remove gnulib link-warning module completely
[barvinok.git] / lib / vasnprintf.c
blobf56382334919f19824971ece142a18194e211fba
1 /* vsprintf with automatic memory allocation.
2 Copyright (C) 1999, 2002-2007 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2, or (at your option)
7 any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License along
15 with this program; if not, write to the Free Software Foundation,
16 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
18 /* This file can be parametrized with the following macros:
19 VASNPRINTF The name of the function being defined.
20 FCHAR_T The element type of the format string.
21 DCHAR_T The element type of the destination (result) string.
22 FCHAR_T_ONLY_ASCII Set to 1 to enable verification that all characters
23 in the format string are ASCII. MUST be set if
24 FCHAR_T and DCHAR_T are not the same type.
25 DIRECTIVE Structure denoting a format directive.
26 Depends on FCHAR_T.
27 DIRECTIVES Structure denoting the set of format directives of a
28 format string. Depends on FCHAR_T.
29 PRINTF_PARSE Function that parses a format string.
30 Depends on FCHAR_T.
31 DCHAR_CPY memcpy like function for DCHAR_T[] arrays.
32 DCHAR_SET memset like function for DCHAR_T[] arrays.
33 DCHAR_MBSNLEN mbsnlen like function for DCHAR_T[] arrays.
34 SNPRINTF The system's snprintf (or similar) function.
35 This may be either snprintf or swprintf.
36 TCHAR_T The element type of the argument and result string
37 of the said SNPRINTF function. This may be either
38 char or wchar_t. The code exploits that
39 sizeof (TCHAR_T) | sizeof (DCHAR_T) and
40 alignof (TCHAR_T) <= alignof (DCHAR_T).
41 DCHAR_IS_TCHAR Set to 1 if DCHAR_T and TCHAR_T are the same type.
42 DCHAR_CONV_FROM_ENCODING A function to convert from char[] to DCHAR[].
43 DCHAR_IS_UINT8_T Set to 1 if DCHAR_T is uint8_t.
44 DCHAR_IS_UINT16_T Set to 1 if DCHAR_T is uint16_t.
45 DCHAR_IS_UINT32_T Set to 1 if DCHAR_T is uint32_t. */
47 /* Tell glibc's <stdio.h> to provide a prototype for snprintf().
48 This must come before <config.h> because <config.h> may include
49 <features.h>, and once <features.h> has been included, it's too late. */
50 #ifndef _GNU_SOURCE
51 # define _GNU_SOURCE 1
52 #endif
54 #ifndef VASNPRINTF
55 # include <config.h>
56 #endif
57 #ifndef IN_LIBINTL
58 # include <alloca.h>
59 #endif
61 /* Specification. */
62 #ifndef VASNPRINTF
63 # if WIDE_CHAR_VERSION
64 # include "vasnwprintf.h"
65 # else
66 # include "vasnprintf.h"
67 # endif
68 #endif
70 #include <locale.h> /* localeconv() */
71 #include <stdio.h> /* snprintf(), sprintf() */
72 #include <stdlib.h> /* abort(), malloc(), realloc(), free() */
73 #include <string.h> /* memcpy(), strlen() */
74 #include <errno.h> /* errno */
75 #include <limits.h> /* CHAR_BIT */
76 #include <float.h> /* DBL_MAX_EXP, LDBL_MAX_EXP */
77 #if HAVE_NL_LANGINFO
78 # include <langinfo.h>
79 #endif
80 #ifndef VASNPRINTF
81 # if WIDE_CHAR_VERSION
82 # include "wprintf-parse.h"
83 # else
84 # include "printf-parse.h"
85 # endif
86 #endif
88 /* Checked size_t computations. */
89 #include "xsize.h"
91 #if NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL
92 # include <math.h>
93 # include "float+.h"
94 # include "fpucw.h"
95 #endif
97 #if NEED_PRINTF_INFINITE_DOUBLE && !defined IN_LIBINTL
98 # include <math.h>
99 # include "isnan.h"
100 #endif
102 #if NEED_PRINTF_INFINITE_LONG_DOUBLE && !defined IN_LIBINTL
103 # include <math.h>
104 # include "isnanl-nolibm.h"
105 # include "fpucw.h"
106 #endif
108 #if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL
109 # include <math.h>
110 # include "isnan.h"
111 # include "printf-frexp.h"
112 # include "isnanl-nolibm.h"
113 # include "printf-frexpl.h"
114 # include "fpucw.h"
115 #endif
117 /* Some systems, like OSF/1 4.0 and Woe32, don't have EOVERFLOW. */
118 #ifndef EOVERFLOW
119 # define EOVERFLOW E2BIG
120 #endif
122 #if HAVE_WCHAR_T
123 # if HAVE_WCSLEN
124 # define local_wcslen wcslen
125 # else
126 /* Solaris 2.5.1 has wcslen() in a separate library libw.so. To avoid
127 a dependency towards this library, here is a local substitute.
