 else
1145 h->root.type = bfd_link_hash_new;
1146 h->root.u.undef.abfd = NULL;
1149 if (h->def_dynamic)
1151 h->def_dynamic = 0;
1152 h->ref_dynamic = 1;
1153 h->dynamic_def = 1;
1155 /* FIXME: Should we check type and size for protected symbol? */
1156 h->size = 0;
1157 h->type = 0;
1158 return TRUE;
1161 /* Differentiate strong and weak symbols. */
1162 newweak = bind == STB_WEAK;
1163 oldweak = (h->root.type == bfd_link_hash_defweak
1164 || h->root.type == bfd_link_hash_undefweak);
1166 /* If a new weak symbol definition comes from a regular file and the
1167 old symbol comes from a dynamic library, we treat the new one as
1168 strong. Similarly, an old weak symbol definition from a regular
1169 file is treated as strong when the new symbol comes from a dynamic
1170 library. Further, an old weak symbol from a dynamic library is
1171 treated as strong if the new symbol is from a dynamic library.
1172 This reflects the way glibc's ld.so works.
1174 Do this before setting *type_change_ok or *size_change_ok so that
1175 we warn properly when dynamic library symbols are overridden. */
1177 if (newdef && !newdyn && olddyn)
1178 newweak = FALSE;
1179 if (olddef && newdyn)
1180 oldweak = FALSE;
1182 /* Allow changes between different types of funciton symbol. */
1183 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))
1184 && bed->is_function_type (h->type))
1185 *type_change_ok = TRUE;
1187 /* It's OK to change the type if either the existing symbol or the
1188 new symbol is weak. A type change is also OK if the old symbol
1189 is undefined and the new symbol is defined. */
1191 if (oldweak
1192 || newweak
1193 || (newdef
1194 && h->root.type == bfd_link_hash_undefined))
1195 *type_change_ok = TRUE;
1197 /* It's OK to change the size if either the existing symbol or the
1198 new symbol is weak, or if the old symbol is undefined. */
1200 if (*type_change_ok
1201 || h->root.type == bfd_link_hash_undefined)
1202 *size_change_ok = TRUE;
1204 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1205 symbol, respectively, appears to be a common symbol in a dynamic
1206 object. If a symbol appears in an uninitialized section, and is
1207 not weak, and is not a function, then it may be a common symbol
1208 which was resolved when the dynamic object was created. We want
1209 to treat such symbols specially, because they raise special
1210 considerations when setting the symbol size: if the symbol
1211 appears as a common symbol in a regular object, and the size in
1212 the regular object is larger, we must make sure that we use the
1213 larger size. This problematic case can always be avoided in C,
1214 but it must be handled correctly when using Fortran shared
1215 libraries.
1217 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1218 likewise for OLDDYNCOMMON and OLDDEF.
1220 Note that this test is just a heuristic, and that it is quite
1221 possible to have an uninitialized symbol in a shared object which
1222 is really a definition, rather than a common symbol. This could
1223 lead to some minor confusion when the symbol really is a common
1224 symbol in some regular object. However, I think it will be
1225 harmless. */
1227 if (newdyn
1228 && newdef
1229 && !newweak
1230 && (sec->flags & SEC_ALLOC) != 0
1231 && (sec->flags & SEC_LOAD) == 0
1232 && sym->st_size > 0
1233 && !bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
1234 newdyncommon = TRUE;
1235 else
1236 newdyncommon = FALSE;
1238 if (olddyn
1239 && olddef
1240 && h->root.type == bfd_link_hash_defined
1241 && h->def_dynamic
1242 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1243 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1244 && h->size > 0
1245 && !bed->is_function_type (h->type))
1246 olddyncommon = TRUE;
1247 else
1248 olddyncommon = FALSE;
1250 /* We now know everything about the old and new symbols. We ask the
1251 backend to check if we can merge them. */
1252 if (bed->merge_symbol
1253 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1254 pold_alignment, skip, override,
1255 type_change_ok, size_change_ok,
1256 &newdyn, &newdef, &newdyncommon, &newweak,
1257 abfd, &sec,
1258 &olddyn, &olddef, &olddyncommon, &oldweak,
1259 oldbfd, &oldsec))
1260 return FALSE;
1262 /* If both the old and the new symbols look like common symbols in a
1263 dynamic object, set the size of the symbol to the larger of the
1264 two. */
1266 if (olddyncommon
1267 && newdyncommon
1268 && sym->st_size != h->size)
1270 /* Since we think we have two common symbols, issue a multiple
1271 common warning if desired. Note that we only warn if the
1272 size is different. If the size is the same, we simply let
1273 the old symbol override the new one as normally happens with
1274 symbols defined in dynamic objects. */
1276 if (! ((*info->callbacks->multiple_common)
1277 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1278 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1279 return FALSE;
1281 if (sym->st_size > h->size)
1282 h->size = sym->st_size;
1284 *size_change_ok = TRUE;
1287 /* If we are looking at a dynamic object, and we have found a
1288 definition, we need to see if the symbol was already defined by
1289 some other object. If so, we want to use the existing
1290 definition, and we do not want to report a multiple symbol
1291 definition error; we do this by clobbering *PSEC to be
1292 bfd_und_section_ptr.
1294 We treat a common symbol as a definition if the symbol in the
1295 shared library is a function, since common symbols always
1296 represent variables; this can cause confusion in principle, but
1297 any such confusion would seem to indicate an erroneous program or
1298 shared library. We also permit a common symbol in a regular
1299 object to override a weak symbol in a shared object. */
1301 if (newdyn
1302 && newdef
1303 && (olddef
1304 || (h->root.type == bfd_link_hash_common
1305 && (newweak
1306 || bed->is_function_type (ELF_ST_TYPE (sym->st_info))))))
1308 *override = TRUE;
1309 newdef = FALSE;
1310 newdyncommon = FALSE;
1312 *psec = sec = bfd_und_section_ptr;
1313 *size_change_ok = TRUE;
1315 /* If we get here when the old symbol is a common symbol, then
1316 we are explicitly letting it override a weak symbol or
1317 function in a dynamic object, and we don't want to warn about
1318 a type change. If the old symbol is a defined symbol, a type
1319 change warning may still be appropriate. */
1321 if (h->root.type == bfd_link_hash_common)
1322 *type_change_ok = TRUE;
1325 /* Handle the special case of an old common symbol merging with a
1326 new symbol which looks like a common symbol in a shared object.
1327 We change *PSEC and *PVALUE to make the new symbol look like a
1328 common symbol, and let _bfd_generic_link_add_one_symbol do the
1329 right thing. */
1331 if (newdyncommon
1332 && h->root.type == bfd_link_hash_common)
1334 *override = TRUE;
1335 newdef = FALSE;
1336 newdyncommon = FALSE;
1337 *pvalue = sym->st_size;
1338 *psec = sec = bed->common_section (oldsec);
1339 *size_change_ok = TRUE;
1342 /* Skip weak definitions of symbols that are already defined. */
1343 if (newdef && olddef && newweak)
1344 *skip = TRUE;
1346 /* If the old symbol is from a dynamic object, and the new symbol is
1347 a definition which is not from a dynamic object, then the new
1348 symbol overrides the old symbol. Symbols from regular files
1349 always take precedence over symbols from dynamic objects, even if
1350 they are defined after the dynamic object in the link.
1352 As above, we again permit a common symbol in a regular object to
1353 override a definition in a shared object if the shared object
1354 symbol is a function or is weak. */
1356 flip = NULL;
1357 if (!newdyn
1358 && (newdef
1359 || (bfd_is_com_section (sec)
1360 && (oldweak
1361 || bed->is_function_type (h->type))))
1362 && olddyn
1363 && olddef
1364 && h->def_dynamic)
1366 /* Change the hash table entry to undefined, and let
1367 _bfd_generic_link_add_one_symbol do the right thing with the
1368 new definition. */
1370 h->root.type = bfd_link_hash_undefined;
1371 h->root.u.undef.abfd = h->root.u.def.section->owner;
1372 *size_change_ok = TRUE;
1374 olddef = FALSE;
1375 olddyncommon = FALSE;
1377 /* We again permit a type change when a common symbol may be
1378 overriding a function. */
1380 if (bfd_is_com_section (sec))
1381 *type_change_ok = TRUE;
1383 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1384 flip = *sym_hash;
1385 else
1386 /* This union may have been set to be non-NULL when this symbol
1387 was seen in a dynamic object. We must force the union to be
1388 NULL, so that it is correct for a regular symbol. */
1389 h->verinfo.vertree = NULL;
1392 /* Handle the special case of a new common symbol merging with an
1393 old symbol that looks like it might be a common symbol defined in
1394 a shared object. Note that we have already handled the case in
1395 which a new common symbol should simply override the definition
1396 in the shared library. */
1398 if (! newdyn
1399 && bfd_is_com_section (sec)
1400 && olddyncommon)
1402 /* It would be best if we could set the hash table entry to a
1403 common symbol, but we don't know what to use for the section
1404 or the alignment. */
1405 if (! ((*info->callbacks->multiple_common)
1406 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1407 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1408 return FALSE;
1410 /* If the presumed common symbol in the dynamic object is
1411 larger, pretend that the new symbol has its size. */
1413 if (h->size > *pvalue)
1414 *pvalue = h->size;
1416 /* We need to remember the alignment required by the symbol
1417 in the dynamic object. */
1418 BFD_ASSERT (pold_alignment);
1419 *pold_alignment = h->root.u.def.section->alignment_power;
1421 olddef = FALSE;
1422 olddyncommon = FALSE;
1424 h->root.type = bfd_link_hash_undefined;
1425 h->root.u.undef.abfd = h->root.u.def.section->owner;
1427 *size_change_ok = TRUE;
1428 *type_change_ok = TRUE;
1430 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1431 flip = *sym_hash;
1432 else
1433 h->verinfo.vertree = NULL;
1436 if (flip != NULL)
1438 /* Handle the case where we had a versioned symbol in a dynamic
1439 library and now find a definition in a normal object. In this
1440 case, we make the versioned symbol point to the normal one. */
1441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1442 flip->root.type = h->root.type;
1443 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1444 h->root.type = bfd_link_hash_indirect;
1445 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1446 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1447 if (h->def_dynamic)
1449 h->def_dynamic = 0;
1450 flip->ref_dynamic = 1;
1454 return TRUE;
1457 /* This function is called to create an indirect symbol from the
1458 default for the symbol with the default version if needed. The
1459 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1460 set DYNSYM if the new indirect symbol is dynamic. */
1462 bfd_boolean
1463 _bfd_elf_add_default_symbol (bfd *abfd,
1464 struct bfd_link_info *info,
1465 struct elf_link_hash_entry *h,
1466 const char *name,
1467 Elf_Internal_Sym *sym,
1468 asection **psec,
1469 bfd_vma *value,
1470 bfd_boolean *dynsym,
1471 bfd_boolean override)
1473 bfd_boolean type_change_ok;
1474 bfd_boolean size_change_ok;
1475 bfd_boolean skip;
1476 char *shortname;
1477 struct elf_link_hash_entry *hi;
1478 struct bfd_link_hash_entry *bh;
1479 const struct elf_backend_data *bed;
1480 bfd_boolean collect;
1481 bfd_boolean dynamic;
1482 char *p;
1483 size_t len, shortlen;
1484 asection *sec;
1486 /* If this symbol has a version, and it is the default version, we
1487 create an indirect symbol from the default name to the fully
1488 decorated name. This will cause external references which do not
1489 specify a version to be bound to this version of the symbol. */
1490 p = strchr (name, ELF_VER_CHR);
1491 if (p == NULL || p[1] != ELF_VER_CHR)
1492 return TRUE;
1494 if (override)
1496 /* We are overridden by an old definition. We need to check if we
1497 need to create the indirect symbol from the default name. */
1498 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1499 FALSE, FALSE);
1500 BFD_ASSERT (hi != NULL);
1501 if (hi == h)
1502 return TRUE;
1503 while (hi->root.type == bfd_link_hash_indirect
1504 || hi->root.type == bfd_link_hash_warning)
1506 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1507 if (hi == h)
1508 return TRUE;
1512 bed = get_elf_backend_data (abfd);
1513 collect = bed->collect;
1514 dynamic = (abfd->flags & DYNAMIC) != 0;
1516 shortlen = p - name;
1517 shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
1518 if (shortname == NULL)
1519 return FALSE;
1520 memcpy (shortname, name, shortlen);
1521 shortname[shortlen] = '\0';
1523 /* We are going to create a new symbol. Merge it with any existing
1524 symbol with this name. For the purposes of the merge, act as
1525 though we were defining the symbol we just defined, although we
1526 actually going to define an indirect symbol. */
1527 type_change_ok = FALSE;
1528 size_change_ok = FALSE;
1529 sec = *psec;
1530 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1531 NULL, &hi, &skip, &override,
1532 &type_change_ok, &size_change_ok))
1533 return FALSE;
1535 if (skip)
1536 goto nondefault;
1538 if (! override)
1540 bh = &hi->root;
1541 if (! (_bfd_generic_link_add_one_symbol
1542 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1543 0, name, FALSE, collect, &bh)))
1544 return FALSE;
1545 hi = (struct elf_link_hash_entry *) bh;
1547 else
1549 /* In this case the symbol named SHORTNAME is overriding the
1550 indirect symbol we want to add. We were planning on making
1551 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1552 is the name without a version. NAME is the fully versioned
1553 name, and it is the default version.
1555 Overriding means that we already saw a definition for the
1556 symbol SHORTNAME in a regular object, and it is overriding
1557 the symbol defined in the dynamic object.
1559 When this happens, we actually want to change NAME, the
1560 symbol we just added, to refer to SHORTNAME. This will cause
1561 references to NAME in the shared object to become references
1562 to SHORTNAME in the regular object. This is what we expect
1563 when we override a function in a shared object: that the
1564 references in the shared object will be mapped to the
1565 definition in the regular object. */
1567 while (hi->root.type == bfd_link_hash_indirect
1568 || hi->root.type == bfd_link_hash_warning)
1569 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1571 h->root.type = bfd_link_hash_indirect;
1572 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1573 if (h->def_dynamic)
1575 h->def_dynamic = 0;
1576 hi->ref_dynamic = 1;
1577 if (hi->ref_regular
1578 || hi->def_regular)
1580 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1581 return FALSE;
1585 /* Now set HI to H, so that the following code will set the
1586 other fields correctly. */
1587 hi = h;
1590 /* Check if HI is a warning symbol. */
1591 if (hi->root.type == bfd_link_hash_warning)
1592 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1594 /* If there is a duplicate definition somewhere, then HI may not
1595 point to an indirect symbol. We will have reported an error to
1596 the user in that case. */
1598 if (hi->root.type == bfd_link_hash_indirect)
1600 struct elf_link_hash_entry *ht;
1602 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1603 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1605 /* See if the new flags lead us to realize that the symbol must
1606 be dynamic. */
1607 if (! *dynsym)
1609 if (! dynamic)
1611 if (info->shared
1612 || hi->ref_dynamic)
1613 *dynsym = TRUE;
1615 else
1617 if (hi->ref_regular)
1618 *dynsym = TRUE;
1623 /* We also need to define an indirection from the nondefault version
1624 of the symbol. */
1626 nondefault:
1627 len = strlen (name);
1628 shortname = bfd_hash_allocate (&info->hash->table, len);
1629 if (shortname == NULL)
1630 return FALSE;
1631 memcpy (shortname, name, shortlen);
1632 memcpy (shortname + shortlen, p + 1, len - shortlen);
1634 /* Once again, merge with any existing symbol. */
1635 type_change_ok = FALSE;
1636 size_change_ok = FALSE;
1637 sec = *psec;
1638 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1639 NULL, &hi, &skip, &override,
1640 &type_change_ok, &size_change_ok))
1641 return FALSE;
1643 if (skip)
1644 return TRUE;
1646 if (override)
1648 /* Here SHORTNAME is a versioned name, so we don't expect to see
1649 the type of override we do in the case above unless it is
1650 overridden by a versioned definition. */
1651 if (hi->root.type != bfd_link_hash_defined
1652 && hi->root.type != bfd_link_hash_defweak)
1653 (*_bfd_error_handler)
1654 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1655 abfd, shortname);
1657 else
1659 bh = &hi->root;
1660 if (! (_bfd_generic_link_add_one_symbol
1661 (info, abfd, shortname, BSF_INDIRECT,
1662 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1663 return FALSE;
1664 hi = (struct elf_link_hash_entry *) bh;
1666 /* If there is a duplicate definition somewhere, then HI may not
1667 point to an indirect symbol. We will have reported an error
1668 to the user in that case. */
1670 if (hi->root.type == bfd_link_hash_indirect)
1672 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1674 /* See if the new flags lead us to realize that the symbol
1675 must be dynamic. */
1676 if (! *dynsym)
1678 if (! dynamic)
1680 if (info->shared
1681 || hi->ref_dynamic)
1682 *dynsym = TRUE;
1684 else
1686 if (hi->ref_regular)
1687 *dynsym = TRUE;
1693 return TRUE;
1696 /* This routine is used to export all defined symbols into the dynamic
1697 symbol table. It is called via elf_link_hash_traverse. */
1699 bfd_boolean
1700 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1702 struct elf_info_failed *eif = data;
1704 /* Ignore this if we won't export it. */
1705 if (!eif->info->export_dynamic && !h->dynamic)
1706 return TRUE;
1708 /* Ignore indirect symbols. These are added by the versioning code. */
1709 if (h->root.type == bfd_link_hash_indirect)
1710 return TRUE;
1712 if (h->root.type == bfd_link_hash_warning)
1713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1715 if (h->dynindx == -1
1716 && (h->def_regular
1717 || h->ref_regular))
1719 struct bfd_elf_version_tree *t;
1720 struct bfd_elf_version_expr *d;
1722 for (t = eif->verdefs; t != NULL; t = t->next)
1724 if (t->globals.list != NULL)
1726 d = (*t->match) (&t->globals, NULL, h->root.root.string);
1727 if (d != NULL)
1728 goto doit;
1731 if (t->locals.list != NULL)
1733 d = (*t->match) (&t->locals, NULL, h->root.root.string);
1734 if (d != NULL)
1735 return TRUE;
1739 if (!eif->verdefs)
1741 doit:
1742 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1744 eif->failed = TRUE;
1745 return FALSE;
1750 return TRUE;
1753 /* Look through the symbols which are defined in other shared
1754 libraries and referenced here. Update the list of version
1755 dependencies. This will be put into the .gnu.version_r section.
1756 This function is called via elf_link_hash_traverse. */
1758 bfd_boolean
1759 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1760 void *data)
1762 struct elf_find_verdep_info *rinfo = data;
1763 Elf_Internal_Verneed *t;
1764 Elf_Internal_Vernaux *a;
1765 bfd_size_type amt;
1767 if (h->root.type == bfd_link_hash_warning)
1768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1770 /* We only care about symbols defined in shared objects with version
1771 information. */
1772 if (!h->def_dynamic
1773 || h->def_regular
1774 || h->dynindx == -1
1775 || h->verinfo.verdef == NULL)
1776 return TRUE;
1778 /* See if we already know about this version. */
1779 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
1781 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1782 continue;
1784 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1785 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1786 return TRUE;
1788 break;
1791 /* This is a new version. Add it to tree we are building. */
1793 if (t == NULL)
1795 amt = sizeof *t;
1796 t = bfd_zalloc (rinfo->output_bfd, amt);
1797 if (t == NULL)
1799 rinfo->failed = TRUE;
1800 return FALSE;
1803 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1804 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
1805 elf_tdata (rinfo->output_bfd)->verref = t;
1808 amt = sizeof *a;
1809 a = bfd_zalloc (rinfo->output_bfd, amt);
1810 if (a == NULL)
1812 rinfo->failed = TRUE;
1813 return FALSE;
1816 /* Note that we are copying a string pointer here, and testing it
1817 above. If bfd_elf_string_from_elf_section is ever changed to
1818 discard the string data when low in memory, this will have to be
1819 fixed. */
1820 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1822 a->vna_flags = h->verinfo.verdef->vd_flags;
1823 a->vna_nextptr = t->vn_auxptr;
1825 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1826 ++rinfo->vers;
1828 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1830 t->vn_auxptr = a;
1832 return TRUE;
1835 /* Figure out appropriate versions for all the symbols. We may not
1836 have the version number script until we have read all of the input
1837 files, so until that point we don't know which symbols should be
1838 local. This function is called via elf_link_hash_traverse. */
1840 bfd_boolean
1841 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1843 struct elf_assign_sym_version_info *sinfo;
1844 struct bfd_link_info *info;
1845 const struct elf_backend_data *bed;
1846 struct elf_info_failed eif;
1847 char *p;
1848 bfd_size_type amt;
1850 sinfo = data;
1851 info = sinfo->info;
1853 if (h->root.type == bfd_link_hash_warning)
1854 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1856 /* Fix the symbol flags. */
1857 eif.failed = FALSE;
1858 eif.info = info;
1859 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1861 if (eif.failed)
1862 sinfo->failed = TRUE;
1863 return FALSE;
1866 /* We only need version numbers for symbols defined in regular
1867 objects. */
1868 if (!h->def_regular)
1869 return TRUE;
1871 bed = get_elf_backend_data (sinfo->output_bfd);
1872 p = strchr (h->root.root.string, ELF_VER_CHR);
1873 if (p != NULL && h->verinfo.vertree == NULL)
1875 struct bfd_elf_version_tree *t;
1876 bfd_boolean hidden;
1878 hidden = TRUE;
1880 /* There are two consecutive ELF_VER_CHR characters if this is
1881 not a hidden symbol. */
1882 ++p;
1883 if (*p == ELF_VER_CHR)
1885 hidden = FALSE;
1886 ++p;
1889 /* If there is no version string, we can just return out. */
1890 if (*p == '\0')
1892 if (hidden)
1893 h->hidden = 1;
1894 return TRUE;
1897 /* Look for the version. If we find it, it is no longer weak. */
1898 for (t = sinfo->verdefs; t != NULL; t = t->next)
1900 if (strcmp (t->name, p) == 0)
1902 size_t len;
1903 char *alc;
1904 struct bfd_elf_version_expr *d;
1906 len = p - h->root.root.string;
1907 alc = bfd_malloc (len);
1908 if (alc == NULL)
1910 sinfo->failed = TRUE;
1911 return FALSE;
1913 memcpy (alc, h->root.root.string, len - 1);
1914 alc[len - 1] = '\0';
1915 if (alc[len - 2] == ELF_VER_CHR)
1916 alc[len - 2] = '\0';
1918 h->verinfo.vertree = t;
1919 t->used = TRUE;
1920 d = NULL;
1922 if (t->globals.list != NULL)
1923 d = (*t->match) (&t->globals, NULL, alc);
1925 /* See if there is anything to force this symbol to
1926 local scope. */
1927 if (d == NULL && t->locals.list != NULL)
1929 d = (*t->match) (&t->locals, NULL, alc);
1930 if (d != NULL
1931 && h->dynindx != -1
1932 && ! info->export_dynamic)
1933 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1936 free (alc);
1937 break;
1941 /* If we are building an application, we need to create a
1942 version node for this version. */
1943 if (t == NULL && info->executable)
1945 struct bfd_elf_version_tree **pp;
1946 int version_index;
1948 /* If we aren't going to export this symbol, we don't need
1949 to worry about it. */
1950 if (h->dynindx == -1)
1951 return TRUE;
1953 amt = sizeof *t;
1954 t = bfd_zalloc (sinfo->output_bfd, amt);
1955 if (t == NULL)
1957 sinfo->failed = TRUE;
1958 return FALSE;
1961 t->name = p;
1962 t->name_indx = (unsigned int) -1;
1963 t->used = TRUE;
1965 version_index = 1;
1966 /* Don't count anonymous version tag. */
1967 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
1968 version_index = 0;
1969 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
1970 ++version_index;
1971 t->vernum = version_index;
1973 *pp = t;
1975 h->verinfo.vertree = t;
1977 else if (t == NULL)
1979 /* We could not find the version for a symbol when
1980 generating a shared archive. Return an error. */
1981 (*_bfd_error_handler)
1982 (_("%B: version node not found for symbol %s"),
1983 sinfo->output_bfd, h->root.root.string);
1984 bfd_set_error (bfd_error_bad_value);
1985 sinfo->failed = TRUE;
1986 return FALSE;
1989 if (hidden)
1990 h->hidden = 1;
1993 /* If we don't have a version for this symbol, see if we can find
1994 something. */
1995 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
1997 struct bfd_elf_version_tree *t;
1998 struct bfd_elf_version_tree *local_ver;
1999 struct bfd_elf_version_expr *d;
2001 /* See if can find what version this symbol is in. If the
2002 symbol is supposed to be local, then don't actually register
2003 it. */
2004 local_ver = NULL;
2005 for (t = sinfo->verdefs; t != NULL; t = t->next)
2007 if (t->globals.list != NULL)
2009 bfd_boolean matched;
2011 matched = FALSE;
2012 d = NULL;
2013 while ((d = (*t->match) (&t->globals, d,
2014 h->root.root.string)) != NULL)
2015 if (d->symver)
2016 matched = TRUE;
2017 else
2019 /* There is a version without definition. Make
2020 the symbol the default definition for this
2021 version. */
2022 h->verinfo.vertree = t;
2023 local_ver = NULL;
2024 d->script = 1;
2025 break;
2027 if (d != NULL)
2028 break;
2029 else if (matched)
2030 /* There is no undefined version for this symbol. Hide the
2031 default one. */
2032 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2035 if (t->locals.list != NULL)
2037 d = NULL;
2038 while ((d = (*t->match) (&t->locals, d,
2039 h->root.root.string)) != NULL)
2041 local_ver = t;
2042 /* If the match is "*", keep looking for a more
2043 explicit, perhaps even global, match.
2044 XXX: Shouldn't this be !d->wildcard instead? */
2045 if (d->pattern[0] != '*' || d->pattern[1] != '\0')
2046 break;
2049 if (d != NULL)
2050 break;
2054 if (local_ver != NULL)
2056 h->verinfo.vertree = local_ver;
2057 if (h->dynindx != -1
2058 && ! info->export_dynamic)
2060 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2065 return TRUE;
2068 /* Read and swap the relocs from the section indicated by SHDR. This
2069 may be either a REL or a RELA section. The relocations are
2070 translated into RELA relocations and stored in INTERNAL_RELOCS,
2071 which should have already been allocated to contain enough space.
2072 The EXTERNAL_RELOCS are a buffer where the external form of the
2073 relocations should be stored.
2075 Returns FALSE if something goes wrong. */
2077 static bfd_boolean
2078 elf_link_read_relocs_from_section (bfd *abfd,
2079 asection *sec,
2080 Elf_Internal_Shdr *shdr,
2081 void *external_relocs,
2082 Elf_Internal_Rela *internal_relocs)
2084 const struct elf_backend_data *bed;
2085 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2086 const bfd_byte *erela;
2087 const bfd_byte *erelaend;
2088 Elf_Internal_Rela *irela;
2089 Elf_Internal_Shdr *symtab_hdr;
2090 size_t nsyms;
2092 /* Position ourselves at the start of the section. */
2093 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2094 return FALSE;
2096 /* Read the relocations. */
2097 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2098 return FALSE;
2100 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2101 nsyms = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
2103 bed = get_elf_backend_data (abfd);
2105 /* Convert the external relocations to the internal format. */
2106 if (shdr->sh_entsize == bed->s->sizeof_rel)
2107 swap_in = bed->s->swap_reloc_in;
2108 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2109 swap_in = bed->s->swap_reloca_in;
2110 else
2112 bfd_set_error (bfd_error_wrong_format);
2113 return FALSE;
2116 erela = external_relocs;
2117 erelaend = erela + shdr->sh_size;
2118 irela = internal_relocs;
2119 while (erela < erelaend)
2121 bfd_vma r_symndx;
2123 (*swap_in) (abfd, erela, irela);
2124 r_symndx = ELF32_R_SYM (irela->r_info);
2125 if (bed->s->arch_size == 64)
2126 r_symndx >>= 24;
2127 if ((size_t) r_symndx >= nsyms)
2129 (*_bfd_error_handler)
2130 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2131 " for offset 0x%lx in section `%A'"),
2132 abfd, sec,
2133 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2134 bfd_set_error (bfd_error_bad_value);
2135 return FALSE;
2137 irela += bed->s->int_rels_per_ext_rel;
2138 erela += shdr->sh_entsize;
2141 return TRUE;
2144 /* Read and swap the relocs for a section O. They may have been
2145 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2146 not NULL, they are used as buffers to read into. They are known to
2147 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2148 the return value is allocated using either malloc or bfd_alloc,
2149 according to the KEEP_MEMORY argument. If O has two relocation
2150 sections (both REL and RELA relocations), then the REL_HDR
2151 relocations will appear first in INTERNAL_RELOCS, followed by the
2152 REL_HDR2 relocations. */
2154 Elf_Internal_Rela *
2155 _bfd_elf_link_read_relocs (bfd *abfd,
2156 asection *o,
2157 void *external_relocs,
2158 Elf_Internal_Rela *internal_relocs,
2159 bfd_boolean keep_memory)
2161 Elf_Internal_Shdr *rel_hdr;
2162 void *alloc1 = NULL;
2163 Elf_Internal_Rela *alloc2 = NULL;
2164 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2166 if (elf_section_data (o)->relocs != NULL)
2167 return elf_section_data (o)->relocs;
2169 if (o->reloc_count == 0)
2170 return NULL;
2172 rel_hdr = &elf_section_data (o)->rel_hdr;
2174 if (internal_relocs == NULL)
2176 bfd_size_type size;
2178 size = o->reloc_count;
2179 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2180 if (keep_memory)
2181 internal_relocs = bfd_alloc (abfd, size);
2182 else
2183 internal_relocs = alloc2 = bfd_malloc (size);
2184 if (internal_relocs == NULL)
2185 goto error_return;
2188 if (external_relocs == NULL)
2190 bfd_size_type size = rel_hdr->sh_size;
2192 if (elf_section_data (o)->rel_hdr2)
2193 size += elf_section_data (o)->rel_hdr2->sh_size;
2194 alloc1 = bfd_malloc (size);
2195 if (alloc1 == NULL)
2196 goto error_return;
2197 external_relocs = alloc1;
2200 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2201 external_relocs,
2202 internal_relocs))
2203 goto error_return;
2204 if (elf_section_data (o)->rel_hdr2
2205 && (!elf_link_read_relocs_from_section
2206 (abfd, o,
2207 elf_section_data (o)->rel_hdr2,
2208 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2209 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2210 * bed->s->int_rels_per_ext_rel))))
2211 goto error_return;
2213 /* Cache the results for next time, if we can. */
2214 if (keep_memory)
2215 elf_section_data (o)->relocs = internal_relocs;
2217 if (alloc1 != NULL)
2218 free (alloc1);
2220 /* Don't free alloc2, since if it was allocated we are passing it
2221 back (under the name of internal_relocs). */
2223 return internal_relocs;
2225 error_return:
2226 if (alloc1 != NULL)
2227 free (alloc1);
2228 if (alloc2 != NULL)
2229 free (alloc2);
2230 return NULL;
2233 /* Compute the size of, and allocate space for, REL_HDR which is the
2234 section header for a section containing relocations for O. */
2236 bfd_boolean
2237 _bfd_elf_link_size_reloc_section (bfd *abfd,
2238 Elf_Internal_Shdr *rel_hdr,
2239 asection *o)
2241 bfd_size_type reloc_count;
2242 bfd_size_type num_rel_hashes;
2244 /* Figure out how many relocations there will be. */
2245 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2246 reloc_count = elf_section_data (o)->rel_count;
2247 else
2248 reloc_count = elf_section_data (o)->rel_count2;
2250 num_rel_hashes = o->reloc_count;
2251 if (num_rel_hashes < reloc_count)
2252 num_rel_hashes = reloc_count;
2254 /* That allows us to calculate the size of the section. */
2255 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2257 /* The contents field must last into write_object_contents, so we
2258 allocate it with bfd_alloc rather than malloc. Also since we
2259 cannot be sure that the contents will actually be filled in,
2260 we zero the allocated space. */
2261 rel_hdr->contents = bfd_zalloc (abfd, rel_hdr->sh_size);
2262 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2263 return FALSE;
2265 /* We only allocate one set of hash entries, so we only do it the
2266 first time we are called. */
2267 if (elf_section_data (o)->rel_hashes == NULL
2268 && num_rel_hashes)
2270 struct elf_link_hash_entry **p;
2272 p = bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2273 if (p == NULL)
2274 return FALSE;
2276 elf_section_data (o)->rel_hashes = p;
2279 return TRUE;
2282 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2283 originated from the section given by INPUT_REL_HDR) to the
2284 OUTPUT_BFD. */
2286 bfd_boolean
2287 _bfd_elf_link_output_relocs (bfd *output_bfd,
2288 asection *input_section,
2289 Elf_Internal_Shdr *input_rel_hdr,
2290 Elf_Internal_Rela *internal_relocs,
2291 struct elf_link_hash_entry **rel_hash
2292 ATTRIBUTE_UNUSED)
2294 Elf_Internal_Rela *irela;
2295 Elf_Internal_Rela *irelaend;
2296 bfd_byte *erel;
2297 Elf_Internal_Shdr *output_rel_hdr;
2298 asection *output_section;
2299 unsigned int *rel_countp = NULL;
2300 const struct elf_backend_data *bed;
2301 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2303 output_section = input_section->output_section;
2304 output_rel_hdr = NULL;
2306 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2307 == input_rel_hdr->sh_entsize)
2309 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2310 rel_countp = &elf_section_data (output_section)->rel_count;
2312 else if (elf_section_data (output_section)->rel_hdr2
2313 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2314 == input_rel_hdr->sh_entsize))
2316 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2317 rel_countp = &elf_section_data (output_section)->rel_count2;
2319 else
2321 (*_bfd_error_handler)
2322 (_("%B: relocation size mismatch in %B section %A"),
2323 output_bfd, input_section->owner, input_section);
2324 bfd_set_error (bfd_error_wrong_object_format);
2325 return FALSE;
2328 bed = get_elf_backend_data (output_bfd);
2329 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2330 swap_out = bed->s->swap_reloc_out;
2331 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2332 swap_out = bed->s->swap_reloca_out;
2333 else
2334 abort ();
2336 erel = output_rel_hdr->contents;
2337 erel += *rel_countp * input_rel_hdr->sh_entsize;
2338 irela = internal_relocs;
2339 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2340 * bed->s->int_rels_per_ext_rel);
2341 while (irela < irelaend)
2343 (*swap_out) (output_bfd, irela, erel);
2344 irela += bed->s->int_rels_per_ext_rel;
2345 erel += input_rel_hdr->sh_entsize;
2348 /* Bump the counter, so that we know where to add the next set of
2349 relocations. */
2350 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2352 return TRUE;
2355 /* Make weak undefined symbols in PIE dynamic. */
2357 bfd_boolean
2358 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2361 if (info->pie
2362 && h->dynindx == -1
2363 && h->root.type == bfd_link_hash_undefweak)
2364 return bfd_elf_link_record_dynamic_symbol (info, h);
2366 return TRUE;
2369 /* Fix up the flags for a symbol. This handles various cases which
2370 can only be fixed after all the input files are seen. This is
2371 currently called by both adjust_dynamic_symbol and
2372 assign_sym_version, which is unnecessary but perhaps more robust in
2373 the face of future changes. */
2375 bfd_boolean
2376 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2377 struct elf_info_failed *eif)
2379 const struct elf_backend_data *bed;
2381 /* If this symbol was mentioned in a non-ELF file, try to set
2382 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2383 permit a non-ELF file to correctly refer to a symbol defined in
2384 an ELF dynamic object. */
2385 if (h->non_elf)
2387 while (h->root.type == bfd_link_hash_indirect)
2388 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2390 if (h->root.type != bfd_link_hash_defined
2391 && h->root.type != bfd_link_hash_defweak)
2393 h->ref_regular = 1;
2394 h->ref_regular_nonweak = 1;
2396 else
2398 if (h->root.u.def.section->owner != NULL
2399 && (bfd_get_flavour (h->root.u.def.section->owner)
2400 == bfd_target_elf_flavour))
2402 h->ref_regular = 1;
2403 h->ref_regular_nonweak = 1;
2405 else
2406 h->def_regular = 1;
2409 if (h->dynindx == -1
2410 && (h->def_dynamic
2411 || h->ref_dynamic))
2413 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2415 eif->failed = TRUE;
2416 return FALSE;
2420 else
2422 /* Unfortunately, NON_ELF is only correct if the symbol
2423 was first seen in a non-ELF file. Fortunately, if the symbol
2424 was first seen in an ELF file, we're probably OK unless the
2425 symbol was defined in a non-ELF file. Catch that case here.
