barvinok_enumerate.cc: avoid use of fdstream
[barvinok.git] / barvinok_enumerate.cc
blob9b6ad355ce09ce7c6ee3b9078b673356417b200a
1 #include <unistd.h>
2 #include <stdlib.h>
3 #include <barvinok/evalue.h>
4 #include <barvinok/util.h>
5 #include <barvinok/barvinok.h>
6 #include "argp.h"
7 #include "progname.h"
8 #include "verify.h"
9 #include "verif_ehrhart.h"
10 #include "remove_equalities.h"
11 #include "evalue_convert.h"
12 #include "conversion.h"
14 #undef CS /* for Solaris 10 */
16 using std::cout;
17 using std::endl;
19 /* The input of this example program is the same as that of testehrhart
20 * in the PolyLib distribution, i.e., a polytope in combined
21 * data and parameter space, a context polytope in parameter space
22 * and (optionally) the names of the parameters.
23 * Both polytopes are in PolyLib notation.
26 #define PRINT_STATS (BV_OPT_LAST+1)
28 struct argp_option argp_options[] = {
29 { "size", 'S' },
30 { "series", 's', 0, 0, "compute rational generating function" },
31 { "explicit", 'e', 0, 0, "convert rgf to psp" },
32 { "verbose", 'v' },
33 { "print-stats", PRINT_STATS, 0, 0 },
34 { 0 }
37 struct arguments {
38 int size;
39 int series;
40 int function;
41 int verbose;
42 int print_stats;
43 struct verify_options verify;
44 struct convert_options convert;
47 static error_t parse_opt(int key, char *arg, struct argp_state *state)
49 struct arguments *options = (struct arguments*) state->input;
51 switch (key) {
52 case ARGP_KEY_INIT:
53 state->child_inputs[0] = options->verify.barvinok;
54 state->child_inputs[1] = &options->verify;
55 state->child_inputs[2] = &options->convert;
56 options->size = 0;
57 options->series = 0;
58 options->function = 0;
59 options->verbose = 0;
60 options->print_stats = 0;
61 break;
62 case PRINT_STATS:
63 options->print_stats = 1;
64 break;
65 case 'S':
66 options->size = 1;
67 break;
68 case 'e':
69 options->function = 1;
70 /* fall through */
71 case 's':
72 options->series = 1;
73 break;
74 case 'v':
75 options->verbose = 1;
76 break;
77 default:
78 return ARGP_ERR_UNKNOWN;
80 return 0;
83 struct skewed_gen_fun {
84 gen_fun *gf;
85 /* maps original space to space in which gf is defined */
86 Matrix *T;
87 /* equalities in the original space that need to be satisfied for
88 * gf to be valid
90 Matrix *eq;
91 /* divisibilities in the original space that need to be satisfied for
92 * gf to be valid
94 Matrix *div;
96 skewed_gen_fun(gen_fun *gf, Matrix *T, Matrix *eq, Matrix *div) :
97 gf(gf), T(T), eq(eq), div(div) {}
98 ~skewed_gen_fun() {
99 if (T)
100 Matrix_Free(T);
101 if (eq)
102 Matrix_Free(eq);
103 if (div)
104 Matrix_Free(div);
105 delete gf;
108 void print(std::ostream& os, unsigned int nparam, char **param_name) const;
109 operator evalue *() const {
110 assert(T == NULL && eq == NULL); /* other cases not supported for now */
111 return *gf;
113 void coefficient(Value* params, Value* c, barvinok_options *options) const;
116 void skewed_gen_fun::print(std::ostream& os, unsigned int nparam,
117 char **param_name) const
119 mat_ZZ m;
120 if (T) {
121 os << "T:" << endl;
122 matrix2zz(T, m, T->NbRows, T->NbColumns);
123 os << m << endl;
125 if (eq) {
126 os << "eq:" << endl;
127 matrix2zz(eq, m, eq->NbRows, eq->NbColumns);
128 os << m << endl;
130 if (div) {
131 os << "div:" << endl;
132 matrix2zz(div, m, div->NbRows, div->NbColumns);
133 os << m << endl;
135 gf->print(os, nparam, param_name);
138 void skewed_gen_fun::coefficient(Value* params, Value* c,