128 Define this substitute only once, even if this file is included
129 twice in the same compilation unit. */
130 # ifndef local_wcslen_defined
131 # define local_wcslen_defined 1
132 static size_t
133 local_wcslen (const wchar_t *s)
135 const wchar_t *ptr;
137 for (ptr = s; *ptr != (wchar_t) 0; ptr++)
139 return ptr - s;
141 # endif
142 # endif
143 #endif
145 /* Default parameters. */
146 #ifndef VASNPRINTF
147 # if WIDE_CHAR_VERSION
148 # define VASNPRINTF vasnwprintf
149 # define FCHAR_T wchar_t
150 # define DCHAR_T wchar_t
151 # define TCHAR_T wchar_t
152 # define DCHAR_IS_TCHAR 1
153 # define DIRECTIVE wchar_t_directive
154 # define DIRECTIVES wchar_t_directives
155 # define PRINTF_PARSE wprintf_parse
156 # define DCHAR_CPY wmemcpy
157 # else
158 # define VASNPRINTF vasnprintf
159 # define FCHAR_T char
160 # define DCHAR_T char
161 # define TCHAR_T char
162 # define DCHAR_IS_TCHAR 1
163 # define DIRECTIVE char_directive
164 # define DIRECTIVES char_directives
165 # define PRINTF_PARSE printf_parse
166 # define DCHAR_CPY memcpy
167 # endif
168 #endif
169 #if WIDE_CHAR_VERSION
170 /* TCHAR_T is wchar_t. */
171 # define USE_SNPRINTF 1
172 # if HAVE_DECL__SNWPRINTF
173 /* On Windows, the function swprintf() has a different signature than
174 on Unix; we use the _snwprintf() function instead. */
175 # define SNPRINTF _snwprintf
176 # else
177 /* Unix. */
178 # define SNPRINTF swprintf
179 # endif
180 #else
181 /* TCHAR_T is char. */
182 # /* Use snprintf if it exists under the name 'snprintf' or '_snprintf'.
183 But don't use it on BeOS, since BeOS snprintf produces no output if the
184 size argument is >= 0x3000000. */
185 # if (HAVE_DECL__SNPRINTF || HAVE_SNPRINTF) && !defined __BEOS__
186 # define USE_SNPRINTF 1
187 # else
188 # define USE_SNPRINTF 0
189 # endif
190 # if HAVE_DECL__SNPRINTF
191 /* Windows. */
192 # define SNPRINTF _snprintf
193 # else
194 /* Unix. */
195 # define SNPRINTF snprintf
196 /* Here we need to call the native snprintf, not rpl_snprintf. */
197 # undef snprintf
198 # endif
199 #endif
200 /* Here we need to call the native sprintf, not rpl_sprintf. */
201 #undef sprintf
203 #if (NEED_PRINTF_DIRECTIVE_A || NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_DOUBLE) && !defined IN_LIBINTL
204 /* Determine the decimal-point character according to the current locale. */
205 # ifndef decimal_point_char_defined
206 # define decimal_point_char_defined 1
207 static char
208 decimal_point_char ()
210 const char *point;
211 /* Determine it in a multithread-safe way. We know nl_langinfo is
212 multithread-safe on glibc systems, but is not required to be multithread-
213 safe by POSIX. sprintf(), however, is multithread-safe. localeconv()
214 is rarely multithread-safe. */
215 # if HAVE_NL_LANGINFO && __GLIBC__
216 point = nl_langinfo (RADIXCHAR);
217 # elif 1
218 char pointbuf[5];
219 sprintf (pointbuf, "%#.0f", 1.0);
220 point = &pointbuf[1];
221 # else
222 point = localeconv () -> decimal_point;
223 # endif
224 /* The decimal point is always a single byte: either '.' or ','. */
225 return (point[0] != '\0' ? point[0] : '.');
227 # endif
228 #endif
230 #if NEED_PRINTF_INFINITE_DOUBLE && !defined IN_LIBINTL