2426 FIXME: We're still in trouble if the symbol was first seen in
2427 a dynamic object, and then later in a non-ELF regular object. */
2428 if ((h->root.type == bfd_link_hash_defined
2429 || h->root.type == bfd_link_hash_defweak)
2430 && !h->def_regular
2431 && (h->root.u.def.section->owner != NULL
2432 ? (bfd_get_flavour (h->root.u.def.section->owner)
2433 != bfd_target_elf_flavour)
2434 : (bfd_is_abs_section (h->root.u.def.section)
2435 && !h->def_dynamic)))
2436 h->def_regular = 1;
2439 /* Backend specific symbol fixup. */
2440 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2441 if (bed->elf_backend_fixup_symbol
2442 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2443 return FALSE;
2445 /* If this is a final link, and the symbol was defined as a common
2446 symbol in a regular object file, and there was no definition in
2447 any dynamic object, then the linker will have allocated space for
2448 the symbol in a common section but the DEF_REGULAR
2449 flag will not have been set. */
2450 if (h->root.type == bfd_link_hash_defined
2451 && !h->def_regular
2452 && h->ref_regular
2453 && !h->def_dynamic
2454 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2455 h->def_regular = 1;
2457 /* If -Bsymbolic was used (which means to bind references to global
2458 symbols to the definition within the shared object), and this
2459 symbol was defined in a regular object, then it actually doesn't
2460 need a PLT entry. Likewise, if the symbol has non-default
2461 visibility. If the symbol has hidden or internal visibility, we
2462 will force it local. */
2463 if (h->needs_plt
2464 && eif->info->shared
2465 && is_elf_hash_table (eif->info->hash)
2466 && (SYMBOLIC_BIND (eif->info, h)
2467 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2468 && h->def_regular)
2470 bfd_boolean force_local;
2472 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2473 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2474 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2477 /* If a weak undefined symbol has non-default visibility, we also
2478 hide it from the dynamic linker. */
2479 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2480 && h->root.type == bfd_link_hash_undefweak)
2481 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2483 /* If this is a weak defined symbol in a dynamic object, and we know
2484 the real definition in the dynamic object, copy interesting flags
2485 over to the real definition. */
2486 if (h->u.weakdef != NULL)
2488 struct elf_link_hash_entry *weakdef;
2490 weakdef = h->u.weakdef;
2491 if (h->root.type == bfd_link_hash_indirect)
2492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2494 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2495 || h->root.type == bfd_link_hash_defweak);
2496 BFD_ASSERT (weakdef->def_dynamic);
2498 /* If the real definition is defined by a regular object file,
2499 don't do anything special. See the longer description in
2500 _bfd_elf_adjust_dynamic_symbol, below. */
2501 if (weakdef->def_regular)
2502 h->u.weakdef = NULL;
2503 else
2505 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2506 || weakdef->root.type == bfd_link_hash_defweak);
2507 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2511 return TRUE;
2514 /* Make the backend pick a good value for a dynamic symbol. This is
2515 called via elf_link_hash_traverse, and also calls itself
2516 recursively. */
2518 bfd_boolean
2519 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2521 struct elf_info_failed *eif = data;
2522 bfd *dynobj;
2523 const struct elf_backend_data *bed;
2525 if (! is_elf_hash_table (eif->info->hash))
2526 return FALSE;
2528 if (h->root.type == bfd_link_hash_warning)
2530 h->got = elf_hash_table (eif->info)->init_got_offset;
2531 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2533 /* When warning symbols are created, they **replace** the "real"
2534 entry in the hash table, thus we never get to see the real
2535 symbol in a hash traversal. So look at it now. */
2536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2539 /* Ignore indirect symbols. These are added by the versioning code. */
2540 if (h->root.type == bfd_link_hash_indirect)
2541 return TRUE;
2543 /* Fix the symbol flags. */
2544 if (! _bfd_elf_fix_symbol_flags (h, eif))
2545 return FALSE;
2547 /* If this symbol does not require a PLT entry, and it is not
2548 defined by a dynamic object, or is not referenced by a regular
2549 object, ignore it. We do have to handle a weak defined symbol,
2550 even if no regular object refers to it, if we decided to add it
2551 to the dynamic symbol table. FIXME: Do we normally need to worry
2552 about symbols which are defined by one dynamic object and
2553 referenced by another one? */
2554 if (!h->needs_plt
2555 && (h->def_regular
2556 || !h->def_dynamic
2557 || (!h->ref_regular
2558 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2560 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2561 return TRUE;
2564 /* If we've already adjusted this symbol, don't do it again. This
2565 can happen via a recursive call. */
2566 if (h->dynamic_adjusted)
2567 return TRUE;
2569 /* Don't look at this symbol again. Note that we must set this
2570 after checking the above conditions, because we may look at a
2571 symbol once, decide not to do anything, and then get called
2572 recursively later after REF_REGULAR is set below. */
2573 h->dynamic_adjusted = 1;
2575 /* If this is a weak definition, and we know a real definition, and
2576 the real symbol is not itself defined by a regular object file,
2577 then get a good value for the real definition. We handle the
2578 real symbol first, for the convenience of the backend routine.
2580 Note that there is a confusing case here. If the real definition
2581 is defined by a regular object file, we don't get the real symbol
2582 from the dynamic object, but we do get the weak symbol. If the
2583 processor backend uses a COPY reloc, then if some routine in the
2584 dynamic object changes the real symbol, we will not see that
2585 change in the corresponding weak symbol. This is the way other
2586 ELF linkers work as well, and seems to be a result of the shared
2587 library model.
2589 I will clarify this issue. Most SVR4 shared libraries define the
2590 variable _timezone and define timezone as a weak synonym. The
2591 tzset call changes _timezone. If you write
2592 extern int timezone;
2593 int _timezone = 5;
2594 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2595 you might expect that, since timezone is a synonym for _timezone,
2596 the same number will print both times. However, if the processor
2597 backend uses a COPY reloc, then actually timezone will be copied
2598 into your process image, and, since you define _timezone
2599 yourself, _timezone will not. Thus timezone and _timezone will
2600 wind up at different memory locations. The tzset call will set
2601 _timezone, leaving timezone unchanged. */
2603 if (h->u.weakdef != NULL)
2605 /* If we get to this point, we know there is an implicit
2606 reference by a regular object file via the weak symbol H.
2607 FIXME: Is this really true? What if the traversal finds
2608 H->U.WEAKDEF before it finds H? */
2609 h->u.weakdef->ref_regular = 1;
2611 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2612 return FALSE;
2615 /* If a symbol has no type and no size and does not require a PLT
2616 entry, then we are probably about to do the wrong thing here: we
2617 are probably going to create a COPY reloc for an empty object.
2618 This case can arise when a shared object is built with assembly
2619 code, and the assembly code fails to set the symbol type. */
2620 if (h->size == 0
2621 && h->type == STT_NOTYPE
2622 && !h->needs_plt)
2623 (*_bfd_error_handler)
2624 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2625 h->root.root.string);
2627 dynobj = elf_hash_table (eif->info)->dynobj;
2628 bed = get_elf_backend_data (dynobj);
2629 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2631 eif->failed = TRUE;
2632 return FALSE;
2635 return TRUE;
2638 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2639 DYNBSS. */
2641 bfd_boolean
2642 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2643 asection *dynbss)
2645 unsigned int power_of_two;
2646 bfd_vma mask;
2647 asection *sec = h->root.u.def.section;
2649 /* The section aligment of definition is the maximum alignment
2650 requirement of symbols defined in the section. Since we don't
2651 know the symbol alignment requirement, we start with the
2652 maximum alignment and check low bits of the symbol address
2653 for the minimum alignment. */
2654 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2655 mask = ((bfd_vma) 1 << power_of_two) - 1;
2656 while ((h->root.u.def.value & mask) != 0)
2658 mask >>= 1;
2659 --power_of_two;
2662 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2663 dynbss))
2665 /* Adjust the section alignment if needed. */
2666 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2667 power_of_two))
2668 return FALSE;
2671 /* We make sure that the symbol will be aligned properly. */
2672 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2674 /* Define the symbol as being at this point in DYNBSS. */
2675 h->root.u.def.section = dynbss;
2676 h->root.u.def.value = dynbss->size;
2678 /* Increment the size of DYNBSS to make room for the symbol. */
2679 dynbss->size += h->size;
2681 return TRUE;
2684 /* Adjust all external symbols pointing into SEC_MERGE sections
2685 to reflect the object merging within the sections. */
2687 bfd_boolean
2688 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2690 asection *sec;
2692 if (h->root.type == bfd_link_hash_warning)
2693 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2700 bfd *output_bfd = data;
2702 h->root.u.def.value =
2703 _bfd_merged_section_offset (output_bfd,
2704 &h->root.u.def.section,
2705 elf_section_data (sec)->sec_info,
2706 h->root.u.def.value);
2709 return TRUE;
2712 /* Returns false if the symbol referred to by H should be considered
2713 to resolve local to the current module, and true if it should be
2714 considered to bind dynamically. */
2716 bfd_boolean
2717 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2718 struct bfd_link_info *info,
2719 bfd_boolean ignore_protected)
2721 bfd_boolean binding_stays_local_p;
2722 const struct elf_backend_data *bed;
2723 struct elf_link_hash_table *hash_table;
2725 if (h == NULL)
2726 return FALSE;
2728 while (h->root.type == bfd_link_hash_indirect
2729 || h->root.type == bfd_link_hash_warning)
2730 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2732 /* If it was forced local, then clearly it's not dynamic. */
2733 if (h->dynindx == -1)
2734 return FALSE;
2735 if (h->forced_local)
2736 return FALSE;
2738 /* Identify the cases where name binding rules say that a
2739 visible symbol resolves locally. */
2740 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2742 switch (ELF_ST_VISIBILITY (h->other))
2744 case STV_INTERNAL:
2745 case STV_HIDDEN:
2746 return FALSE;
2748 case STV_PROTECTED:
2749 hash_table = elf_hash_table (info);
2750 if (!is_elf_hash_table (hash_table))
2751 return FALSE;
2753 bed = get_elf_backend_data (hash_table->dynobj);
2755 /* Proper resolution for function pointer equality may require
2756 that these symbols perhaps be resolved dynamically, even though
2757 we should be resolving them to the current module. */
2758 if (!ignore_protected || !bed->is_function_type (h->type))
2759 binding_stays_local_p = TRUE;
2760 break;
2762 default:
2763 break;
2766 /* If it isn't defined locally, then clearly it's dynamic. */
2767 if (!h->def_regular)
2768 return TRUE;
2770 /* Otherwise, the symbol is dynamic if binding rules don't tell
2771 us that it remains local. */
2772 return !binding_stays_local_p;
2775 /* Return true if the symbol referred to by H should be considered
2776 to resolve local to the current module, and false otherwise. Differs
2777 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2778 undefined symbols and weak symbols. */
2780 bfd_boolean
2781 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2782 struct bfd_link_info *info,
2783 bfd_boolean local_protected)
2785 const struct elf_backend_data *bed;
2786 struct elf_link_hash_table *hash_table;
2788 /* If it's a local sym, of course we resolve locally. */
2789 if (h == NULL)
2790 return TRUE;
2792 /* Common symbols that become definitions don't get the DEF_REGULAR
2793 flag set, so test it first, and don't bail out. */
2794 if (ELF_COMMON_DEF_P (h))
2795 /* Do nothing. */;
2796 /* If we don't have a definition in a regular file, then we can't
2797 resolve locally. The sym is either undefined or dynamic. */
2798 else if (!h->def_regular)
2799 return FALSE;
2801 /* Forced local symbols resolve locally. */
2802 if (h->forced_local)
2803 return TRUE;
2805 /* As do non-dynamic symbols. */
2806 if (h->dynindx == -1)
2807 return TRUE;
2809 /* At this point, we know the symbol is defined and dynamic. In an
2810 executable it must resolve locally, likewise when building symbolic
2811 shared libraries. */
2812 if (info->executable || SYMBOLIC_BIND (info, h))
2813 return TRUE;
2815 /* Now deal with defined dynamic symbols in shared libraries. Ones
2816 with default visibility might not resolve locally. */
2817 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2818 return FALSE;
2820 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2821 if (ELF_ST_VISIBILITY (h->other) != STV_PROTECTED)
2822 return TRUE;
2824 hash_table = elf_hash_table (info);
2825 if (!is_elf_hash_table (hash_table))
2826 return TRUE;
2828 bed = get_elf_backend_data (hash_table->dynobj);
2830 /* STV_PROTECTED non-function symbols are local. */
2831 if (!bed->is_function_type (h->type))
2832 return TRUE;
2834 /* Function pointer equality tests may require that STV_PROTECTED
2835 symbols be treated as dynamic symbols, even when we know that the
2836 dynamic linker will resolve them locally. */
2837 return local_protected;
2840 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2841 aligned. Returns the first TLS output section. */
2843 struct bfd_section *
2844 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2846 struct bfd_section *sec, *tls;
2847 unsigned int align = 0;
2849 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2850 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2851 break;
2852 tls = sec;
2854 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2855 if (sec->alignment_power > align)
2856 align = sec->alignment_power;
2858 elf_hash_table (info)->tls_sec = tls;
2860 /* Ensure the alignment of the first section is the largest alignment,
2861 so that the tls segment starts aligned. */
2862 if (tls != NULL)
2863 tls->alignment_power = align;
2865 return tls;
2868 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2869 static bfd_boolean
2870 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2871 Elf_Internal_Sym *sym)
2873 const struct elf_backend_data *bed;
2875 /* Local symbols do not count, but target specific ones might. */
2876 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2877 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2878 return FALSE;
2880 bed = get_elf_backend_data (abfd);
2881 /* Function symbols do not count. */
2882 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2883 return FALSE;
2885 /* If the section is undefined, then so is the symbol. */
2886 if (sym->st_shndx == SHN_UNDEF)
2887 return FALSE;
2889 /* If the symbol is defined in the common section, then
2890 it is a common definition and so does not count. */
2891 if (bed->common_definition (sym))
2892 return FALSE;
2894 /* If the symbol is in a target specific section then we
2895 must rely upon the backend to tell us what it is. */
2896 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2897 /* FIXME - this function is not coded yet:
2899 return _bfd_is_global_symbol_definition (abfd, sym);
2901 Instead for now assume that the definition is not global,
2902 Even if this is wrong, at least the linker will behave
2903 in the same way that it used to do. */
2904 return FALSE;
2906 return TRUE;
2909 /* Search the symbol table of the archive element of the archive ABFD
2910 whose archive map contains a mention of SYMDEF, and determine if
2911 the symbol is defined in this element. */
2912 static bfd_boolean
2913 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2915 Elf_Internal_Shdr * hdr;
2916 bfd_size_type symcount;
2917 bfd_size_type extsymcount;
2918 bfd_size_type extsymoff;
2919 Elf_Internal_Sym *isymbuf;
2920 Elf_Internal_Sym *isym;
2921 Elf_Internal_Sym *isymend;
2922 bfd_boolean result;
2924 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2925 if (abfd == NULL)
2926 return FALSE;
2928 if (! bfd_check_format (abfd, bfd_object))
2929 return FALSE;
2931 /* If we have already included the element containing this symbol in the
2932 link then we do not need to include it again. Just claim that any symbol
2933 it contains is not a definition, so that our caller will not decide to
2934 (re)include this element. */
2935 if (abfd->archive_pass)
2936 return FALSE;
2938 /* Select the appropriate symbol table. */
2939 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2940 hdr = &elf_tdata (abfd)->symtab_hdr;
2941 else
2942 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2944 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2946 /* The sh_info field of the symtab header tells us where the
2947 external symbols start. We don't care about the local symbols. */
2948 if (elf_bad_symtab (abfd))
2950 extsymcount = symcount;
2951 extsymoff = 0;
2953 else
2955 extsymcount = symcount - hdr->sh_info;
2956 extsymoff = hdr->sh_info;
2959 if (extsymcount == 0)
2960 return FALSE;
2962 /* Read in the symbol table. */
2963 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2964 NULL, NULL, NULL);
2965 if (isymbuf == NULL)
2966 return FALSE;
2968 /* Scan the symbol table looking for SYMDEF. */
2969 result = FALSE;
2970 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2972 const char *name;
2974 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
2975 isym->st_name);
2976 if (name == NULL)
2977 break;
2979 if (strcmp (name, symdef->name) == 0)
2981 result = is_global_data_symbol_definition (abfd, isym);
2982 break;
2986 free (isymbuf);
2988 return result;
2991 /* Add an entry to the .dynamic table. */
2993 bfd_boolean
2994 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
2995 bfd_vma tag,
2996 bfd_vma val)
2998 struct elf_link_hash_table *hash_table;
2999 const struct elf_backend_data *bed;
3000 asection *s;
3001 bfd_size_type newsize;
3002 bfd_byte *newcontents;
3003 Elf_Internal_Dyn dyn;
3005 hash_table = elf_hash_table (info);
3006 if (! is_elf_hash_table (hash_table))
3007 return FALSE;
3009 bed = get_elf_backend_data (hash_table->dynobj);
3010 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3011 BFD_ASSERT (s != NULL);
3013 newsize = s->size + bed->s->sizeof_dyn;
3014 newcontents = bfd_realloc (s->contents, newsize);
3015 if (newcontents == NULL)
3016 return FALSE;
3018 dyn.d_tag = tag;
3019 dyn.d_un.d_val = val;
3020 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3022 s->size = newsize;
3023 s->contents = newcontents;
3025 return TRUE;
3028 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3029 otherwise just check whether one already exists. Returns -1 on error,
3030 1 if a DT_NEEDED tag already exists, and 0 on success. */
3032 static int
3033 elf_add_dt_needed_tag (bfd *abfd,
3034 struct bfd_link_info *info,
3035 const char *soname,
3036 bfd_boolean do_it)
3038 struct elf_link_hash_table *hash_table;
3039 bfd_size_type oldsize;
3040 bfd_size_type strindex;
3042 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3043 return -1;
3045 hash_table = elf_hash_table (info);
3046 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3047 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3048 if (strindex == (bfd_size_type) -1)
3049 return -1;
3051 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3053 asection *sdyn;
3054 const struct elf_backend_data *bed;
3055 bfd_byte *extdyn;
3057 bed = get_elf_backend_data (hash_table->dynobj);
3058 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3059 if (sdyn != NULL)
3060 for (extdyn = sdyn->contents;
3061 extdyn < sdyn->contents + sdyn->size;
3062 extdyn += bed->s->sizeof_dyn)
3064 Elf_Internal_Dyn dyn;
3066 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3067 if (dyn.d_tag == DT_NEEDED
3068 && dyn.d_un.d_val == strindex)
3070 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3071 return 1;
3076 if (do_it)
3078 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3079 return -1;
3081 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3082 return -1;
3084 else
3085 /* We were just checking for existence of the tag. */
3086 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3088 return 0;
3091 /* Sort symbol by value and section. */
3092 static int
3093 elf_sort_symbol (const void *arg1, const void *arg2)
3095 const struct elf_link_hash_entry *h1;
3096 const struct elf_link_hash_entry *h2;
3097 bfd_signed_vma vdiff;
3099 h1 = *(const struct elf_link_hash_entry **) arg1;
3100 h2 = *(const struct elf_link_hash_entry **) arg2;
3101 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3102 if (vdiff != 0)
3103 return vdiff > 0 ? 1 : -1;
3104 else
3106 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3107 if (sdiff != 0)
3108 return sdiff > 0 ? 1 : -1;
3110 return 0;
3113 /* This function is used to adjust offsets into .dynstr for
3114 dynamic symbols. This is called via elf_link_hash_traverse. */
3116 static bfd_boolean
3117 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3119 struct elf_strtab_hash *dynstr = data;
3121 if (h->root.type == bfd_link_hash_warning)
3122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3124 if (h->dynindx != -1)
3125 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3126 return TRUE;
3129 /* Assign string offsets in .dynstr, update all structures referencing
3130 them. */
3132 static bfd_boolean
3133 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3135 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3136 struct elf_link_local_dynamic_entry *entry;
3137 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3138 bfd *dynobj = hash_table->dynobj;
3139 asection *sdyn;
3140 bfd_size_type size;
3141 const struct elf_backend_data *bed;
3142 bfd_byte *extdyn;
3144 _bfd_elf_strtab_finalize (dynstr);
3145 size = _bfd_elf_strtab_size (dynstr);
3147 bed = get_elf_backend_data (dynobj);
3148 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3149 BFD_ASSERT (sdyn != NULL);
3151 /* Update all .dynamic entries referencing .dynstr strings. */
3152 for (extdyn = sdyn->contents;
3153 extdyn < sdyn->contents + sdyn->size;
3154 extdyn += bed->s->sizeof_dyn)
3156 Elf_Internal_Dyn dyn;
3158 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3159 switch (dyn.d_tag)
3161 case DT_STRSZ:
3162 dyn.d_un.d_val = size;
3163 break;
3164 case DT_NEEDED:
3165 case DT_SONAME:
3166 case DT_RPATH:
3167 case DT_RUNPATH:
3168 case DT_FILTER:
3169 case DT_AUXILIARY:
3170 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3171 break;
3172 default:
3173 continue;
3175 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3178 /* Now update local dynamic symbols. */
3179 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3180 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3181 entry->isym.st_name);
3183 /* And the rest of dynamic symbols. */
3184 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3186 /* Adjust version definitions. */
3187 if (elf_tdata (output_bfd)->cverdefs)
3189 asection *s;
3190 bfd_byte *p;
3191 bfd_size_type i;
3192 Elf_Internal_Verdef def;
3193 Elf_Internal_Verdaux defaux;
3195 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3196 p = s->contents;
3199 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3200 &def);
3201 p += sizeof (Elf_External_Verdef);
3202 if (def.vd_aux != sizeof (Elf_External_Verdef))
3203 continue;
3204 for (i = 0; i < def.vd_cnt; ++i)
3206 _bfd_elf_swap_verdaux_in (output_bfd,
3207 (Elf_External_Verdaux *) p, &defaux);
3208 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3209 defaux.vda_name);
3210 _bfd_elf_swap_verdaux_out (output_bfd,
3211 &defaux, (Elf_External_Verdaux *) p);
3212 p += sizeof (Elf_External_Verdaux);
3215 while (def.vd_next);
3218 /* Adjust version references. */
3219 if (elf_tdata (output_bfd)->verref)
3221 asection *s;
3222 bfd_byte *p;
3223 bfd_size_type i;
3224 Elf_Internal_Verneed need;
3225 Elf_Internal_Vernaux needaux;
3227 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3228 p = s->contents;
3231 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3232 &need);
3233 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3234 _bfd_elf_swap_verneed_out (output_bfd, &need,
3235 (Elf_External_Verneed *) p);
3236 p += sizeof (Elf_External_Verneed);
3237 for (i = 0; i < need.vn_cnt; ++i)
3239 _bfd_elf_swap_vernaux_in (output_bfd,
3240 (Elf_External_Vernaux *) p, &needaux);
3241 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3242 needaux.vna_name);
3243 _bfd_elf_swap_vernaux_out (output_bfd,
3244 &needaux,
3245 (Elf_External_Vernaux *) p);
3246 p += sizeof (Elf_External_Vernaux);
3249 while (need.vn_next);
3252 return TRUE;
3255 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3256 The default is to only match when the INPUT and OUTPUT are exactly
3257 the same target. */
3259 bfd_boolean
3260 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3261 const bfd_target *output)
3263 return input == output;
3266 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3267 This version is used when different targets for the same architecture
3268 are virtually identical. */
3270 bfd_boolean
3271 _bfd_elf_relocs_compatible (const bfd_target *input,
3272 const bfd_target *output)
3274 const struct elf_backend_data *obed, *ibed;
3276 if (input == output)
3277 return TRUE;
3279 ibed = xvec_get_elf_backend_data (input);
3280 obed = xvec_get_elf_backend_data (output);
3282 if (ibed->arch != obed->arch)
3283 return FALSE;
3285 /* If both backends are using this function, deem them compatible. */
3286 return ibed->relocs_compatible == obed->relocs_compatible;
3289 /* Add symbols from an ELF object file to the linker hash table. */
3291 static bfd_boolean
3292 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3294 Elf_Internal_Shdr *hdr;
3295 bfd_size_type symcount;
3296 bfd_size_type extsymcount;
3297 bfd_size_type extsymoff;
3298 struct elf_link_hash_entry **sym_hash;
3299 bfd_boolean dynamic;
3300 Elf_External_Versym *extversym = NULL;
3301 Elf_External_Versym *ever;
3302 struct elf_link_hash_entry *weaks;
3303 struct elf_link_hash_entry **nondeflt_vers = NULL;
3304 bfd_size_type nondeflt_vers_cnt = 0;
3305 Elf_Internal_Sym *isymbuf = NULL;
3306 Elf_Internal_Sym *isym;
3307 Elf_Internal_Sym *isymend;
3308 const struct elf_backend_data *bed;
3309 bfd_boolean add_needed;
3310 struct elf_link_hash_table *htab;
3311 bfd_size_type amt;
3312 void *alloc_mark = NULL;
3313 struct bfd_hash_entry **old_table = NULL;
3314 unsigned int old_size = 0;
3315 unsigned int old_count = 0;
3316 void *old_tab = NULL;
3317 void *old_hash;
3318 void *old_ent;
3319 struct bfd_link_hash_entry *old_undefs = NULL;
3320 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3321 long old_dynsymcount = 0;
3322 size_t tabsize = 0;
3323 size_t hashsize = 0;
3325 htab = elf_hash_table (info);
3326 bed = get_elf_backend_data (abfd);
3328 if ((abfd->flags & DYNAMIC) == 0)
3329 dynamic = FALSE;
3330 else
3332 dynamic = TRUE;
3334 /* You can't use -r against a dynamic object. Also, there's no
3335 hope of using a dynamic object which does not exactly match
3336 the format of the output file. */
3337 if (info->relocatable
3338 || !is_elf_hash_table (htab)
3339 || htab->root.creator != abfd->xvec)
3341 if (info->relocatable)
3342 bfd_set_error (bfd_error_invalid_operation);
3343 else
3344 bfd_set_error (bfd_error_wrong_format);
3345 goto error_return;
3349 /* As a GNU extension, any input sections which are named
3350 .gnu.warning.SYMBOL are treated as warning symbols for the given
3351 symbol. This differs from .gnu.warning sections, which generate
3352 warnings when they are included in an output file. */
3353 if (info->executable)
3355 asection *s;
3357 for (s = abfd->sections; s != NULL; s = s->next)
3359 const char *name;
3361 name = bfd_get_section_name (abfd, s);
3362 if (CONST_STRNEQ (name, ".gnu.warning."))
3364 char *msg;
3365 bfd_size_type sz;
3367 name += sizeof ".gnu.warning." - 1;
3369 /* If this is a shared object, then look up the symbol
3370 in the hash table. If it is there, and it is already
3371 been defined, then we will not be using the entry
3372 from this shared object, so we don't need to warn.
3373 FIXME: If we see the definition in a regular object
3374 later on, we will warn, but we shouldn't. The only
3375 fix is to keep track of what warnings we are supposed
3376 to emit, and then handle them all at the end of the
3377 link. */
3378 if (dynamic)
3380 struct elf_link_hash_entry *h;
3382 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3384 /* FIXME: What about bfd_link_hash_common? */
3385 if (h != NULL
3386 && (h->root.type == bfd_link_hash_defined
3387 || h->root.type == bfd_link_hash_defweak))
3389 /* We don't want to issue this warning. Clobber
3390 the section size so that the warning does not
3391 get copied into the output file. */
3392 s->size = 0;
3393 continue;
3397 sz = s->size;
3398 msg = bfd_alloc (abfd, sz + 1);
3399 if (msg == NULL)
3400 goto error_return;
3402 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3403 goto error_return;
3405 msg[sz] = '\0';
3407 if (! (_bfd_generic_link_add_one_symbol
3408 (info, abfd, name, BSF_WARNING, s, 0, msg,
3409 FALSE, bed->collect, NULL)))
3410 goto error_return;
3412 if (! info->relocatable)
3414 /* Clobber the section size so that the warning does
3415 not get copied into the output file. */
3416 s->size = 0;
3418 /* Also set SEC_EXCLUDE, so that symbols defined in
3419 the warning section don't get copied to the output. */
3420 s->flags |= SEC_EXCLUDE;
3426 add_needed = TRUE;
3427 if (! dynamic)
3429 /* If we are creating a shared library, create all the dynamic
3430 sections immediately. We need to attach them to something,
3431 so we attach them to this BFD, provided it is the right
3432 format. FIXME: If there are no input BFD's of the same
3433 format as the output, we can't make a shared library. */
3434 if (info->shared
3435 && is_elf_hash_table (htab)
3436 && htab->root.creator == abfd->xvec
3437 && !htab->dynamic_sections_created)
3439 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3440 goto error_return;
3443 else if (!is_elf_hash_table (htab))
3444 goto error_return;
3445 else
3447 asection *s;
3448 const char *soname = NULL;
3449 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3450 int ret;
3452 /* ld --just-symbols and dynamic objects don't mix very well.
3453 ld shouldn't allow it. */
3454 if ((s = abfd->sections) != NULL
3455 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3456 abort ();
3458 /* If this dynamic lib was specified on the command line with
3459 --as-needed in effect, then we don't want to add a DT_NEEDED
3460 tag unless the lib is actually used. Similary for libs brought
3461 in by another lib's DT_NEEDED. When --no-add-needed is used
3462 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3463 any dynamic library in DT_NEEDED tags in the dynamic lib at
3464 all. */
3465 add_needed = (elf_dyn_lib_class (abfd)
3466 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3467 | DYN_NO_NEEDED)) == 0;
3469 s = bfd_get_section_by_name (abfd, ".dynamic");
3470 if (s != NULL)
3472 bfd_byte *dynbuf;
3473 bfd_byte *extdyn;
3474 int elfsec;
3475 unsigned long shlink;
3477 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3478 goto error_free_dyn;
3480 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3481 if (elfsec == -1)
3482 goto error_free_dyn;
3483 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3485 for (extdyn = dynbuf;
3486 extdyn < dynbuf + s->size;
3487 extdyn += bed->s->sizeof_dyn)
3489 Elf_Internal_Dyn dyn;
3491 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3492 if (dyn.d_tag == DT_SONAME)
3494 unsigned int tagv = dyn.d_un.d_val;
3495 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3496 if (soname == NULL)
3497 goto error_free_dyn;
3499 if (dyn.d_tag == DT_NEEDED)
3501 struct bfd_link_needed_list *n, **pn;
3502 char *fnm, *anm;
3503 unsigned int tagv = dyn.d_un.d_val;
3505 amt = sizeof (struct bfd_link_needed_list);
3506 n = bfd_alloc (abfd, amt);
3507 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3508 if (n == NULL || fnm == NULL)
3509 goto error_free_dyn;
3510 amt = strlen (fnm) + 1;
3511 anm = bfd_alloc (abfd, amt);
3512 if (anm == NULL)
3513 goto error_free_dyn;
3514 memcpy (anm, fnm, amt);
3515 n->name = anm;
3516 n->by = abfd;
3517 n->next = NULL;
3518 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3520 *pn = n;
3522 if (dyn.d_tag == DT_RUNPATH)
3524 struct bfd_link_needed_list *n, **pn;
3525 char *fnm, *anm;
3526 unsigned int tagv = dyn.d_un.d_val;
3528 amt = sizeof (struct bfd_link_needed_list);
3529 n = bfd_alloc (abfd, amt);
3530 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3531 if (n == NULL || fnm == NULL)
3532 goto error_free_dyn;
3533 amt = strlen (fnm) + 1;
3534 anm = bfd_alloc (abfd, amt);
3535 if (anm == NULL)
3536 goto error_free_dyn;
3537 memcpy (anm, fnm, amt);
3538 n->name = anm;
3539 n->by = abfd;
3540 n->next = NULL;
3541 for (pn = & runpath;
3542 *pn != NULL;
3543 pn = &(*pn)->next)
3545 *pn = n;
3547 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3548 if (!runpath && dyn.d_tag == DT_RPATH)
3550 struct bfd_link_needed_list *n, **pn;
3551 char *fnm, *anm;
3552 unsigned int tagv = dyn.d_un.d_val;
3554 amt = sizeof (struct bfd_link_needed_list);
3555 n = bfd_alloc (abfd, amt);
3556 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3557 if (n == NULL || fnm == NULL)
3558 goto error_free_dyn;
3559 amt = strlen (fnm) + 1;
3560 anm = bfd_alloc (abfd, amt);
3561 if (anm == NULL)
3563 error_free_dyn:
3564 free (dynbuf);
3565 goto error_return;
3567 memcpy (anm, fnm, amt);
3568 n->name = anm;
3569 n->by = abfd;
3570 n->next = NULL;
3571 for (pn = & rpath;
3572 *pn != NULL;
3573 pn = &(*pn)->next)
3575 *pn = n;
3579 free (dynbuf);
3582 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3583 frees all more recently bfd_alloc'd blocks as well. */
3584 if (runpath)
3585 rpath = runpath;
3587 if (rpath)
3589 struct bfd_link_needed_list **pn;
3590 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3592 *pn = rpath;
3595 /* We do not want to include any of the sections in a dynamic
3596 object in the output file. We hack by simply clobbering the
3597 list of sections in the BFD. This could be handled more
3598 cleanly by, say, a new section flag; the existing
3599 SEC_NEVER_LOAD flag is not the one we want, because that one
3600 still implies that the section takes up space in the output
3601 file. */
3602 bfd_section_list_clear (abfd);
3604 /* Find the name to use in a DT_NEEDED entry that refers to this
3605 object. If the object has a DT_SONAME entry, we use it.
3606 Otherwise, if the generic linker stuck something in
3607 elf_dt_name, we use that. Otherwise, we just use the file
3608 name. */
3609 if (soname == NULL || *soname == '\0')
3611 soname = elf_dt_name (abfd);
3612 if (soname == NULL || *soname == '\0')
3613 soname = bfd_get_filename (abfd);
3616 /* Save the SONAME because sometimes the linker emulation code
3617 will need to know it. */
3618 elf_dt_name (abfd) = soname;
3620 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3621 if (ret < 0)
3622 goto error_return;
3624 /* If we have already included this dynamic object in the
3625 link, just ignore it. There is no reason to include a
3626 particular dynamic object more than once. */
3627 if (ret > 0)
3628 return TRUE;
3631 /* If this is a dynamic object, we always link against the .dynsym
3632 symbol table, not the .symtab symbol table. The dynamic linker
3633 will only see the .dynsym symbol table, so there is no reason to
3634 look at .symtab for a dynamic object. */
3636 if (! dynamic || elf_dynsymtab (abfd) == 0)
3637 hdr = &elf_tdata (abfd)->symtab_hdr;
3638 else
3639 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3641 symcount = hdr->sh_size / bed->s->sizeof_sym;
3643 /* The sh_info field of the symtab header tells us where the
3644 external symbols start. We don't care about the local symbols at
3645 this point. */
3646 if (elf_bad_symtab (abfd))
3648 extsymcount = symcount;
3649 extsymoff = 0;
3651 else
3653 extsymcount = symcount - hdr->sh_info;
3654 extsymoff = hdr->sh_info;
3657 sym_hash = NULL;
3658 if (extsymcount != 0)
3660 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3661 NULL, NULL, NULL);
3662 if (isymbuf == NULL)
3663 goto error_return;
3665 /* We store a pointer to the hash table entry for each external
3666 symbol. */
3667 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3668 sym_hash = bfd_alloc (abfd, amt);
3669 if (sym_hash == NULL)
3670 goto error_free_sym;
3671 elf_sym_hashes (abfd) = sym_hash;
3674 if (dynamic)
3676 /* Read in any version definitions. */
3677 if (!_bfd_elf_slurp_version_tables (abfd,
3678 info->default_imported_symver))
3679 goto error_free_sym;
3681 /* Read in the symbol versions, but don't bother to convert them
3682 to internal format. */
3683 if (elf_dynversym (abfd) != 0)
3685 Elf_Internal_Shdr *versymhdr;
3687 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3688 extversym = bfd_malloc (versymhdr->sh_size);
3689 if (extversym == NULL)
3690 goto error_free_sym;
3691 amt = versymhdr->sh_size;
3692 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3693 || bfd_bread (extversym, amt, abfd) != amt)
3694 goto error_free_vers;
3698 /* If we are loading an as-needed shared lib, save the symbol table
3699 state before we start adding symbols. If the lib turns out
3700 to be unneeded, restore the state. */
3701 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3703 unsigned int i;
3704 size_t entsize;
3706 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3708 struct bfd_hash_entry *p;
3709 struct elf_link_hash_entry *h;
3711 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3713 h = (struct elf_link_hash_entry *) p;
3714 entsize += htab->root.table.entsize;
3715 if (h->root.type == bfd_link_hash_warning)
3716 entsize += htab->root.table.entsize;
3720 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3721 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3722 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3723 if (old_tab == NULL)
3724 goto error_free_vers;
3726 /* Remember the current objalloc pointer, so that all mem for
3727 symbols added can later be reclaimed. */
3728 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3729 if (alloc_mark == NULL)
3730 goto error_free_vers;
3732 /* Make a special call to the linker "notice" function to
3733 tell it that we are about to handle an as-needed lib. */
3734 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3735 notice_as_needed))
3736 goto error_free_vers;
3738 /* Clone the symbol table and sym hashes. Remember some
3739 pointers into the symbol table, and dynamic symbol count. */
3740 old_hash = (char *) old_tab + tabsize;
3741 old_ent = (char *) old_hash + hashsize;
3742 memcpy (old_tab, htab->root.table.table, tabsize);
3743 memcpy (old_hash, sym_hash, hashsize);
3744 old_undefs = htab->root.undefs;
3745 old_undefs_tail = htab->root.undefs_tail;
3746 old_table = htab->root.table.table;
3747 old_size = htab->root.table.size;
3748 old_count = htab->root.table.count;
3749 old_dynsymcount = htab->dynsymcount;
3751 for (i = 0; i < htab->root.table.size; i++)
3753 struct bfd_hash_entry *p;
3754 struct elf_link_hash_entry *h;
3756 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3758 memcpy (old_ent, p, htab->root.table.entsize);
3759 old_ent = (char *) old_ent + htab->root.table.entsize;
3760 h = (struct elf_link_hash_entry *) p;
3761 if (h->root.type == bfd_link_hash_warning)
3763 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3764 old_ent = (char *) old_ent + htab->root.table.entsize;
3770 weaks = NULL;
3771 ever = extversym != NULL ? extversym + extsymoff : NULL;
3772 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3773 isym < isymend;
3774 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3776 int bind;
3777 bfd_vma value;
3778 asection *sec, *new_sec;
3779 flagword flags;
3780 const char *name;
3781 struct elf_link_hash_entry *h;
3782 bfd_boolean definition;
3783 bfd_boolean size_change_ok;
3784 bfd_boolean type_change_ok;
3785 bfd_boolean new_weakdef;
3786 bfd_boolean override;
3787 bfd_boolean common;
3788 unsigned int old_alignment;
3789 bfd *old_bfd;
3791 override = FALSE;
3793 flags = BSF_NO_FLAGS;
3794 sec = NULL;
3795 value = isym->st_value;
3796 *sym_hash = NULL;
3797 common = bed->common_definition (isym);
3799 bind = ELF_ST_BIND (isym->st_info);
3800 if (bind == STB_LOCAL)
3802 /* This should be impossible, since ELF requires that all
3803 global symbols follow all local symbols, and that sh_info
3804 point to the first global symbol. Unfortunately, Irix 5
3805 screws this up. */
3806 continue;
3808 else if (bind == STB_GLOBAL)
3810 if (isym->st_shndx != SHN_UNDEF && !common)
3811 flags = BSF_GLOBAL;
3813 else if (bind == STB_WEAK)
3814 flags = BSF_WEAK;
3815 else
3817 /* Leave it up to the processor backend. */
3820 if (isym->st_shndx == SHN_UNDEF)
3821 sec = bfd_und_section_ptr;
3822 else if (isym->st_shndx < SHN_LORESERVE
3823 || isym->st_shndx > SHN_HIRESERVE)
3825 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3826 if (sec == NULL)
3827 sec = bfd_abs_section_ptr;
3828 else if (sec->kept_section)
3830 /* Symbols from discarded section are undefined. We keep
3831 its visibility. */
3832 sec = bfd_und_section_ptr;
3833 isym->st_shndx = SHN_UNDEF;
3835 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3836 value -= sec->vma;
3838 else if (isym->st_shndx == SHN_ABS)
3839 sec = bfd_abs_section_ptr;
3840 else if (isym->st_shndx == SHN_COMMON)
3842 sec = bfd_com_section_ptr;
3843 /* What ELF calls the size we call the value. What ELF
3844 calls the value we call the alignment. */
3845 value = isym->st_size;
3847 else
3849 /* Leave it up to the processor backend. */
3852 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3853 isym->st_name);
3854 if (name == NULL)
3855 goto error_free_vers;
3857 if (isym->st_shndx == SHN_COMMON
3858 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3859 && !info->relocatable)
3861 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3863 if (tcomm == NULL)
3865 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3866 (SEC_ALLOC
3867 | SEC_IS_COMMON
3868 | SEC_LINKER_CREATED
3869 | SEC_THREAD_LOCAL));
3870 if (tcomm == NULL)
3871 goto error_free_vers;
3873 sec = tcomm;
3875 else if (bed->elf_add_symbol_hook)
3877 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3878 &sec, &value))
3879 goto error_free_vers;
3881 /* The hook function sets the name to NULL if this symbol
3882 should be skipped for some reason. */
3883 if (name == NULL)
3884 continue;
3887 /* Sanity check that all possibilities were handled. */
3888 if (sec == NULL)
3890 bfd_set_error (bfd_error_bad_value);
3891 goto error_free_vers;
3894 if (bfd_is_und_section (sec)
3895 || bfd_is_com_section (sec))
3896 definition = FALSE;
3897 else
3898 definition = TRUE;
3900 size_change_ok = FALSE;
3901 type_change_ok = bed->type_change_ok;
3902 old_alignment = 0;
3903 old_bfd = NULL;
3904 new_sec = sec;
3906 if (is_elf_hash_table (htab))
3908 Elf_Internal_Versym iver;
3909 unsigned int vernum = 0;
3910 bfd_boolean skip;
3912 if (ever == NULL)
3914 if (info->default_imported_symver)
3915 /* Use the default symbol version created earlier. */
3916 iver.vs_vers = elf_tdata (abfd)->cverdefs;
3917 else
3918 iver.vs_vers = 0;
3920 else
3921 _bfd_elf_swap_versym_in (abfd, ever, &iver);
3923 vernum = iver.vs_vers & VERSYM_VERSION;
3925 /* If this is a hidden symbol, or if it is not version
3926 1, we append the version name to the symbol name.