139 barvinok_options *options) const
141 if (eq) {
142 for (int i = 0; i < eq->NbRows; ++i) {
143 Inner_Product(eq->p[i]+1, params, eq->NbColumns-2, eq->p[i]);
144 if (value_notzero_p(eq->p[i][0])) {
145 value_set_si(*c, 0);
146 return;
150 if (div) {
151 Value tmp;
152 value_init(tmp);
153 for (int i = 0; i < div->NbRows; ++i) {
154 Inner_Product(div->p[i], params, div->NbColumns-1, &tmp);
155 if (!mpz_divisible_p(tmp, div->p[i][div->NbColumns-1])) {
156 value_set_si(*c, 0);
157 return;
160 value_clear(tmp);
163 ZZ coeff;
164 if (!T)
165 coeff = gf->coefficient(params, options);
166 else {
167 Vector *p2 = Vector_Alloc(T->NbRows);
168 Matrix_Vector_Product(T, params, p2->p);
169 if (value_notone_p(p2->p[T->NbRows-1]))
170 Vector_AntiScale(p2->p, p2->p, p2->p[T->NbRows-1], T->NbRows);
171 coeff = gf->coefficient(p2->p, options);
172 Vector_Free(p2);
175 zz2value(coeff, *c);
178 static int check_series(Polyhedron *S, Polyhedron *CS, skewed_gen_fun *gf,
179 int nparam, int pos, Value *z, verify_options *options)
181 int k;
182 Value c, tmp;
183 Value LB, UB;
185 value_init(c);
186 value_init(tmp);
187 value_init(LB);
188 value_init(UB);
190 if (pos == nparam) {
191 /* Computes the coefficient */
192 gf->coefficient(&z[S->Dimension-nparam+1], &c, options->barvinok);
194 /* if c=0 we may be out of context. */
195 /* scanning is useless in this case*/
197 if (options->print_all) {
198 printf("EP( ");
199 value_print(stdout,VALUE_FMT,z[S->Dimension-nparam+1]);
200 for(k=S->Dimension-nparam+2;k<=S->Dimension;++k) {
201 printf(", ");
202 value_print(stdout,VALUE_FMT,z[k]);
204 printf(" ) = ");
205 value_print(stdout,VALUE_FMT,c);
206 printf(" ");
209 /* Manually count the number of points */
210 count_points(1,S,z,&tmp);
211 if (options->print_all) {
212 printf(", count = ");
213 value_print(stdout, P_VALUE_FMT, tmp);
214 printf(". ");
217 if (value_ne(tmp,c)) {
218 printf("\n");
219 fflush(stdout);
220 fprintf(stderr,"Error !\n");
221 fprintf(stderr,"EP( ");
222 value_print(stderr,VALUE_FMT,z[S->Dimension-nparam+1]);
223 for (k=S->Dimension-nparam+2;k<=S->Dimension;++k) {
224 fprintf(stderr,", ");
225 value_print(stderr,VALUE_FMT,z[k]);
227 fprintf(stderr," ) should be ");
228 value_print(stderr,VALUE_FMT,tmp);
229 fprintf(stderr,", while EP eval gives ");
230 value_print(stderr,VALUE_FMT,c);
231 fprintf(stderr,".\n");
232 if (!options->continue_on_error) {
233 value_clear(c); value_clear(tmp);
234 return 0;
236 } else if (options->print_all)
237 printf("OK.\n");
238 } else {
239 int ok =
240 !(lower_upper_bounds(1+pos, CS, &z[S->Dimension-nparam], &LB, &UB));
241 assert(ok);
242 for (value_assign(tmp,LB); value_le(tmp,UB); value_increment(tmp,tmp)) {
243 if (!options->print_all) {
244 k = VALUE_TO_INT(tmp);
245 if(!pos && !(k % options->st)) {
246 printf("o");
247 fflush(stdout);
250 value_assign(z[pos+S->Dimension-nparam+1],tmp);
251 if (!check_series(S, CS->next, gf, nparam, pos+1, z, options)) {
252 value_clear(c); value_clear(tmp);
253 value_clear(LB);
254 value_clear(UB);
255 return(0);
258 value_set_si(z[pos+S->Dimension-nparam+1],0);
261 value_clear(c);
262 value_clear(tmp);
263 value_clear(LB);
264 value_clear(UB);
265 return 1;
268 static int verify(Polyhedron *P, Polyhedron *C, evalue *EP, skewed_gen_fun *gf,
269 arguments *options)
271 Polyhedron *CS, *S;
272 Vector *p;
273 int result = 0;
275 CS = check_poly_context_scan(P, &C, C->Dimension, &options->verify);
277 p = Vector_Alloc(P->Dimension+2);
278 value_set_si(p->p[P->Dimension+1], 1);