232 /* Equivalent to !isfinite(x) || x == 0, but does not require libm. */
233 static int
234 is_infinite_or_zero (double x)
236 return isnan (x) || x + x == x;
239 #endif
241 #if NEED_PRINTF_INFINITE_LONG_DOUBLE && !defined IN_LIBINTL
243 /* Equivalent to !isfinite(x), but does not require libm. */
244 static int
245 is_infinitel (long double x)
247 return isnanl (x) || (x + x == x && x != 0.0L);
250 #endif
252 #if NEED_PRINTF_LONG_DOUBLE && !defined IN_LIBINTL
254 /* Converting 'long double' to decimal without rare rounding bugs requires
255 real bignums. We use the naming conventions of GNU gmp, but vastly simpler
256 (and slower) algorithms. */
258 typedef unsigned int mp_limb_t;
259 # define GMP_LIMB_BITS 32
260 typedef int mp_limb_verify[2 * (sizeof (mp_limb_t) * CHAR_BIT == GMP_LIMB_BITS) - 1];
262 typedef unsigned long long mp_twolimb_t;
263 # define GMP_TWOLIMB_BITS 64
264 typedef int mp_twolimb_verify[2 * (sizeof (mp_twolimb_t) * CHAR_BIT == GMP_TWOLIMB_BITS) - 1];
266 /* Representation of a bignum >= 0. */
267 typedef struct
269 size_t nlimbs;
270 mp_limb_t *limbs; /* Bits in little-endian order, allocated with malloc(). */
271 } mpn_t;
273 /* Compute the product of two bignums >= 0.
274 Return the allocated memory in case of success, NULL in case of memory
275 allocation failure. */
276 static void *
277 multiply (mpn_t src1, mpn_t src2, mpn_t *dest)
279 const mp_limb_t *p1;
280 const mp_limb_t *p2;
281 size_t len1;
282 size_t len2;
284 if (src1.nlimbs <= src2.nlimbs)
286 len1 = src1.nlimbs;
287 p1 = src1.limbs;
288 len2 = src2.nlimbs;
289 p2 = src2.limbs;
291 else
293 len1 = src2.nlimbs;
294 p1 = src2.limbs;
295 len2 = src1.nlimbs;
296 p2 = src1.limbs;
298 /* Now 0 <= len1 <= len2. */
299 if (len1 == 0)
301 /* src1 or src2 is zero. */
302 dest->nlimbs = 0;
303 dest->limbs = (mp_limb_t *) malloc (1);
305 else
307 /* Here 1 <= len1 <= len2. */
308 size_t dlen;
309 mp_limb_t *dp;
310 size_t k, i, j;
312 dlen = len1 + len2;
313 dp = (mp_limb_t *) malloc (dlen * sizeof (mp_limb_t));
314 if (dp == NULL)
315 return NULL;
316 for (k = len2; k > 0; )
317 dp[--k] = 0;
318 for (i = 0; i < len1; i++)
320 mp_limb_t digit1 = p1[i];
321 mp_twolimb_t carry = 0;
322 for (j = 0; j < len2; j++)
324 mp_limb_t digit2 = p2[j];
325 carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
326 carry += dp[i + j];
327 dp[i + j] = (mp_limb_t) carry;
328 carry = carry >> GMP_LIMB_BITS;
330 dp[i + len2] = (mp_limb_t) carry;
332 /* Normalise. */
333 while (dlen > 0 && dp[dlen - 1] == 0)
334 dlen--;
335 dest->nlimbs = dlen;
336 dest->limbs = dp;
338 return dest->limbs;
341 /* Compute the quotient of a bignum a >= 0 and a bignum b > 0.
342 a is written as a = q * b + r with 0 <= r < b. q is the quotient, r
343 the remainder.
344 Finally, round-to-even is performed: If r > b/2 or if r = b/2 and q is odd,
345 q is incremented.
346 Return the allocated memory in case of success, NULL in case of memory
347 allocation failure. */
348 static void *
349 divide (mpn_t a, mpn_t b, mpn_t *q)
351 /* Algorithm:
352 First normalise a and b: a=[a[m-1],...,a[0]], b=[b[n-1],...,b[0]]
353 with m>=0 and n>0 (in base beta = 2^GMP_LIMB_BITS).