3927 However, we do not modify a non-hidden absolute symbol
3928 if it is not a function, because it might be the version
3929 symbol itself. FIXME: What if it isn't? */
3930 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
3931 || (vernum > 1
3932 && (!bfd_is_abs_section (sec)
3933 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
3935 const char *verstr;
3936 size_t namelen, verlen, newlen;
3937 char *newname, *p;
3939 if (isym->st_shndx != SHN_UNDEF)
3941 if (vernum > elf_tdata (abfd)->cverdefs)
3942 verstr = NULL;
3943 else if (vernum > 1)
3944 verstr =
3945 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
3946 else
3947 verstr = "";
3949 if (verstr == NULL)
3951 (*_bfd_error_handler)
3952 (_("%B: %s: invalid version %u (max %d)"),
3953 abfd, name, vernum,
3954 elf_tdata (abfd)->cverdefs);
3955 bfd_set_error (bfd_error_bad_value);
3956 goto error_free_vers;
3959 else
3961 /* We cannot simply test for the number of
3962 entries in the VERNEED section since the
3963 numbers for the needed versions do not start
3964 at 0. */
3965 Elf_Internal_Verneed *t;
3967 verstr = NULL;
3968 for (t = elf_tdata (abfd)->verref;
3969 t != NULL;
3970 t = t->vn_nextref)
3972 Elf_Internal_Vernaux *a;
3974 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3976 if (a->vna_other == vernum)
3978 verstr = a->vna_nodename;
3979 break;
3982 if (a != NULL)
3983 break;
3985 if (verstr == NULL)
3987 (*_bfd_error_handler)
3988 (_("%B: %s: invalid needed version %d"),
3989 abfd, name, vernum);
3990 bfd_set_error (bfd_error_bad_value);
3991 goto error_free_vers;
3995 namelen = strlen (name);
3996 verlen = strlen (verstr);
3997 newlen = namelen + verlen + 2;
3998 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
3999 && isym->st_shndx != SHN_UNDEF)
4000 ++newlen;
4002 newname = bfd_hash_allocate (&htab->root.table, newlen);
4003 if (newname == NULL)
4004 goto error_free_vers;
4005 memcpy (newname, name, namelen);
4006 p = newname + namelen;
4007 *p++ = ELF_VER_CHR;
4008 /* If this is a defined non-hidden version symbol,
4009 we add another @ to the name. This indicates the
4010 default version of the symbol. */
4011 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4012 && isym->st_shndx != SHN_UNDEF)
4013 *p++ = ELF_VER_CHR;
4014 memcpy (p, verstr, verlen + 1);
4016 name = newname;
4019 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4020 &value, &old_alignment,
4021 sym_hash, &skip, &override,
4022 &type_change_ok, &size_change_ok))
4023 goto error_free_vers;
4025 if (skip)
4026 continue;
4028 if (override)
4029 definition = FALSE;
4031 h = *sym_hash;
4032 while (h->root.type == bfd_link_hash_indirect
4033 || h->root.type == bfd_link_hash_warning)
4034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4036 /* Remember the old alignment if this is a common symbol, so
4037 that we don't reduce the alignment later on. We can't
4038 check later, because _bfd_generic_link_add_one_symbol
4039 will set a default for the alignment which we want to
4040 override. We also remember the old bfd where the existing
4041 definition comes from. */
4042 switch (h->root.type)
4044 default:
4045 break;
4047 case bfd_link_hash_defined:
4048 case bfd_link_hash_defweak:
4049 old_bfd = h->root.u.def.section->owner;
4050 break;
4052 case bfd_link_hash_common:
4053 old_bfd = h->root.u.c.p->section->owner;
4054 old_alignment = h->root.u.c.p->alignment_power;
4055 break;
4058 if (elf_tdata (abfd)->verdef != NULL
4059 && ! override
4060 && vernum > 1
4061 && definition)
4062 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4065 if (! (_bfd_generic_link_add_one_symbol
4066 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4067 (struct bfd_link_hash_entry **) sym_hash)))
4068 goto error_free_vers;
4070 h = *sym_hash;
4071 while (h->root.type == bfd_link_hash_indirect
4072 || h->root.type == bfd_link_hash_warning)
4073 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4074 *sym_hash = h;
4076 new_weakdef = FALSE;
4077 if (dynamic
4078 && definition
4079 && (flags & BSF_WEAK) != 0
4080 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4081 && is_elf_hash_table (htab)
4082 && h->u.weakdef == NULL)
4084 /* Keep a list of all weak defined non function symbols from
4085 a dynamic object, using the weakdef field. Later in this
4086 function we will set the weakdef field to the correct
4087 value. We only put non-function symbols from dynamic
4088 objects on this list, because that happens to be the only
4089 time we need to know the normal symbol corresponding to a
4090 weak symbol, and the information is time consuming to
4091 figure out. If the weakdef field is not already NULL,
4092 then this symbol was already defined by some previous
4093 dynamic object, and we will be using that previous
4094 definition anyhow. */
4096 h->u.weakdef = weaks;
4097 weaks = h;
4098 new_weakdef = TRUE;
4101 /* Set the alignment of a common symbol. */
4102 if ((common || bfd_is_com_section (sec))
4103 && h->root.type == bfd_link_hash_common)
4105 unsigned int align;
4107 if (common)
4108 align = bfd_log2 (isym->st_value);
4109 else
4111 /* The new symbol is a common symbol in a shared object.
4112 We need to get the alignment from the section. */
4113 align = new_sec->alignment_power;
4115 if (align > old_alignment
4116 /* Permit an alignment power of zero if an alignment of one
4117 is specified and no other alignments have been specified. */
4118 || (isym->st_value == 1 && old_alignment == 0))
4119 h->root.u.c.p->alignment_power = align;
4120 else
4121 h->root.u.c.p->alignment_power = old_alignment;
4124 if (is_elf_hash_table (htab))
4126 bfd_boolean dynsym;
4128 /* Check the alignment when a common symbol is involved. This
4129 can change when a common symbol is overridden by a normal
4130 definition or a common symbol is ignored due to the old
4131 normal definition. We need to make sure the maximum
4132 alignment is maintained. */
4133 if ((old_alignment || common)
4134 && h->root.type != bfd_link_hash_common)
4136 unsigned int common_align;
4137 unsigned int normal_align;
4138 unsigned int symbol_align;
4139 bfd *normal_bfd;
4140 bfd *common_bfd;
4142 symbol_align = ffs (h->root.u.def.value) - 1;
4143 if (h->root.u.def.section->owner != NULL
4144 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4146 normal_align = h->root.u.def.section->alignment_power;
4147 if (normal_align > symbol_align)
4148 normal_align = symbol_align;
4150 else
4151 normal_align = symbol_align;
4153 if (old_alignment)
4155 common_align = old_alignment;
4156 common_bfd = old_bfd;
4157 normal_bfd = abfd;
4159 else
4161 common_align = bfd_log2 (isym->st_value);
4162 common_bfd = abfd;
4163 normal_bfd = old_bfd;
4166 if (normal_align < common_align)
4168 /* PR binutils/2735 */
4169 if (normal_bfd == NULL)
4170 (*_bfd_error_handler)
4171 (_("Warning: alignment %u of common symbol `%s' in %B"
4172 " is greater than the alignment (%u) of its section %A"),
4173 common_bfd, h->root.u.def.section,
4174 1 << common_align, name, 1 << normal_align);
4175 else
4176 (*_bfd_error_handler)
4177 (_("Warning: alignment %u of symbol `%s' in %B"
4178 " is smaller than %u in %B"),
4179 normal_bfd, common_bfd,
4180 1 << normal_align, name, 1 << common_align);
4184 /* Remember the symbol size if it isn't undefined. */
4185 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4186 && (definition || h->size == 0))
4188 if (h->size != 0
4189 && h->size != isym->st_size
4190 && ! size_change_ok)
4191 (*_bfd_error_handler)
4192 (_("Warning: size of symbol `%s' changed"
4193 " from %lu in %B to %lu in %B"),
4194 old_bfd, abfd,
4195 name, (unsigned long) h->size,
4196 (unsigned long) isym->st_size);
4198 h->size = isym->st_size;
4201 /* If this is a common symbol, then we always want H->SIZE
4202 to be the size of the common symbol. The code just above
4203 won't fix the size if a common symbol becomes larger. We
4204 don't warn about a size change here, because that is
4205 covered by --warn-common. Allow changed between different
4206 function types. */
4207 if (h->root.type == bfd_link_hash_common)
4208 h->size = h->root.u.c.size;
4210 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4211 && (definition || h->type == STT_NOTYPE))
4213 if (h->type != STT_NOTYPE
4214 && h->type != ELF_ST_TYPE (isym->st_info)
4215 && ! type_change_ok)
4216 (*_bfd_error_handler)
4217 (_("Warning: type of symbol `%s' changed"
4218 " from %d to %d in %B"),
4219 abfd, name, h->type, ELF_ST_TYPE (isym->st_info));
4221 h->type = ELF_ST_TYPE (isym->st_info);
4224 /* If st_other has a processor-specific meaning, specific
4225 code might be needed here. We never merge the visibility
4226 attribute with the one from a dynamic object. */
4227 if (bed->elf_backend_merge_symbol_attribute)
4228 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
4229 dynamic);
4231 /* If this symbol has default visibility and the user has requested
4232 we not re-export it, then mark it as hidden. */
4233 if (definition && !dynamic
4234 && (abfd->no_export
4235 || (abfd->my_archive && abfd->my_archive->no_export))
4236 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4237 isym->st_other = (STV_HIDDEN
4238 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4240 if (ELF_ST_VISIBILITY (isym->st_other) != 0 && !dynamic)
4242 unsigned char hvis, symvis, other, nvis;
4244 /* Only merge the visibility. Leave the remainder of the
4245 st_other field to elf_backend_merge_symbol_attribute. */
4246 other = h->other & ~ELF_ST_VISIBILITY (-1);
4248 /* Combine visibilities, using the most constraining one. */
4249 hvis = ELF_ST_VISIBILITY (h->other);
4250 symvis = ELF_ST_VISIBILITY (isym->st_other);
4251 if (! hvis)
4252 nvis = symvis;
4253 else if (! symvis)
4254 nvis = hvis;
4255 else
4256 nvis = hvis < symvis ? hvis : symvis;
4258 h->other = other | nvis;
4261 /* Set a flag in the hash table entry indicating the type of
4262 reference or definition we just found. Keep a count of
4263 the number of dynamic symbols we find. A dynamic symbol
4264 is one which is referenced or defined by both a regular
4265 object and a shared object. */
4266 dynsym = FALSE;
4267 if (! dynamic)
4269 if (! definition)
4271 h->ref_regular = 1;
4272 if (bind != STB_WEAK)
4273 h->ref_regular_nonweak = 1;
4275 else
4276 h->def_regular = 1;
4277 if (! info->executable
4278 || h->def_dynamic
4279 || h->ref_dynamic)
4280 dynsym = TRUE;
4282 else
4284 if (! definition)
4285 h->ref_dynamic = 1;
4286 else
4287 h->def_dynamic = 1;
4288 if (h->def_regular
4289 || h->ref_regular
4290 || (h->u.weakdef != NULL
4291 && ! new_weakdef
4292 && h->u.weakdef->dynindx != -1))
4293 dynsym = TRUE;
4296 if (definition && (sec->flags & SEC_DEBUGGING))
4298 /* We don't want to make debug symbol dynamic. */
4299 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4300 dynsym = FALSE;
4303 /* Check to see if we need to add an indirect symbol for
4304 the default name. */
4305 if (definition || h->root.type == bfd_link_hash_common)
4306 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4307 &sec, &value, &dynsym,
4308 override))
4309 goto error_free_vers;
4311 if (definition && !dynamic)
4313 char *p = strchr (name, ELF_VER_CHR);
4314 if (p != NULL && p[1] != ELF_VER_CHR)
4316 /* Queue non-default versions so that .symver x, x@FOO
4317 aliases can be checked. */
4318 if (!nondeflt_vers)
4320 amt = ((isymend - isym + 1)
4321 * sizeof (struct elf_link_hash_entry *));
4322 nondeflt_vers = bfd_malloc (amt);
4323 if (!nondeflt_vers)
4324 goto error_free_vers;
4326 nondeflt_vers[nondeflt_vers_cnt++] = h;
4330 if (dynsym && h->dynindx == -1)
4332 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4333 goto error_free_vers;
4334 if (h->u.weakdef != NULL
4335 && ! new_weakdef
4336 && h->u.weakdef->dynindx == -1)
4338 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4339 goto error_free_vers;
4342 else if (dynsym && h->dynindx != -1)
4343 /* If the symbol already has a dynamic index, but
4344 visibility says it should not be visible, turn it into
4345 a local symbol. */
4346 switch (ELF_ST_VISIBILITY (h->other))
4348 case STV_INTERNAL:
4349 case STV_HIDDEN:
4350 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4351 dynsym = FALSE;
4352 break;
4355 if (!add_needed
4356 && definition
4357 && dynsym
4358 && h->ref_regular)
4360 int ret;
4361 const char *soname = elf_dt_name (abfd);
4363 /* A symbol from a library loaded via DT_NEEDED of some
4364 other library is referenced by a regular object.
4365 Add a DT_NEEDED entry for it. Issue an error if
4366 --no-add-needed is used. */
4367 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4369 (*_bfd_error_handler)
4370 (_("%s: invalid DSO for symbol `%s' definition"),
4371 abfd, name);
4372 bfd_set_error (bfd_error_bad_value);
4373 goto error_free_vers;
4376 elf_dyn_lib_class (abfd) &= ~DYN_AS_NEEDED;
4378 add_needed = TRUE;
4379 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4380 if (ret < 0)
4381 goto error_free_vers;
4383 BFD_ASSERT (ret == 0);
4388 if (extversym != NULL)
4390 free (extversym);
4391 extversym = NULL;
4394 if (isymbuf != NULL)
4396 free (isymbuf);
4397 isymbuf = NULL;
4400 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4402 unsigned int i;
4404 /* Restore the symbol table. */
4405 if (bed->as_needed_cleanup)
4406 (*bed->as_needed_cleanup) (abfd, info);
4407 old_hash = (char *) old_tab + tabsize;
4408 old_ent = (char *) old_hash + hashsize;
4409 sym_hash = elf_sym_hashes (abfd);
4410 htab->root.table.table = old_table;
4411 htab->root.table.size = old_size;
4412 htab->root.table.count = old_count;
4413 memcpy (htab->root.table.table, old_tab, tabsize);
4414 memcpy (sym_hash, old_hash, hashsize);
4415 htab->root.undefs = old_undefs;
4416 htab->root.undefs_tail = old_undefs_tail;
4417 for (i = 0; i < htab->root.table.size; i++)
4419 struct bfd_hash_entry *p;
4420 struct elf_link_hash_entry *h;
4422 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4424 h = (struct elf_link_hash_entry *) p;
4425 if (h->root.type == bfd_link_hash_warning)
4426 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4427 if (h->dynindx >= old_dynsymcount)
4428 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4430 memcpy (p, old_ent, htab->root.table.entsize);
4431 old_ent = (char *) old_ent + htab->root.table.entsize;
4432 h = (struct elf_link_hash_entry *) p;
4433 if (h->root.type == bfd_link_hash_warning)
4435 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4436 old_ent = (char *) old_ent + htab->root.table.entsize;
4441 /* Make a special call to the linker "notice" function to
4442 tell it that symbols added for crefs may need to be removed. */
4443 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4444 notice_not_needed))
4445 goto error_free_vers;
4447 free (old_tab);
4448 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4449 alloc_mark);
4450 if (nondeflt_vers != NULL)
4451 free (nondeflt_vers);
4452 return TRUE;
4455 if (old_tab != NULL)
4457 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4458 notice_needed))
4459 goto error_free_vers;
4460 free (old_tab);
4461 old_tab = NULL;
4464 /* Now that all the symbols from this input file are created, handle
4465 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4466 if (nondeflt_vers != NULL)
4468 bfd_size_type cnt, symidx;
4470 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4472 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4473 char *shortname, *p;
4475 p = strchr (h->root.root.string, ELF_VER_CHR);
4476 if (p == NULL
4477 || (h->root.type != bfd_link_hash_defined
4478 && h->root.type != bfd_link_hash_defweak))
4479 continue;
4481 amt = p - h->root.root.string;
4482 shortname = bfd_malloc (amt + 1);
4483 if (!shortname)
4484 goto error_free_vers;
4485 memcpy (shortname, h->root.root.string, amt);
4486 shortname[amt] = '\0';
4488 hi = (struct elf_link_hash_entry *)
4489 bfd_link_hash_lookup (&htab->root, shortname,
4490 FALSE, FALSE, FALSE);
4491 if (hi != NULL
4492 && hi->root.type == h->root.type
4493 && hi->root.u.def.value == h->root.u.def.value
4494 && hi->root.u.def.section == h->root.u.def.section)
4496 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4497 hi->root.type = bfd_link_hash_indirect;
4498 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4499 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4500 sym_hash = elf_sym_hashes (abfd);
4501 if (sym_hash)
4502 for (symidx = 0; symidx < extsymcount; ++symidx)
4503 if (sym_hash[symidx] == hi)
4505 sym_hash[symidx] = h;
4506 break;
4509 free (shortname);
4511 free (nondeflt_vers);
4512 nondeflt_vers = NULL;
4515 /* Now set the weakdefs field correctly for all the weak defined
4516 symbols we found. The only way to do this is to search all the
4517 symbols. Since we only need the information for non functions in
4518 dynamic objects, that's the only time we actually put anything on
4519 the list WEAKS. We need this information so that if a regular
4520 object refers to a symbol defined weakly in a dynamic object, the
4521 real symbol in the dynamic object is also put in the dynamic
4522 symbols; we also must arrange for both symbols to point to the
4523 same memory location. We could handle the general case of symbol
4524 aliasing, but a general symbol alias can only be generated in
4525 assembler code, handling it correctly would be very time
4526 consuming, and other ELF linkers don't handle general aliasing
4527 either. */
4528 if (weaks != NULL)
4530 struct elf_link_hash_entry **hpp;
4531 struct elf_link_hash_entry **hppend;
4532 struct elf_link_hash_entry **sorted_sym_hash;
4533 struct elf_link_hash_entry *h;
4534 size_t sym_count;
4536 /* Since we have to search the whole symbol list for each weak
4537 defined symbol, search time for N weak defined symbols will be
4538 O(N^2). Binary search will cut it down to O(NlogN). */
4539 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4540 sorted_sym_hash = bfd_malloc (amt);
4541 if (sorted_sym_hash == NULL)
4542 goto error_return;
4543 sym_hash = sorted_sym_hash;
4544 hpp = elf_sym_hashes (abfd);
4545 hppend = hpp + extsymcount;
4546 sym_count = 0;
4547 for (; hpp < hppend; hpp++)
4549 h = *hpp;
4550 if (h != NULL
4551 && h->root.type == bfd_link_hash_defined
4552 && !bed->is_function_type (h->type))
4554 *sym_hash = h;
4555 sym_hash++;
4556 sym_count++;
4560 qsort (sorted_sym_hash, sym_count,
4561 sizeof (struct elf_link_hash_entry *),
4562 elf_sort_symbol);
4564 while (weaks != NULL)
4566 struct elf_link_hash_entry *hlook;
4567 asection *slook;
4568 bfd_vma vlook;
4569 long ilook;
4570 size_t i, j, idx;
4572 hlook = weaks;
4573 weaks = hlook->u.weakdef;
4574 hlook->u.weakdef = NULL;
4576 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4577 || hlook->root.type == bfd_link_hash_defweak
4578 || hlook->root.type == bfd_link_hash_common
4579 || hlook->root.type == bfd_link_hash_indirect);
4580 slook = hlook->root.u.def.section;
4581 vlook = hlook->root.u.def.value;
4583 ilook = -1;
4584 i = 0;
4585 j = sym_count;
4586 while (i < j)
4588 bfd_signed_vma vdiff;
4589 idx = (i + j) / 2;
4590 h = sorted_sym_hash [idx];
4591 vdiff = vlook - h->root.u.def.value;
4592 if (vdiff < 0)
4593 j = idx;
4594 else if (vdiff > 0)
4595 i = idx + 1;
4596 else
4598 long sdiff = slook->id - h->root.u.def.section->id;
4599 if (sdiff < 0)
4600 j = idx;
4601 else if (sdiff > 0)
4602 i = idx + 1;
4603 else
4605 ilook = idx;
4606 break;
4611 /* We didn't find a value/section match. */
4612 if (ilook == -1)
4613 continue;
4615 for (i = ilook; i < sym_count; i++)
4617 h = sorted_sym_hash [i];
4619 /* Stop if value or section doesn't match. */
4620 if (h->root.u.def.value != vlook
4621 || h->root.u.def.section != slook)
4622 break;
4623 else if (h != hlook)
4625 hlook->u.weakdef = h;
4627 /* If the weak definition is in the list of dynamic
4628 symbols, make sure the real definition is put
4629 there as well. */
4630 if (hlook->dynindx != -1 && h->dynindx == -1)
4632 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4633 goto error_return;
4636 /* If the real definition is in the list of dynamic
4637 symbols, make sure the weak definition is put
4638 there as well. If we don't do this, then the
4639 dynamic loader might not merge the entries for the
4640 real definition and the weak definition. */
4641 if (h->dynindx != -1 && hlook->dynindx == -1)
4643 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4644 goto error_return;
4646 break;
4651 free (sorted_sym_hash);
4654 if (bed->check_directives)
4655 (*bed->check_directives) (abfd, info);
4657 /* If this object is the same format as the output object, and it is
4658 not a shared library, then let the backend look through the
4659 relocs.
4661 This is required to build global offset table entries and to
4662 arrange for dynamic relocs. It is not required for the
4663 particular common case of linking non PIC code, even when linking
4664 against shared libraries, but unfortunately there is no way of
4665 knowing whether an object file has been compiled PIC or not.
4666 Looking through the relocs is not particularly time consuming.
4667 The problem is that we must either (1) keep the relocs in memory,
4668 which causes the linker to require additional runtime memory or
4669 (2) read the relocs twice from the input file, which wastes time.
4670 This would be a good case for using mmap.
4672 I have no idea how to handle linking PIC code into a file of a
4673 different format. It probably can't be done. */
4674 if (! dynamic
4675 && is_elf_hash_table (htab)
4676 && bed->check_relocs != NULL
4677 && (*bed->relocs_compatible) (abfd->xvec, htab->root.creator))
4679 asection *o;
4681 for (o = abfd->sections; o != NULL; o = o->next)
4683 Elf_Internal_Rela *internal_relocs;
4684 bfd_boolean ok;
4686 if ((o->flags & SEC_RELOC) == 0
4687 || o->reloc_count == 0
4688 || ((info->strip == strip_all || info->strip == strip_debugger)
4689 && (o->flags & SEC_DEBUGGING) != 0)
4690 || bfd_is_abs_section (o->output_section))
4691 continue;
4693 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4694 info->keep_memory);
4695 if (internal_relocs == NULL)
4696 goto error_return;
4698 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4700 if (elf_section_data (o)->relocs != internal_relocs)
4701 free (internal_relocs);
4703 if (! ok)
4704 goto error_return;
4708 /* If this is a non-traditional link, try to optimize the handling
4709 of the .stab/.stabstr sections. */
4710 if (! dynamic
4711 && ! info->traditional_format
4712 && is_elf_hash_table (htab)
4713 && (info->strip != strip_all && info->strip != strip_debugger))
4715 asection *stabstr;
4717 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4718 if (stabstr != NULL)
4720 bfd_size_type string_offset = 0;
4721 asection *stab;
4723 for (stab = abfd->sections; stab; stab = stab->next)
4724 if (CONST_STRNEQ (stab->name, ".stab")
4725 && (!stab->name[5] ||
4726 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4727 && (stab->flags & SEC_MERGE) == 0
4728 && !bfd_is_abs_section (stab->output_section))
4730 struct bfd_elf_section_data *secdata;
4732 secdata = elf_section_data (stab);
4733 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4734 stabstr, &secdata->sec_info,
4735 &string_offset))
4736 goto error_return;
4737 if (secdata->sec_info)
4738 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4743 if (is_elf_hash_table (htab) && add_needed)
4745 /* Add this bfd to the loaded list. */
4746 struct elf_link_loaded_list *n;
4748 n = bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4749 if (n == NULL)
4750 goto error_return;
4751 n->abfd = abfd;
4752 n->next = htab->loaded;
4753 htab->loaded = n;
4756 return TRUE;
4758 error_free_vers:
4759 if (old_tab != NULL)
4760 free (old_tab);
4761 if (nondeflt_vers != NULL)
4762 free (nondeflt_vers);
4763 if (extversym != NULL)
4764 free (extversym);
4765 error_free_sym:
4766 if (isymbuf != NULL)
4767 free (isymbuf);
4768 error_return:
4769 return FALSE;
4772 /* Return the linker hash table entry of a symbol that might be
4773 satisfied by an archive symbol. Return -1 on error. */
4775 struct elf_link_hash_entry *
4776 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4777 struct bfd_link_info *info,
4778 const char *name)
4780 struct elf_link_hash_entry *h;
4781 char *p, *copy;
4782 size_t len, first;
4784 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4785 if (h != NULL)
4786 return h;
4788 /* If this is a default version (the name contains @@), look up the
4789 symbol again with only one `@' as well as without the version.
4790 The effect is that references to the symbol with and without the
4791 version will be matched by the default symbol in the archive. */
4793 p = strchr (name, ELF_VER_CHR);
4794 if (p == NULL || p[1] != ELF_VER_CHR)
4795 return h;
4797 /* First check with only one `@'. */
4798 len = strlen (name);
4799 copy = bfd_alloc (abfd, len);
4800 if (copy == NULL)
4801 return (struct elf_link_hash_entry *) 0 - 1;
4803 first = p - name + 1;
4804 memcpy (copy, name, first);
4805 memcpy (copy + first, name + first + 1, len - first);
4807 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4808 if (h == NULL)
4810 /* We also need to check references to the symbol without the
4811 version. */
4812 copy[first - 1] = '\0';
4813 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4814 FALSE, FALSE, FALSE);
4817 bfd_release (abfd, copy);
4818 return h;
4821 /* Add symbols from an ELF archive file to the linker hash table. We
4822 don't use _bfd_generic_link_add_archive_symbols because of a
4823 problem which arises on UnixWare. The UnixWare libc.so is an
4824 archive which includes an entry libc.so.1 which defines a bunch of
4825 symbols. The libc.so archive also includes a number of other
4826 object files, which also define symbols, some of which are the same
4827 as those defined in libc.so.1. Correct linking requires that we
4828 consider each object file in turn, and include it if it defines any
4829 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4830 this; it looks through the list of undefined symbols, and includes
4831 any object file which defines them. When this algorithm is used on
4832 UnixWare, it winds up pulling in libc.so.1 early and defining a
4833 bunch of symbols. This means that some of the other objects in the
4834 archive are not included in the link, which is incorrect since they
4835 precede libc.so.1 in the archive.
4837 Fortunately, ELF archive handling is simpler than that done by
4838 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4839 oddities. In ELF, if we find a symbol in the archive map, and the
4840 symbol is currently undefined, we know that we must pull in that
4841 object file.
4843 Unfortunately, we do have to make multiple passes over the symbol
4844 table until nothing further is resolved. */
4846 static bfd_boolean
4847 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4849 symindex c;
4850 bfd_boolean *defined = NULL;
4851 bfd_boolean *included = NULL;
4852 carsym *symdefs;
4853 bfd_boolean loop;
4854 bfd_size_type amt;
4855 const struct elf_backend_data *bed;
4856 struct elf_link_hash_entry * (*archive_symbol_lookup)
4857 (bfd *, struct bfd_link_info *, const char *);
4859 if (! bfd_has_map (abfd))
4861 /* An empty archive is a special case. */
4862 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4863 return TRUE;
4864 bfd_set_error (bfd_error_no_armap);
4865 return FALSE;
4868 /* Keep track of all symbols we know to be already defined, and all
4869 files we know to be already included. This is to speed up the
4870 second and subsequent passes. */
4871 c = bfd_ardata (abfd)->symdef_count;
4872 if (c == 0)
4873 return TRUE;
4874 amt = c;
4875 amt *= sizeof (bfd_boolean);
4876 defined = bfd_zmalloc (amt);
4877 included = bfd_zmalloc (amt);
4878 if (defined == NULL || included == NULL)
4879 goto error_return;
4881 symdefs = bfd_ardata (abfd)->symdefs;
4882 bed = get_elf_backend_data (abfd);
4883 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4887 file_ptr last;
4888 symindex i;
4889 carsym *symdef;
4890 carsym *symdefend;
4892 loop = FALSE;
4893 last = -1;
4895 symdef = symdefs;
4896 symdefend = symdef + c;
4897 for (i = 0; symdef < symdefend; symdef++, i++)
4899 struct elf_link_hash_entry *h;
4900 bfd *element;
4901 struct bfd_link_hash_entry *undefs_tail;
4902 symindex mark;
4904 if (defined[i] || included[i])
4905 continue;
4906 if (symdef->file_offset == last)
4908 included[i] = TRUE;
4909 continue;
4912 h = archive_symbol_lookup (abfd, info, symdef->name);
4913 if (h == (struct elf_link_hash_entry *) 0 - 1)
4914 goto error_return;
4916 if (h == NULL)
4917 continue;
4919 if (h->root.type == bfd_link_hash_common)
4921 /* We currently have a common symbol. The archive map contains
4922 a reference to this symbol, so we may want to include it. We
4923 only want to include it however, if this archive element
4924 contains a definition of the symbol, not just another common
4925 declaration of it.
4927 Unfortunately some archivers (including GNU ar) will put
4928 declarations of common symbols into their archive maps, as
4929 well as real definitions, so we cannot just go by the archive
4930 map alone. Instead we must read in the element's symbol
4931 table and check that to see what kind of symbol definition
4932 this is. */
4933 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
4934 continue;
4936 else if (h->root.type != bfd_link_hash_undefined)
4938 if (h->root.type != bfd_link_hash_undefweak)
4939 defined[i] = TRUE;
4940 continue;
4943 /* We need to include this archive member. */
4944 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
4945 if (element == NULL)
4946 goto error_return;
4948 if (! bfd_check_format (element, bfd_object))
4949 goto error_return;
4951 /* Doublecheck that we have not included this object
4952 already--it should be impossible, but there may be
4953 something wrong with the archive. */
4954 if (element->archive_pass != 0)
4956 bfd_set_error (bfd_error_bad_value);
4957 goto error_return;
4959 element->archive_pass = 1;
4961 undefs_tail = info->hash->undefs_tail;
4963 if (! (*info->callbacks->add_archive_element) (info, element,
4964 symdef->name))
4965 goto error_return;
4966 if (! bfd_link_add_symbols (element, info))
4967 goto error_return;
4969 /* If there are any new undefined symbols, we need to make
4970 another pass through the archive in order to see whether
4971 they can be defined. FIXME: This isn't perfect, because
4972 common symbols wind up on undefs_tail and because an
4973 undefined symbol which is defined later on in this pass
4974 does not require another pass. This isn't a bug, but it
4975 does make the code less efficient than it could be. */
4976 if (undefs_tail != info->hash->undefs_tail)
4977 loop = TRUE;
4979 /* Look backward to mark all symbols from this object file
4980 which we have already seen in this pass. */
4981 mark = i;
4984 included[mark] = TRUE;
4985 if (mark == 0)
4986 break;
4987 --mark;
4989 while (symdefs[mark].file_offset == symdef->file_offset);
4991 /* We mark subsequent symbols from this object file as we go
4992 on through the loop. */
4993 last = symdef->file_offset;
4996 while (loop);
4998 free (defined);
4999 free (included);
5001 return TRUE;
5003 error_return:
5004 if (defined != NULL)
5005 free (defined);
5006 if (included != NULL)
5007 free (included);
5008 return FALSE;
5011 /* Given an ELF BFD, add symbols to the global hash table as
5012 appropriate. */
5014 bfd_boolean
5015 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5017 switch (bfd_get_format (abfd))
5019 case bfd_object:
5020 return elf_link_add_object_symbols (abfd, info);
5021 case bfd_archive:
5022 return elf_link_add_archive_symbols (abfd, info);
5023 default:
5024 bfd_set_error (bfd_error_wrong_format);
5025 return FALSE;
5029 struct hash_codes_info
5031 unsigned long *hashcodes;
5032 bfd_boolean error;
5035 /* This function will be called though elf_link_hash_traverse to store
5036 all hash value of the exported symbols in an array. */
5038 static bfd_boolean
5039 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5041 struct hash_codes_info *inf = data;
5042 const char *name;
5043 char *p;
5044 unsigned long ha;
5045 char *alc = NULL;
5047 if (h->root.type == bfd_link_hash_warning)
5048 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5050 /* Ignore indirect symbols. These are added by the versioning code. */
5051 if (h->dynindx == -1)
5052 return TRUE;
5054 name = h->root.root.string;
5055 p = strchr (name, ELF_VER_CHR);
5056 if (p != NULL)
5058 alc = bfd_malloc (p - name + 1);
5059 if (alc == NULL)
5061 inf->error = TRUE;
5062 return FALSE;
5064 memcpy (alc, name, p - name);
5065 alc[p - name] = '\0';
5066 name = alc;
5069 /* Compute the hash value. */
5070 ha = bfd_elf_hash (name);
5072 /* Store the found hash value in the array given as the argument. */
5073 *(inf->hashcodes)++ = ha;
5075 /* And store it in the struct so that we can put it in the hash table
5076 later. */
5077 h->u.elf_hash_value = ha;
5079 if (alc != NULL)
5080 free (alc);
5082 return TRUE;
5085 struct collect_gnu_hash_codes
5087 bfd *output_bfd;
5088 const struct elf_backend_data *bed;
5089 unsigned long int nsyms;
5090 unsigned long int maskbits;
5091 unsigned long int *hashcodes;
5092 unsigned long int *hashval;
5093 unsigned long int *indx;
5094 unsigned long int *counts;
5095 bfd_vma *bitmask;
5096 bfd_byte *contents;
5097 long int min_dynindx;
5098 unsigned long int bucketcount;
5099 unsigned long int symindx;
5100 long int local_indx;
5101 long int shift1, shift2;
5102 unsigned long int mask;
5103 bfd_boolean error;
5106 /* This function will be called though elf_link_hash_traverse to store
5107 all hash value of the exported symbols in an array. */
5109 static bfd_boolean
5110 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5112 struct collect_gnu_hash_codes *s = data;
5113 const char *name;
5114 char *p;
5115 unsigned long ha;
5116 char *alc = NULL;
5118 if (h->root.type == bfd_link_hash_warning)
5119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5121 /* Ignore indirect symbols. These are added by the versioning code. */
5122 if (h->dynindx == -1)
5123 return TRUE;
5125 /* Ignore also local symbols and undefined symbols. */
5126 if (! (*s->bed->elf_hash_symbol) (h))
5127 return TRUE;
5129 name = h->root.root.string;
5130 p = strchr (name, ELF_VER_CHR);
5131 if (p != NULL)
5133 alc = bfd_malloc (p - name + 1);
5134 if (alc == NULL)
5136 s->error = TRUE;
5137 return FALSE;
5139 memcpy (alc, name, p - name);
5140 alc[p - name] = '\0';
5141 name = alc;
5144 /* Compute the hash value. */
5145 ha = bfd_elf_gnu_hash (name);
5147 /* Store the found hash value in the array for compute_bucket_count,
5148 and also for .dynsym reordering purposes. */
5149 s->hashcodes[s->nsyms] = ha;
5150 s->hashval[h->dynindx] = ha;
5151 ++s->nsyms;
5152 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5153 s->min_dynindx = h->dynindx;
5155 if (alc != NULL)
5156 free (alc);
5158 return TRUE;
5161 /* This function will be called though elf_link_hash_traverse to do
5162 final dynaminc symbol renumbering. */
5164 static bfd_boolean
5165 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5167 struct collect_gnu_hash_codes *s = data;
5168 unsigned long int bucket;
5169 unsigned long int val;
5171 if (h->root.type == bfd_link_hash_warning)
5172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5174 /* Ignore indirect symbols. */
5175 if (h->dynindx == -1)
5176 return TRUE;
5178 /* Ignore also local symbols and undefined symbols. */
5179 if (! (*s->bed->elf_hash_symbol) (h))
5181 if (h->dynindx >= s->min_dynindx)
5182 h->dynindx = s->local_indx++;
5183 return TRUE;
5186 bucket = s->hashval[h->dynindx] % s->bucketcount;
5187 val = (s->hashval[h->dynindx] >> s->shift1)
5188 & ((s->maskbits >> s->shift1) - 1);
5189 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5190 s->bitmask[val]
5191 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5192 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5193 if (s->counts[bucket] == 1)
5194 /* Last element terminates the chain. */
5195 val |= 1;
5196 bfd_put_32 (s->output_bfd, val,
5197 s->contents + (s->indx[bucket] - s->symindx) * 4);
5198 --s->counts[bucket];
5199 h->dynindx = s->indx[bucket]++;
5200 return TRUE;
5203 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5205 bfd_boolean
5206 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5208 return !(h->forced_local
5209 || h->root.type == bfd_link_hash_undefined
5210 || h->root.type == bfd_link_hash_undefweak
5211 || ((h->root.type == bfd_link_hash_defined
5212 || h->root.type == bfd_link_hash_defweak)
5213 && h->root.u.def.section->output_section == NULL));
5216 /* Array used to determine the number of hash table buckets to use
5217 based on the number of symbols there are. If there are fewer than
5218 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5219 fewer than 37 we use 17 buckets, and so forth. We never use more
5220 than 32771 buckets. */
5222 static const size_t elf_buckets[] =
5224 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5225 16411, 32771, 0
5228 /* Compute bucket count for hashing table. We do not use a static set
5229 of possible tables sizes anymore. Instead we determine for all
5230 possible reasonable sizes of the table the outcome (i.e., the
5231 number of collisions etc) and choose the best solution. The
5232 weighting functions are not too simple to allow the table to grow
5233 without bounds. Instead one of the weighting factors is the size.