280 /* S = scanning list of polyhedra */
281 S = Polyhedron_Scan(P, C, options->verify.barvinok->MaxRays);
283 check_poly_init(C, &options->verify);
285 /******* CHECK NOW *********/
286 if (S) {
287 if (!options->series || options->function) {
288 if (!check_poly_EP(S, CS, EP, 0, C->Dimension, 0, p->p,
289 &options->verify))
290 result = -1;
291 } else {
292 if (!check_series(S, CS, gf, C->Dimension, 0, p->p, &options->verify))
293 result = -1;
295 Domain_Free(S);
298 if (result == -1)
299 fprintf(stderr,"Check failed !\n");
301 if (!options->verify.print_all)
302 printf( "\n" );
304 Vector_Free(p);
305 if (CS) {
306 Domain_Free(CS);
307 Domain_Free(C);
310 return result;
313 static void unimodular_complete(Matrix *M, int row)
315 Matrix *H, *Q, *U;
316 left_hermite(M, &H, &Q, &U);
317 Matrix_Free(H);
318 Matrix_Free(U);
319 for (int r = row; r < M->NbRows; ++r)
320 Vector_Copy(Q->p[r], M->p[r], M->NbColumns);
321 Matrix_Free(Q);
324 /* frees M and Minv */
325 static void apply_transformation(Polyhedron **P, Polyhedron **C,
326 bool free_P, bool free_C,
327 Matrix *M, Matrix *Minv, Matrix **inv,
328 barvinok_options *options)
330 Polyhedron *T;
331 Matrix *M2;
333 M2 = align_matrix(M, (*P)->Dimension + 1);
334 T = *P;
335 *P = Polyhedron_Preimage(*P, M2, options->MaxRays);
336 if (free_P)
337 Polyhedron_Free(T);
338 Matrix_Free(M2);
340 T = *C;
341 *C = Polyhedron_Preimage(*C, M, options->MaxRays);
342 if (free_C)
343 Polyhedron_Free(T);
345 Matrix_Free(M);
347 if (*inv) {
348 Matrix *T = *inv;
349 *inv = Matrix_Alloc(Minv->NbRows, T->NbColumns);
350 Matrix_Product(Minv, T, *inv);
351 Matrix_Free(T);
352 Matrix_Free(Minv);
353 } else
354 *inv = Minv;
357 static skewed_gen_fun *series(Polyhedron *P, Polyhedron* C,
358 barvinok_options *options)
360 Polyhedron *C1, *C2;
361 gen_fun *gf;
362 Matrix *inv = NULL;
363 Matrix *eq = NULL;
364 Matrix *div = NULL;
365 Polyhedron *PT = P;
367 /* Compute true context */
368 C1 = Polyhedron_Project(P, C->Dimension);
369 C2 = DomainIntersection(C, C1, options->MaxRays);
370 Polyhedron_Free(C1);
372 POL_ENSURE_VERTICES(C2);
373 if (C2->NbBid != 0) {
374 Polyhedron *T;
375 Matrix *M, *Minv, *M2;
376 Matrix *CP;
377 if (C2->NbEq || P->NbEq) {
378 /* We remove all equalities to be sure all lines are unit vectors */
379 Polyhedron *CT = C2;
380 remove_all_equalities(&PT, &CT, &CP, NULL, C2->Dimension,
381 options->MaxRays);
382 if (CT != C2) {
383 Polyhedron_Free(C2);
384 C2 = CT;
386 if (CP) {
387 inv = left_inverse(CP, &eq);
388 Matrix_Free(CP);
390 int d = 0;
391 Value tmp;
392 value_init(tmp);
393 div = Matrix_Alloc(inv->NbRows-1, inv->NbColumns+1);
394 for (int i = 0; i < inv->NbRows-1; ++i) {
395 Vector_Gcd(inv->p[i], inv->NbColumns, &tmp);
396 if (mpz_divisible_p(tmp,
397 inv->p[inv->NbRows-1][inv->NbColumns-1]))
398 continue;
399 Vector_Copy(inv->p[i], div->p[d], inv->NbColumns);
400 value_assign(div->p[d][inv->NbColumns],
401 inv->p[inv->NbRows-1][inv->NbColumns-1]);
402 ++d;
404 value_clear(tmp);
406 if (!d) {
407 Matrix_Free(div);
408 div = NULL;
409 } else
410 div->NbRows = d;
413 POL_ENSURE_VERTICES(C2);
415 /* Since we have "compressed" the parameters (in case there were
416 * any equalities), the result is independent of the coordinates in the
417 * coordinate subspace spanned by the lines. We can therefore assume
418 * these coordinates are zero and compute the inverse image of the map
419 * from a lower dimensional space that adds zeros in the appropriate
420 * places.