354 If m<n, then q:=0 and r:=a.
355 If m>=n=1, perform a single-precision division:
356 r:=0, j:=m,
357 while j>0 do
358 {Here (q[m-1]*beta^(m-1)+...+q[j]*beta^j) * b[0] + r*beta^j =
359 = a[m-1]*beta^(m-1)+...+a[j]*beta^j und 0<=r<b[0]<beta}
360 j:=j-1, r:=r*beta+a[j], q[j]:=floor(r/b[0]), r:=r-b[0]*q[j].
361 Normalise [q[m-1],...,q[0]], yields q.
362 If m>=n>1, perform a multiple-precision division:
363 We have a/b < beta^(m-n+1).
364 s:=intDsize-1-(hightest bit in b[n-1]), 0<=s<intDsize.
365 Shift a and b left by s bits, copying them. r:=a.
366 r=[r[m],...,r[0]], b=[b[n-1],...,b[0]] with b[n-1]>=beta/2.
367 For j=m-n,...,0: {Here 0 <= r < b*beta^(j+1).}
368 Compute q* :
369 q* := floor((r[j+n]*beta+r[j+n-1])/b[n-1]).
370 In case of overflow (q* >= beta) set q* := beta-1.
371 Compute c2 := ((r[j+n]*beta+r[j+n-1]) - q* * b[n-1])*beta + r[j+n-2]
372 and c3 := b[n-2] * q*.
373 {We have 0 <= c2 < 2*beta^2, even 0 <= c2 < beta^2 if no overflow
374 occurred. Furthermore 0 <= c3 < beta^2.
375 If there was overflow and
376 r[j+n]*beta+r[j+n-1] - q* * b[n-1] >= beta, i.e. c2 >= beta^2,
377 the next test can be skipped.}
378 While c3 > c2, {Here 0 <= c2 < c3 < beta^2}
379 Put q* := q* - 1, c2 := c2 + b[n-1]*beta, c3 := c3 - b[n-2].
380 If q* > 0:
381 Put r := r - b * q* * beta^j. In detail:
382 [r[n+j],...,r[j]] := [r[n+j],...,r[j]] - q* * [b[n-1],...,b[0]].
383 hence: u:=0, for i:=0 to n-1 do
384 u := u + q* * b[i],
385 r[j+i]:=r[j+i]-(u mod beta) (+ beta, if carry),
386 u:=u div beta (+ 1, if carry in subtraction)
387 r[n+j]:=r[n+j]-u.
388 {Since always u = (q* * [b[i-1],...,b[0]] div beta^i) + 1
389 < q* + 1 <= beta,
390 the carry u does not overflow.}
391 If a negative carry occurs, put q* := q* - 1
392 and [r[n+j],...,r[j]] := [r[n+j],...,r[j]] + [0,b[n-1],...,b[0]].
393 Set q[j] := q*.
394 Normalise [q[m-n],..,q[0]]; this yields the quotient q.
395 Shift [r[n-1],...,r[0]] right by s bits and normalise; this yields the
396 rest r.
397 The room for q[j] can be allocated at the memory location of r[n+j].
398 Finally, round-to-even:
399 Shift r left by 1 bit.
400 If r > b or if r = b and q[0] is odd, q := q+1.
402 const mp_limb_t *a_ptr = a.limbs;
403 size_t a_len = a.nlimbs;
404 const mp_limb_t *b_ptr = b.limbs;
405 size_t b_len = b.nlimbs;
406 mp_limb_t *roomptr;
407 mp_limb_t *tmp_roomptr = NULL;
408 mp_limb_t *q_ptr;
409 size_t q_len;
410 mp_limb_t *r_ptr;
411 size_t r_len;
413 /* Allocate room for a_len+2 digits.