5234 Therefore the result is always a good payoff between few collisions
5235 (= short chain lengths) and table size. */
5236 static size_t
5237 compute_bucket_count (struct bfd_link_info *info, unsigned long int *hashcodes,
5238 unsigned long int nsyms, int gnu_hash)
5240 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5241 size_t best_size = 0;
5242 unsigned long int i;
5243 bfd_size_type amt;
5245 /* We have a problem here. The following code to optimize the table
5246 size requires an integer type with more the 32 bits. If
5247 BFD_HOST_U_64_BIT is set we know about such a type. */
5248 #ifdef BFD_HOST_U_64_BIT
5249 if (info->optimize)
5251 size_t minsize;
5252 size_t maxsize;
5253 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5254 bfd *dynobj = elf_hash_table (info)->dynobj;
5255 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5256 unsigned long int *counts;
5258 /* Possible optimization parameters: if we have NSYMS symbols we say
5259 that the hashing table must at least have NSYMS/4 and at most
5260 2*NSYMS buckets. */
5261 minsize = nsyms / 4;
5262 if (minsize == 0)
5263 minsize = 1;
5264 best_size = maxsize = nsyms * 2;
5265 if (gnu_hash)
5267 if (minsize < 2)
5268 minsize = 2;
5269 if ((best_size & 31) == 0)
5270 ++best_size;
5273 /* Create array where we count the collisions in. We must use bfd_malloc
5274 since the size could be large. */
5275 amt = maxsize;
5276 amt *= sizeof (unsigned long int);
5277 counts = bfd_malloc (amt);
5278 if (counts == NULL)
5279 return 0;
5281 /* Compute the "optimal" size for the hash table. The criteria is a
5282 minimal chain length. The minor criteria is (of course) the size
5283 of the table. */
5284 for (i = minsize; i < maxsize; ++i)
5286 /* Walk through the array of hashcodes and count the collisions. */
5287 BFD_HOST_U_64_BIT max;
5288 unsigned long int j;
5289 unsigned long int fact;
5291 if (gnu_hash && (i & 31) == 0)
5292 continue;
5294 memset (counts, '\0', i * sizeof (unsigned long int));
5296 /* Determine how often each hash bucket is used. */
5297 for (j = 0; j < nsyms; ++j)
5298 ++counts[hashcodes[j] % i];
5300 /* For the weight function we need some information about the
5301 pagesize on the target. This is information need not be 100%
5302 accurate. Since this information is not available (so far) we
5303 define it here to a reasonable default value. If it is crucial
5304 to have a better value some day simply define this value. */
5305 # ifndef BFD_TARGET_PAGESIZE
5306 # define BFD_TARGET_PAGESIZE (4096)
5307 # endif
5309 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5310 and the chains. */
5311 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5313 # if 1
5314 /* Variant 1: optimize for short chains. We add the squares
5315 of all the chain lengths (which favors many small chain
5316 over a few long chains). */
5317 for (j = 0; j < i; ++j)
5318 max += counts[j] * counts[j];
5320 /* This adds penalties for the overall size of the table. */
5321 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5322 max *= fact * fact;
5323 # else
5324 /* Variant 2: Optimize a lot more for small table. Here we
5325 also add squares of the size but we also add penalties for
5326 empty slots (the +1 term). */
5327 for (j = 0; j < i; ++j)
5328 max += (1 + counts[j]) * (1 + counts[j]);
5330 /* The overall size of the table is considered, but not as
5331 strong as in variant 1, where it is squared. */
5332 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5333 max *= fact;
5334 # endif
5336 /* Compare with current best results. */
5337 if (max < best_chlen)
5339 best_chlen = max;
5340 best_size = i;
5344 free (counts);
5346 else
5347 #endif /* defined (BFD_HOST_U_64_BIT) */
5349 /* This is the fallback solution if no 64bit type is available or if we
5350 are not supposed to spend much time on optimizations. We select the
5351 bucket count using a fixed set of numbers. */
5352 for (i = 0; elf_buckets[i] != 0; i++)
5354 best_size = elf_buckets[i];
5355 if (nsyms < elf_buckets[i + 1])
5356 break;
5358 if (gnu_hash && best_size < 2)
5359 best_size = 2;
5362 return best_size;
5365 /* Set up the sizes and contents of the ELF dynamic sections. This is
5366 called by the ELF linker emulation before_allocation routine. We
5367 must set the sizes of the sections before the linker sets the
5368 addresses of the various sections. */
5370 bfd_boolean
5371 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5372 const char *soname,
5373 const char *rpath,
5374 const char *filter_shlib,
5375 const char * const *auxiliary_filters,
5376 struct bfd_link_info *info,
5377 asection **sinterpptr,
5378 struct bfd_elf_version_tree *verdefs)
5380 bfd_size_type soname_indx;
5381 bfd *dynobj;
5382 const struct elf_backend_data *bed;
5383 struct elf_assign_sym_version_info asvinfo;
5385 *sinterpptr = NULL;
5387 soname_indx = (bfd_size_type) -1;
5389 if (!is_elf_hash_table (info->hash))
5390 return TRUE;
5392 bed = get_elf_backend_data (output_bfd);
5393 if (info->execstack)
5394 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5395 else if (info->noexecstack)
5396 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5397 else
5399 bfd *inputobj;
5400 asection *notesec = NULL;
5401 int exec = 0;
5403 for (inputobj = info->input_bfds;
5404 inputobj;
5405 inputobj = inputobj->link_next)
5407 asection *s;
5409 if (inputobj->flags & (DYNAMIC | BFD_LINKER_CREATED))
5410 continue;
5411 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5412 if (s)
5414 if (s->flags & SEC_CODE)
5415 exec = PF_X;
5416 notesec = s;
5418 else if (bed->default_execstack)
5419 exec = PF_X;
5421 if (notesec)
5423 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5424 if (exec && info->relocatable
5425 && notesec->output_section != bfd_abs_section_ptr)
5426 notesec->output_section->flags |= SEC_CODE;
5430 /* Any syms created from now on start with -1 in
5431 got.refcount/offset and plt.refcount/offset. */
5432 elf_hash_table (info)->init_got_refcount
5433 = elf_hash_table (info)->init_got_offset;
5434 elf_hash_table (info)->init_plt_refcount
5435 = elf_hash_table (info)->init_plt_offset;
5437 /* The backend may have to create some sections regardless of whether
5438 we're dynamic or not. */
5439 if (bed->elf_backend_always_size_sections
5440 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5441 return FALSE;
5443 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5444 return FALSE;
5446 dynobj = elf_hash_table (info)->dynobj;
5448 /* If there were no dynamic objects in the link, there is nothing to
5449 do here. */
5450 if (dynobj == NULL)
5451 return TRUE;
5453 if (elf_hash_table (info)->dynamic_sections_created)
5455 struct elf_info_failed eif;
5456 struct elf_link_hash_entry *h;
5457 asection *dynstr;
5458 struct bfd_elf_version_tree *t;
5459 struct bfd_elf_version_expr *d;
5460 asection *s;
5461 bfd_boolean all_defined;
5463 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5464 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5466 if (soname != NULL)
5468 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5469 soname, TRUE);
5470 if (soname_indx == (bfd_size_type) -1
5471 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5472 return FALSE;
5475 if (info->symbolic)
5477 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5478 return FALSE;
5479 info->flags |= DF_SYMBOLIC;
5482 if (rpath != NULL)
5484 bfd_size_type indx;
5486 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5487 TRUE);
5488 if (indx == (bfd_size_type) -1
5489 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5490 return FALSE;
5492 if (info->new_dtags)
5494 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5495 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5496 return FALSE;
5500 if (filter_shlib != NULL)
5502 bfd_size_type indx;
5504 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5505 filter_shlib, TRUE);
5506 if (indx == (bfd_size_type) -1
5507 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5508 return FALSE;
5511 if (auxiliary_filters != NULL)
5513 const char * const *p;
5515 for (p = auxiliary_filters; *p != NULL; p++)
5517 bfd_size_type indx;
5519 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5520 *p, TRUE);
5521 if (indx == (bfd_size_type) -1
5522 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5523 return FALSE;
5527 eif.info = info;
5528 eif.verdefs = verdefs;
5529 eif.failed = FALSE;
5531 /* If we are supposed to export all symbols into the dynamic symbol
5532 table (this is not the normal case), then do so. */
5533 if (info->export_dynamic
5534 || (info->executable && info->dynamic))
5536 elf_link_hash_traverse (elf_hash_table (info),
5537 _bfd_elf_export_symbol,
5538 &eif);
5539 if (eif.failed)
5540 return FALSE;
5543 /* Make all global versions with definition. */
5544 for (t = verdefs; t != NULL; t = t->next)
5545 for (d = t->globals.list; d != NULL; d = d->next)
5546 if (!d->symver && d->symbol)
5548 const char *verstr, *name;
5549 size_t namelen, verlen, newlen;
5550 char *newname, *p;
5551 struct elf_link_hash_entry *newh;
5553 name = d->symbol;
5554 namelen = strlen (name);
5555 verstr = t->name;
5556 verlen = strlen (verstr);
5557 newlen = namelen + verlen + 3;
5559 newname = bfd_malloc (newlen);
5560 if (newname == NULL)
5561 return FALSE;
5562 memcpy (newname, name, namelen);
5564 /* Check the hidden versioned definition. */
5565 p = newname + namelen;
5566 *p++ = ELF_VER_CHR;
5567 memcpy (p, verstr, verlen + 1);
5568 newh = elf_link_hash_lookup (elf_hash_table (info),
5569 newname, FALSE, FALSE,
5570 FALSE);
5571 if (newh == NULL
5572 || (newh->root.type != bfd_link_hash_defined
5573 && newh->root.type != bfd_link_hash_defweak))
5575 /* Check the default versioned definition. */
5576 *p++ = ELF_VER_CHR;
5577 memcpy (p, verstr, verlen + 1);
5578 newh = elf_link_hash_lookup (elf_hash_table (info),
5579 newname, FALSE, FALSE,
5580 FALSE);
5582 free (newname);
5584 /* Mark this version if there is a definition and it is
5585 not defined in a shared object. */
5586 if (newh != NULL
5587 && !newh->def_dynamic
5588 && (newh->root.type == bfd_link_hash_defined
5589 || newh->root.type == bfd_link_hash_defweak))
5590 d->symver = 1;
5593 /* Attach all the symbols to their version information. */
5594 asvinfo.output_bfd = output_bfd;
5595 asvinfo.info = info;
5596 asvinfo.verdefs = verdefs;
5597 asvinfo.failed = FALSE;
5599 elf_link_hash_traverse (elf_hash_table (info),
5600 _bfd_elf_link_assign_sym_version,
5601 &asvinfo);
5602 if (asvinfo.failed)
5603 return FALSE;
5605 if (!info->allow_undefined_version)
5607 /* Check if all global versions have a definition. */
5608 all_defined = TRUE;
5609 for (t = verdefs; t != NULL; t = t->next)
5610 for (d = t->globals.list; d != NULL; d = d->next)
5611 if (!d->symver && !d->script)
5613 (*_bfd_error_handler)
5614 (_("%s: undefined version: %s"),
5615 d->pattern, t->name);
5616 all_defined = FALSE;
5619 if (!all_defined)
5621 bfd_set_error (bfd_error_bad_value);
5622 return FALSE;
5626 /* Find all symbols which were defined in a dynamic object and make
5627 the backend pick a reasonable value for them. */
5628 elf_link_hash_traverse (elf_hash_table (info),
5629 _bfd_elf_adjust_dynamic_symbol,
5630 &eif);
5631 if (eif.failed)
5632 return FALSE;
5634 /* Add some entries to the .dynamic section. We fill in some of the
5635 values later, in bfd_elf_final_link, but we must add the entries
5636 now so that we know the final size of the .dynamic section. */
5638 /* If there are initialization and/or finalization functions to
5639 call then add the corresponding DT_INIT/DT_FINI entries. */
5640 h = (info->init_function
5641 ? elf_link_hash_lookup (elf_hash_table (info),
5642 info->init_function, FALSE,
5643 FALSE, FALSE)
5644 : NULL);
5645 if (h != NULL
5646 && (h->ref_regular
5647 || h->def_regular))
5649 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5650 return FALSE;
5652 h = (info->fini_function
5653 ? elf_link_hash_lookup (elf_hash_table (info),
5654 info->fini_function, FALSE,
5655 FALSE, FALSE)
5656 : NULL);
5657 if (h != NULL
5658 && (h->ref_regular
5659 || h->def_regular))
5661 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5662 return FALSE;
5665 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5666 if (s != NULL && s->linker_has_input)
5668 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5669 if (! info->executable)
5671 bfd *sub;
5672 asection *o;
5674 for (sub = info->input_bfds; sub != NULL;
5675 sub = sub->link_next)
5676 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5677 for (o = sub->sections; o != NULL; o = o->next)
5678 if (elf_section_data (o)->this_hdr.sh_type
5679 == SHT_PREINIT_ARRAY)
5681 (*_bfd_error_handler)
5682 (_("%B: .preinit_array section is not allowed in DSO"),
5683 sub);
5684 break;
5687 bfd_set_error (bfd_error_nonrepresentable_section);
5688 return FALSE;
5691 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5692 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5693 return FALSE;
5695 s = bfd_get_section_by_name (output_bfd, ".init_array");
5696 if (s != NULL && s->linker_has_input)
5698 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5699 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5700 return FALSE;
5702 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5703 if (s != NULL && s->linker_has_input)
5705 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5706 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5707 return FALSE;
5710 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5711 /* If .dynstr is excluded from the link, we don't want any of
5712 these tags. Strictly, we should be checking each section
5713 individually; This quick check covers for the case where
5714 someone does a /DISCARD/ : { *(*) }. */
5715 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5717 bfd_size_type strsize;
5719 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5720 if ((info->emit_hash
5721 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5722 || (info->emit_gnu_hash
5723 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5724 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5725 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5726 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5727 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5728 bed->s->sizeof_sym))
5729 return FALSE;
5733 /* The backend must work out the sizes of all the other dynamic
5734 sections. */
5735 if (bed->elf_backend_size_dynamic_sections
5736 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5737 return FALSE;
5739 if (elf_hash_table (info)->dynamic_sections_created)
5741 unsigned long section_sym_count;
5742 asection *s;
5744 /* Set up the version definition section. */
5745 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5746 BFD_ASSERT (s != NULL);
5748 /* We may have created additional version definitions if we are
5749 just linking a regular application. */
5750 verdefs = asvinfo.verdefs;
5752 /* Skip anonymous version tag. */
5753 if (verdefs != NULL && verdefs->vernum == 0)
5754 verdefs = verdefs->next;
5756 if (verdefs == NULL && !info->create_default_symver)
5757 s->flags |= SEC_EXCLUDE;
5758 else
5760 unsigned int cdefs;
5761 bfd_size_type size;
5762 struct bfd_elf_version_tree *t;
5763 bfd_byte *p;
5764 Elf_Internal_Verdef def;
5765 Elf_Internal_Verdaux defaux;
5766 struct bfd_link_hash_entry *bh;
5767 struct elf_link_hash_entry *h;
5768 const char *name;
5770 cdefs = 0;
5771 size = 0;
5773 /* Make space for the base version. */
5774 size += sizeof (Elf_External_Verdef);
5775 size += sizeof (Elf_External_Verdaux);
5776 ++cdefs;
5778 /* Make space for the default version. */
5779 if (info->create_default_symver)
5781 size += sizeof (Elf_External_Verdef);
5782 ++cdefs;
5785 for (t = verdefs; t != NULL; t = t->next)
5787 struct bfd_elf_version_deps *n;
5789 size += sizeof (Elf_External_Verdef);
5790 size += sizeof (Elf_External_Verdaux);
5791 ++cdefs;
5793 for (n = t->deps; n != NULL; n = n->next)
5794 size += sizeof (Elf_External_Verdaux);
5797 s->size = size;
5798 s->contents = bfd_alloc (output_bfd, s->size);
5799 if (s->contents == NULL && s->size != 0)
5800 return FALSE;
5802 /* Fill in the version definition section. */
5804 p = s->contents;
5806 def.vd_version = VER_DEF_CURRENT;
5807 def.vd_flags = VER_FLG_BASE;
5808 def.vd_ndx = 1;
5809 def.vd_cnt = 1;
5810 if (info->create_default_symver)
5812 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5813 def.vd_next = sizeof (Elf_External_Verdef);
5815 else
5817 def.vd_aux = sizeof (Elf_External_Verdef);
5818 def.vd_next = (sizeof (Elf_External_Verdef)
5819 + sizeof (Elf_External_Verdaux));
5822 if (soname_indx != (bfd_size_type) -1)
5824 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5825 soname_indx);
5826 def.vd_hash = bfd_elf_hash (soname);
5827 defaux.vda_name = soname_indx;
5828 name = soname;
5830 else
5832 bfd_size_type indx;
5834 name = lbasename (output_bfd->filename);
5835 def.vd_hash = bfd_elf_hash (name);
5836 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5837 name, FALSE);
5838 if (indx == (bfd_size_type) -1)
5839 return FALSE;
5840 defaux.vda_name = indx;
5842 defaux.vda_next = 0;
5844 _bfd_elf_swap_verdef_out (output_bfd, &def,
5845 (Elf_External_Verdef *) p);
5846 p += sizeof (Elf_External_Verdef);
5847 if (info->create_default_symver)
5849 /* Add a symbol representing this version. */
5850 bh = NULL;
5851 if (! (_bfd_generic_link_add_one_symbol
5852 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5853 0, NULL, FALSE,
5854 get_elf_backend_data (dynobj)->collect, &bh)))
5855 return FALSE;
5856 h = (struct elf_link_hash_entry *) bh;
5857 h->non_elf = 0;
5858 h->def_regular = 1;
5859 h->type = STT_OBJECT;
5860 h->verinfo.vertree = NULL;
5862 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5863 return FALSE;
5865 /* Create a duplicate of the base version with the same
5866 aux block, but different flags. */
5867 def.vd_flags = 0;
5868 def.vd_ndx = 2;
5869 def.vd_aux = sizeof (Elf_External_Verdef);
5870 if (verdefs)
5871 def.vd_next = (sizeof (Elf_External_Verdef)
5872 + sizeof (Elf_External_Verdaux));
5873 else
5874 def.vd_next = 0;
5875 _bfd_elf_swap_verdef_out (output_bfd, &def,
5876 (Elf_External_Verdef *) p);
5877 p += sizeof (Elf_External_Verdef);
5879 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5880 (Elf_External_Verdaux *) p);
5881 p += sizeof (Elf_External_Verdaux);
5883 for (t = verdefs; t != NULL; t = t->next)
5885 unsigned int cdeps;
5886 struct bfd_elf_version_deps *n;
5888 cdeps = 0;
5889 for (n = t->deps; n != NULL; n = n->next)
5890 ++cdeps;
5892 /* Add a symbol representing this version. */
5893 bh = NULL;
5894 if (! (_bfd_generic_link_add_one_symbol
5895 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
5896 0, NULL, FALSE,
5897 get_elf_backend_data (dynobj)->collect, &bh)))
5898 return FALSE;
5899 h = (struct elf_link_hash_entry *) bh;
5900 h->non_elf = 0;
5901 h->def_regular = 1;
5902 h->type = STT_OBJECT;
5903 h->verinfo.vertree = t;
5905 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5906 return FALSE;
5908 def.vd_version = VER_DEF_CURRENT;
5909 def.vd_flags = 0;
5910 if (t->globals.list == NULL
5911 && t->locals.list == NULL
5912 && ! t->used)
5913 def.vd_flags |= VER_FLG_WEAK;
5914 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
5915 def.vd_cnt = cdeps + 1;
5916 def.vd_hash = bfd_elf_hash (t->name);
5917 def.vd_aux = sizeof (Elf_External_Verdef);
5918 def.vd_next = 0;
5919 if (t->next != NULL)
5920 def.vd_next = (sizeof (Elf_External_Verdef)
5921 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
5923 _bfd_elf_swap_verdef_out (output_bfd, &def,
5924 (Elf_External_Verdef *) p);
5925 p += sizeof (Elf_External_Verdef);
5927 defaux.vda_name = h->dynstr_index;
5928 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5929 h->dynstr_index);
5930 defaux.vda_next = 0;
5931 if (t->deps != NULL)
5932 defaux.vda_next = sizeof (Elf_External_Verdaux);
5933 t->name_indx = defaux.vda_name;
5935 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5936 (Elf_External_Verdaux *) p);
5937 p += sizeof (Elf_External_Verdaux);
5939 for (n = t->deps; n != NULL; n = n->next)
5941 if (n->version_needed == NULL)
5943 /* This can happen if there was an error in the
5944 version script. */
5945 defaux.vda_name = 0;
5947 else
5949 defaux.vda_name = n->version_needed->name_indx;
5950 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5951 defaux.vda_name);
5953 if (n->next == NULL)
5954 defaux.vda_next = 0;
5955 else
5956 defaux.vda_next = sizeof (Elf_External_Verdaux);
5958 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
5959 (Elf_External_Verdaux *) p);
5960 p += sizeof (Elf_External_Verdaux);
5964 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
5965 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
5966 return FALSE;
5968 elf_tdata (output_bfd)->cverdefs = cdefs;
5971 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
5973 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
5974 return FALSE;
5976 else if (info->flags & DF_BIND_NOW)
5978 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
5979 return FALSE;
5982 if (info->flags_1)
5984 if (info->executable)
5985 info->flags_1 &= ~ (DF_1_INITFIRST
5986 | DF_1_NODELETE
5987 | DF_1_NOOPEN);
5988 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
5989 return FALSE;
5992 /* Work out the size of the version reference section. */
5994 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
5995 BFD_ASSERT (s != NULL);
5997 struct elf_find_verdep_info sinfo;
5999 sinfo.output_bfd = output_bfd;
6000 sinfo.info = info;
6001 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6002 if (sinfo.vers == 0)
6003 sinfo.vers = 1;
6004 sinfo.failed = FALSE;
6006 elf_link_hash_traverse (elf_hash_table (info),
6007 _bfd_elf_link_find_version_dependencies,
6008 &sinfo);
6009 if (sinfo.failed)
6010 return FALSE;
6012 if (elf_tdata (output_bfd)->verref == NULL)
6013 s->flags |= SEC_EXCLUDE;
6014 else
6016 Elf_Internal_Verneed *t;
6017 unsigned int size;
6018 unsigned int crefs;
6019 bfd_byte *p;
6021 /* Build the version definition section. */
6022 size = 0;
6023 crefs = 0;
6024 for (t = elf_tdata (output_bfd)->verref;
6025 t != NULL;
6026 t = t->vn_nextref)
6028 Elf_Internal_Vernaux *a;
6030 size += sizeof (Elf_External_Verneed);
6031 ++crefs;
6032 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6033 size += sizeof (Elf_External_Vernaux);
6036 s->size = size;
6037 s->contents = bfd_alloc (output_bfd, s->size);
6038 if (s->contents == NULL)
6039 return FALSE;
6041 p = s->contents;
6042 for (t = elf_tdata (output_bfd)->verref;
6043 t != NULL;
6044 t = t->vn_nextref)
6046 unsigned int caux;
6047 Elf_Internal_Vernaux *a;
6048 bfd_size_type indx;
6050 caux = 0;
6051 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6052 ++caux;
6054 t->vn_version = VER_NEED_CURRENT;
6055 t->vn_cnt = caux;
6056 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6057 elf_dt_name (t->vn_bfd) != NULL
6058 ? elf_dt_name (t->vn_bfd)
6059 : lbasename (t->vn_bfd->filename),
6060 FALSE);
6061 if (indx == (bfd_size_type) -1)
6062 return FALSE;
6063 t->vn_file = indx;
6064 t->vn_aux = sizeof (Elf_External_Verneed);
6065 if (t->vn_nextref == NULL)
6066 t->vn_next = 0;
6067 else
6068 t->vn_next = (sizeof (Elf_External_Verneed)
6069 + caux * sizeof (Elf_External_Vernaux));
6071 _bfd_elf_swap_verneed_out (output_bfd, t,
6072 (Elf_External_Verneed *) p);
6073 p += sizeof (Elf_External_Verneed);
6075 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6077 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6078 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6079 a->vna_nodename, FALSE);
6080 if (indx == (bfd_size_type) -1)
6081 return FALSE;
6082 a->vna_name = indx;
6083 if (a->vna_nextptr == NULL)
6084 a->vna_next = 0;
6085 else
6086 a->vna_next = sizeof (Elf_External_Vernaux);
6088 _bfd_elf_swap_vernaux_out (output_bfd, a,
6089 (Elf_External_Vernaux *) p);
6090 p += sizeof (Elf_External_Vernaux);
6094 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6095 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6096 return FALSE;
6098 elf_tdata (output_bfd)->cverrefs = crefs;
6102 if ((elf_tdata (output_bfd)->cverrefs == 0
6103 && elf_tdata (output_bfd)->cverdefs == 0)
6104 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6105 &section_sym_count) == 0)
6107 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6108 s->flags |= SEC_EXCLUDE;
6111 return TRUE;
6114 /* Find the first non-excluded output section. We'll use its
6115 section symbol for some emitted relocs. */
6116 void
6117 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6119 asection *s;
6121 for (s = output_bfd->sections; s != NULL; s = s->next)
6122 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6123 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6125 elf_hash_table (info)->text_index_section = s;
6126 break;
6130 /* Find two non-excluded output sections, one for code, one for data.
6131 We'll use their section symbols for some emitted relocs. */
6132 void
6133 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6135 asection *s;
6137 for (s = output_bfd->sections; s != NULL; s = s->next)
6138 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6139 == (SEC_ALLOC | SEC_READONLY))
6140 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6142 elf_hash_table (info)->text_index_section = s;
6143 break;
6146 for (s = output_bfd->sections; s != NULL; s = s->next)
6147 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6148 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6150 elf_hash_table (info)->data_index_section = s;
6151 break;
6154 if (elf_hash_table (info)->text_index_section == NULL)
6155 elf_hash_table (info)->text_index_section
6156 = elf_hash_table (info)->data_index_section;
6159 bfd_boolean
6160 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6162 const struct elf_backend_data *bed;
6164 if (!is_elf_hash_table (info->hash))
6165 return TRUE;
6167 bed = get_elf_backend_data (output_bfd);
6168 (*bed->elf_backend_init_index_section) (output_bfd, info);
6170 if (elf_hash_table (info)->dynamic_sections_created)
6172 bfd *dynobj;
6173 asection *s;
6174 bfd_size_type dynsymcount;
6175 unsigned long section_sym_count;
6176 unsigned int dtagcount;
6178 dynobj = elf_hash_table (info)->dynobj;
6180 /* Assign dynsym indicies. In a shared library we generate a
6181 section symbol for each output section, which come first.
6182 Next come all of the back-end allocated local dynamic syms,
6183 followed by the rest of the global symbols. */
6185 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6186 &section_sym_count);
6188 /* Work out the size of the symbol version section. */
6189 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6190 BFD_ASSERT (s != NULL);
6191 if (dynsymcount != 0
6192 && (s->flags & SEC_EXCLUDE) == 0)
6194 s->size = dynsymcount * sizeof (Elf_External_Versym);
6195 s->contents = bfd_zalloc (output_bfd, s->size);
6196 if (s->contents == NULL)
6197 return FALSE;
6199 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6200 return FALSE;
6203 /* Set the size of the .dynsym and .hash sections. We counted
6204 the number of dynamic symbols in elf_link_add_object_symbols.
6205 We will build the contents of .dynsym and .hash when we build
6206 the final symbol table, because until then we do not know the
6207 correct value to give the symbols. We built the .dynstr
6208 section as we went along in elf_link_add_object_symbols. */
6209 s = bfd_get_section_by_name (dynobj, ".dynsym");
6210 BFD_ASSERT (s != NULL);
6211 s->size = dynsymcount * bed->s->sizeof_sym;
6213 if (dynsymcount != 0)
6215 s->contents = bfd_alloc (output_bfd, s->size);
6216 if (s->contents == NULL)
6217 return FALSE;
6219 /* The first entry in .dynsym is a dummy symbol.
6220 Clear all the section syms, in case we don't output them all. */
6221 ++section_sym_count;
6222 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6225 elf_hash_table (info)->bucketcount = 0;
6227 /* Compute the size of the hashing table. As a side effect this
6228 computes the hash values for all the names we export. */
6229 if (info->emit_hash)
6231 unsigned long int *hashcodes;
6232 struct hash_codes_info hashinf;
6233 bfd_size_type amt;
6234 unsigned long int nsyms;
6235 size_t bucketcount;
6236 size_t hash_entry_size;
6238 /* Compute the hash values for all exported symbols. At the same
6239 time store the values in an array so that we could use them for
6240 optimizations. */
6241 amt = dynsymcount * sizeof (unsigned long int);
6242 hashcodes = bfd_malloc (amt);
6243 if (hashcodes == NULL)
6244 return FALSE;
6245 hashinf.hashcodes = hashcodes;
6246 hashinf.error = FALSE;
6248 /* Put all hash values in HASHCODES. */
6249 elf_link_hash_traverse (elf_hash_table (info),
6250 elf_collect_hash_codes, &hashinf);
6251 if (hashinf.error)
6252 return FALSE;
6254 nsyms = hashinf.hashcodes - hashcodes;
6255 bucketcount
6256 = compute_bucket_count (info, hashcodes, nsyms, 0);
6257 free (hashcodes);
6259 if (bucketcount == 0)
6260 return FALSE;
6262 elf_hash_table (info)->bucketcount = bucketcount;
6264 s = bfd_get_section_by_name (dynobj, ".hash");
6265 BFD_ASSERT (s != NULL);
6266 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6267 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6268 s->contents = bfd_zalloc (output_bfd, s->size);
6269 if (s->contents == NULL)
6270 return FALSE;
6272 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6273 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6274 s->contents + hash_entry_size);
6277 if (info->emit_gnu_hash)
6279 size_t i, cnt;
6280 unsigned char *contents;
6281 struct collect_gnu_hash_codes cinfo;
6282 bfd_size_type amt;
6283 size_t bucketcount;
6285 memset (&cinfo, 0, sizeof (cinfo));
6287 /* Compute the hash values for all exported symbols. At the same
6288 time store the values in an array so that we could use them for
6289 optimizations. */
6290 amt = dynsymcount * 2 * sizeof (unsigned long int);
6291 cinfo.hashcodes = bfd_malloc (amt);
6292 if (cinfo.hashcodes == NULL)
6293 return FALSE;
6295 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6296 cinfo.min_dynindx = -1;
6297 cinfo.output_bfd = output_bfd;
6298 cinfo.bed = bed;
6300 /* Put all hash values in HASHCODES. */
6301 elf_link_hash_traverse (elf_hash_table (info),
6302 elf_collect_gnu_hash_codes, &cinfo);
6303 if (cinfo.error)
6304 return FALSE;
6306 bucketcount
6307 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6309 if (bucketcount == 0)
6311 free (cinfo.hashcodes);
6312 return FALSE;
6315 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6316 BFD_ASSERT (s != NULL);
6318 if (cinfo.nsyms == 0)
6320 /* Empty .gnu.hash section is special. */
6321 BFD_ASSERT (cinfo.min_dynindx == -1);
6322 free (cinfo.hashcodes);
6323 s->size = 5 * 4 + bed->s->arch_size / 8;
6324 contents = bfd_zalloc (output_bfd, s->size);
6325 if (contents == NULL)
6326 return FALSE;
6327 s->contents = contents;
6328 /* 1 empty bucket. */
6329 bfd_put_32 (output_bfd, 1, contents);
6330 /* SYMIDX above the special symbol 0. */
6331 bfd_put_32 (output_bfd, 1, contents + 4);
6332 /* Just one word for bitmask. */
6333 bfd_put_32 (output_bfd, 1, contents + 8);
6334 /* Only hash fn bloom filter. */
6335 bfd_put_32 (output_bfd, 0, contents + 12);
6336 /* No hashes are valid - empty bitmask. */
6337 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6338 /* No hashes in the only bucket. */
6339 bfd_put_32 (output_bfd, 0,
6340 contents + 16 + bed->s->arch_size / 8);
6342 else
6344 unsigned long int maskwords, maskbitslog2;
6345 BFD_ASSERT (cinfo.min_dynindx != -1);
6347 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6348 if (maskbitslog2 < 3)
6349 maskbitslog2 = 5;
6350 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6351 maskbitslog2 = maskbitslog2 + 3;
6352 else
6353 maskbitslog2 = maskbitslog2 + 2;
6354 if (bed->s->arch_size == 64)
6356 if (maskbitslog2 == 5)
6357 maskbitslog2 = 6;
6358 cinfo.shift1 = 6;
6360 else
6361 cinfo.shift1 = 5;
6362 cinfo.mask = (1 << cinfo.shift1) - 1;
6363 cinfo.shift2 = maskbitslog2;
6364 cinfo.maskbits = 1 << maskbitslog2;
6365 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6366 amt = bucketcount * sizeof (unsigned long int) * 2;
6367 amt += maskwords * sizeof (bfd_vma);
6368 cinfo.bitmask = bfd_malloc (amt);
6369 if (cinfo.bitmask == NULL)
6371 free (cinfo.hashcodes);
6372 return FALSE;
6375 cinfo.counts = (void *) (cinfo.bitmask + maskwords);
6376 cinfo.indx = cinfo.counts + bucketcount;
6377 cinfo.symindx = dynsymcount - cinfo.nsyms;
6378 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6380 /* Determine how often each hash bucket is used. */
6381 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6382 for (i = 0; i < cinfo.nsyms; ++i)
6383 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6385 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6386 if (cinfo.counts[i] != 0)
6388 cinfo.indx[i] = cnt;
6389 cnt += cinfo.counts[i];
6391 BFD_ASSERT (cnt == dynsymcount);
6392 cinfo.bucketcount = bucketcount;
6393 cinfo.local_indx = cinfo.min_dynindx;
6395 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6396 s->size += cinfo.maskbits / 8;
6397 contents = bfd_zalloc (output_bfd, s->size);
6398 if (contents == NULL)
6400 free (cinfo.bitmask);
6401 free (cinfo.hashcodes);
6402 return FALSE;
6405 s->contents = contents;
6406 bfd_put_32 (output_bfd, bucketcount, contents);
6407 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6408 bfd_put_32 (output_bfd, maskwords, contents + 8);
6409 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6410 contents += 16 + cinfo.maskbits / 8;
6412 for (i = 0; i < bucketcount; ++i)
6414 if (cinfo.counts[i] == 0)
6415 bfd_put_32 (output_bfd, 0, contents);
6416 else
6417 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6418 contents += 4;
6421 cinfo.contents = contents;
6423 /* Renumber dynamic symbols, populate .gnu.hash section. */
6424 elf_link_hash_traverse (elf_hash_table (info),
6425 elf_renumber_gnu_hash_syms, &cinfo);
6427 contents = s->contents + 16;
6428 for (i = 0; i < maskwords; ++i)
6430 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6431 contents);
6432 contents += bed->s->arch_size / 8;
6435 free (cinfo.bitmask);
6436 free (cinfo.hashcodes);
6440 s = bfd_get_section_by_name (dynobj, ".dynstr");
6441 BFD_ASSERT (s != NULL);
6443 elf_finalize_dynstr (output_bfd, info);
6445 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6447 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6448 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6449 return FALSE;
6452 return TRUE;
6455 /* Indicate that we are only retrieving symbol values from this
6456 section. */
6458 void
6459 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6461 if (is_elf_hash_table (info->hash))
6462 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6463 _bfd_generic_link_just_syms (sec, info);
6466 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6468 static void
6469 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6470 asection *sec)
6472 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6473 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6476 /* Finish SHF_MERGE section merging. */
6478 bfd_boolean
6479 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6481 bfd *ibfd;
6482 asection *sec;
6484 if (!is_elf_hash_table (info->hash))
6485 return FALSE;
6487 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6488 if ((ibfd->flags & DYNAMIC) == 0)
6489 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6490 if ((sec->flags & SEC_MERGE) != 0
6491 && !bfd_is_abs_section (sec->output_section))
6493 struct bfd_elf_section_data *secdata;
6495 secdata = elf_section_data (sec);
6496 if (! _bfd_add_merge_section (abfd,
6497 &elf_hash_table (info)->merge_info,
6498 sec, &secdata->sec_info))
6499 return FALSE;
6500 else if (secdata->sec_info)
6501 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6504 if (elf_hash_table (info)->merge_info != NULL)
6505 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6506 merge_sections_remove_hook);
6507 return TRUE;
6510 /* Create an entry in an ELF linker hash table. */
6512 struct bfd_hash_entry *
6513 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6514 struct bfd_hash_table *table,
6515 const char *string)
6517 /* Allocate the structure if it has not already been allocated by a
6518 subclass. */
6519 if (entry == NULL)
6521 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6522 if (entry == NULL)
6523 return entry;
6526 /* Call the allocation method of the superclass. */
6527 entry = _bfd_link_hash_newfunc (entry, table, string);
6528 if (entry != NULL)
6530 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6531 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6533 /* Set local fields. */
6534 ret->indx = -1;
6535 ret->dynindx = -1;
6536 ret->got = htab->init_got_refcount;
6537 ret->plt = htab->init_plt_refcount;
6538 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6539 - offsetof (struct elf_link_hash_entry, size)));
6540 /* Assume that we have been called by a non-ELF symbol reader.