422 M = Matrix_Alloc(C2->Dimension+1, C2->Dimension-C2->NbBid+1);
423 int k = 0;
424 for (int i = 0; i < C2->NbBid; ++i) {
425 int j = First_Non_Zero(C2->Ray[i]+1, C2->Dimension);
426 assert(First_Non_Zero(C2->Ray[i]+1+j+1, C2->Dimension-j-1) == -1);
427 for ( ; k < j; k++)
428 value_set_si(M->p[k+i][k], 1);
430 for ( ; k < C2->Dimension-C2->NbBid+1; k++)
431 value_set_si(M->p[k+C2->NbBid][k], 1);
432 Minv = Transpose(M);
434 apply_transformation(&PT, &C2, PT != P, C2 != C, M, Minv, &inv, options);
436 POL_ENSURE_VERTICES(C2);
437 if (!Polyhedron_has_revlex_positive_rays(C2, C2->Dimension)) {
438 Polyhedron *T;
439 Matrix *Constraints;
440 Matrix *H, *Q, *U;
441 Constraints = Matrix_Alloc(C2->NbConstraints, C2->Dimension+1);
442 for (int i = 0; i < C2->NbConstraints; ++i)
443 Vector_Copy(C2->Constraint[i]+1, Constraints->p[i], C2->Dimension);
444 left_hermite(Constraints, &H, &Q, &U);
445 /* flip rows of Q */
446 for (int i = 0; i < C2->Dimension/2; ++i)
447 Vector_Exchange(Q->p[i], Q->p[C2->Dimension-1-i], C2->Dimension);
448 Matrix_Free(H);
449 Matrix_Free(U);
450 Matrix *M = Matrix_Alloc(C2->Dimension+1, C2->Dimension+1);
451 U = Matrix_Copy(Q);
452 int ok = Matrix_Inverse(U, M);
453 assert(ok);
454 Matrix_Free(U);
456 apply_transformation(&PT, &C2, PT != P, C2 != C, M, Q, &inv, options);
458 gf = barvinok_series_with_options(PT, C2, options);
459 Polyhedron_Free(C2);
460 if (PT != P)
461 Polyhedron_Free(PT);
462 return new skewed_gen_fun(gf, inv, eq, div);
465 int main(int argc, char **argv)
467 Polyhedron *A, *C;
468 Matrix *M;
469 evalue *EP = NULL;
470 skewed_gen_fun *gf = NULL;
471 char **param_name;
472 int print_solution = 1;
473 int result = 0;
474 struct arguments options;
475 static struct argp_child argp_children[] = {
476 { &barvinok_argp, 0, 0, 0 },
477 { &verify_argp, 0, "verification", BV_GRP_LAST+1 },
478 { &convert_argp, 0, "output conversion", BV_GRP_LAST+2 },
479 { 0 }
481 static struct argp argp = { argp_options, parse_opt, 0, 0, argp_children };
482 struct barvinok_options *bv_options = barvinok_options_new_with_defaults();
484 options.verify.barvinok = bv_options;
485 set_program_name(argv[0]);
486 argp_parse(&argp, argc, argv, 0, 0, &options);
488 M = Matrix_Read();
489 A = Constraints2Polyhedron(M, bv_options->MaxRays);
490 Matrix_Free(M);
491 M = Matrix_Read();
492 C = Constraints2Polyhedron(M, bv_options->MaxRays);
493 Matrix_Free(M);
494 param_name = Read_ParamNames(stdin, C->Dimension);
496 if (options.verify.verify) {
497 verify_options_set_range(&options.verify, A->Dimension);
498 if (!options.verbose)
499 print_solution = 0;
502 if (print_solution && options.verbose) {
503 Polyhedron_Print(stdout, P_VALUE_FMT, A);
504 Polyhedron_Print(stdout, P_VALUE_FMT, C);
507 if (options.series) {
508 gf = series(A, C, bv_options);
509 if (print_solution) {
510 gf->print(cout, C->Dimension, param_name);
511 puts("");
513 if (options.function) {
514 EP = *gf;
515 if (print_solution)
516 print_evalue(stdout, EP, param_name);
518 } else {
519 EP = barvinok_enumerate_with_options(A, C, bv_options);
520 if (evalue_convert(EP, &options.convert, options.verbose, C->Dimension,
521 param_name))
522 print_solution = 0;
523 if (options.size)
524 printf("\nSize: %d\n", evalue_size(EP));
525 if (print_solution)
526 print_evalue(stdout, EP, param_name);
529 if (options.verify.verify) {
530 options.verify.params = param_name;
531 result = verify(A, C, EP, gf, &options);
534 if (gf)
535 delete gf;
536 if (EP) {
537 free_evalue_refs(EP);
538 free(EP);
541 if (options.print_stats)
542 barvinok_stats_print(options.verify.barvinok->stats, stdout);
544 Free_ParamNames(param_name, C->Dimension);
545 Polyhedron_Free(A);
546 Polyhedron_Free(C);
547 barvinok_options_free(bv_options);
548 return result;