414 (Need a_len+1 digits for the real division and 1 more digit for the
415 final rounding of q.) */
416 roomptr = (mp_limb_t *) malloc ((a_len + 2) * sizeof (mp_limb_t));
417 if (roomptr == NULL)
418 return NULL;
420 /* Normalise a. */
421 while (a_len > 0 && a_ptr[a_len - 1] == 0)
422 a_len--;
424 /* Normalise b. */
425 for (;;)
427 if (b_len == 0)
428 /* Division by zero. */
429 abort ();
430 if (b_ptr[b_len - 1] == 0)
431 b_len--;
432 else
433 break;
436 /* Here m = a_len >= 0 and n = b_len > 0. */
438 if (a_len < b_len)
440 /* m<n: trivial case. q=0, r := copy of a. */
441 r_ptr = roomptr;
442 r_len = a_len;
443 memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
444 q_ptr = roomptr + a_len;
445 q_len = 0;
447 else if (b_len == 1)
449 /* n=1: single precision division.
450 beta^(m-1) <= a < beta^m ==> beta^(m-2) <= a/b < beta^m */
451 r_ptr = roomptr;
452 q_ptr = roomptr + 1;
454 mp_limb_t den = b_ptr[0];
455 mp_limb_t remainder = 0;
456 const mp_limb_t *sourceptr = a_ptr + a_len;
457 mp_limb_t *destptr = q_ptr + a_len;
458 size_t count;
459 for (count = a_len; count > 0; count--)
461 mp_twolimb_t num =
462 ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--sourceptr;
463 *--destptr = num / den;
464 remainder = num % den;
466 /* Normalise and store r. */
467 if (remainder > 0)
469 r_ptr[0] = remainder;
470 r_len = 1;
472 else
473 r_len = 0;
474 /* Normalise q. */
475 q_len = a_len;
476 if (q_ptr[q_len - 1] == 0)
477 q_len--;
480 else
482 /* n>1: multiple precision division.
483 beta^(m-1) <= a < beta^m, beta^(n-1) <= b < beta^n ==>
484 beta^(m-n-1) <= a/b < beta^(m-n+1). */
485 /* Determine s. */
486 size_t s;
488 mp_limb_t msd = b_ptr[b_len - 1]; /* = b[n-1], > 0 */
489 s = 31;
490 if (msd >= 0x10000)
492 msd = msd >> 16;
493 s -= 16;
495 if (msd >= 0x100)
497 msd = msd >> 8;
498 s -= 8;
500 if (msd >= 0x10)
502 msd = msd >> 4;
503 s -= 4;
505 if (msd >= 0x4)
507 msd = msd >> 2;
508 s -= 2;
510 if (msd >= 0x2)
512 msd = msd >> 1;
513 s -= 1;
516 /* 0 <= s < GMP_LIMB_BITS.
517 Copy b, shifting it left by s bits. */
518 if (s > 0)
520 tmp_roomptr = (mp_limb_t *) malloc (b_len * sizeof (mp_limb_t));
521 if (tmp_roomptr == NULL)
523 free (roomptr);
524 return NULL;
527 const mp_limb_t *sourceptr = b_ptr;
528 mp_limb_t *destptr = tmp_roomptr;
529 mp_twolimb_t accu = 0;
530 size_t count;
531 for (count = b_len; count > 0; count--)
533 accu += (mp_twolimb_t) *sourceptr++ << s;
534 *destptr++ = (mp_limb_t) accu;
535 accu = accu >> GMP_LIMB_BITS;
537 /* accu must be zero, since that was how s was determined. */
538 if (accu != 0)
539 abort ();
541 b_ptr = tmp_roomptr;
543 /* Copy a, shifting it left by s bits, yields r.
544 Memory layout:
545 At the beginning: r = roomptr[0..a_len],
546 at the end: r = roomptr[0..b_len-1], q = roomptr[b_len..a_len] */
547 r_ptr = roomptr;
548 if (s == 0)
550 memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t));
551 r_ptr[a_len] = 0;
553 else
555 const mp_limb_t *sourceptr = a_ptr;
556 mp_limb_t *destptr = r_ptr;
557 mp_twolimb_t accu = 0;
558 size_t count;
559 for (count = a_len; count > 0; count--)
561 accu += (mp_twolimb_t) *sourceptr++ << s;
562 *destptr++ = (mp_limb_t) accu;
563 accu = accu >> GMP_LIMB_BITS;
565 *destptr++ = (mp_limb_t) accu;
567 q_ptr = roomptr + b_len;
568 q_len = a_len - b_len + 1; /* q will have m-n+1 limbs */
570 size_t j = a_len - b_len; /* m-n */
571 mp_limb_t b_msd = b_ptr[b_len - 1]; /* b[n-1] */
572 mp_limb_t b_2msd = b_ptr[b_len - 2]; /* b[n-2] */
573 mp_twolimb_t b_msdd = /* b[n-1]*beta+b[n-2] */
574 ((mp_twolimb_t) b_msd << GMP_LIMB_BITS) | b_2msd;
575 /* Division loop, traversed m-n+1 times.