6541 This flag is then reset by the code which reads an ELF input
6542 file. This ensures that a symbol created by a non-ELF symbol
6543 reader will have the flag set correctly. */
6544 ret->non_elf = 1;
6547 return entry;
6550 /* Copy data from an indirect symbol to its direct symbol, hiding the
6551 old indirect symbol. Also used for copying flags to a weakdef. */
6553 void
6554 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6555 struct elf_link_hash_entry *dir,
6556 struct elf_link_hash_entry *ind)
6558 struct elf_link_hash_table *htab;
6560 /* Copy down any references that we may have already seen to the
6561 symbol which just became indirect. */
6563 dir->ref_dynamic |= ind->ref_dynamic;
6564 dir->ref_regular |= ind->ref_regular;
6565 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6566 dir->non_got_ref |= ind->non_got_ref;
6567 dir->needs_plt |= ind->needs_plt;
6568 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6570 if (ind->root.type != bfd_link_hash_indirect)
6571 return;
6573 /* Copy over the global and procedure linkage table refcount entries.
6574 These may have been already set up by a check_relocs routine. */
6575 htab = elf_hash_table (info);
6576 if (ind->got.refcount > htab->init_got_refcount.refcount)
6578 if (dir->got.refcount < 0)
6579 dir->got.refcount = 0;
6580 dir->got.refcount += ind->got.refcount;
6581 ind->got.refcount = htab->init_got_refcount.refcount;
6584 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6586 if (dir->plt.refcount < 0)
6587 dir->plt.refcount = 0;
6588 dir->plt.refcount += ind->plt.refcount;
6589 ind->plt.refcount = htab->init_plt_refcount.refcount;
6592 if (ind->dynindx != -1)
6594 if (dir->dynindx != -1)
6595 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6596 dir->dynindx = ind->dynindx;
6597 dir->dynstr_index = ind->dynstr_index;
6598 ind->dynindx = -1;
6599 ind->dynstr_index = 0;
6603 void
6604 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6605 struct elf_link_hash_entry *h,
6606 bfd_boolean force_local)
6608 h->plt = elf_hash_table (info)->init_plt_offset;
6609 h->needs_plt = 0;
6610 if (force_local)
6612 h->forced_local = 1;
6613 if (h->dynindx != -1)
6615 h->dynindx = -1;
6616 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6617 h->dynstr_index);
6622 /* Initialize an ELF linker hash table. */
6624 bfd_boolean
6625 _bfd_elf_link_hash_table_init
6626 (struct elf_link_hash_table *table,
6627 bfd *abfd,
6628 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6629 struct bfd_hash_table *,
6630 const char *),
6631 unsigned int entsize)
6633 bfd_boolean ret;
6634 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6636 memset (table, 0, sizeof * table);
6637 table->init_got_refcount.refcount = can_refcount - 1;
6638 table->init_plt_refcount.refcount = can_refcount - 1;
6639 table->init_got_offset.offset = -(bfd_vma) 1;
6640 table->init_plt_offset.offset = -(bfd_vma) 1;
6641 /* The first dynamic symbol is a dummy. */
6642 table->dynsymcount = 1;
6644 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6645 table->root.type = bfd_link_elf_hash_table;
6647 return ret;
6650 /* Create an ELF linker hash table. */
6652 struct bfd_link_hash_table *
6653 _bfd_elf_link_hash_table_create (bfd *abfd)
6655 struct elf_link_hash_table *ret;
6656 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6658 ret = bfd_malloc (amt);
6659 if (ret == NULL)
6660 return NULL;
6662 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6663 sizeof (struct elf_link_hash_entry)))
6665 free (ret);
6666 return NULL;
6669 return &ret->root;
6672 /* This is a hook for the ELF emulation code in the generic linker to
6673 tell the backend linker what file name to use for the DT_NEEDED
6674 entry for a dynamic object. */
6676 void
6677 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6679 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6680 && bfd_get_format (abfd) == bfd_object)
6681 elf_dt_name (abfd) = name;
6685 bfd_elf_get_dyn_lib_class (bfd *abfd)
6687 int lib_class;
6688 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6689 && bfd_get_format (abfd) == bfd_object)
6690 lib_class = elf_dyn_lib_class (abfd);
6691 else
6692 lib_class = 0;
6693 return lib_class;
6696 void
6697 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6699 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6700 && bfd_get_format (abfd) == bfd_object)
6701 elf_dyn_lib_class (abfd) = lib_class;
6704 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6705 the linker ELF emulation code. */
6707 struct bfd_link_needed_list *
6708 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6709 struct bfd_link_info *info)
6711 if (! is_elf_hash_table (info->hash))
6712 return NULL;
6713 return elf_hash_table (info)->needed;
6716 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6717 hook for the linker ELF emulation code. */
6719 struct bfd_link_needed_list *
6720 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6721 struct bfd_link_info *info)
6723 if (! is_elf_hash_table (info->hash))
6724 return NULL;
6725 return elf_hash_table (info)->runpath;
6728 /* Get the name actually used for a dynamic object for a link. This
6729 is the SONAME entry if there is one. Otherwise, it is the string
6730 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6732 const char *
6733 bfd_elf_get_dt_soname (bfd *abfd)
6735 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6736 && bfd_get_format (abfd) == bfd_object)
6737 return elf_dt_name (abfd);
6738 return NULL;
6741 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6742 the ELF linker emulation code. */
6744 bfd_boolean
6745 bfd_elf_get_bfd_needed_list (bfd *abfd,
6746 struct bfd_link_needed_list **pneeded)
6748 asection *s;
6749 bfd_byte *dynbuf = NULL;
6750 int elfsec;
6751 unsigned long shlink;
6752 bfd_byte *extdyn, *extdynend;
6753 size_t extdynsize;
6754 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6756 *pneeded = NULL;
6758 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6759 || bfd_get_format (abfd) != bfd_object)
6760 return TRUE;
6762 s = bfd_get_section_by_name (abfd, ".dynamic");
6763 if (s == NULL || s->size == 0)
6764 return TRUE;
6766 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6767 goto error_return;
6769 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6770 if (elfsec == -1)
6771 goto error_return;
6773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6775 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6776 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6778 extdyn = dynbuf;
6779 extdynend = extdyn + s->size;
6780 for (; extdyn < extdynend; extdyn += extdynsize)
6782 Elf_Internal_Dyn dyn;
6784 (*swap_dyn_in) (abfd, extdyn, &dyn);
6786 if (dyn.d_tag == DT_NULL)
6787 break;
6789 if (dyn.d_tag == DT_NEEDED)
6791 const char *string;
6792 struct bfd_link_needed_list *l;
6793 unsigned int tagv = dyn.d_un.d_val;
6794 bfd_size_type amt;
6796 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6797 if (string == NULL)
6798 goto error_return;
6800 amt = sizeof *l;
6801 l = bfd_alloc (abfd, amt);
6802 if (l == NULL)
6803 goto error_return;
6805 l->by = abfd;
6806 l->name = string;
6807 l->next = *pneeded;
6808 *pneeded = l;
6812 free (dynbuf);
6814 return TRUE;
6816 error_return:
6817 if (dynbuf != NULL)
6818 free (dynbuf);
6819 return FALSE;
6822 struct elf_symbuf_symbol
6824 unsigned long st_name; /* Symbol name, index in string tbl */
6825 unsigned char st_info; /* Type and binding attributes */
6826 unsigned char st_other; /* Visibilty, and target specific */
6829 struct elf_symbuf_head
6831 struct elf_symbuf_symbol *ssym;
6832 bfd_size_type count;
6833 unsigned int st_shndx;
6836 struct elf_symbol
6838 union
6840 Elf_Internal_Sym *isym;
6841 struct elf_symbuf_symbol *ssym;
6842 } u;
6843 const char *name;
6846 /* Sort references to symbols by ascending section number. */
6848 static int
6849 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6851 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6852 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6854 return s1->st_shndx - s2->st_shndx;
6857 static int
6858 elf_sym_name_compare (const void *arg1, const void *arg2)
6860 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
6861 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
6862 return strcmp (s1->name, s2->name);
6865 static struct elf_symbuf_head *
6866 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
6868 Elf_Internal_Sym **ind, **indbufend, **indbuf;
6869 struct elf_symbuf_symbol *ssym;
6870 struct elf_symbuf_head *ssymbuf, *ssymhead;
6871 bfd_size_type i, shndx_count;
6873 indbuf = bfd_malloc2 (symcount, sizeof (*indbuf));
6874 if (indbuf == NULL)
6875 return NULL;
6877 for (ind = indbuf, i = 0; i < symcount; i++)
6878 if (isymbuf[i].st_shndx != SHN_UNDEF)
6879 *ind++ = &isymbuf[i];
6880 indbufend = ind;
6882 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
6883 elf_sort_elf_symbol);
6885 shndx_count = 0;
6886 if (indbufend > indbuf)
6887 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
6888 if (ind[0]->st_shndx != ind[1]->st_shndx)
6889 shndx_count++;
6891 ssymbuf = bfd_malloc ((shndx_count + 1) * sizeof (*ssymbuf)
6892 + (indbufend - indbuf) * sizeof (*ssymbuf));
6893 if (ssymbuf == NULL)
6895 free (indbuf);
6896 return NULL;
6899 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count);
6900 ssymbuf->ssym = NULL;
6901 ssymbuf->count = shndx_count;
6902 ssymbuf->st_shndx = 0;
6903 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
6905 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
6907 ssymhead++;
6908 ssymhead->ssym = ssym;
6909 ssymhead->count = 0;
6910 ssymhead->st_shndx = (*ind)->st_shndx;
6912 ssym->st_name = (*ind)->st_name;
6913 ssym->st_info = (*ind)->st_info;
6914 ssym->st_other = (*ind)->st_other;
6915 ssymhead->count++;
6917 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count);
6919 free (indbuf);
6920 return ssymbuf;
6923 /* Check if 2 sections define the same set of local and global
6924 symbols. */
6926 bfd_boolean
6927 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
6928 struct bfd_link_info *info)
6930 bfd *bfd1, *bfd2;
6931 const struct elf_backend_data *bed1, *bed2;
6932 Elf_Internal_Shdr *hdr1, *hdr2;
6933 bfd_size_type symcount1, symcount2;
6934 Elf_Internal_Sym *isymbuf1, *isymbuf2;
6935 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
6936 Elf_Internal_Sym *isym, *isymend;
6937 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
6938 bfd_size_type count1, count2, i;
6939 int shndx1, shndx2;
6940 bfd_boolean result;
6942 bfd1 = sec1->owner;
6943 bfd2 = sec2->owner;
6945 /* If both are .gnu.linkonce sections, they have to have the same
6946 section name. */
6947 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
6948 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
6949 return strcmp (sec1->name + sizeof ".gnu.linkonce",
6950 sec2->name + sizeof ".gnu.linkonce") == 0;
6952 /* Both sections have to be in ELF. */
6953 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
6954 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
6955 return FALSE;
6957 if (elf_section_type (sec1) != elf_section_type (sec2))
6958 return FALSE;
6960 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
6961 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
6963 /* If both are members of section groups, they have to have the
6964 same group name. */
6965 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
6966 return FALSE;
6969 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
6970 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
6971 if (shndx1 == -1 || shndx2 == -1)
6972 return FALSE;
6974 bed1 = get_elf_backend_data (bfd1);
6975 bed2 = get_elf_backend_data (bfd2);
6976 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
6977 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
6978 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
6979 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
6981 if (symcount1 == 0 || symcount2 == 0)
6982 return FALSE;
6984 result = FALSE;
6985 isymbuf1 = NULL;
6986 isymbuf2 = NULL;
6987 ssymbuf1 = elf_tdata (bfd1)->symbuf;
6988 ssymbuf2 = elf_tdata (bfd2)->symbuf;
6990 if (ssymbuf1 == NULL)
6992 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
6993 NULL, NULL, NULL);
6994 if (isymbuf1 == NULL)
6995 goto done;
6997 if (!info->reduce_memory_overheads)
6998 elf_tdata (bfd1)->symbuf = ssymbuf1
6999 = elf_create_symbuf (symcount1, isymbuf1);
7002 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7004 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7005 NULL, NULL, NULL);
7006 if (isymbuf2 == NULL)
7007 goto done;
7009 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7010 elf_tdata (bfd2)->symbuf = ssymbuf2
7011 = elf_create_symbuf (symcount2, isymbuf2);
7014 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7016 /* Optimized faster version. */
7017 bfd_size_type lo, hi, mid;
7018 struct elf_symbol *symp;
7019 struct elf_symbuf_symbol *ssym, *ssymend;
7021 lo = 0;
7022 hi = ssymbuf1->count;
7023 ssymbuf1++;
7024 count1 = 0;
7025 while (lo < hi)
7027 mid = (lo + hi) / 2;
7028 if ((unsigned int) shndx1 < ssymbuf1[mid].st_shndx)
7029 hi = mid;
7030 else if ((unsigned int) shndx1 > ssymbuf1[mid].st_shndx)
7031 lo = mid + 1;
7032 else
7034 count1 = ssymbuf1[mid].count;
7035 ssymbuf1 += mid;
7036 break;
7040 lo = 0;
7041 hi = ssymbuf2->count;
7042 ssymbuf2++;
7043 count2 = 0;
7044 while (lo < hi)
7046 mid = (lo + hi) / 2;
7047 if ((unsigned int) shndx2 < ssymbuf2[mid].st_shndx)
7048 hi = mid;
7049 else if ((unsigned int) shndx2 > ssymbuf2[mid].st_shndx)
7050 lo = mid + 1;
7051 else
7053 count2 = ssymbuf2[mid].count;
7054 ssymbuf2 += mid;
7055 break;
7059 if (count1 == 0 || count2 == 0 || count1 != count2)
7060 goto done;
7062 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
7063 symtable2 = bfd_malloc (count2 * sizeof (struct elf_symbol));
7064 if (symtable1 == NULL || symtable2 == NULL)
7065 goto done;
7067 symp = symtable1;
7068 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7069 ssym < ssymend; ssym++, symp++)
7071 symp->u.ssym = ssym;
7072 symp->name = bfd_elf_string_from_elf_section (bfd1,
7073 hdr1->sh_link,
7074 ssym->st_name);
7077 symp = symtable2;
7078 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7079 ssym < ssymend; ssym++, symp++)
7081 symp->u.ssym = ssym;
7082 symp->name = bfd_elf_string_from_elf_section (bfd2,
7083 hdr2->sh_link,
7084 ssym->st_name);
7087 /* Sort symbol by name. */
7088 qsort (symtable1, count1, sizeof (struct elf_symbol),
7089 elf_sym_name_compare);
7090 qsort (symtable2, count1, sizeof (struct elf_symbol),
7091 elf_sym_name_compare);
7093 for (i = 0; i < count1; i++)
7094 /* Two symbols must have the same binding, type and name. */
7095 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7096 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7097 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7098 goto done;
7100 result = TRUE;
7101 goto done;
7104 symtable1 = bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7105 symtable2 = bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7106 if (symtable1 == NULL || symtable2 == NULL)
7107 goto done;
7109 /* Count definitions in the section. */
7110 count1 = 0;
7111 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7112 if (isym->st_shndx == (unsigned int) shndx1)
7113 symtable1[count1++].u.isym = isym;
7115 count2 = 0;
7116 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7117 if (isym->st_shndx == (unsigned int) shndx2)
7118 symtable2[count2++].u.isym = isym;
7120 if (count1 == 0 || count2 == 0 || count1 != count2)
7121 goto done;
7123 for (i = 0; i < count1; i++)
7124 symtable1[i].name
7125 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7126 symtable1[i].u.isym->st_name);
7128 for (i = 0; i < count2; i++)
7129 symtable2[i].name
7130 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7131 symtable2[i].u.isym->st_name);
7133 /* Sort symbol by name. */
7134 qsort (symtable1, count1, sizeof (struct elf_symbol),
7135 elf_sym_name_compare);
7136 qsort (symtable2, count1, sizeof (struct elf_symbol),
7137 elf_sym_name_compare);
7139 for (i = 0; i < count1; i++)
7140 /* Two symbols must have the same binding, type and name. */
7141 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7142 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7143 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7144 goto done;
7146 result = TRUE;
7148 done:
7149 if (symtable1)
7150 free (symtable1);
7151 if (symtable2)
7152 free (symtable2);
7153 if (isymbuf1)
7154 free (isymbuf1);
7155 if (isymbuf2)
7156 free (isymbuf2);
7158 return result;
7161 /* Return TRUE if 2 section types are compatible. */
7163 bfd_boolean
7164 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7165 bfd *bbfd, const asection *bsec)
7167 if (asec == NULL
7168 || bsec == NULL
7169 || abfd->xvec->flavour != bfd_target_elf_flavour
7170 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7171 return TRUE;
7173 return elf_section_type (asec) == elf_section_type (bsec);
7176 /* Final phase of ELF linker. */
7178 /* A structure we use to avoid passing large numbers of arguments. */
7180 struct elf_final_link_info
7182 /* General link information. */
7183 struct bfd_link_info *info;
7184 /* Output BFD. */
7185 bfd *output_bfd;
7186 /* Symbol string table. */
7187 struct bfd_strtab_hash *symstrtab;
7188 /* .dynsym section. */
7189 asection *dynsym_sec;
7190 /* .hash section. */
7191 asection *hash_sec;
7192 /* symbol version section (.gnu.version). */
7193 asection *symver_sec;
7194 /* Buffer large enough to hold contents of any section. */
7195 bfd_byte *contents;
7196 /* Buffer large enough to hold external relocs of any section. */
7197 void *external_relocs;
7198 /* Buffer large enough to hold internal relocs of any section. */
7199 Elf_Internal_Rela *internal_relocs;
7200 /* Buffer large enough to hold external local symbols of any input
7201 BFD. */
7202 bfd_byte *external_syms;
7203 /* And a buffer for symbol section indices. */
7204 Elf_External_Sym_Shndx *locsym_shndx;
7205 /* Buffer large enough to hold internal local symbols of any input
7206 BFD. */
7207 Elf_Internal_Sym *internal_syms;
7208 /* Array large enough to hold a symbol index for each local symbol
7209 of any input BFD. */
7210 long *indices;
7211 /* Array large enough to hold a section pointer for each local
7212 symbol of any input BFD. */
7213 asection **sections;
7214 /* Buffer to hold swapped out symbols. */
7215 bfd_byte *symbuf;
7216 /* And one for symbol section indices. */
7217 Elf_External_Sym_Shndx *symshndxbuf;
7218 /* Number of swapped out symbols in buffer. */
7219 size_t symbuf_count;
7220 /* Number of symbols which fit in symbuf. */
7221 size_t symbuf_size;
7222 /* And same for symshndxbuf. */
7223 size_t shndxbuf_size;
7226 /* This struct is used to pass information to elf_link_output_extsym. */
7228 struct elf_outext_info
7230 bfd_boolean failed;
7231 bfd_boolean localsyms;
7232 struct elf_final_link_info *finfo;
7236 /* Support for evaluating a complex relocation.
7238 Complex relocations are generalized, self-describing relocations. The
7239 implementation of them consists of two parts: complex symbols, and the
7240 relocations themselves.
7242 The relocations are use a reserved elf-wide relocation type code (R_RELC
7243 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7244 information (start bit, end bit, word width, etc) into the addend. This
7245 information is extracted from CGEN-generated operand tables within gas.
7247 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7248 internal) representing prefix-notation expressions, including but not
7249 limited to those sorts of expressions normally encoded as addends in the
7250 addend field. The symbol mangling format is:
7252 <node> := <literal>
7253 | <unary-operator> ':' <node>
7254 | <binary-operator> ':' <node> ':' <node>
7257 <literal> := 's' <digits=N> ':' <N character symbol name>
7258 | 'S' <digits=N> ':' <N character section name>
7259 | '#' <hexdigits>
7262 <binary-operator> := as in C
7263 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7265 static void
7266 set_symbol_value (bfd *bfd_with_globals,
7267 Elf_Internal_Sym *isymbuf,
7268 size_t locsymcount,
7269 size_t symidx,
7270 bfd_vma val)
7272 struct elf_link_hash_entry **sym_hashes;
7273 struct elf_link_hash_entry *h;
7274 size_t extsymoff = locsymcount;
7276 if (symidx < locsymcount)
7278 Elf_Internal_Sym *sym;
7280 sym = isymbuf + symidx;
7281 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7283 /* It is a local symbol: move it to the
7284 "absolute" section and give it a value. */
7285 sym->st_shndx = SHN_ABS;
7286 sym->st_value = val;
7287 return;
7289 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7290 extsymoff = 0;
7293 /* It is a global symbol: set its link type
7294 to "defined" and give it a value. */
7296 sym_hashes = elf_sym_hashes (bfd_with_globals);
7297 h = sym_hashes [symidx - extsymoff];
7298 while (h->root.type == bfd_link_hash_indirect
7299 || h->root.type == bfd_link_hash_warning)
7300 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7301 h->root.type = bfd_link_hash_defined;
7302 h->root.u.def.value = val;
7303 h->root.u.def.section = bfd_abs_section_ptr;
7306 static bfd_boolean
7307 resolve_symbol (const char *name,
7308 bfd *input_bfd,
7309 struct elf_final_link_info *finfo,
7310 bfd_vma *result,
7311 Elf_Internal_Sym *isymbuf,
7312 size_t locsymcount)
7314 Elf_Internal_Sym *sym;
7315 struct bfd_link_hash_entry *global_entry;
7316 const char *candidate = NULL;
7317 Elf_Internal_Shdr *symtab_hdr;
7318 size_t i;
7320 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7322 for (i = 0; i < locsymcount; ++ i)
7324 sym = isymbuf + i;
7326 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7327 continue;
7329 candidate = bfd_elf_string_from_elf_section (input_bfd,
7330 symtab_hdr->sh_link,
7331 sym->st_name);
7332 #ifdef DEBUG
7333 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7334 name, candidate, (unsigned long) sym->st_value);
7335 #endif
7336 if (candidate && strcmp (candidate, name) == 0)
7338 asection *sec = finfo->sections [i];
7340 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7341 *result += sec->output_offset + sec->output_section->vma;
7342 #ifdef DEBUG
7343 printf ("Found symbol with value %8.8lx\n",
7344 (unsigned long) *result);
7345 #endif
7346 return TRUE;
7350 /* Hmm, haven't found it yet. perhaps it is a global. */
7351 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7352 FALSE, FALSE, TRUE);
7353 if (!global_entry)
7354 return FALSE;
7356 if (global_entry->type == bfd_link_hash_defined
7357 || global_entry->type == bfd_link_hash_defweak)
7359 *result = (global_entry->u.def.value
7360 + global_entry->u.def.section->output_section->vma
7361 + global_entry->u.def.section->output_offset);
7362 #ifdef DEBUG
7363 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7364 global_entry->root.string, (unsigned long) *result);
7365 #endif
7366 return TRUE;
7369 return FALSE;
7372 static bfd_boolean
7373 resolve_section (const char *name,
7374 asection *sections,
7375 bfd_vma *result)
7377 asection *curr;
7378 unsigned int len;
7380 for (curr = sections; curr; curr = curr->next)
7381 if (strcmp (curr->name, name) == 0)
7383 *result = curr->vma;
7384 return TRUE;
7387 /* Hmm. still haven't found it. try pseudo-section names. */
7388 for (curr = sections; curr; curr = curr->next)
7390 len = strlen (curr->name);
7391 if (len > strlen (name))
7392 continue;
7394 if (strncmp (curr->name, name, len) == 0)
7396 if (strncmp (".end", name + len, 4) == 0)
7398 *result = curr->vma + curr->size;
7399 return TRUE;
7402 /* Insert more pseudo-section names here, if you like. */
7406 return FALSE;
7409 static void
7410 undefined_reference (const char *reftype, const char *name)
7412 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7413 reftype, name);
7416 static bfd_boolean
7417 eval_symbol (bfd_vma *result,
7418 const char **symp,
7419 bfd *input_bfd,
7420 struct elf_final_link_info *finfo,
7421 bfd_vma dot,
7422 Elf_Internal_Sym *isymbuf,
7423 size_t locsymcount,
7424 int signed_p)
7426 size_t len;
7427 size_t symlen;
7428 bfd_vma a;
7429 bfd_vma b;
7430 char symbuf[4096];
7431 const char *sym = *symp;
7432 const char *symend;
7433 bfd_boolean symbol_is_section = FALSE;
7435 len = strlen (sym);
7436 symend = sym + len;
7438 if (len < 1 || len > sizeof (symbuf))
7440 bfd_set_error (bfd_error_invalid_operation);
7441 return FALSE;
7444 switch (* sym)
7446 case '.':
7447 *result = dot;
7448 *symp = sym + 1;
7449 return TRUE;
7451 case '#':
7452 ++sym;
7453 *result = strtoul (sym, (char **) symp, 16);
7454 return TRUE;
7456 case 'S':
7457 symbol_is_section = TRUE;
7458 case 's':
7459 ++sym;
7460 symlen = strtol (sym, (char **) symp, 10);
7461 sym = *symp + 1; /* Skip the trailing ':'. */
7463 if (symend < sym || symlen + 1 > sizeof (symbuf))
7465 bfd_set_error (bfd_error_invalid_operation);
7466 return FALSE;
7469 memcpy (symbuf, sym, symlen);
7470 symbuf[symlen] = '\0';
7471 *symp = sym + symlen;
7473 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7474 the symbol as a section, or vice-versa. so we're pretty liberal in our
7475 interpretation here; section means "try section first", not "must be a
7476 section", and likewise with symbol. */
7478 if (symbol_is_section)
7480 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7481 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7482 isymbuf, locsymcount))
7484 undefined_reference ("section", symbuf);
7485 return FALSE;
7488 else
7490 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7491 isymbuf, locsymcount)
7492 && !resolve_section (symbuf, finfo->output_bfd->sections,
7493 result))
7495 undefined_reference ("symbol", symbuf);
7496 return FALSE;
7500 return TRUE;
7502 /* All that remains are operators. */
7504 #define UNARY_OP(op) \
7505 if (strncmp (sym, #op, strlen (#op)) == 0) \
7507 sym += strlen (#op); \
7508 if (*sym == ':') \
7509 ++sym; \
7510 *symp = sym; \
7511 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7512 isymbuf, locsymcount, signed_p)) \
7513 return FALSE; \
7514 if (signed_p) \
7515 *result = op ((bfd_signed_vma) a); \
7516 else \
7517 *result = op a; \
7518 return TRUE; \
7521 #define BINARY_OP(op) \
7522 if (strncmp (sym, #op, strlen (#op)) == 0) \
7524 sym += strlen (#op); \
7525 if (*sym == ':') \
7526 ++sym; \
7527 *symp = sym; \
7528 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7529 isymbuf, locsymcount, signed_p)) \
7530 return FALSE; \
7531 ++*symp; \
7532 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7533 isymbuf, locsymcount, signed_p)) \
7534 return FALSE; \
7535 if (signed_p) \
7536 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7537 else \
7538 *result = a op b; \
7539 return TRUE; \
7542 default:
7543 UNARY_OP (0-);
7544 BINARY_OP (<<);
7545 BINARY_OP (>>);
7546 BINARY_OP (==);
7547 BINARY_OP (!=);
7548 BINARY_OP (<=);
7549 BINARY_OP (>=);
7550 BINARY_OP (&&);
7551 BINARY_OP (||);
7552 UNARY_OP (~);
7553 UNARY_OP (!);
7554 BINARY_OP (*);
7555 BINARY_OP (/);
7556 BINARY_OP (%);
7557 BINARY_OP (^);
7558 BINARY_OP (|);
7559 BINARY_OP (&);
7560 BINARY_OP (+);
7561 BINARY_OP (-);
7562 BINARY_OP (<);
7563 BINARY_OP (>);
7564 #undef UNARY_OP
7565 #undef BINARY_OP
7566 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7567 bfd_set_error (bfd_error_invalid_operation);
7568 return FALSE;
7572 static void
7573 put_value (bfd_vma size,
7574 unsigned long chunksz,
7575 bfd *input_bfd,
7576 bfd_vma x,
7577 bfd_byte *location)
7579 location += (size - chunksz);
7581 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7583 switch (chunksz)
7585 default:
7586 case 0:
7587 abort ();
7588 case 1:
7589 bfd_put_8 (input_bfd, x, location);
7590 break;
7591 case 2:
7592 bfd_put_16 (input_bfd, x, location);
7593 break;
7594 case 4:
7595 bfd_put_32 (input_bfd, x, location);
7596 break;
7597 case 8:
7598 #ifdef BFD64
7599 bfd_put_64 (input_bfd, x, location);
7600 #else
7601 abort ();
7602 #endif
7603 break;
7608 static bfd_vma
7609 get_value (bfd_vma size,
7610 unsigned long chunksz,
7611 bfd *input_bfd,
7612 bfd_byte *location)
7614 bfd_vma x = 0;
7616 for (; size; size -= chunksz, location += chunksz)
7618 switch (chunksz)
7620 default:
7621 case 0:
7622 abort ();
7623 case 1:
7624 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7625 break;
7626 case 2:
7627 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7628 break;
7629 case 4:
7630 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7631 break;
7632 case 8:
7633 #ifdef BFD64
7634 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7635 #else
7636 abort ();
7637 #endif
7638 break;
7641 return x;
7644 static void
7645 decode_complex_addend (unsigned long *start, /* in bits */
7646 unsigned long *oplen, /* in bits */
7647 unsigned long *len, /* in bits */
7648 unsigned long *wordsz, /* in bytes */
7649 unsigned long *chunksz, /* in bytes */
7650 unsigned long *lsb0_p,
7651 unsigned long *signed_p,
7652 unsigned long *trunc_p,
7653 unsigned long encoded)
7655 * start = encoded & 0x3F;
7656 * len = (encoded >> 6) & 0x3F;
7657 * oplen = (encoded >> 12) & 0x3F;
7658 * wordsz = (encoded >> 18) & 0xF;
7659 * chunksz = (encoded >> 22) & 0xF;
7660 * lsb0_p = (encoded >> 27) & 1;
7661 * signed_p = (encoded >> 28) & 1;
7662 * trunc_p = (encoded >> 29) & 1;
7665 void
7666 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7667 asection *input_section,
7668 bfd_byte *contents,
7669 Elf_Internal_Rela *rel,
7670 bfd_vma relocation)
7672 bfd_vma shift, x, mask;
7673 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7675 /* Perform this reloc, since it is complex.
7676 (this is not to say that it necessarily refers to a complex
7677 symbol; merely that it is a self-describing CGEN based reloc.
7678 i.e. the addend has the complete reloc information (bit start, end,
7679 word size, etc) encoded within it.). */
7681 decode_complex_addend (&start, &oplen, &len, &wordsz,
7682 &chunksz, &lsb0_p, &signed_p,
7683 &trunc_p, rel->r_addend);
7685 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7687 if (lsb0_p)
7688 shift = (start + 1) - len;
7689 else
7690 shift = (8 * wordsz) - (start + len);
7692 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7694 #ifdef DEBUG
7695 printf ("Doing complex reloc: "
7696 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7697 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7698 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7699 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7700 oplen, x, mask, relocation);
7701 #endif
7703 if (! trunc_p)
7705 /* Now do an overflow check. */
7706 if (bfd_check_overflow ((signed_p
7707 ? complain_overflow_signed
7708 : complain_overflow_unsigned),
7709 len, 0, (8 * wordsz),
7710 relocation) == bfd_reloc_overflow)
7711 (*_bfd_error_handler)
7712 ("%s (%s + 0x%lx): relocation overflow: 0x%lx %sdoes not fit "
7713 "within 0x%lx",
7714 input_bfd->filename, input_section->name, rel->r_offset,
7715 relocation, (signed_p ? "(signed) " : ""), mask);
7718 /* Do the deed. */
7719 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7721 #ifdef DEBUG
7722 printf (" relocation: %8.8lx\n"
7723 " shifted mask: %8.8lx\n"
7724 " shifted/masked reloc: %8.8lx\n"
7725 " result: %8.8lx\n",
7726 relocation, (mask << shift),
7727 ((relocation & mask) << shift), x);
7728 #endif
7729 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7732 /* When performing a relocatable link, the input relocations are
7733 preserved. But, if they reference global symbols, the indices
7734 referenced must be updated. Update all the relocations in
7735 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7737 static void
7738 elf_link_adjust_relocs (bfd *abfd,
7739 Elf_Internal_Shdr *rel_hdr,
7740 unsigned int count,
7741 struct elf_link_hash_entry **rel_hash)
7743 unsigned int i;
7744 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7745 bfd_byte *erela;
7746 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7747 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7748 bfd_vma r_type_mask;
7749 int r_sym_shift;
7751 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7753 swap_in = bed->s->swap_reloc_in;
7754 swap_out = bed->s->swap_reloc_out;
7756 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7758 swap_in = bed->s->swap_reloca_in;
7759 swap_out = bed->s->swap_reloca_out;
7761 else
7762 abort ();
7764 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7765 abort ();
7767 if (bed->s->arch_size == 32)
7769 r_type_mask = 0xff;
7770 r_sym_shift = 8;
7772 else
7774 r_type_mask = 0xffffffff;
7775 r_sym_shift = 32;
7778 erela = rel_hdr->contents;
7779 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7781 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7782 unsigned int j;
7784 if (*rel_hash == NULL)
7785 continue;
7787 BFD_ASSERT ((*rel_hash)->indx >= 0);
7789 (*swap_in) (abfd, erela, irela);
7790 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7791 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7792 | (irela[j].r_info & r_type_mask));
7793 (*swap_out) (abfd, irela, erela);
7797 struct elf_link_sort_rela
7799 union {
7800 bfd_vma offset;
7801 bfd_vma sym_mask;
7802 } u;
7803 enum elf_reloc_type_class type;
7804 /* We use this as an array of size int_rels_per_ext_rel. */
7805 Elf_Internal_Rela rela[1];
7808 static int
7809 elf_link_sort_cmp1 (const void *A, const void *B)
7811 const struct elf_link_sort_rela *a = A;
7812 const struct elf_link_sort_rela *b = B;
7813 int relativea, relativeb;
7815 relativea = a->type == reloc_class_relative;
7816 relativeb = b->type == reloc_class_relative;
7818 if (relativea < relativeb)
7819 return 1;
7820 if (relativea > relativeb)
7821 return -1;
7822 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7823 return -1;
7824 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7825 return 1;
7826 if (a->rela->r_offset < b->rela->r_offset)
7827 return -1;
7828 if (a->rela->r_offset > b->rela->r_offset)
7829 return 1;
7830 return 0;
7833 static int
7834 elf_link_sort_cmp2 (const void *A, const void *B)
7836 const struct elf_link_sort_rela *a = A;
7837 const struct elf_link_sort_rela *b = B;
7838 int copya, copyb;
7840 if (a->u.offset < b->u.offset)
7841 return -1;
7842 if (a->u.offset > b->u.offset)
7843 return 1;
7844 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7845 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7846 if (copya < copyb)
7847 return -1;
7848 if (copya > copyb)
7849 return 1;
7850 if (a->rela->r_offset < b->rela->r_offset)
7851 return -1;
7852 if (a->rela->r_offset > b->rela->r_offset)
7853 return 1;
7854 return 0;
7857 static size_t
7858 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7860 asection *dynamic_relocs;
7861 asection *rela_dyn;
7862 asection *rel_dyn;
7863 bfd_size_type count, size;
7864 size_t i, ret, sort_elt, ext_size;
7865 bfd_byte *sort, *s_non_relative, *p;
7866 struct elf_link_sort_rela *sq;
7867 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7868 int i2e = bed->s->int_rels_per_ext_rel;
7869 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7870 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7871 struct bfd_link_order *lo;
7872 bfd_vma r_sym_mask;
7873 bfd_boolean use_rela;
7875 /* Find a dynamic reloc section. */
7876 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
7877 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
7878 if (rela_dyn != NULL && rela_dyn->size > 0
7879 && rel_dyn != NULL && rel_dyn->size > 0)
7881 bfd_boolean use_rela_initialised = FALSE;
7883 /* This is just here to stop gcc from complaining.
7884 It's initialization checking code is not perfect. */
7885 use_rela = TRUE;
7887 /* Both sections are present. Examine the sizes
7888 of the indirect sections to help us choose. */
7889 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7890 if (lo->type == bfd_indirect_link_order)
7892 asection *o = lo->u.indirect.section;
7894 if ((o->size % bed->s->sizeof_rela) == 0)
7896 if ((o->size % bed->s->sizeof_rel) == 0)
7897 /* Section size is divisible by both rel and rela sizes.
7898 It is of no help to us. */
7900 else
7902 /* Section size is only divisible by rela. */
7903 if (use_rela_initialised && (use_rela == FALSE))
7905 _bfd_error_handler
7906 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7907 bfd_set_error (bfd_error_invalid_operation);
7908 return 0;
7910 else
7912 use_rela = TRUE;
7913 use_rela_initialised = TRUE;
7917 else if ((o->size % bed->s->sizeof_rel) == 0)
7919 /* Section size is only divisible by rel. */
7920 if (use_rela_initialised && (use_rela == TRUE))
7922 _bfd_error_handler
7923 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7924 bfd_set_error (bfd_error_invalid_operation);
7925 return 0;
7927 else
7929 use_rela = FALSE;
7930 use_rela_initialised = TRUE;
7933 else
7935 /* The section size is not divisible by either - something is wrong. */
7936 _bfd_error_handler
7937 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7938 bfd_set_error (bfd_error_invalid_operation);
7939 return 0;
7943 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
7944 if (lo->type == bfd_indirect_link_order)
7946 asection *o = lo->u.indirect.section;
7948 if ((o->size % bed->s->sizeof_rela) == 0)
7950 if ((o->size % bed->s->sizeof_rel) == 0)
7951 /* Section size is divisible by both rel and rela sizes.
7952 It is of no help to us. */
7954 else
7956 /* Section size is only divisible by rela. */
7957 if (use_rela_initialised && (use_rela == FALSE))
7959 _bfd_error_handler
7960 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7961 bfd_set_error (bfd_error_invalid_operation);
7962 return 0;
7964 else
7966 use_rela = TRUE;
7967 use_rela_initialised = TRUE;
7971 else if ((o->size % bed->s->sizeof_rel) == 0)
7973 /* Section size is only divisible by rel. */
7974 if (use_rela_initialised && (use_rela == TRUE))
7976 _bfd_error_handler
7977 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
7978 bfd_set_error (bfd_error_invalid_operation);
7979 return 0;
7981 else
7983 use_rela = FALSE;
7984 use_rela_initialised = TRUE;
7987 else
7989 /* The section size is not divisible by either - something is wrong. */
7990 _bfd_error_handler
7991 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
7992 bfd_set_error (bfd_error_invalid_operation);
7993 return 0;
7997 if (! use_rela_initialised)
7998 /* Make a guess. */
7999 use_rela = TRUE;
8001 else if (rela_dyn != NULL && rela_dyn->size > 0)
8002 use_rela = TRUE;
8003 else if (rel_dyn != NULL && rel_dyn->size > 0)
8004 use_rela = FALSE;
8005 else
8006 return 0;
8008 if (use_rela)
8010 dynamic_relocs = rela_dyn;
8011 ext_size = bed->s->sizeof_rela;
8012 swap_in = bed->s->swap_reloca_in;
8013 swap_out = bed->s->swap_reloca_out;
8015 else
8017 dynamic_relocs = rel_dyn;
8018 ext_size = bed->s->sizeof_rel;
8019 swap_in = bed->s->swap_reloc_in;
8020 swap_out = bed->s->swap_reloc_out;
8023 size = 0;
8024 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8025 if (lo->type == bfd_indirect_link_order)
8026 size += lo->u.indirect.section->size;
8028 if (size != dynamic_relocs->size)
8029 return 0;
8031 sort_elt = (sizeof (struct elf_link_sort_rela)
8032 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8034 count = dynamic_relocs->size / ext_size;
8035 sort = bfd_zmalloc (sort_elt * count);
8037 if (sort == NULL)
8039 (*info->callbacks->warning)
8040 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8041 return 0;
8044 if (bed->s->arch_size == 32)
8045 r_sym_mask = ~(bfd_vma) 0xff;
8046 else
8047 r_sym_mask = ~(bfd_vma) 0xffffffff;
8049 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8050 if (lo->type == bfd_indirect_link_order)
8052 bfd_byte *erel, *erelend;
8053 asection *o = lo->u.indirect.section;
8055 if (o->contents == NULL && o->size != 0)
8057 /* This is a reloc section that is being handled as a normal
8058 section. See bfd_section_from_shdr. We can't combine
8059 relocs in this case. */
8060 free (sort);
8061 return 0;
8063 erel = o->contents;
8064 erelend = o->contents + o->size;
8065 p = sort + o->output_offset / ext_size * sort_elt;
8067 while (erel < erelend)
8069 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8071 (*swap_in) (abfd, erel, s->rela);
8072 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8073 s->u.sym_mask = r_sym_mask;
8074 p += sort_elt;
8075 erel += ext_size;
8079 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8081 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8083 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8084 if (s->type != reloc_class_relative)
8085 break;
8087 ret = i;
8088 s_non_relative = p;
8090 sq = (struct elf_link_sort_rela *) s_non_relative;
8091 for (; i < count; i++, p += sort_elt)
8093 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8094 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8095 sq = sp;
8096 sp->u.offset = sq->rela->r_offset;
8099 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8101 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8102 if (lo->type == bfd_indirect_link_order)
8104 bfd_byte *erel, *erelend;
8105 asection *o = lo->u.indirect.section;
8107 erel = o->contents;
8108 erelend = o->contents + o->size;
8109 p = sort + o->output_offset / ext_size * sort_elt;
8110 while (erel < erelend)
8112 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8113 (*swap_out) (abfd, s->rela, erel);
8114 p += sort_elt;
8115 erel += ext_size;
8119 free (sort);
8120 *psec = dynamic_relocs;
8121 return ret;
8124 /* Flush the output symbols to the file. */
8126 static bfd_boolean
8127 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8128 const struct elf_backend_data *bed)
8130 if (finfo->symbuf_count > 0)
8132 Elf_Internal_Shdr *hdr;
8133 file_ptr pos;
8134 bfd_size_type amt;
8136 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8137 pos = hdr->sh_offset + hdr->sh_size;
8138 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8139 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8140 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8141 return FALSE;
8143 hdr->sh_size += amt;
8144 finfo->symbuf_count = 0;
8147 return TRUE;
8150 /* Add a symbol to the output symbol table. */
8152 static bfd_boolean
8153 elf_link_output_sym (struct elf_final_link_info *finfo,
8154 const char *name,
8155 Elf_Internal_Sym *elfsym,
8156 asection *input_sec,
8157 struct elf_link_hash_entry *h)
8159 bfd_byte *dest;
8160 Elf_External_Sym_Shndx *destshndx;
8161 bfd_boolean (*output_symbol_hook)
8162 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8163 struct elf_link_hash_entry *);
8164 const struct elf_backend_data *bed;
8166 bed = get_elf_backend_data (finfo->output_bfd);
8167 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8168 if (output_symbol_hook != NULL)
8170 if (! (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h))
8171 return FALSE;
8174 if (name == NULL || *name == '\0')
8175 elfsym->st_name = 0;
8176 else if (input_sec->flags & SEC_EXCLUDE)
8177 elfsym->st_name = 0;
8178 else
8180 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8181 name, TRUE, FALSE);
8182 if (elfsym->st_name == (unsigned long) -1)
8183 return FALSE;
8186 if (finfo->symbuf_count >= finfo->symbuf_size)
8188 if (! elf_link_flush_output_syms (finfo, bed))
8189 return FALSE;
8192 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8193 destshndx = finfo->symshndxbuf;
8194 if (destshndx != NULL)
8196 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8198 bfd_size_type amt;
8200 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8201 finfo->symshndxbuf = destshndx = bfd_realloc (destshndx, amt * 2);
8202 if (destshndx == NULL)
8203 return FALSE;
8204 memset ((char *) destshndx + amt, 0, amt);
8205 finfo->shndxbuf_size *= 2;
8207 destshndx += bfd_get_symcount (finfo->output_bfd);
8210 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8211 finfo->symbuf_count += 1;
8212 bfd_get_symcount (finfo->output_bfd) += 1;
8214 return TRUE;
8217 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8219 static bfd_boolean
8220 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8222 if (sym->st_shndx > SHN_HIRESERVE)
8224 /* The gABI doesn't support dynamic symbols in output sections
8225 beyond 64k. */
8226 (*_bfd_error_handler)
8227 (_("%B: Too many sections: %d (>= %d)"),
8228 abfd, bfd_count_sections (abfd), SHN_LORESERVE);
8229 bfd_set_error (bfd_error_nonrepresentable_section);
8230 return FALSE;
8232 return TRUE;
8235 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8236 allowing an unsatisfied unversioned symbol in the DSO to match a
8237 versioned symbol that would normally require an explicit version.
8238 We also handle the case that a DSO references a hidden symbol
8239 which may be satisfied by a versioned symbol in another DSO. */
8241 static bfd_boolean
8242 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8243 const struct elf_backend_data *bed,
8244 struct elf_link_hash_entry *h)
8246 bfd *abfd;
8247 struct elf_link_loaded_list *loaded;
8249 if (!is_elf_hash_table (info->hash))
8250 return FALSE;
8252 switch (h->root.type)
8254 default:
8255 abfd = NULL;
8256 break;
8258 case bfd_link_hash_undefined:
8259 case bfd_link_hash_undefweak:
8260 abfd = h->root.u.undef.abfd;
8261 if ((abfd->flags & DYNAMIC) == 0
8262 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8263 return FALSE;
8264 break;
8266 case bfd_link_hash_defined:
8267 case bfd_link_hash_defweak:
8268 abfd = h->root.u.def.section->owner;
8269 break;
8271 case bfd_link_hash_common:
8272 abfd = h->root.u.c.p->section->owner;
8273 break;
8275 BFD_ASSERT (abfd != NULL);
8277 for (loaded = elf_hash_table (info)->loaded;
8278 loaded != NULL;
8279 loaded = loaded->next)
8281 bfd *input;
8282 Elf_Internal_Shdr *hdr;
8283 bfd_size_type symcount;
8284 bfd_size_type extsymcount;
8285 bfd_size_type extsymoff;
8286 Elf_Internal_Shdr *versymhdr;
8287 Elf_Internal_Sym *isym;
8288 Elf_Internal_Sym *isymend;
8289 Elf_Internal_Sym *isymbuf;
8290 Elf_External_Versym *ever;
8291 Elf_External_Versym *extversym;
8293 input = loaded->abfd;
8295 /* We check each DSO for a possible hidden versioned definition. */
8296 if (input == abfd
8297 || (input->flags & DYNAMIC) == 0
8298 || elf_dynversym (input) == 0)
8299 continue;
8301 hdr = &elf_tdata (input)->dynsymtab_hdr;
8303 symcount = hdr->sh_size / bed->s->sizeof_sym;
8304 if (elf_bad_symtab (input))
8306 extsymcount = symcount;
8307 extsymoff = 0;
8309 else
8311 extsymcount = symcount - hdr->sh_info;
8312 extsymoff = hdr->sh_info;
8315 if (extsymcount == 0)
8316 continue;
8318 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8319 NULL, NULL, NULL);
8320 if (isymbuf == NULL)
8321 return FALSE;
8323 /* Read in any version definitions. */
8324 versymhdr = &elf_tdata (input)->dynversym_hdr;
8325 extversym = bfd_malloc (versymhdr->sh_size);
8326 if (extversym == NULL)
8327 goto error_ret;
8329 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8330 || (bfd_bread (extversym, versymhdr->sh_size, input)
8331 != versymhdr->sh_size))
8333 free (extversym);
8334 error_ret:
8335 free (isymbuf);
8336 return FALSE;
8339 ever = extversym + extsymoff;
8340 isymend = isymbuf + extsymcount;
8341 for (isym = isymbuf; isym < isymend; isym++, ever++)
8343 const char *name;
8344 Elf_Internal_Versym iver;
8345 unsigned short version_index;
8347 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8348 || isym->st_shndx == SHN_UNDEF)
8349 continue;
8351 name = bfd_elf_string_from_elf_section (input,
8352 hdr->sh_link,
8353 isym->st_name);
8354 if (strcmp (name, h->root.root.string) != 0)
8355 continue;
8357 _bfd_elf_swap_versym_in (input, ever, &iver);
8359 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8361 /* If we have a non-hidden versioned sym, then it should
8362 have provided a definition for the undefined sym. */
8363 abort ();
8366 version_index = iver.vs_vers & VERSYM_VERSION;
8367 if (version_index == 1 || version_index == 2)
8369 /* This is the base or first version. We can use it. */
8370 free (extversym);
8371 free (isymbuf);
8372 return TRUE;
8376 free (extversym);
8377 free (isymbuf);
8380 return FALSE;
8383 /* Add an external symbol to the symbol table. This is called from
8384 the hash table traversal routine. When generating a shared object,
8385 we go through the symbol table twice. The first time we output
8386 anything that might have been forced to local scope in a version
8387 script. The second time we output the symbols that are still
8388 global symbols. */
8390 static bfd_boolean
8391 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8393 struct elf_outext_info *eoinfo = data;
8394 struct elf_final_link_info *finfo = eoinfo->finfo;
8395 bfd_boolean strip;
8396 Elf_Internal_Sym sym;
8397 asection *input_sec;
8398 const struct elf_backend_data *bed;
8400 if (h->root.type == bfd_link_hash_warning)
8402 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8403 if (h->root.type == bfd_link_hash_new)
8404 return TRUE;
8407 /* Decide whether to output this symbol in this pass. */
8408 if (eoinfo->localsyms)
8410 if (!h->forced_local)
8411 return TRUE;
8413 else
8415 if (h->forced_local)
8416 return TRUE;
8419 bed = get_elf_backend_data (finfo->output_bfd);
8421 if (h->root.type == bfd_link_hash_undefined)
8423 /* If we have an undefined symbol reference here then it must have
8424 come from a shared library that is being linked in. (Undefined
8425 references in regular files have already been handled). */
8426 bfd_boolean ignore_undef = FALSE;
8428 /* Some symbols may be special in that the fact that they're
8429 undefined can be safely ignored - let backend determine that. */
8430 if (bed->elf_backend_ignore_undef_symbol)
8431 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8433 /* If we are reporting errors for this situation then do so now. */
8434 if (ignore_undef == FALSE
8435 && h->ref_dynamic
8436 && ! h->ref_regular
8437 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8438 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8440 if (! (finfo->info->callbacks->undefined_symbol
8441 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8442 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8444 eoinfo->failed = TRUE;
8445 return FALSE;
8450 /* We should also warn if a forced local symbol is referenced from
8451 shared libraries. */
8452 if (! finfo->info->relocatable
8453 && (! finfo->info->shared)
8454 && h->forced_local
8455 && h->ref_dynamic
8456 && !h->dynamic_def
8457 && !h->dynamic_weak
8458 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8460 (*_bfd_error_handler)
8461 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8462 finfo->output_bfd,
8463 h->root.u.def.section == bfd_abs_section_ptr
8464 ? finfo->output_bfd : h->root.u.def.section->owner,
8465 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8466 ? "internal"
8467 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8468 ? "hidden" : "local",
8469 h->root.root.string);
8470 eoinfo->failed = TRUE;
8471 return FALSE;
8474 /* We don't want to output symbols that have never been mentioned by
8475 a regular file, or that we have been told to strip. However, if
8476 h->indx is set to -2, the symbol is used by a reloc and we must
8477 output it. */
8478 if (h->indx == -2)
8479 strip = FALSE;
8480 else if ((h->def_dynamic
8481 || h->ref_dynamic
8482 || h->root.type == bfd_link_hash_new)
8483 && !h->def_regular
8484 && !h->ref_regular)
8485 strip = TRUE;
8486 else if (finfo->info->strip == strip_all)
8487 strip = TRUE;
8488 else if (finfo->info->strip == strip_some
8489 && bfd_hash_lookup (finfo->info->keep_hash,
8490 h->root.root.string, FALSE, FALSE) == NULL)
8491 strip = TRUE;
8492 else if (finfo->info->strip_discarded
8493 && (h->root.type == bfd_link_hash_defined
8494 || h->root.type == bfd_link_hash_defweak)
8495 && elf_discarded_section (h->root.u.def.section))
8496 strip = TRUE;
8497 else
8498 strip = FALSE;
8500 /* If we're stripping it, and it's not a dynamic symbol, there's
8501 nothing else to do unless it is a forced local symbol. */
8502 if (strip
8503 && h->dynindx == -1
8504 && !h->forced_local)
8505 return TRUE;
8507 sym.st_value = 0;
8508 sym.st_size = h->size;
8509 sym.st_other = h->other;
8510 if (h->forced_local)
8511 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8512 else if (h->root.type == bfd_link_hash_undefweak
8513 || h->root.type == bfd_link_hash_defweak)
8514 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8515 else
8516 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8518 switch (h->root.type)
8520 default:
8521 case bfd_link_hash_new:
8522 case bfd_link_hash_warning:
8523 abort ();
8524 return FALSE;
8526 case bfd_link_hash_undefined:
8527 case bfd_link_hash_undefweak:
8528 input_sec = bfd_und_section_ptr;
8529 sym.st_shndx = SHN_UNDEF;
8530 break;
8532 case bfd_link_hash_defined:
8533 case bfd_link_hash_defweak:
8535 input_sec = h->root.u.def.section;
8536 if (input_sec->output_section != NULL)
8538 sym.st_shndx =
8539 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8540 input_sec->output_section);
8541 if (sym.st_shndx == SHN_BAD)
8543 (*_bfd_error_handler)
8544 (_("%B: could not find output section %A for input section %A"),
8545 finfo->output_bfd, input_sec->output_section, input_sec);
8546 eoinfo->failed = TRUE;
8547 return FALSE;
8550 /* ELF symbols in relocatable files are section relative,
8551 but in nonrelocatable files they are virtual
8552 addresses. */
8553 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8554 if (! finfo->info->relocatable)
8556 sym.st_value += input_sec->output_section->vma;
8557 if (h->type == STT_TLS)
8559 /* STT_TLS symbols are relative to PT_TLS segment
8560 base. */
8561 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
8562 sym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
8566 else
8568 BFD_ASSERT (input_sec->owner == NULL
8569 || (input_sec->owner->flags & DYNAMIC) != 0);
8570 sym.st_shndx = SHN_UNDEF;
8571 input_sec = bfd_und_section_ptr;
8574 break;
8576 case bfd_link_hash_common:
8577 input_sec = h->root.u.c.p->section;
8578 sym.st_shndx = bed->common_section_index (input_sec);
8579 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8580 break;
8582 case bfd_link_hash_indirect:
8583 /* These symbols are created by symbol versioning. They point
8584 to the decorated version of the name. For example, if the
8585 symbol foo@@GNU_1.2 is the default, which should be used when
8586 foo is used with no version, then we add an indirect symbol
8587 foo which points to foo@@GNU_1.2. We ignore these symbols,
8588 since the indirected symbol is already in the hash table. */
8589 return TRUE;
8592 /* Give the processor backend a chance to tweak the symbol value,
8593 and also to finish up anything that needs to be done for this
8594 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8595 forced local syms when non-shared is due to a historical quirk. */
8596 if ((h->dynindx != -1
8597 || h->forced_local)
8598 && ((finfo->info->shared
8599 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8600 || h->root.type != bfd_link_hash_undefweak))
8601 || !h->forced_local)
8602 && elf_hash_table (finfo->info)->dynamic_sections_created)
8604 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8605 (finfo->output_bfd, finfo->info, h, &sym)))
8607 eoinfo->failed = TRUE;
8608 return FALSE;
8612 /* If we are marking the symbol as undefined, and there are no
8613 non-weak references to this symbol from a regular object, then
8614 mark the symbol as weak undefined; if there are non-weak
8615 references, mark the symbol as strong. We can't do this earlier,
8616 because it might not be marked as undefined until the
8617 finish_dynamic_symbol routine gets through with it. */
8618 if (sym.st_shndx == SHN_UNDEF
8619 && h->ref_regular
8620 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8621 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8623 int bindtype;
8625 if (h->ref_regular_nonweak)
8626 bindtype = STB_GLOBAL;
8627 else
8628 bindtype = STB_WEAK;
8629 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
8632 /* If a non-weak symbol with non-default visibility is not defined
8633 locally, it is a fatal error. */
8634 if (! finfo->info->relocatable
8635 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8636 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8637 && h->root.type == bfd_link_hash_undefined
8638 && !h->def_regular)
8640 (*_bfd_error_handler)
8641 (_("%B: %s symbol `%s' isn't defined"),
8642 finfo->output_bfd,
8643 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8644 ? "protected"
8645 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8646 ? "internal" : "hidden",
8647 h->root.root.string);
8648 eoinfo->failed = TRUE;
8649 return FALSE;
8652 /* If this symbol should be put in the .dynsym section, then put it
8653 there now. We already know the symbol index. We also fill in
8654 the entry in the .hash section. */
8655 if (h->dynindx != -1
8656 && elf_hash_table (finfo->info)->dynamic_sections_created)
8658 bfd_byte *esym;
8660 sym.st_name = h->dynstr_index;
8661 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8662 if (! check_dynsym (finfo->output_bfd, &sym))
8664 eoinfo->failed = TRUE;
8665 return FALSE;
8667 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8669 if (finfo->hash_sec != NULL)
8671 size_t hash_entry_size;
8672 bfd_byte *bucketpos;
8673 bfd_vma chain;
8674 size_t bucketcount;
8675 size_t bucket;
8677 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8678 bucket = h->u.elf_hash_value % bucketcount;
8680 hash_entry_size
8681 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8682 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8683 + (bucket + 2) * hash_entry_size);
8684 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8685 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8686 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8687 ((bfd_byte *) finfo->hash_sec->contents
8688 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8691 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8693 Elf_Internal_Versym iversym;
8694 Elf_External_Versym *eversym;
8696 if (!h->def_regular)
8698 if (h->verinfo.verdef == NULL)
8699 iversym.vs_vers = 0;
8700 else
8701 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8703 else
8705 if (h->verinfo.vertree == NULL)
8706 iversym.vs_vers = 1;
8707 else
8708 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8709 if (finfo->info->create_default_symver)
8710 iversym.vs_vers++;
8713 if (h->hidden)
8714 iversym.vs_vers |= VERSYM_HIDDEN;
8716 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8717 eversym += h->dynindx;
8718 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8722 /* If we're stripping it, then it was just a dynamic symbol, and
8723 there's nothing else to do. */
8724 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8725 return TRUE;
8727 h->indx = bfd_get_symcount (finfo->output_bfd);
8729 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h))
8731 eoinfo->failed = TRUE;
8732 return FALSE;
8735 return TRUE;
8738 /* Return TRUE if special handling is done for relocs in SEC against
8739 symbols defined in discarded sections. */
8741 static bfd_boolean
8742 elf_section_ignore_discarded_relocs (asection *sec)
8744 const struct elf_backend_data *bed;
8746 switch (sec->sec_info_type)
8748 case ELF_INFO_TYPE_STABS:
8749 case ELF_INFO_TYPE_EH_FRAME:
8750 return TRUE;
8751 default:
8752 break;
8755 bed = get_elf_backend_data (sec->owner);
8756 if (bed->elf_backend_ignore_discarded_relocs != NULL
8757 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8758 return TRUE;
8760 return FALSE;
8763 /* Return a mask saying how ld should treat relocations in SEC against
8764 symbols defined in discarded sections. If this function returns
8765 COMPLAIN set, ld will issue a warning message. If this function
8766 returns PRETEND set, and the discarded section was link-once and the
8767 same size as the kept link-once section, ld will pretend that the
8768 symbol was actually defined in the kept section. Otherwise ld will
8769 zero the reloc (at least that is the intent, but some cooperation by
8770 the target dependent code is needed, particularly for REL targets). */
8772 unsigned int
8773 _bfd_elf_default_action_discarded (asection *sec)
8775 if (sec->flags & SEC_DEBUGGING)
8776 return PRETEND;
8778 if (strcmp (".eh_frame", sec->name) == 0)
8779 return 0;
8781 if (strcmp (".gcc_except_table", sec->name) == 0)
8782 return 0;
8784 return COMPLAIN | PRETEND;
8787 /* Find a match between a section and a member of a section group. */
8789 static asection *
8790 match_group_member (asection *sec, asection *group,
8791 struct bfd_link_info *info)
8793 asection *first = elf_next_in_group (group);
8794 asection *s = first;
8796 while (s != NULL)
8798 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8799 return s;
8801 s = elf_next_in_group (s);
8802 if (s == first)
8803 break;
8806 return NULL;
8809 /* Check if the kept section of a discarded section SEC can be used
8810 to replace it. Return the replacement if it is OK. Otherwise return
8811 NULL. */
8813 asection *
8814 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8816 asection *kept;
8818 kept = sec->kept_section;
8819 if (kept != NULL)
8821 if ((kept->flags & SEC_GROUP) != 0)
8822 kept = match_group_member (sec, kept, info);
8823 if (kept != NULL
8824 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
8825 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8826 kept = NULL;
8827 sec->kept_section = kept;
8829 return kept;
8832 /* Link an input file into the linker output file. This function
8833 handles all the sections and relocations of the input file at once.
8834 This is so that we only have to read the local symbols once, and
8835 don't have to keep them in memory. */
8837 static bfd_boolean
8838 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
8840 int (*relocate_section)
8841 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
8842 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
8843 bfd *output_bfd;
8844 Elf_Internal_Shdr *symtab_hdr;
8845 size_t locsymcount;
8846 size_t extsymoff;
8847 Elf_Internal_Sym *isymbuf;
8848 Elf_Internal_Sym *isym;
8849 Elf_Internal_Sym *isymend;
8850 long *pindex;
8851 asection **ppsection;
8852 asection *o;
8853 const struct elf_backend_data *bed;
8854 struct elf_link_hash_entry **sym_hashes;
8856 output_bfd = finfo->output_bfd;
8857 bed = get_elf_backend_data (output_bfd);
8858 relocate_section = bed->elf_backend_relocate_section;
8860 /* If this is a dynamic object, we don't want to do anything here:
8861 we don't want the local symbols, and we don't want the section
8862 contents. */
8863 if ((input_bfd->flags & DYNAMIC) != 0)
8864 return TRUE;
8866 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8867 if (elf_bad_symtab (input_bfd))
8869 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
8870 extsymoff = 0;
8872 else
8874 locsymcount = symtab_hdr->sh_info;
8875 extsymoff = symtab_hdr->sh_info;
8878 /* Read the local symbols. */
8879 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8880 if (isymbuf == NULL && locsymcount != 0)
8882 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
8883 finfo->internal_syms,
8884 finfo->external_syms,
8885 finfo->locsym_shndx);
8886 if (isymbuf == NULL)
8887 return FALSE;
8890 /* Find local symbol sections and adjust values of symbols in
8891 SEC_MERGE sections. Write out those local symbols we know are
8892 going into the output file. */
8893 isymend = isymbuf + locsymcount;
8894 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
8895 isym < isymend;
8896 isym++, pindex++, ppsection++)
8898 asection *isec;
8899 const char *name;
8900 Elf_Internal_Sym osym;
8902 *pindex = -1;
8904 if (elf_bad_symtab (input_bfd))
8906 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
8908 *ppsection = NULL;
8909 continue;
8913 if (isym->st_shndx == SHN_UNDEF)
8914 isec = bfd_und_section_ptr;
8915 else if (isym->st_shndx < SHN_LORESERVE
8916 || isym->st_shndx > SHN_HIRESERVE)
8918 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
8919 if (isec
8920 && isec->sec_info_type == ELF_INFO_TYPE_MERGE
8921 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
8922 isym->st_value =
8923 _bfd_merged_section_offset (output_bfd, &isec,
8924 elf_section_data (isec)->sec_info,
8925 isym->st_value);
8927 else if (isym->st_shndx == SHN_ABS)
8928 isec = bfd_abs_section_ptr;
8929 else if (isym->st_shndx == SHN_COMMON)
8930 isec = bfd_com_section_ptr;
8931 else
8933 /* Don't attempt to output symbols with st_shnx in the
8934 reserved range other than SHN_ABS and SHN_COMMON. */
8935 *ppsection = NULL;
8936 continue;
8939 *ppsection = isec;
8941 /* Don't output the first, undefined, symbol. */
8942 if (ppsection == finfo->sections)
8943 continue;
8945 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
8947 /* We never output section symbols. Instead, we use the
8948 section symbol of the corresponding section in the output
8949 file. */
8950 continue;
8953 /* If we are stripping all symbols, we don't want to output this
8954 one. */
8955 if (finfo->info->strip == strip_all)
8956 continue;
8958 /* If we are discarding all local symbols, we don't want to
8959 output this one. If we are generating a relocatable output
8960 file, then some of the local symbols may be required by
8961 relocs; we output them below as we discover that they are
8962 needed. */
8963 if (finfo->info->discard == discard_all)
8964 continue;
8966 /* If this symbol is defined in a section which we are
8967 discarding, we don't need to keep it. */
8968 if (isym->st_shndx != SHN_UNDEF
8969 && (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
8970 && (isec == NULL
8971 || bfd_section_removed_from_list (output_bfd,
8972 isec->output_section)))
8973 continue;
8975 /* Get the name of the symbol. */
8976 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
8977 isym->st_name);
8978 if (name == NULL)
8979 return FALSE;
8981 /* See if we are discarding symbols with this name. */
8982 if ((finfo->info->strip == strip_some
8983 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
8984 == NULL))
8985 || (((finfo->info->discard == discard_sec_merge
8986 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
8987 || finfo->info->discard == discard_l)
8988 && bfd_is_local_label_name (input_bfd, name)))
8989 continue;
8991 /* If we get here, we are going to output this symbol. */
8993 osym = *isym;
8995 /* Adjust the section index for the output file. */
8996 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
8997 isec->output_section);
8998 if (osym.st_shndx == SHN_BAD)
8999 return FALSE;
9001 *pindex = bfd_get_symcount (output_bfd);
9003 /* ELF symbols in relocatable files are section relative, but
9004 in executable files they are virtual addresses. Note that
9005 this code assumes that all ELF sections have an associated
9006 BFD section with a reasonable value for output_offset; below
9007 we assume that they also have a reasonable value for
9008 output_section. Any special sections must be set up to meet
9009 these requirements. */
9010 osym.st_value += isec->output_offset;
9011 if (! finfo->info->relocatable)
9013 osym.st_value += isec->output_section->vma;
9014 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9016 /* STT_TLS symbols are relative to PT_TLS segment base. */
9017 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9018 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9022 if (! elf_link_output_sym (finfo, name, &osym, isec, NULL))
9023 return FALSE;
9026 /* Relocate the contents of each section. */
9027 sym_hashes = elf_sym_hashes (input_bfd);
9028 for (o = input_bfd->sections; o != NULL; o = o->next)
9030 bfd_byte *contents;
9032 if (! o->linker_mark)
9034 /* This section was omitted from the link. */
9035 continue;
9038 if ((o->flags & SEC_HAS_CONTENTS) == 0
9039 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9040 continue;
9042 if ((o->flags & SEC_LINKER_CREATED) != 0)
9044 /* Section was created by _bfd_elf_link_create_dynamic_sections
9045 or somesuch. */
9046 continue;
9049 /* Get the contents of the section. They have been cached by a
9050 relaxation routine. Note that o is a section in an input
9051 file, so the contents field will not have been set by any of
9052 the routines which work on output files. */
9053 if (elf_section_data (o)->this_hdr.contents != NULL)
9054 contents = elf_section_data (o)->this_hdr.contents;
9055 else
9057 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9059 contents = finfo->contents;
9060 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9061 return FALSE;
9064 if ((o->flags & SEC_RELOC) != 0)
9066 Elf_Internal_Rela *internal_relocs;
9067 Elf_Internal_Rela *rel, *relend;
9068 bfd_vma r_type_mask;
9069 int r_sym_shift;
9070 int action_discarded;
9071 int ret;
9073 /* Get the swapped relocs. */
9074 internal_relocs
9075 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9076 finfo->internal_relocs, FALSE);
9077 if (internal_relocs == NULL
9078 && o->reloc_count > 0)
9079 return FALSE;
9081 if (bed->s->arch_size == 32)
9083 r_type_mask = 0xff;
9084 r_sym_shift = 8;
9086 else
9088 r_type_mask = 0xffffffff;
9089 r_sym_shift = 32;
9092 action_discarded = -1;
9093 if (!elf_section_ignore_discarded_relocs (o))
9094 action_discarded = (*bed->action_discarded) (o);
9096 /* Run through the relocs evaluating complex reloc symbols and
9097 looking for relocs against symbols from discarded sections
9098 or section symbols from removed link-once sections.
9099 Complain about relocs against discarded sections. Zero
9100 relocs against removed link-once sections. */
9102 rel = internal_relocs;
9103 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9104 for ( ; rel < relend; rel++)
9106 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9107 unsigned int s_type;
9108 asection **ps, *sec;
9109 struct elf_link_hash_entry *h = NULL;
9110 const char *sym_name;
9112 if (r_symndx == STN_UNDEF)
9113 continue;
9115 if (r_symndx >= locsymcount
9116 || (elf_bad_symtab (input_bfd)
9117 && finfo->sections[r_symndx] == NULL))
9119 h = sym_hashes[r_symndx - extsymoff];
9121 /* Badly formatted input files can contain relocs that
9122 reference non-existant symbols. Check here so that
9123 we do not seg fault. */
9124 if (h == NULL)
9126 char buffer [32];
9128 sprintf_vma (buffer, rel->r_info);
9129 (*_bfd_error_handler)
9130 (_("error: %B contains a reloc (0x%s) for section %A "
9131 "that references a non-existent global symbol"),
9132 input_bfd, o, buffer);
9133 bfd_set_error (bfd_error_bad_value);
9134 return FALSE;
9137 while (h->root.type == bfd_link_hash_indirect
9138 || h->root.type == bfd_link_hash_warning)
9139 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9141 s_type = h->type;
9143 ps = NULL;
9144 if (h->root.type == bfd_link_hash_defined
9145 || h->root.type == bfd_link_hash_defweak)
9146 ps = &h->root.u.def.section;
9148 sym_name = h->root.root.string;
9150 else
9152 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9154 s_type = ELF_ST_TYPE (sym->st_info);
9155 ps = &finfo->sections[r_symndx];
9156 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9157 sym, *ps);
9160 if (s_type == STT_RELC || s_type == STT_SRELC)
9162 bfd_vma val;
9163 bfd_vma dot = (rel->r_offset
9164 + o->output_offset + o->output_section->vma);
9165 #ifdef DEBUG
9166 printf ("Encountered a complex symbol!");
9167 printf (" (input_bfd %s, section %s, reloc %ld\n",
9168 input_bfd->filename, o->name, rel - internal_relocs);
9169 printf (" symbol: idx %8.8lx, name %s\n",
9170 r_symndx, sym_name);
9171 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9172 (unsigned long) rel->r_info,
9173 (unsigned long) rel->r_offset);
9174 #endif
9175 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9176 isymbuf, locsymcount, s_type == STT_SRELC))
9177 return FALSE;
9179 /* Symbol evaluated OK. Update to absolute value. */
9180 set_symbol_value (input_bfd, isymbuf, locsymcount,
9181 r_symndx, val);
9182 continue;
9185 if (action_discarded != -1 && ps != NULL)
9187 /* Complain if the definition comes from a
9188 discarded section. */
9189 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9191 BFD_ASSERT (r_symndx != 0);
9192 if (action_discarded & COMPLAIN)
9193 (*finfo->info->callbacks->einfo)
9194 (_("%X`%s' referenced in section `%A' of %B: "
9195 "defined in discarded section `%A' of %B\n"),
9196 sym_name, o, input_bfd, sec, sec->owner);
9198 /* Try to do the best we can to support buggy old
9199 versions of gcc. Pretend that the symbol is
9200 really defined in the kept linkonce section.
9201 FIXME: This is quite broken. Modifying the
9202 symbol here means we will be changing all later
9203 uses of the symbol, not just in this section. */
9204 if (action_discarded & PRETEND)
9206 asection *kept;
9208 kept = _bfd_elf_check_kept_section (sec,
9209 finfo->info);
9210 if (kept != NULL)
9212 *ps = kept;
9213 continue;
9220 /* Relocate the section by invoking a back end routine.
9222 The back end routine is responsible for adjusting the
9223 section contents as necessary, and (if using Rela relocs
9224 and generating a relocatable output file) adjusting the
9225 reloc addend as necessary.
9227 The back end routine does not have to worry about setting
9228 the reloc address or the reloc symbol index.
9230 The back end routine is given a pointer to the swapped in
9231 internal symbols, and can access the hash table entries
9232 for the external symbols via elf_sym_hashes (input_bfd).
9234 When generating relocatable output, the back end routine
9235 must handle STB_LOCAL/STT_SECTION symbols specially. The
9236 output symbol is going to be a section symbol
9237 corresponding to the output section, which will require
9238 the addend to be adjusted. */
9240 ret = (*relocate_section) (output_bfd, finfo->info,
9241 input_bfd, o, contents,
9242 internal_relocs,
9243 isymbuf,
9244 finfo->sections);
9245 if (!ret)
9246 return FALSE;
9248 if (ret == 2
9249 || finfo->info->relocatable
9250 || finfo->info->emitrelocations)
9252 Elf_Internal_Rela *irela;
9253 Elf_Internal_Rela *irelaend;
9254 bfd_vma last_offset;
9255 struct elf_link_hash_entry **rel_hash;
9256 struct elf_link_hash_entry **rel_hash_list;
9257 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9258 unsigned int next_erel;
9259 bfd_boolean rela_normal;
9261 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9262 rela_normal = (bed->rela_normal
9263 && (input_rel_hdr->sh_entsize
9264 == bed->s->sizeof_rela));
9266 /* Adjust the reloc addresses and symbol indices. */
9268 irela = internal_relocs;
9269 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9270 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9271 + elf_section_data (o->output_section)->rel_count
9272 + elf_section_data (o->output_section)->rel_count2);
9273 rel_hash_list = rel_hash;
9274 last_offset = o->output_offset;
9275 if (!finfo->info->relocatable)
9276 last_offset += o->output_section->vma;
9277 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9279 unsigned long r_symndx;
9280 asection *sec;
9281 Elf_Internal_Sym sym;
9283 if (next_erel == bed->s->int_rels_per_ext_rel)
9285 rel_hash++;
9286 next_erel = 0;
9289 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9290 finfo->info, o,
9291 irela->r_offset);
9292 if (irela->r_offset >= (bfd_vma) -2)
9294 /* This is a reloc for a deleted entry or somesuch.