576 j counts down, b is unchanged, beta/2 <= b[n-1] < beta. */
577 for (;;)
579 mp_limb_t q_star;
580 mp_limb_t c1;
581 if (r_ptr[j + b_len] < b_msd) /* r[j+n] < b[n-1] ? */
583 /* Divide r[j+n]*beta+r[j+n-1] by b[n-1], no overflow. */
584 mp_twolimb_t num =
585 ((mp_twolimb_t) r_ptr[j + b_len] << GMP_LIMB_BITS)
586 | r_ptr[j + b_len - 1];
587 q_star = num / b_msd;
588 c1 = num % b_msd;
590 else
592 /* Overflow, hence r[j+n]*beta+r[j+n-1] >= beta*b[n-1]. */
593 q_star = (mp_limb_t)~(mp_limb_t)0; /* q* = beta-1 */
594 /* Test whether r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta
595 <==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta
596 <==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta)
597 {<= beta !}.
598 If yes, jump directly to the subtraction loop.
599 (Otherwise, r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta
600 <==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ) */
601 if (r_ptr[j + b_len] > b_msd
602 || (c1 = r_ptr[j + b_len - 1] + b_msd) < b_msd)
603 /* r[j+n] >= b[n-1]+1 or
604 r[j+n] = b[n-1] and the addition r[j+n-1]+b[n-1] gives a
605 carry. */
606 goto subtract;
608 /* q_star = q*,
609 c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta). */
611 mp_twolimb_t c2 = /* c1*beta+r[j+n-2] */
612 ((mp_twolimb_t) c1 << GMP_LIMB_BITS) | r_ptr[j + b_len - 2];
613 mp_twolimb_t c3 = /* b[n-2] * q* */
614 (mp_twolimb_t) b_2msd * (mp_twolimb_t) q_star;
615 /* While c2 < c3, increase c2 and decrease c3.
616 Consider c3-c2. While it is > 0, decrease it by
617 b[n-1]*beta+b[n-2]. Because of b[n-1]*beta+b[n-2] >= beta^2/2
618 this can happen only twice. */
619 if (c3 > c2)
621 q_star = q_star - 1; /* q* := q* - 1 */
622 if (c3 - c2 > b_msdd)
623 q_star = q_star - 1; /* q* := q* - 1 */
626 if (q_star > 0)
627 subtract:
629 /* Subtract r := r - b * q* * beta^j. */
630 mp_limb_t cr;
632 const mp_limb_t *sourceptr = b_ptr;
633 mp_limb_t *destptr = r_ptr + j;
634 mp_twolimb_t carry = 0;
635 size_t count;
636 for (count = b_len; count > 0; count--)
638 /* Here 0 <= carry <= q*. */
639 carry =
640 carry
641 + (mp_twolimb_t) q_star * (mp_twolimb_t) *sourceptr++
642 + (mp_limb_t) ~(*destptr);
643 /* Here 0 <= carry <= beta*q* + beta-1. */
644 *destptr++ = ~(mp_limb_t) carry;
645 carry = carry >> GMP_LIMB_BITS; /* <= q* */
647 cr = (mp_limb_t) carry;
649 /* Subtract cr from r_ptr[j + b_len], then forget about
650 r_ptr[j + b_len]. */
651 if (cr > r_ptr[j + b_len])
653 /* Subtraction gave a carry. */
654 q_star = q_star - 1; /* q* := q* - 1 */
655 /* Add b back. */
657 const mp_limb_t *sourceptr = b_ptr;
658 mp_limb_t *destptr = r_ptr + j;
659 mp_limb_t carry = 0;
660 size_t count;
661 for (count = b_len; count > 0; count--)
663 mp_limb_t source1 = *sourceptr++;
664 mp_limb_t source2 = *destptr;
665 *destptr++ = source1 + source2 + carry;
666 carry =
667 (carry
668 ? source1 >= (mp_limb_t) ~source2
669 : source1 > (mp_limb_t) ~source2);
672 /* Forget about the carry and about r[j+n]. */
675 /* q* is determined. Store it as q[j]. */