9295 Turn it into an R_*_NONE reloc, at the same
9296 offset as the last reloc. elf_eh_frame.c and
9297 bfd_elf_discard_info rely on reloc offsets
9298 being ordered. */
9299 irela->r_offset = last_offset;
9300 irela->r_info = 0;
9301 irela->r_addend = 0;
9302 continue;
9305 irela->r_offset += o->output_offset;
9307 /* Relocs in an executable have to be virtual addresses. */
9308 if (!finfo->info->relocatable)
9309 irela->r_offset += o->output_section->vma;
9311 last_offset = irela->r_offset;
9313 r_symndx = irela->r_info >> r_sym_shift;
9314 if (r_symndx == STN_UNDEF)
9315 continue;
9317 if (r_symndx >= locsymcount
9318 || (elf_bad_symtab (input_bfd)
9319 && finfo->sections[r_symndx] == NULL))
9321 struct elf_link_hash_entry *rh;
9322 unsigned long indx;
9324 /* This is a reloc against a global symbol. We
9325 have not yet output all the local symbols, so
9326 we do not know the symbol index of any global
9327 symbol. We set the rel_hash entry for this
9328 reloc to point to the global hash table entry
9329 for this symbol. The symbol index is then
9330 set at the end of bfd_elf_final_link. */
9331 indx = r_symndx - extsymoff;
9332 rh = elf_sym_hashes (input_bfd)[indx];
9333 while (rh->root.type == bfd_link_hash_indirect
9334 || rh->root.type == bfd_link_hash_warning)
9335 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9337 /* Setting the index to -2 tells
9338 elf_link_output_extsym that this symbol is
9339 used by a reloc. */
9340 BFD_ASSERT (rh->indx < 0);
9341 rh->indx = -2;
9343 *rel_hash = rh;
9345 continue;
9348 /* This is a reloc against a local symbol. */
9350 *rel_hash = NULL;
9351 sym = isymbuf[r_symndx];
9352 sec = finfo->sections[r_symndx];
9353 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9355 /* I suppose the backend ought to fill in the
9356 section of any STT_SECTION symbol against a
9357 processor specific section. */
9358 r_symndx = 0;
9359 if (bfd_is_abs_section (sec))
9361 else if (sec == NULL || sec->owner == NULL)
9363 bfd_set_error (bfd_error_bad_value);
9364 return FALSE;
9366 else
9368 asection *osec = sec->output_section;
9370 /* If we have discarded a section, the output
9371 section will be the absolute section. In
9372 case of discarded SEC_MERGE sections, use
9373 the kept section. relocate_section should
9374 have already handled discarded linkonce
9375 sections. */
9376 if (bfd_is_abs_section (osec)
9377 && sec->kept_section != NULL
9378 && sec->kept_section->output_section != NULL)
9380 osec = sec->kept_section->output_section;
9381 irela->r_addend -= osec->vma;
9384 if (!bfd_is_abs_section (osec))
9386 r_symndx = osec->target_index;
9387 if (r_symndx == 0)
9389 struct elf_link_hash_table *htab;
9390 asection *oi;
9392 htab = elf_hash_table (finfo->info);
9393 oi = htab->text_index_section;
9394 if ((osec->flags & SEC_READONLY) == 0
9395 && htab->data_index_section != NULL)
9396 oi = htab->data_index_section;
9398 if (oi != NULL)
9400 irela->r_addend += osec->vma - oi->vma;
9401 r_symndx = oi->target_index;
9405 BFD_ASSERT (r_symndx != 0);
9409 /* Adjust the addend according to where the
9410 section winds up in the output section. */
9411 if (rela_normal)
9412 irela->r_addend += sec->output_offset;
9414 else
9416 if (finfo->indices[r_symndx] == -1)
9418 unsigned long shlink;
9419 const char *name;
9420 asection *osec;
9422 if (finfo->info->strip == strip_all)
9424 /* You can't do ld -r -s. */
9425 bfd_set_error (bfd_error_invalid_operation);
9426 return FALSE;
9429 /* This symbol was skipped earlier, but
9430 since it is needed by a reloc, we
9431 must output it now. */
9432 shlink = symtab_hdr->sh_link;
9433 name = (bfd_elf_string_from_elf_section
9434 (input_bfd, shlink, sym.st_name));
9435 if (name == NULL)
9436 return FALSE;
9438 osec = sec->output_section;
9439 sym.st_shndx =
9440 _bfd_elf_section_from_bfd_section (output_bfd,
9441 osec);
9442 if (sym.st_shndx == SHN_BAD)
9443 return FALSE;
9445 sym.st_value += sec->output_offset;
9446 if (! finfo->info->relocatable)
9448 sym.st_value += osec->vma;
9449 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9451 /* STT_TLS symbols are relative to PT_TLS
9452 segment base. */
9453 BFD_ASSERT (elf_hash_table (finfo->info)
9454 ->tls_sec != NULL);
9455 sym.st_value -= (elf_hash_table (finfo->info)
9456 ->tls_sec->vma);
9460 finfo->indices[r_symndx]
9461 = bfd_get_symcount (output_bfd);
9463 if (! elf_link_output_sym (finfo, name, &sym, sec,
9464 NULL))
9465 return FALSE;
9468 r_symndx = finfo->indices[r_symndx];
9471 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9472 | (irela->r_info & r_type_mask));
9475 /* Swap out the relocs. */
9476 if (input_rel_hdr->sh_size != 0
9477 && !bed->elf_backend_emit_relocs (output_bfd, o,
9478 input_rel_hdr,
9479 internal_relocs,
9480 rel_hash_list))
9481 return FALSE;
9483 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9484 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9486 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9487 * bed->s->int_rels_per_ext_rel);
9488 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9489 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9490 input_rel_hdr2,
9491 internal_relocs,
9492 rel_hash_list))
9493 return FALSE;
9498 /* Write out the modified section contents. */
9499 if (bed->elf_backend_write_section
9500 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9501 contents))
9503 /* Section written out. */
9505 else switch (o->sec_info_type)
9507 case ELF_INFO_TYPE_STABS:
9508 if (! (_bfd_write_section_stabs
9509 (output_bfd,
9510 &elf_hash_table (finfo->info)->stab_info,
9511 o, &elf_section_data (o)->sec_info, contents)))
9512 return FALSE;
9513 break;
9514 case ELF_INFO_TYPE_MERGE:
9515 if (! _bfd_write_merged_section (output_bfd, o,
9516 elf_section_data (o)->sec_info))
9517 return FALSE;
9518 break;
9519 case ELF_INFO_TYPE_EH_FRAME:
9521 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9522 o, contents))
9523 return FALSE;
9525 break;
9526 default:
9528 if (! (o->flags & SEC_EXCLUDE)
9529 && ! bfd_set_section_contents (output_bfd, o->output_section,
9530 contents,
9531 (file_ptr) o->output_offset,
9532 o->size))
9533 return FALSE;
9535 break;
9539 return TRUE;
9542 /* Generate a reloc when linking an ELF file. This is a reloc
9543 requested by the linker, and does not come from any input file. This
9544 is used to build constructor and destructor tables when linking
9545 with -Ur. */
9547 static bfd_boolean
9548 elf_reloc_link_order (bfd *output_bfd,
9549 struct bfd_link_info *info,
9550 asection *output_section,
9551 struct bfd_link_order *link_order)
9553 reloc_howto_type *howto;
9554 long indx;
9555 bfd_vma offset;
9556 bfd_vma addend;
9557 struct elf_link_hash_entry **rel_hash_ptr;
9558 Elf_Internal_Shdr *rel_hdr;
9559 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9560 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9561 bfd_byte *erel;
9562 unsigned int i;
9564 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9565 if (howto == NULL)
9567 bfd_set_error (bfd_error_bad_value);
9568 return FALSE;
9571 addend = link_order->u.reloc.p->addend;
9573 /* Figure out the symbol index. */
9574 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9575 + elf_section_data (output_section)->rel_count
9576 + elf_section_data (output_section)->rel_count2);
9577 if (link_order->type == bfd_section_reloc_link_order)
9579 indx = link_order->u.reloc.p->u.section->target_index;
9580 BFD_ASSERT (indx != 0);
9581 *rel_hash_ptr = NULL;
9583 else
9585 struct elf_link_hash_entry *h;
9587 /* Treat a reloc against a defined symbol as though it were
9588 actually against the section. */
9589 h = ((struct elf_link_hash_entry *)
9590 bfd_wrapped_link_hash_lookup (output_bfd, info,
9591 link_order->u.reloc.p->u.name,
9592 FALSE, FALSE, TRUE));
9593 if (h != NULL
9594 && (h->root.type == bfd_link_hash_defined
9595 || h->root.type == bfd_link_hash_defweak))
9597 asection *section;
9599 section = h->root.u.def.section;
9600 indx = section->output_section->target_index;
9601 *rel_hash_ptr = NULL;
9602 /* It seems that we ought to add the symbol value to the
9603 addend here, but in practice it has already been added
9604 because it was passed to constructor_callback. */
9605 addend += section->output_section->vma + section->output_offset;
9607 else if (h != NULL)
9609 /* Setting the index to -2 tells elf_link_output_extsym that
9610 this symbol is used by a reloc. */
9611 h->indx = -2;
9612 *rel_hash_ptr = h;
9613 indx = 0;
9615 else
9617 if (! ((*info->callbacks->unattached_reloc)
9618 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9619 return FALSE;
9620 indx = 0;
9624 /* If this is an inplace reloc, we must write the addend into the
9625 object file. */
9626 if (howto->partial_inplace && addend != 0)
9628 bfd_size_type size;
9629 bfd_reloc_status_type rstat;
9630 bfd_byte *buf;
9631 bfd_boolean ok;
9632 const char *sym_name;
9634 size = bfd_get_reloc_size (howto);
9635 buf = bfd_zmalloc (size);
9636 if (buf == NULL)
9637 return FALSE;
9638 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9639 switch (rstat)
9641 case bfd_reloc_ok:
9642 break;
9644 default:
9645 case bfd_reloc_outofrange:
9646 abort ();
9648 case bfd_reloc_overflow:
9649 if (link_order->type == bfd_section_reloc_link_order)
9650 sym_name = bfd_section_name (output_bfd,
9651 link_order->u.reloc.p->u.section);
9652 else
9653 sym_name = link_order->u.reloc.p->u.name;
9654 if (! ((*info->callbacks->reloc_overflow)
9655 (info, NULL, sym_name, howto->name, addend, NULL,
9656 NULL, (bfd_vma) 0)))
9658 free (buf);
9659 return FALSE;
9661 break;
9663 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9664 link_order->offset, size);
9665 free (buf);
9666 if (! ok)
9667 return FALSE;
9670 /* The address of a reloc is relative to the section in a
9671 relocatable file, and is a virtual address in an executable
9672 file. */
9673 offset = link_order->offset;
9674 if (! info->relocatable)
9675 offset += output_section->vma;
9677 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9679 irel[i].r_offset = offset;
9680 irel[i].r_info = 0;
9681 irel[i].r_addend = 0;
9683 if (bed->s->arch_size == 32)
9684 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9685 else
9686 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9688 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9689 erel = rel_hdr->contents;
9690 if (rel_hdr->sh_type == SHT_REL)
9692 erel += (elf_section_data (output_section)->rel_count
9693 * bed->s->sizeof_rel);
9694 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9696 else
9698 irel[0].r_addend = addend;
9699 erel += (elf_section_data (output_section)->rel_count
9700 * bed->s->sizeof_rela);
9701 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9704 ++elf_section_data (output_section)->rel_count;
9706 return TRUE;
9710 /* Get the output vma of the section pointed to by the sh_link field. */
9712 static bfd_vma
9713 elf_get_linked_section_vma (struct bfd_link_order *p)
9715 Elf_Internal_Shdr **elf_shdrp;
9716 asection *s;
9717 int elfsec;
9719 s = p->u.indirect.section;
9720 elf_shdrp = elf_elfsections (s->owner);
9721 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9722 elfsec = elf_shdrp[elfsec]->sh_link;
9723 /* PR 290:
9724 The Intel C compiler generates SHT_IA_64_UNWIND with
9725 SHF_LINK_ORDER. But it doesn't set the sh_link or
9726 sh_info fields. Hence we could get the situation
9727 where elfsec is 0. */
9728 if (elfsec == 0)
9730 const struct elf_backend_data *bed
9731 = get_elf_backend_data (s->owner);
9732 if (bed->link_order_error_handler)
9733 bed->link_order_error_handler
9734 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9735 return 0;
9737 else
9739 s = elf_shdrp[elfsec]->bfd_section;
9740 return s->output_section->vma + s->output_offset;
9745 /* Compare two sections based on the locations of the sections they are
9746 linked to. Used by elf_fixup_link_order. */
9748 static int
9749 compare_link_order (const void * a, const void * b)
9751 bfd_vma apos;
9752 bfd_vma bpos;
9754 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
9755 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
9756 if (apos < bpos)
9757 return -1;
9758 return apos > bpos;
9762 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
9763 order as their linked sections. Returns false if this could not be done
9764 because an output section includes both ordered and unordered
9765 sections. Ideally we'd do this in the linker proper. */
9767 static bfd_boolean
9768 elf_fixup_link_order (bfd *abfd, asection *o)
9770 int seen_linkorder;
9771 int seen_other;
9772 int n;
9773 struct bfd_link_order *p;
9774 bfd *sub;
9775 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9776 unsigned elfsec;
9777 struct bfd_link_order **sections;
9778 asection *s, *other_sec, *linkorder_sec;
9779 bfd_vma offset;
9781 other_sec = NULL;
9782 linkorder_sec = NULL;
9783 seen_other = 0;
9784 seen_linkorder = 0;
9785 for (p = o->map_head.link_order; p != NULL; p = p->next)
9787 if (p->type == bfd_indirect_link_order)
9789 s = p->u.indirect.section;
9790 sub = s->owner;
9791 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
9792 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
9793 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
9794 && elfsec < elf_numsections (sub)
9795 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER)
9797 seen_linkorder++;
9798 linkorder_sec = s;
9800 else
9802 seen_other++;
9803 other_sec = s;
9806 else
9807 seen_other++;
9809 if (seen_other && seen_linkorder)
9811 if (other_sec && linkorder_sec)
9812 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
9813 o, linkorder_sec,
9814 linkorder_sec->owner, other_sec,
9815 other_sec->owner);
9816 else
9817 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
9819 bfd_set_error (bfd_error_bad_value);
9820 return FALSE;
9824 if (!seen_linkorder)
9825 return TRUE;
9827 sections = (struct bfd_link_order **)
9828 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
9829 if (sections == NULL)
9830 return FALSE;
9831 seen_linkorder = 0;
9833 for (p = o->map_head.link_order; p != NULL; p = p->next)
9835 sections[seen_linkorder++] = p;
9837 /* Sort the input sections in the order of their linked section. */
9838 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
9839 compare_link_order);
9841 /* Change the offsets of the sections. */
9842 offset = 0;
9843 for (n = 0; n < seen_linkorder; n++)
9845 s = sections[n]->u.indirect.section;
9846 offset &= ~(bfd_vma) 0 << s->alignment_power;
9847 s->output_offset = offset;
9848 sections[n]->offset = offset;
9849 offset += sections[n]->size;
9852 return TRUE;
9856 /* Do the final step of an ELF link. */
9858 bfd_boolean
9859 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9861 bfd_boolean dynamic;
9862 bfd_boolean emit_relocs;
9863 bfd *dynobj;
9864 struct elf_final_link_info finfo;
9865 register asection *o;
9866 register struct bfd_link_order *p;
9867 register bfd *sub;
9868 bfd_size_type max_contents_size;
9869 bfd_size_type max_external_reloc_size;
9870 bfd_size_type max_internal_reloc_count;
9871 bfd_size_type max_sym_count;
9872 bfd_size_type max_sym_shndx_count;
9873 file_ptr off;
9874 Elf_Internal_Sym elfsym;
9875 unsigned int i;
9876 Elf_Internal_Shdr *symtab_hdr;
9877 Elf_Internal_Shdr *symtab_shndx_hdr;
9878 Elf_Internal_Shdr *symstrtab_hdr;
9879 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9880 struct elf_outext_info eoinfo;
9881 bfd_boolean merged;
9882 size_t relativecount = 0;
9883 asection *reldyn = 0;
9884 bfd_size_type amt;
9885 asection *attr_section = NULL;
9886 bfd_vma attr_size = 0;
9887 const char *std_attrs_section;
9889 if (! is_elf_hash_table (info->hash))
9890 return FALSE;
9892 if (info->shared)
9893 abfd->flags |= DYNAMIC;
9895 dynamic = elf_hash_table (info)->dynamic_sections_created;
9896 dynobj = elf_hash_table (info)->dynobj;
9898 emit_relocs = (info->relocatable
9899 || info->emitrelocations);
9901 finfo.info = info;
9902 finfo.output_bfd = abfd;
9903 finfo.symstrtab = _bfd_elf_stringtab_init ();
9904 if (finfo.symstrtab == NULL)
9905 return FALSE;
9907 if (! dynamic)
9909 finfo.dynsym_sec = NULL;
9910 finfo.hash_sec = NULL;
9911 finfo.symver_sec = NULL;
9913 else
9915 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
9916 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
9917 BFD_ASSERT (finfo.dynsym_sec != NULL);
9918 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
9919 /* Note that it is OK if symver_sec is NULL. */
9922 finfo.contents = NULL;
9923 finfo.external_relocs = NULL;
9924 finfo.internal_relocs = NULL;
9925 finfo.external_syms = NULL;
9926 finfo.locsym_shndx = NULL;
9927 finfo.internal_syms = NULL;
9928 finfo.indices = NULL;
9929 finfo.sections = NULL;
9930 finfo.symbuf = NULL;
9931 finfo.symshndxbuf = NULL;
9932 finfo.symbuf_count = 0;
9933 finfo.shndxbuf_size = 0;
9935 /* The object attributes have been merged. Remove the input
9936 sections from the link, and set the contents of the output
9937 secton. */
9938 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
9939 for (o = abfd->sections; o != NULL; o = o->next)
9941 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
9942 || strcmp (o->name, ".gnu.attributes") == 0)
9944 for (p = o->map_head.link_order; p != NULL; p = p->next)
9946 asection *input_section;
9948 if (p->type != bfd_indirect_link_order)
9949 continue;
9950 input_section = p->u.indirect.section;
9951 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9952 elf_link_input_bfd ignores this section. */
9953 input_section->flags &= ~SEC_HAS_CONTENTS;
9956 attr_size = bfd_elf_obj_attr_size (abfd);
9957 if (attr_size)
9959 bfd_set_section_size (abfd, o, attr_size);
9960 attr_section = o;
9961 /* Skip this section later on. */
9962 o->map_head.link_order = NULL;
9964 else
9965 o->flags |= SEC_EXCLUDE;
9969 /* Count up the number of relocations we will output for each output
9970 section, so that we know the sizes of the reloc sections. We
9971 also figure out some maximum sizes. */
9972 max_contents_size = 0;
9973 max_external_reloc_size = 0;
9974 max_internal_reloc_count = 0;
9975 max_sym_count = 0;
9976 max_sym_shndx_count = 0;
9977 merged = FALSE;
9978 for (o = abfd->sections; o != NULL; o = o->next)
9980 struct bfd_elf_section_data *esdo = elf_section_data (o);
9981 o->reloc_count = 0;
9983 for (p = o->map_head.link_order; p != NULL; p = p->next)
9985 unsigned int reloc_count = 0;
9986 struct bfd_elf_section_data *esdi = NULL;
9987 unsigned int *rel_count1;
9989 if (p->type == bfd_section_reloc_link_order
9990 || p->type == bfd_symbol_reloc_link_order)
9991 reloc_count = 1;
9992 else if (p->type == bfd_indirect_link_order)
9994 asection *sec;
9996 sec = p->u.indirect.section;
9997 esdi = elf_section_data (sec);
9999 /* Mark all sections which are to be included in the
10000 link. This will normally be every section. We need
10001 to do this so that we can identify any sections which
10002 the linker has decided to not include. */
10003 sec->linker_mark = TRUE;
10005 if (sec->flags & SEC_MERGE)
10006 merged = TRUE;
10008 if (info->relocatable || info->emitrelocations)
10009 reloc_count = sec->reloc_count;
10010 else if (bed->elf_backend_count_relocs)
10012 Elf_Internal_Rela * relocs;
10014 relocs = _bfd_elf_link_read_relocs (sec->owner, sec,
10015 NULL, NULL,
10016 info->keep_memory);
10018 if (relocs != NULL)
10020 reloc_count
10021 = (*bed->elf_backend_count_relocs) (sec, relocs);
10023 if (elf_section_data (sec)->relocs != relocs)
10024 free (relocs);
10028 if (sec->rawsize > max_contents_size)
10029 max_contents_size = sec->rawsize;
10030 if (sec->size > max_contents_size)
10031 max_contents_size = sec->size;
10033 /* We are interested in just local symbols, not all
10034 symbols. */
10035 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10036 && (sec->owner->flags & DYNAMIC) == 0)
10038 size_t sym_count;
10040 if (elf_bad_symtab (sec->owner))
10041 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10042 / bed->s->sizeof_sym);
10043 else
10044 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10046 if (sym_count > max_sym_count)
10047 max_sym_count = sym_count;
10049 if (sym_count > max_sym_shndx_count
10050 && elf_symtab_shndx (sec->owner) != 0)
10051 max_sym_shndx_count = sym_count;
10053 if ((sec->flags & SEC_RELOC) != 0)
10055 size_t ext_size;
10057 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10058 if (ext_size > max_external_reloc_size)
10059 max_external_reloc_size = ext_size;
10060 if (sec->reloc_count > max_internal_reloc_count)
10061 max_internal_reloc_count = sec->reloc_count;
10066 if (reloc_count == 0)
10067 continue;
10069 o->reloc_count += reloc_count;
10071 /* MIPS may have a mix of REL and RELA relocs on sections.
10072 To support this curious ABI we keep reloc counts in
10073 elf_section_data too. We must be careful to add the
10074 relocations from the input section to the right output
10075 count. FIXME: Get rid of one count. We have
10076 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10077 rel_count1 = &esdo->rel_count;
10078 if (esdi != NULL)
10080 bfd_boolean same_size;
10081 bfd_size_type entsize1;
10083 entsize1 = esdi->rel_hdr.sh_entsize;
10084 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10085 || entsize1 == bed->s->sizeof_rela);
10086 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10088 if (!same_size)
10089 rel_count1 = &esdo->rel_count2;
10091 if (esdi->rel_hdr2 != NULL)
10093 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10094 unsigned int alt_count;
10095 unsigned int *rel_count2;
10097 BFD_ASSERT (entsize2 != entsize1
10098 && (entsize2 == bed->s->sizeof_rel
10099 || entsize2 == bed->s->sizeof_rela));
10101 rel_count2 = &esdo->rel_count2;
10102 if (!same_size)
10103 rel_count2 = &esdo->rel_count;
10105 /* The following is probably too simplistic if the
10106 backend counts output relocs unusually. */
10107 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10108 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10109 *rel_count2 += alt_count;
10110 reloc_count -= alt_count;
10113 *rel_count1 += reloc_count;
10116 if (o->reloc_count > 0)
10117 o->flags |= SEC_RELOC;
10118 else
10120 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10121 set it (this is probably a bug) and if it is set
10122 assign_section_numbers will create a reloc section. */
10123 o->flags &=~ SEC_RELOC;
10126 /* If the SEC_ALLOC flag is not set, force the section VMA to
10127 zero. This is done in elf_fake_sections as well, but forcing
10128 the VMA to 0 here will ensure that relocs against these
10129 sections are handled correctly. */
10130 if ((o->flags & SEC_ALLOC) == 0
10131 && ! o->user_set_vma)
10132 o->vma = 0;
10135 if (! info->relocatable && merged)
10136 elf_link_hash_traverse (elf_hash_table (info),
10137 _bfd_elf_link_sec_merge_syms, abfd);
10139 /* Figure out the file positions for everything but the symbol table
10140 and the relocs. We set symcount to force assign_section_numbers
10141 to create a symbol table. */
10142 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10143 BFD_ASSERT (! abfd->output_has_begun);
10144 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10145 goto error_return;
10147 /* Set sizes, and assign file positions for reloc sections. */
10148 for (o = abfd->sections; o != NULL; o = o->next)
10150 if ((o->flags & SEC_RELOC) != 0)
10152 if (!(_bfd_elf_link_size_reloc_section
10153 (abfd, &elf_section_data (o)->rel_hdr, o)))
10154 goto error_return;
10156 if (elf_section_data (o)->rel_hdr2
10157 && !(_bfd_elf_link_size_reloc_section
10158 (abfd, elf_section_data (o)->rel_hdr2, o)))
10159 goto error_return;
10162 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10163 to count upwards while actually outputting the relocations. */
10164 elf_section_data (o)->rel_count = 0;
10165 elf_section_data (o)->rel_count2 = 0;
10168 _bfd_elf_assign_file_positions_for_relocs (abfd);
10170 /* We have now assigned file positions for all the sections except
10171 .symtab and .strtab. We start the .symtab section at the current
10172 file position, and write directly to it. We build the .strtab
10173 section in memory. */
10174 bfd_get_symcount (abfd) = 0;
10175 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10176 /* sh_name is set in prep_headers. */
10177 symtab_hdr->sh_type = SHT_SYMTAB;
10178 /* sh_flags, sh_addr and sh_size all start off zero. */
10179 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10180 /* sh_link is set in assign_section_numbers. */
10181 /* sh_info is set below. */
10182 /* sh_offset is set just below. */
10183 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
10185 off = elf_tdata (abfd)->next_file_pos;
10186 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10188 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10189 incorrect. We do not yet know the size of the .symtab section.
10190 We correct next_file_pos below, after we do know the size. */
10192 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10193 continuously seeking to the right position in the file. */
10194 if (! info->keep_memory || max_sym_count < 20)
10195 finfo.symbuf_size = 20;
10196 else
10197 finfo.symbuf_size = max_sym_count;
10198 amt = finfo.symbuf_size;
10199 amt *= bed->s->sizeof_sym;
10200 finfo.symbuf = bfd_malloc (amt);
10201 if (finfo.symbuf == NULL)
10202 goto error_return;
10203 if (elf_numsections (abfd) > SHN_LORESERVE)
10205 /* Wild guess at number of output symbols. realloc'd as needed. */
10206 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10207 finfo.shndxbuf_size = amt;
10208 amt *= sizeof (Elf_External_Sym_Shndx);
10209 finfo.symshndxbuf = bfd_zmalloc (amt);
10210 if (finfo.symshndxbuf == NULL)
10211 goto error_return;
10214 /* Start writing out the symbol table. The first symbol is always a
10215 dummy symbol. */
10216 if (info->strip != strip_all
10217 || emit_relocs)
10219 elfsym.st_value = 0;
10220 elfsym.st_size = 0;
10221 elfsym.st_info = 0;
10222 elfsym.st_other = 0;
10223 elfsym.st_shndx = SHN_UNDEF;
10224 if (! elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10225 NULL))
10226 goto error_return;
10229 /* Output a symbol for each section. We output these even if we are
10230 discarding local symbols, since they are used for relocs. These
10231 symbols have no names. We store the index of each one in the
10232 index field of the section, so that we can find it again when
10233 outputting relocs. */
10234 if (info->strip != strip_all
10235 || emit_relocs)
10237 elfsym.st_size = 0;
10238 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10239 elfsym.st_other = 0;
10240 elfsym.st_value = 0;
10241 for (i = 1; i < elf_numsections (abfd); i++)
10243 o = bfd_section_from_elf_index (abfd, i);
10244 if (o != NULL)
10246 o->target_index = bfd_get_symcount (abfd);
10247 elfsym.st_shndx = i;
10248 if (!info->relocatable)
10249 elfsym.st_value = o->vma;
10250 if (!elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL))
10251 goto error_return;
10253 if (i == SHN_LORESERVE - 1)
10254 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
10258 /* Allocate some memory to hold information read in from the input
10259 files. */
10260 if (max_contents_size != 0)
10262 finfo.contents = bfd_malloc (max_contents_size);
10263 if (finfo.contents == NULL)
10264 goto error_return;
10267 if (max_external_reloc_size != 0)
10269 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10270 if (finfo.external_relocs == NULL)
10271 goto error_return;
10274 if (max_internal_reloc_count != 0)
10276 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10277 amt *= sizeof (Elf_Internal_Rela);
10278 finfo.internal_relocs = bfd_malloc (amt);
10279 if (finfo.internal_relocs == NULL)
10280 goto error_return;
10283 if (max_sym_count != 0)
10285 amt = max_sym_count * bed->s->sizeof_sym;
10286 finfo.external_syms = bfd_malloc (amt);
10287 if (finfo.external_syms == NULL)
10288 goto error_return;
10290 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10291 finfo.internal_syms = bfd_malloc (amt);
10292 if (finfo.internal_syms == NULL)
10293 goto error_return;
10295 amt = max_sym_count * sizeof (long);
10296 finfo.indices = bfd_malloc (amt);
10297 if (finfo.indices == NULL)
10298 goto error_return;
10300 amt = max_sym_count * sizeof (asection *);
10301 finfo.sections = bfd_malloc (amt);
10302 if (finfo.sections == NULL)
10303 goto error_return;
10306 if (max_sym_shndx_count != 0)
10308 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10309 finfo.locsym_shndx = bfd_malloc (amt);
10310 if (finfo.locsym_shndx == NULL)
10311 goto error_return;
10314 if (elf_hash_table (info)->tls_sec)
10316 bfd_vma base, end = 0;
10317 asection *sec;
10319 for (sec = elf_hash_table (info)->tls_sec;
10320 sec && (sec->flags & SEC_THREAD_LOCAL);
10321 sec = sec->next)
10323 bfd_size_type size = sec->size;
10325 if (size == 0
10326 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10328 struct bfd_link_order *o = sec->map_tail.link_order;
10329 if (o != NULL)
10330 size = o->offset + o->size;
10332 end = sec->vma + size;
10334 base = elf_hash_table (info)->tls_sec->vma;
10335 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10336 elf_hash_table (info)->tls_size = end - base;
10339 /* Reorder SHF_LINK_ORDER sections. */
10340 for (o = abfd->sections; o != NULL; o = o->next)
10342 if (!elf_fixup_link_order (abfd, o))
10343 return FALSE;
10346 /* Since ELF permits relocations to be against local symbols, we
10347 must have the local symbols available when we do the relocations.
10348 Since we would rather only read the local symbols once, and we
10349 would rather not keep them in memory, we handle all the
10350 relocations for a single input file at the same time.
10352 Unfortunately, there is no way to know the total number of local
10353 symbols until we have seen all of them, and the local symbol
10354 indices precede the global symbol indices. This means that when
10355 we are generating relocatable output, and we see a reloc against
10356 a global symbol, we can not know the symbol index until we have
10357 finished examining all the local symbols to see which ones we are
10358 going to output. To deal with this, we keep the relocations in
10359 memory, and don't output them until the end of the link. This is
10360 an unfortunate waste of memory, but I don't see a good way around
10361 it. Fortunately, it only happens when performing a relocatable
10362 link, which is not the common case. FIXME: If keep_memory is set
10363 we could write the relocs out and then read them again; I don't
10364 know how bad the memory loss will be. */
10366 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10367 sub->output_has_begun = FALSE;
10368 for (o = abfd->sections; o != NULL; o = o->next)
10370 for (p = o->map_head.link_order; p != NULL; p = p->next)
10372 if (p->type == bfd_indirect_link_order
10373 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10374 == bfd_target_elf_flavour)
10375 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10377 if (! sub->output_has_begun)
10379 if (! elf_link_input_bfd (&finfo, sub))
10380 goto error_return;
10381 sub->output_has_begun = TRUE;
10384 else if (p->type == bfd_section_reloc_link_order
10385 || p->type == bfd_symbol_reloc_link_order)
10387 if (! elf_reloc_link_order (abfd, info, o, p))
10388 goto error_return;
10390 else
10392 if (! _bfd_default_link_order (abfd, info, o, p))
10393 goto error_return;
10398 /* Free symbol buffer if needed. */
10399 if (!info->reduce_memory_overheads)
10401 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10402 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10403 && elf_tdata (sub)->symbuf)
10405 free (elf_tdata (sub)->symbuf);
10406 elf_tdata (sub)->symbuf = NULL;
10410 /* Output any global symbols that got converted to local in a
10411 version script or due to symbol visibility. We do this in a
10412 separate step since ELF requires all local symbols to appear
10413 prior to any global symbols. FIXME: We should only do this if
10414 some global symbols were, in fact, converted to become local.
10415 FIXME: Will this work correctly with the Irix 5 linker? */
10416 eoinfo.failed = FALSE;
10417 eoinfo.finfo = &finfo;
10418 eoinfo.localsyms = TRUE;
10419 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10420 &eoinfo);
10421 if (eoinfo.failed)
10422 return FALSE;
10424 /* If backend needs to output some local symbols not present in the hash
10425 table, do it now. */
10426 if (bed->elf_backend_output_arch_local_syms)
10428 typedef bfd_boolean (*out_sym_func)
10429 (void *, const char *, Elf_Internal_Sym *, asection *,
10430 struct elf_link_hash_entry *);
10432 if (! ((*bed->elf_backend_output_arch_local_syms)
10433 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10434 return FALSE;
10437 /* That wrote out all the local symbols. Finish up the symbol table
10438 with the global symbols. Even if we want to strip everything we
10439 can, we still need to deal with those global symbols that got
10440 converted to local in a version script. */
10442 /* The sh_info field records the index of the first non local symbol. */
10443 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10445 if (dynamic
10446 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10448 Elf_Internal_Sym sym;
10449 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10450 long last_local = 0;
10452 /* Write out the section symbols for the output sections. */
10453 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10455 asection *s;
10457 sym.st_size = 0;
10458 sym.st_name = 0;
10459 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10460 sym.st_other = 0;
10462 for (s = abfd->sections; s != NULL; s = s->next)
10464 int indx;
10465 bfd_byte *dest;
10466 long dynindx;
10468 dynindx = elf_section_data (s)->dynindx;
10469 if (dynindx <= 0)
10470 continue;
10471 indx = elf_section_data (s)->this_idx;
10472 BFD_ASSERT (indx > 0);
10473 sym.st_shndx = indx;
10474 if (! check_dynsym (abfd, &sym))
10475 return FALSE;
10476 sym.st_value = s->vma;
10477 dest = dynsym + dynindx * bed->s->sizeof_sym;
10478 if (last_local < dynindx)
10479 last_local = dynindx;
10480 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10484 /* Write out the local dynsyms. */
10485 if (elf_hash_table (info)->dynlocal)
10487 struct elf_link_local_dynamic_entry *e;
10488 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10490 asection *s;
10491 bfd_byte *dest;
10493 sym.st_size = e->isym.st_size;
10494 sym.st_other = e->isym.st_other;
10496 /* Copy the internal symbol as is.
10497 Note that we saved a word of storage and overwrote
10498 the original st_name with the dynstr_index. */
10499 sym = e->isym;
10501 if (e->isym.st_shndx != SHN_UNDEF
10502 && (e->isym.st_shndx < SHN_LORESERVE
10503 || e->isym.st_shndx > SHN_HIRESERVE))
10505 s = bfd_section_from_elf_index (e->input_bfd,
10506 e->isym.st_shndx);
10508 sym.st_shndx =
10509 elf_section_data (s->output_section)->this_idx;
10510 if (! check_dynsym (abfd, &sym))
10511 return FALSE;
10512 sym.st_value = (s->output_section->vma
10513 + s->output_offset
10514 + e->isym.st_value);
10517 if (last_local < e->dynindx)
10518 last_local = e->dynindx;
10520 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10521 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10525 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10526 last_local + 1;
10529 /* We get the global symbols from the hash table. */
10530 eoinfo.failed = FALSE;
10531 eoinfo.localsyms = FALSE;
10532 eoinfo.finfo = &finfo;
10533 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10534 &eoinfo);
10535 if (eoinfo.failed)
10536 return FALSE;
10538 /* If backend needs to output some symbols not present in the hash
10539 table, do it now. */
10540 if (bed->elf_backend_output_arch_syms)
10542 typedef bfd_boolean (*out_sym_func)
10543 (void *, const char *, Elf_Internal_Sym *, asection *,
10544 struct elf_link_hash_entry *);
10546 if (! ((*bed->elf_backend_output_arch_syms)
10547 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10548 return FALSE;
10551 /* Flush all symbols to the file. */
10552 if (! elf_link_flush_output_syms (&finfo, bed))
10553 return FALSE;
10555 /* Now we know the size of the symtab section. */
10556 off += symtab_hdr->sh_size;
10558 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10559 if (symtab_shndx_hdr->sh_name != 0)
10561 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10562 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10563 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10564 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10565 symtab_shndx_hdr->sh_size = amt;
10567 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10568 off, TRUE);
10570 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10571 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10572 return FALSE;
10576 /* Finish up and write out the symbol string table (.strtab)
10577 section. */
10578 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10579 /* sh_name was set in prep_headers. */
10580 symstrtab_hdr->sh_type = SHT_STRTAB;
10581 symstrtab_hdr->sh_flags = 0;
10582 symstrtab_hdr->sh_addr = 0;
10583 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10584 symstrtab_hdr->sh_entsize = 0;
10585 symstrtab_hdr->sh_link = 0;
10586 symstrtab_hdr->sh_info = 0;
10587 /* sh_offset is set just below. */
10588 symstrtab_hdr->sh_addralign = 1;
10590 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10591 elf_tdata (abfd)->next_file_pos = off;
10593 if (bfd_get_symcount (abfd) > 0)
10595 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10596 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10597 return FALSE;
10600 /* Adjust the relocs to have the correct symbol indices. */
10601 for (o = abfd->sections; o != NULL; o = o->next)
10603 if ((o->flags & SEC_RELOC) == 0)
10604 continue;
10606 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10607 elf_section_data (o)->rel_count,
10608 elf_section_data (o)->rel_hashes);
10609 if (elf_section_data (o)->rel_hdr2 != NULL)
10610 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10611 elf_section_data (o)->rel_count2,
10612 (elf_section_data (o)->rel_hashes
10613 + elf_section_data (o)->rel_count));
10615 /* Set the reloc_count field to 0 to prevent write_relocs from
10616 trying to swap the relocs out itself. */
10617 o->reloc_count = 0;
10620 if (dynamic && info->combreloc && dynobj != NULL)
10621 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10623 /* If we are linking against a dynamic object, or generating a
10624 shared library, finish up the dynamic linking information. */
10625 if (dynamic)
10627 bfd_byte *dyncon, *dynconend;
10629 /* Fix up .dynamic entries. */
10630 o = bfd_get_section_by_name (dynobj, ".dynamic");
10631 BFD_ASSERT (o != NULL);
10633 dyncon = o->contents;
10634 dynconend = o->contents + o->size;
10635 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10637 Elf_Internal_Dyn dyn;
10638 const char *name;
10639 unsigned int type;
10641 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10643 switch (dyn.d_tag)
10645 default:
10646 continue;
10647 case DT_NULL:
10648 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10650 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10652 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10653 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10654 default: continue;
10656 dyn.d_un.d_val = relativecount;
10657 relativecount = 0;
10658 break;
10660 continue;
10662 case DT_INIT:
10663 name = info->init_function;
10664 goto get_sym;
10665 case DT_FINI:
10666 name = info->fini_function;
10667 get_sym:
10669 struct elf_link_hash_entry *h;
10671 h = elf_link_hash_lookup (elf_hash_table (info), name,
10672 FALSE, FALSE, TRUE);
10673 if (h != NULL
10674 && (h->root.type == bfd_link_hash_defined
10675 || h->root.type == bfd_link_hash_defweak))
10677 dyn.d_un.d_val = h->root.u.def.value;
10678 o = h->root.u.def.section;
10679 if (o->output_section != NULL)
10680 dyn.d_un.d_val += (o->output_section->vma
10681 + o->output_offset);
10682 else
10684 /* The symbol is imported from another shared
10685 library and does not apply to this one. */
10686 dyn.d_un.d_val = 0;
10688 break;
10691 continue;
10693 case DT_PREINIT_ARRAYSZ:
10694 name = ".preinit_array";
10695 goto get_size;
10696 case DT_INIT_ARRAYSZ:
10697 name = ".init_array";
10698 goto get_size;
10699 case DT_FINI_ARRAYSZ:
10700 name = ".fini_array";
10701 get_size:
10702 o = bfd_get_section_by_name (abfd, name);
10703 if (o == NULL)
10705 (*_bfd_error_handler)
10706 (_("%B: could not find output section %s"), abfd, name);
10707 goto error_return;
10709 if (o->size == 0)
10710 (*_bfd_error_handler)
10711 (_("warning: %s section has zero size"), name);
10712 dyn.d_un.d_val = o->size;
10713 break;
10715 case DT_PREINIT_ARRAY:
10716 name = ".preinit_array";
10717 goto get_vma;
10718 case DT_INIT_ARRAY:
10719 name = ".init_array";
10720 goto get_vma;
10721 case DT_FINI_ARRAY:
10722 name = ".fini_array";
10723 goto get_vma;
10725 case DT_HASH:
10726 name = ".hash";
10727 goto get_vma;
10728 case DT_GNU_HASH:
10729 name = ".gnu.hash";
10730 goto get_vma;
10731 case DT_STRTAB:
10732 name = ".dynstr";
10733 goto get_vma;
10734 case DT_SYMTAB:
10735 name = ".dynsym";
10736 goto get_vma;
10737 case DT_VERDEF:
10738 name = ".gnu.version_d";
10739 goto get_vma;
10740 case DT_VERNEED:
10741 name = ".gnu.version_r";
10742 goto get_vma;
10743 case DT_VERSYM:
10744 name = ".gnu.version";
10745 get_vma:
10746 o = bfd_get_section_by_name (abfd, name);
10747 if (o == NULL)
10749 (*_bfd_error_handler)
10750 (_("%B: could not find output section %s"), abfd, name);
10751 goto error_return;
10753 dyn.d_un.d_ptr = o->vma;
10754 break;
10756 case DT_REL:
10757 case DT_RELA:
10758 case DT_RELSZ:
10759 case DT_RELASZ:
10760 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10761 type = SHT_REL;
10762 else
10763 type = SHT_RELA;
10764 dyn.d_un.d_val = 0;
10765 for (i = 1; i < elf_numsections (abfd); i++)
10767 Elf_Internal_Shdr *hdr;
10769 hdr = elf_elfsections (abfd)[i];
10770 if (hdr->sh_type == type
10771 && (hdr->sh_flags & SHF_ALLOC) != 0)
10773 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
10774 dyn.d_un.d_val += hdr->sh_size;
10775 else
10777 if (dyn.d_un.d_val == 0
10778 || hdr->sh_addr < dyn.d_un.d_val)
10779 dyn.d_un.d_val = hdr->sh_addr;
10783 break;
10785 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
10789 /* If we have created any dynamic sections, then output them. */
10790 if (dynobj != NULL)
10792 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
10793 goto error_return;
10795 /* Check for DT_TEXTREL (late, in case the backend removes it). */
10796 if (info->warn_shared_textrel && info->shared)
10798 bfd_byte *dyncon, *dynconend;
10800 /* Fix up .dynamic entries. */
10801 o = bfd_get_section_by_name (dynobj, ".dynamic");
10802 BFD_ASSERT (o != NULL);
10804 dyncon = o->contents;
10805 dynconend = o->contents + o->size;
10806 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10808 Elf_Internal_Dyn dyn;
10810 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10812 if (dyn.d_tag == DT_TEXTREL)
10814 info->callbacks->einfo
10815 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
10816 break;
10821 for (o = dynobj->sections; o != NULL; o = o->next)
10823 if ((o->flags & SEC_HAS_CONTENTS) == 0
10824 || o->size == 0
10825 || o->output_section == bfd_abs_section_ptr)
10826 continue;
10827 if ((o->flags & SEC_LINKER_CREATED) == 0)
10829 /* At this point, we are only interested in sections
10830 created by _bfd_elf_link_create_dynamic_sections. */
10831 continue;
10833 if (elf_hash_table (info)->stab_info.stabstr == o)
10834 continue;
10835 if (elf_hash_table (info)->eh_info.hdr_sec == o)
10836 continue;
10837 if ((elf_section_data (o->output_section)->this_hdr.sh_type
10838 != SHT_STRTAB)
10839 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
10841 if (! bfd_set_section_contents (abfd, o->output_section,
10842 o->contents,
10843 (file_ptr) o->output_offset,
10844 o->size))
10845 goto error_return;
10847 else
10849 /* The contents of the .dynstr section are actually in a
10850 stringtab. */
10851 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
10852 if (bfd_seek (abfd, off, SEEK_SET) != 0
10853 || ! _bfd_elf_strtab_emit (abfd,
10854 elf_hash_table (info)->dynstr))
10855 goto error_return;
10860 if (info->relocatable)
10862 bfd_boolean failed = FALSE;
10864 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
10865 if (failed)
10866 goto error_return;
10869 /* If we have optimized stabs strings, output them. */
10870 if (elf_hash_table (info)->stab_info.stabstr != NULL)
10872 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
10873 goto error_return;
10876 if (info->eh_frame_hdr)
10878 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
10879 goto error_return;
10882 if (finfo.symstrtab != NULL)
10883 _bfd_stringtab_free (finfo.symstrtab);
10884 if (finfo.contents != NULL)
10885 free (finfo.contents);
10886 if (finfo.external_relocs != NULL)
10887 free (finfo.external_relocs);
10888 if (finfo.internal_relocs != NULL)
10889 free (finfo.internal_relocs);
10890 if (finfo.external_syms != NULL)
10891 free (finfo.external_syms);
10892 if (finfo.locsym_shndx != NULL)
10893 free (finfo.locsym_shndx);
10894 if (finfo.internal_syms != NULL)
10895 free (finfo.internal_syms);
10896 if (finfo.indices != NULL)
10897 free (finfo.indices);
10898 if (finfo.sections != NULL)
10899 free (finfo.sections);
10900 if (finfo.symbuf != NULL)
10901 free (finfo.symbuf);
10902 if (finfo.symshndxbuf != NULL)
10903 free (finfo.symshndxbuf);
10904 for (o = abfd->sections; o != NULL; o = o->next)
10906 if ((o->flags & SEC_RELOC) != 0
10907 && elf_section_data (o)->rel_hashes != NULL)
10908 free (elf_section_data (o)->rel_hashes);
10911 elf_tdata (abfd)->linker = TRUE;
10913 if (attr_section)
10915 bfd_byte *contents = bfd_malloc (attr_size);
10916 if (contents == NULL)
10917 return FALSE; /* Bail out and fail. */
10918 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
10919 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
10920 free (contents);
10923 return TRUE;
10925 error_return:
10926 if (finfo.symstrtab != NULL)
10927 _bfd_stringtab_free (finfo.symstrtab);
10928 if (finfo.contents != NULL)
10929 free (finfo.contents);
10930 if (finfo.external_relocs != NULL)
10931 free (finfo.external_relocs);
10932 if (finfo.internal_relocs != NULL)
10933 free (finfo.internal_relocs);
10934 if (finfo.external_syms != NULL)
10935 free (finfo.external_syms);
10936 if (finfo.locsym_shndx != NULL)
10937 free (finfo.locsym_shndx);
10938 if (finfo.internal_syms != NULL)
10939 free (finfo.internal_syms);
10940 if (finfo.indices != NULL)
10941 free (finfo.indices);
10942 if (finfo.sections != NULL)
10943 free (finfo.sections);
10944 if (finfo.symbuf != NULL)
10945 free (finfo.symbuf);
10946 if (finfo.symshndxbuf != NULL)
10947 free (finfo.symshndxbuf);
10948 for (o = abfd->sections; o != NULL; o = o->next)
10950 if ((o->flags & SEC_RELOC) != 0
10951 && elf_section_data (o)->rel_hashes != NULL)
10952 free (elf_section_data (o)->rel_hashes);
10955 return FALSE;
10958 /* Garbage collect unused sections. */
10960 /* Default gc_mark_hook. */
10962 asection *
10963 _bfd_elf_gc_mark_hook (asection *sec,
10964 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10965 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
10966 struct elf_link_hash_entry *h,
10967 Elf_Internal_Sym *sym)
10969 if (h != NULL)
10971 switch (h->root.type)
10973 case bfd_link_hash_defined:
10974 case bfd_link_hash_defweak:
10975 return h->root.u.def.section;
10977 case bfd_link_hash_common:
10978 return h->root.u.c.p->section;
10980 default:
10981 break;
10984 else
10985 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
10987 return NULL;
10990 /* The mark phase of garbage collection. For a given section, mark
10991 it and any sections in this section's group, and all the sections
10992 which define symbols to which it refers. */
10994 bfd_boolean
10995 _bfd_elf_gc_mark (struct bfd_link_info *info,
10996 asection *sec,
10997 elf_gc_mark_hook_fn gc_mark_hook)
10999 bfd_boolean ret;
11000 bfd_boolean is_eh;
11001 asection *group_sec;
11003 sec->gc_mark = 1;
11005 /* Mark all the sections in the group. */
11006 group_sec = elf_section_data (sec)->next_in_group;
11007 if (group_sec && !group_sec->gc_mark)
11008 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11009 return FALSE;
11011 /* Look through the section relocs. */
11012 ret = TRUE;
11013 is_eh = strcmp (sec->name, ".eh_frame") == 0;
11014 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
11016 Elf_Internal_Rela *relstart, *rel, *relend;
11017 Elf_Internal_Shdr *symtab_hdr;
11018 struct elf_link_hash_entry **sym_hashes;
11019 size_t nlocsyms;
11020 size_t extsymoff;
11021 bfd *input_bfd = sec->owner;
11022 const struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
11023 Elf_Internal_Sym *isym = NULL;
11024 int r_sym_shift;
11026 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
11027 sym_hashes = elf_sym_hashes (input_bfd);
11029 /* Read the local symbols. */
11030 if (elf_bad_symtab (input_bfd))
11032 nlocsyms = symtab_hdr->sh_size / bed->s->sizeof_sym;
11033 extsymoff = 0;
11035 else
11036 extsymoff = nlocsyms = symtab_hdr->sh_info;
11038 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11039 if (isym == NULL && nlocsyms != 0)
11041 isym = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, nlocsyms, 0,
11042 NULL, NULL, NULL);
11043 if (isym == NULL)
11044 return FALSE;
11047 /* Read the relocations. */
11048 relstart = _bfd_elf_link_read_relocs (input_bfd, sec, NULL, NULL,
11049 info->keep_memory);
11050 if (relstart == NULL)
11052 ret = FALSE;
11053 goto out1;
11055 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11057 if (bed->s->arch_size == 32)
11058 r_sym_shift = 8;
11059 else
11060 r_sym_shift = 32;
11062 for (rel = relstart; rel < relend; rel++)
11064 unsigned long r_symndx;
11065 asection *rsec;
11066 struct elf_link_hash_entry *h;
11068 r_symndx = rel->r_info >> r_sym_shift;
11069 if (r_symndx == 0)
11070 continue;
11072 if (r_symndx >= nlocsyms
11073 || ELF_ST_BIND (isym[r_symndx].st_info) != STB_LOCAL)
11075 h = sym_hashes[r_symndx - extsymoff];
11076 while (h->root.type == bfd_link_hash_indirect
11077 || h->root.type == bfd_link_hash_warning)
11078 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11079 rsec = (*gc_mark_hook) (sec, info, rel, h, NULL);
11081 else
11083 rsec = (*gc_mark_hook) (sec, info, rel, NULL, &isym[r_symndx]);
11086 if (rsec && !rsec->gc_mark)
11088 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11089 rsec->gc_mark = 1;
11090 else if (is_eh)
11091 rsec->gc_mark_from_eh = 1;
11092 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11094 ret = FALSE;
11095 goto out2;
11100 out2:
11101 if (elf_section_data (sec)->relocs != relstart)
11102 free (relstart);
11103 out1:
11104 if (isym != NULL && symtab_hdr->contents != (unsigned char *) isym)
11106 if (! info->keep_memory)
11107 free (isym);
11108 else
11109 symtab_hdr->contents = (unsigned char *) isym;
11113 return ret;
11116 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11118 struct elf_gc_sweep_symbol_info
11120 struct bfd_link_info *info;
11121 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11122 bfd_boolean);
11125 static bfd_boolean
11126 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11128 if (h->root.type == bfd_link_hash_warning)
11129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11131 if ((h->root.type == bfd_link_hash_defined
11132 || h->root.type == bfd_link_hash_defweak)
11133 && !h->root.u.def.section->gc_mark
11134 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11136 struct elf_gc_sweep_symbol_info *inf = data;
11137 (*inf->hide_symbol) (inf->info, h, TRUE);
11140 return TRUE;
11143 /* The sweep phase of garbage collection. Remove all garbage sections. */
11145 typedef bfd_boolean (*gc_sweep_hook_fn)
11146 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11148 static bfd_boolean
11149 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11151 bfd *sub;
11152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11153 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11154 unsigned long section_sym_count;
11155 struct elf_gc_sweep_symbol_info sweep_info;
11157 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11159 asection *o;
11161 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11162 continue;
11164 for (o = sub->sections; o != NULL; o = o->next)
11166 /* Keep debug and special sections. */
11167 if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11168 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11169 o->gc_mark = 1;
11171 if (o->gc_mark)
11172 continue;
11174 /* Skip sweeping sections already excluded. */
11175 if (o->flags & SEC_EXCLUDE)
11176 continue;
11178 /* Since this is early in the link process, it is simple
11179 to remove a section from the output. */
11180 o->flags |= SEC_EXCLUDE;
11182 if (info->print_gc_sections && o->size != 0)
11183 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11185 /* But we also have to update some of the relocation
11186 info we collected before. */
11187 if (gc_sweep_hook
11188 && (o->flags & SEC_RELOC) != 0
11189 && o->reloc_count > 0
11190 && !bfd_is_abs_section (o->output_section))
11192 Elf_Internal_Rela *internal_relocs;
11193 bfd_boolean r;
11195 internal_relocs
11196 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11197 info->keep_memory);
11198 if (internal_relocs == NULL)
11199 return FALSE;
11201 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11203 if (elf_section_data (o)->relocs != internal_relocs)
11204 free (internal_relocs);
11206 if (!r)
11207 return FALSE;
11212 /* Remove the symbols that were in the swept sections from the dynamic
11213 symbol table. GCFIXME: Anyone know how to get them out of the
11214 static symbol table as well? */
11215 sweep_info.info = info;
11216 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11217 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11218 &sweep_info);
11220 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11221 return TRUE;
11224 /* Propagate collected vtable information. This is called through
11225 elf_link_hash_traverse. */
11227 static bfd_boolean
11228 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11230 if (h->root.type == bfd_link_hash_warning)
11231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11233 /* Those that are not vtables. */
11234 if (h->vtable == NULL || h->vtable->parent == NULL)
11235 return TRUE;
11237 /* Those vtables that do not have parents, we cannot merge. */
11238 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11239 return TRUE;
11241 /* If we've already been done, exit. */
11242 if (h->vtable->used && h->vtable->used[-1])
11243 return TRUE;
11245 /* Make sure the parent's table is up to date. */
11246 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11248 if (h->vtable->used == NULL)
11250 /* None of this table's entries were referenced. Re-use the
11251 parent's table. */
11252 h->vtable->used = h->vtable->parent->vtable->used;
11253 h->vtable->size = h->vtable->parent->vtable->size;
11255 else
11257 size_t n;
11258 bfd_boolean *cu, *pu;
11260 /* Or the parent's entries into ours. */
11261 cu = h->vtable->used;
11262 cu[-1] = TRUE;
11263 pu = h->vtable->parent->vtable->used;
11264 if (pu != NULL)
11266 const struct elf_backend_data *bed;
11267 unsigned int log_file_align;
11269 bed = get_elf_backend_data (h->root.u.def.section->owner);
11270 log_file_align = bed->s->log_file_align;
11271 n = h->vtable->parent->vtable->size >> log_file_align;
11272 while (n--)
11274 if (*pu)
11275 *cu = TRUE;
11276 pu++;
11277 cu++;
11282 return TRUE;
11285 static bfd_boolean
11286 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11288 asection *sec;
11289 bfd_vma hstart, hend;
11290 Elf_Internal_Rela *relstart, *relend, *rel;
11291 const struct elf_backend_data *bed;
11292 unsigned int log_file_align;
11294 if (h->root.type == bfd_link_hash_warning)
11295 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11297 /* Take care of both those symbols that do not describe vtables as
11298 well as those that are not loaded. */
11299 if (h->vtable == NULL || h->vtable->parent == NULL)
11300 return TRUE;
11302 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11303 || h->root.type == bfd_link_hash_defweak);
11305 sec = h->root.u.def.section;
11306 hstart = h->root.u.def.value;
11307 hend = hstart + h->size;
11309 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11310 if (!relstart)
11311 return *(bfd_boolean *) okp = FALSE;
11312 bed = get_elf_backend_data (sec->owner);
11313 log_file_align = bed->s->log_file_align;
11315 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11317 for (rel = relstart; rel < relend; ++rel)
11318 if (rel->r_offset >= hstart && rel->r_offset < hend)
11320 /* If the entry is in use, do nothing. */
11321 if (h->vtable->used
11322 && (rel->r_offset - hstart) < h->vtable->size)
11324 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11325 if (h->vtable->used[entry])
11326 continue;
11328 /* Otherwise, kill it. */
11329 rel->r_offset = rel->r_info = rel->r_addend = 0;
11332 return TRUE;
11335 /* Mark sections containing dynamically referenced symbols. When
11336 building shared libraries, we must assume that any visible symbol is
11337 referenced. */
11339 bfd_boolean
11340 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11342 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11344 if (h->root.type == bfd_link_hash_warning)
11345 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11347 if ((h->root.type == bfd_link_hash_defined
11348 || h->root.type == bfd_link_hash_defweak)
11349 && (h->ref_dynamic
11350 || (!info->executable
11351 && h->def_regular
11352 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11353 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11354 h->root.u.def.section->flags |= SEC_KEEP;
11356 return TRUE;
11359 /* Do mark and sweep of unused sections. */
11361 bfd_boolean
11362 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11364 bfd_boolean ok = TRUE;
11365 bfd *sub;
11366 elf_gc_mark_hook_fn gc_mark_hook;
11367 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11369 if (!bed->can_gc_sections
11370 || info->relocatable
11371 || info->emitrelocations
11372 || !is_elf_hash_table (info->hash))
11374 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11375 return TRUE;
11378 /* Apply transitive closure to the vtable entry usage info. */
11379 elf_link_hash_traverse (elf_hash_table (info),
11380 elf_gc_propagate_vtable_entries_used,
11381 &ok);
11382 if (!ok)
11383 return FALSE;
11385 /* Kill the vtable relocations that were not used. */
11386 elf_link_hash_traverse (elf_hash_table (info),
11387 elf_gc_smash_unused_vtentry_relocs,
11388 &ok);
11389 if (!ok)
11390 return FALSE;
11392 /* Mark dynamically referenced symbols. */
11393 if (elf_hash_table (info)->dynamic_sections_created)
11394 elf_link_hash_traverse (elf_hash_table (info),
11395 bed->gc_mark_dynamic_ref,
11396 info);
11398 /* Grovel through relocs to find out who stays ... */
11399 gc_mark_hook = bed->gc_mark_hook;
11400 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11402 asection *o;
11404 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11405 continue;
11407 for (o = sub->sections; o != NULL; o = o->next)
11408 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11409 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11410 return FALSE;
11413 /* Allow the backend to mark additional target specific sections. */
11414 if (bed->gc_mark_extra_sections)
11415 bed->gc_mark_extra_sections(info, gc_mark_hook);
11417 /* ... again for sections marked from eh_frame. */
11418 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11420 asection *o;
11422 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11423 continue;
11425 /* Keep .gcc_except_table.* if the associated .text.* (or the
11426 associated .gnu.linkonce.t.* if .text.* doesn't exist) is
11427 marked. This isn't very nice, but the proper solution,
11428 splitting .eh_frame up and using comdat doesn't pan out
11429 easily due to needing special relocs to handle the
11430 difference of two symbols in separate sections.
11431 Don't keep code sections referenced by .eh_frame. */
11432 #define TEXT_PREFIX ".text."
11433 #define TEXT_PREFIX2 ".gnu.linkonce.t."
11434 #define GCC_EXCEPT_TABLE_PREFIX ".gcc_except_table."
11435 for (o = sub->sections; o != NULL; o = o->next)
11436 if (!o->gc_mark && o->gc_mark_from_eh && (o->flags & SEC_CODE) == 0)
11438 if (CONST_STRNEQ (o->name, GCC_EXCEPT_TABLE_PREFIX))
11440 char *fn_name;
11441 const char *sec_name;
11442 asection *fn_text;
11443 unsigned o_name_prefix_len , fn_name_prefix_len, tmp;
11445 o_name_prefix_len = strlen (GCC_EXCEPT_TABLE_PREFIX);
11446 sec_name = o->name + o_name_prefix_len;
11447 fn_name_prefix_len = strlen (TEXT_PREFIX);
11448 tmp = strlen (TEXT_PREFIX2);
11449 if (tmp > fn_name_prefix_len)
11450 fn_name_prefix_len = tmp;
11451 fn_name
11452 = bfd_malloc (fn_name_prefix_len + strlen (sec_name) + 1);
11453 if (fn_name == NULL)
11454 return FALSE;
11456 /* Try the first prefix. */
11457 sprintf (fn_name, "%s%s", TEXT_PREFIX, sec_name);
11458 fn_text = bfd_get_section_by_name (sub, fn_name);
11460 /* Try the second prefix. */
11461 if (fn_text == NULL)
11463 sprintf (fn_name, "%s%s", TEXT_PREFIX2, sec_name);
11464 fn_text = bfd_get_section_by_name (sub, fn_name);
11467 free (fn_name);
11468 if (fn_text == NULL || !fn_text->gc_mark)
11469 continue;
11472 /* If not using specially named exception table section,
11473 then keep whatever we are using. */
11474 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11475 return FALSE;
11479 /* ... and mark SEC_EXCLUDE for those that go. */
11480 return elf_gc_sweep (abfd, info);
11483 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11485 bfd_boolean
11486 bfd_elf_gc_record_vtinherit (bfd *abfd,
11487 asection *sec,
11488 struct elf_link_hash_entry *h,
11489 bfd_vma offset)
11491 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11492 struct elf_link_hash_entry **search, *child;
11493 bfd_size_type extsymcount;
11494 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11496 /* The sh_info field of the symtab header tells us where the
11497 external symbols start. We don't care about the local symbols at
11498 this point. */
11499 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11500 if (!elf_bad_symtab (abfd))
11501 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11503 sym_hashes = elf_sym_hashes (abfd);
11504 sym_hashes_end = sym_hashes + extsymcount;
11506 /* Hunt down the child symbol, which is in this section at the same
11507 offset as the relocation. */
11508 for (search = sym_hashes; search != sym_hashes_end; ++search)
11510 if ((child = *search) != NULL
11511 && (child->root.type == bfd_link_hash_defined
11512 || child->root.type == bfd_link_hash_defweak)
11513 && child->root.u.def.section == sec
11514 && child->root.u.def.value == offset)
11515 goto win;
11518 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11519 abfd, sec, (unsigned long) offset);
11520 bfd_set_error (bfd_error_invalid_operation);
11521 return FALSE;
11523 win:
11524 if (!child->vtable)
11526 child->vtable = bfd_zalloc (abfd, sizeof (*child->vtable));
11527 if (!child->vtable)
11528 return FALSE;
11530 if (!h)
11532 /* This *should* only be the absolute section. It could potentially
11533 be that someone has defined a non-global vtable though, which
11534 would be bad. It isn't worth paging in the local symbols to be
11535 sure though; that case should simply be handled by the assembler. */
11537 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11539 else
11540 child->vtable->parent = h;
11542 return TRUE;
11545 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11547 bfd_boolean
11548 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11549 asection *sec ATTRIBUTE_UNUSED,
11550 struct elf_link_hash_entry *h,
11551 bfd_vma addend)
11553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11554 unsigned int log_file_align = bed->s->log_file_align;
11556 if (!h->vtable)
11558 h->vtable = bfd_zalloc (abfd, sizeof (*h->vtable));
11559 if (!h->vtable)
11560 return FALSE;
11563 if (addend >= h->vtable->size)
11565 size_t size, bytes, file_align;
11566 bfd_boolean *ptr = h->vtable->used;
11568 /* While the symbol is undefined, we have to be prepared to handle
11569 a zero size. */
11570 file_align = 1 << log_file_align;
11571 if (h->root.type == bfd_link_hash_undefined)
11572 size = addend + file_align;
11573 else
11575 size = h->size;
11576 if (addend >= size)
11578 /* Oops! We've got a reference past the defined end of
11579 the table. This is probably a bug -- shall we warn? */
11580 size = addend + file_align;
11583 size = (size + file_align - 1) & -file_align;
11585 /* Allocate one extra entry for use as a "done" flag for the
11586 consolidation pass. */
11587 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11589 if (ptr)
11591 ptr = bfd_realloc (ptr - 1, bytes);
11593 if (ptr != NULL)
11595 size_t oldbytes;
11597 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11598 * sizeof (bfd_boolean));
11599 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11602 else
11603 ptr = bfd_zmalloc (bytes);
11605 if (ptr == NULL)
11606 return FALSE;
11608 /* And arrange for that done flag to be at index -1. */
11609 h->vtable->used = ptr + 1;
11610 h->vtable->size = size;
11613 h->vtable->used[addend >> log_file_align] = TRUE;
11615 return TRUE;
11618 struct alloc_got_off_arg {
11619 bfd_vma gotoff;
11620 unsigned int got_elt_size;
11623 /* We need a special top-level link routine to convert got reference counts
11624 to real got offsets. */
11626 static bfd_boolean
11627 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11629 struct alloc_got_off_arg *gofarg = arg;
11631 if (h->root.type == bfd_link_hash_warning)
11632 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11634 if (h->got.refcount > 0)
11636 h->got.offset = gofarg->gotoff;
11637 gofarg->gotoff += gofarg->got_elt_size;
11639 else
11640 h->got.offset = (bfd_vma) -1;
11642 return TRUE;
11645 /* And an accompanying bit to work out final got entry offsets once
11646 we're done. Should be called from final_link. */
11648 bfd_boolean
11649 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
11650 struct bfd_link_info *info)
11652 bfd *i;
11653 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11654 bfd_vma gotoff;
11655 unsigned int got_elt_size = bed->s->arch_size / 8;
11656 struct alloc_got_off_arg gofarg;
11658 if (! is_elf_hash_table (info->hash))
11659 return FALSE;
11661 /* The GOT offset is relative to the .got section, but the GOT header is
11662 put into the .got.plt section, if the backend uses it. */
11663 if (bed->want_got_plt)
11664 gotoff = 0;
11665 else
11666 gotoff = bed->got_header_size;
11668 /* Do the local .got entries first. */
11669 for (i = info->input_bfds; i; i = i->link_next)
11671 bfd_signed_vma *local_got;
11672 bfd_size_type j, locsymcount;
11673 Elf_Internal_Shdr *symtab_hdr;
11675 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
11676 continue;
11678 local_got = elf_local_got_refcounts (i);
11679 if (!local_got)
11680 continue;
11682 symtab_hdr = &elf_tdata (i)->symtab_hdr;
11683 if (elf_bad_symtab (i))
11684 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11685 else
11686 locsymcount = symtab_hdr->sh_info;
11688 for (j = 0; j < locsymcount; ++j)
11690 if (local_got[j] > 0)
11692 local_got[j] = gotoff;
11693 gotoff += got_elt_size;
11695 else
11696 local_got[j] = (bfd_vma) -1;
11700 /* Then the global .got entries. .plt refcounts are handled by
11701 adjust_dynamic_symbol */
11702 gofarg.gotoff = gotoff;
11703 gofarg.got_elt_size = got_elt_size;
11704 elf_link_hash_traverse (elf_hash_table (info),
11705 elf_gc_allocate_got_offsets,
11706 &gofarg);
11707 return TRUE;
11710 /* Many folk need no more in the way of final link than this, once
11711 got entry reference counting is enabled. */
11713 bfd_boolean
11714 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
11716 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
11717 return FALSE;
11719 /* Invoke the regular ELF backend linker to do all the work. */
11720 return bfd_elf_final_link (abfd, info);
11723 bfd_boolean
11724 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
11726 struct elf_reloc_cookie *rcookie = cookie;
11728 if (rcookie->bad_symtab)
11729 rcookie->rel = rcookie->rels;
11731 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
11733 unsigned long r_symndx;
11735 if (! rcookie->bad_symtab)
11736 if (rcookie->rel->r_offset > offset)
11737 return FALSE;
11738 if (rcookie->rel->r_offset != offset)
11739 continue;
11741 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
11742 if (r_symndx == SHN_UNDEF)
11743 return TRUE;
11745 if (r_symndx >= rcookie->locsymcount
11746 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11748 struct elf_link_hash_entry *h;
11750 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
11752 while (h->root.type == bfd_link_hash_indirect
11753 || h->root.type == bfd_link_hash_warning)
11754 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11756 if ((h->root.type == bfd_link_hash_defined
11757 || h->root.type == bfd_link_hash_defweak)
11758 && elf_discarded_section (h->root.u.def.section))
11759 return TRUE;
11760 else
11761 return FALSE;
11763 else
11765 /* It's not a relocation against a global symbol,
11766 but it could be a relocation against a local
11767 symbol for a discarded section. */
11768 asection *isec;
11769 Elf_Internal_Sym *isym;
11771 /* Need to: get the symbol; get the section. */
11772 isym = &rcookie->locsyms[r_symndx];
11773 if (isym->st_shndx < SHN_LORESERVE || isym->st_shndx > SHN_HIRESERVE)
11775 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
11776 if (isec != NULL && elf_discarded_section (isec))
11777 return TRUE;
11780 return FALSE;
11782 return FALSE;
11785 /* Discard unneeded references to discarded sections.
11786 Returns TRUE if any section's size was changed. */
11787 /* This function assumes that the relocations are in sorted order,
11788 which is true for all known assemblers. */
11790 bfd_boolean
11791 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
11793 struct elf_reloc_cookie cookie;
11794 asection *stab, *eh;
11795 Elf_Internal_Shdr *symtab_hdr;
11796 const struct elf_backend_data *bed;
11797 bfd *abfd;
11798 unsigned int count;
11799 bfd_boolean ret = FALSE;
11801 if (info->traditional_format
11802 || !is_elf_hash_table (info->hash))
11803 return FALSE;
11805 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
11807 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11808 continue;
11810 bed = get_elf_backend_data (abfd);
11812 if ((abfd->flags & DYNAMIC) != 0)
11813 continue;
11815 eh = NULL;
11816 if (!info->relocatable)
11818 eh = bfd_get_section_by_name (abfd, ".eh_frame");
11819 if (eh != NULL
11820 && (eh->size == 0
11821 || bfd_is_abs_section (eh->output_section)))
11822 eh = NULL;
11825 stab = bfd_get_section_by_name (abfd, ".stab");
11826 if (stab != NULL
11827 && (stab->size == 0
11828 || bfd_is_abs_section (stab->output_section)
11829 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
11830 stab = NULL;
11832 if (stab == NULL
11833 && eh == NULL
11834 && bed->elf_backend_discard_info == NULL)
11835 continue;
11837 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11838 cookie.abfd = abfd;
11839 cookie.sym_hashes = elf_sym_hashes (abfd);
11840 cookie.bad_symtab = elf_bad_symtab (abfd);
11841 if (cookie.bad_symtab)
11843 cookie.locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11844 cookie.extsymoff = 0;
11846 else
11848 cookie.locsymcount = symtab_hdr->sh_info;
11849 cookie.extsymoff = symtab_hdr->sh_info;
11852 if (bed->s->arch_size == 32)
11853 cookie.r_sym_shift = 8;
11854 else
11855 cookie.r_sym_shift = 32;
11857 cookie.locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11858 if (cookie.locsyms == NULL && cookie.locsymcount != 0)
11860 cookie.locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11861 cookie.locsymcount, 0,
11862 NULL, NULL, NULL);
11863 if (cookie.locsyms == NULL)
11865 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11866 return FALSE;
11870 if (stab != NULL)
11872 cookie.rels = NULL;
11873 count = stab->reloc_count;
11874 if (count != 0)
11875 cookie.rels = _bfd_elf_link_read_relocs (abfd, stab, NULL, NULL,
11876 info->keep_memory);
11877 if (cookie.rels != NULL)
11879 cookie.rel = cookie.rels;
11880 cookie.relend = cookie.rels;
11881 cookie.relend += count * bed->s->int_rels_per_ext_rel;
11882 if (_bfd_discard_section_stabs (abfd, stab,
11883 elf_section_data (stab)->sec_info,
11884 bfd_elf_reloc_symbol_deleted_p,
11885 &cookie))
11886 ret = TRUE;
11887 if (elf_section_data (stab)->relocs != cookie.rels)
11888 free (cookie.rels);
11892 if (eh != NULL)
11894 cookie.rels = NULL;
11895 count = eh->reloc_count;
11896 if (count != 0)
11897 cookie.rels = _bfd_elf_link_read_relocs (abfd, eh, NULL, NULL,
11898 info->keep_memory);
11899 cookie.rel = cookie.rels;
11900 cookie.relend = cookie.rels;
11901 if (cookie.rels != NULL)
11902 cookie.relend += count * bed->s->int_rels_per_ext_rel;
11904 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
11905 bfd_elf_reloc_symbol_deleted_p,
11906 &cookie))
11907 ret = TRUE;
11909 if (cookie.rels != NULL
11910 && elf_section_data (eh)->relocs != cookie.rels)
11911 free (cookie.rels);
11914 if (bed->elf_backend_discard_info != NULL
11915 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
11916 ret = TRUE;
11918 if (cookie.locsyms != NULL
11919 && symtab_hdr->contents != (unsigned char *) cookie.locsyms)
11921 if (! info->keep_memory)
11922 free (cookie.locsyms);
11923 else
11924 symtab_hdr->contents = (unsigned char *) cookie.locsyms;
11928 if (info->eh_frame_hdr
11929 && !info->relocatable
11930 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
11931 ret = TRUE;
11933 return ret;
11936 void
11937 _bfd_elf_section_already_linked (bfd *abfd, struct bfd_section *sec,
11938 struct bfd_link_info *info)
11940 flagword flags;
11941 const char *name, *p;
11942 struct bfd_section_already_linked *l;
11943 struct bfd_section_already_linked_hash_entry *already_linked_list;
11945 if (sec->output_section == bfd_abs_section_ptr)
11946 return;
11948 flags = sec->flags;
11950 /* Return if it isn't a linkonce section. A comdat group section
11951 also has SEC_LINK_ONCE set. */
11952 if ((flags & SEC_LINK_ONCE) == 0)
11953 return;
11955 /* Don't put group member sections on our list of already linked
11956 sections. They are handled as a group via their group section. */
11957 if (elf_sec_group (sec) != NULL)
11958 return;
11960 /* FIXME: When doing a relocatable link, we may have trouble
11961 copying relocations in other sections that refer to local symbols
11962 in the section being discarded. Those relocations will have to
11963 be converted somehow; as of this writing I'm not sure that any of
11964 the backends handle that correctly.
11966 It is tempting to instead not discard link once sections when
11967 doing a relocatable link (technically, they should be discarded
11968 whenever we are building constructors). However, that fails,
11969 because the linker winds up combining all the link once sections
11970 into a single large link once section, which defeats the purpose
11971 of having link once sections in the first place.
11973 Also, not merging link once sections in a relocatable link
11974 causes trouble for MIPS ELF, which relies on link once semantics
11975 to handle the .reginfo section correctly. */
11977 name = bfd_get_section_name (abfd, sec);
11979 if (CONST_STRNEQ (name, ".gnu.linkonce.")
11980 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
11981 p++;
11982 else
11983 p = name;
11985 already_linked_list = bfd_section_already_linked_table_lookup (p);
11987 for (l = already_linked_list->entry; l != NULL; l = l->next)
11989 /* We may have 2 different types of sections on the list: group
11990 sections and linkonce sections. Match like sections. */
11991 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
11992 && strcmp (name, l->sec->name) == 0
11993 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
11995 /* The section has already been linked. See if we should
11996 issue a warning. */
11997 switch (flags & SEC_LINK_DUPLICATES)
11999 default:
12000 abort ();
12002 case SEC_LINK_DUPLICATES_DISCARD:
12003 break;
12005 case SEC_LINK_DUPLICATES_ONE_ONLY:
12006 (*_bfd_error_handler)
12007 (_("%B: ignoring duplicate section `%A'"),
12008 abfd, sec);
12009 break;
12011 case SEC_LINK_DUPLICATES_SAME_SIZE:
12012 if (sec->size != l->sec->size)
12013 (*_bfd_error_handler)
12014 (_("%B: duplicate section `%A' has different size"),
12015 abfd, sec);
12016 break;
12018 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12019 if (sec->size != l->sec->size)
12020 (*_bfd_error_handler)
12021 (_("%B: duplicate section `%A' has different size"),
12022 abfd, sec);
12023 else if (sec->size != 0)
12025 bfd_byte *sec_contents, *l_sec_contents;
12027 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12028 (*_bfd_error_handler)
12029 (_("%B: warning: could not read contents of section `%A'"),
12030 abfd, sec);
12031 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12032 &l_sec_contents))
12033 (*_bfd_error_handler)
12034 (_("%B: warning: could not read contents of section `%A'"),
12035 l->sec->owner, l->sec);
12036 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12037 (*_bfd_error_handler)
12038 (_("%B: warning: duplicate section `%A' has different contents"),
12039 abfd, sec);
12041 if (sec_contents)
12042 free (sec_contents);
12043 if (l_sec_contents)
12044 free (l_sec_contents);
12046 break;
12049 /* Set the output_section field so that lang_add_section
12050 does not create a lang_input_section structure for this
12051 section. Since there might be a symbol in the section
12052 being discarded, we must retain a pointer to the section
12053 which we are really going to use. */
12054 sec->output_section = bfd_abs_section_ptr;
12055 sec->kept_section = l->sec;
12057 if (flags & SEC_GROUP)
12059 asection *first = elf_next_in_group (sec);
12060 asection *s = first;
12062 while (s != NULL)
12064 s->output_section = bfd_abs_section_ptr;
12065 /* Record which group discards it. */
12066 s->kept_section = l->sec;
12067 s = elf_next_in_group (s);
12068 /* These lists are circular. */
12069 if (s == first)
12070 break;
12074 return;
12078 /* A single member comdat group section may be discarded by a
12079 linkonce section and vice versa. */
12081 if ((flags & SEC_GROUP) != 0)
12083 asection *first = elf_next_in_group (sec);
12085 if (first != NULL && elf_next_in_group (first) == first)
12086 /* Check this single member group against linkonce sections. */
12087 for (l = already_linked_list->entry; l != NULL; l = l->next)
12088 if ((l->sec->flags & SEC_GROUP) == 0
12089 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12090 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12092 first->output_section = bfd_abs_section_ptr;
12093 first->kept_section = l->sec;
12094 sec->output_section = bfd_abs_section_ptr;
12095 break;
12098 else
12099 /* Check this linkonce section against single member groups. */
12100 for (l = already_linked_list->entry; l != NULL; l = l->next)
12101 if (l->sec->flags & SEC_GROUP)
12103 asection *first = elf_next_in_group (l->sec);
12105 if (first != NULL
12106 && elf_next_in_group (first) == first
12107 && bfd_elf_match_symbols_in_sections (first, sec, info))
12109 sec->output_section = bfd_abs_section_ptr;
12110 sec->kept_section = first;
12111 break;
12115 /* This is the first section with this name. Record it. */
12116 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12117 info->callbacks->einfo (_("%F%P: already_linked_table: %E"));
12120 bfd_boolean
12121 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12123 return sym->st_shndx == SHN_COMMON;
12126 unsigned int
12127 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12129 return SHN_COMMON;
12132 asection *
12133 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12135 return bfd_com_section_ptr;