676 q_ptr[j] = q_star;
677 if (j == 0)
678 break;
679 j--;
682 r_len = b_len;
683 /* Normalise q. */
684 if (q_ptr[q_len - 1] == 0)
685 q_len--;
686 # if 0 /* Not needed here, since we need r only to compare it with b/2, and
687 b is shifted left by s bits. */
688 /* Shift r right by s bits. */
689 if (s > 0)
691 mp_limb_t ptr = r_ptr + r_len;
692 mp_twolimb_t accu = 0;
693 size_t count;
694 for (count = r_len; count > 0; count--)
696 accu = (mp_twolimb_t) (mp_limb_t) accu << GMP_LIMB_BITS;
697 accu += (mp_twolimb_t) *--ptr << (GMP_LIMB_BITS - s);
698 *ptr = (mp_limb_t) (accu >> GMP_LIMB_BITS);
701 # endif
702 /* Normalise r. */
703 while (r_len > 0 && r_ptr[r_len - 1] == 0)
704 r_len--;
706 /* Compare r << 1 with b. */
707 if (r_len > b_len)
708 goto increment_q;
710 size_t i;
711 for (i = b_len;;)
713 mp_limb_t r_i =
714 (i <= r_len && i > 0 ? r_ptr[i - 1] >> (GMP_LIMB_BITS - 1) : 0)
715 | (i < r_len ? r_ptr[i] << 1 : 0);
716 mp_limb_t b_i = (i < b_len ? b_ptr[i] : 0);
717 if (r_i > b_i)
718 goto increment_q;
719 if (r_i < b_i)
720 goto keep_q;
721 if (i == 0)
722 break;
723 i--;
726 if (q_len > 0 && ((q_ptr[0] & 1) != 0))
727 /* q is odd. */
728 increment_q:
730 size_t i;
731 for (i = 0; i < q_len; i++)
732 if (++(q_ptr[i]) != 0)
733 goto keep_q;
734 q_ptr[q_len++] = 1;
736 keep_q:
737 if (tmp_roomptr != NULL)
738 free (tmp_roomptr);
739 q->limbs = q_ptr;
740 q->nlimbs = q_len;
741 return roomptr;
744 /* Convert a bignum a >= 0, multiplied with 10^extra_zeroes, to decimal
745 representation.
746 Destroys the contents of a.
747 Return the allocated memory - containing the decimal digits in low-to-high
748 order, terminated with a NUL character - in case of success, NULL in case
749 of memory allocation failure. */
750 static char *
751 convert_to_decimal (mpn_t a, size_t extra_zeroes)
753 mp_limb_t *a_ptr = a.limbs;
754 size_t a_len = a.nlimbs;
755 /* 0.03345 is slightly larger than log(2)/(9*log(10)). */
756 size_t c_len = 9 * ((size_t)(a_len * (GMP_LIMB_BITS * 0.03345f)) + 1);
757 char *c_ptr = (char *) malloc (xsum (c_len, extra_zeroes));
758 if (c_ptr != NULL)
760 char *d_ptr = c_ptr;
761 for (; extra_zeroes > 0; extra_zeroes--)
762 *d_ptr++ = '0';
763 while (a_len > 0)
765 /* Divide a by 10^9, in-place. */
766 mp_limb_t remainder = 0;
767 mp_limb_t *ptr = a_ptr + a_len;
768 size_t count;
769 for (count = a_len; count > 0; count--)
771 mp_twolimb_t num =
772 ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--ptr;
773 *ptr = num / 1000000000;
774 remainder = num % 1000000000;
776 /* Store the remainder as 9 decimal digits. */
777 for (count = 9; count > 0; count--)
779 *d_ptr++ = '0' + (remainder % 10);
780 remainder = remainder / 10;
782 /* Normalize a. */
783 if (a_ptr[a_len - 1] == 0)
784 a_len--;
786 /* Remove leading zeroes. */
787 while (d_ptr > c_ptr && d_ptr[-1] == '0')
788 d_ptr--;
789 /* But keep at least one zero. */
790 if (d_ptr == c_ptr)
791 *d_ptr++ = '0';
792 /* Terminate the string. */
793 *d_ptr = '\0';
795 return c_ptr;
798 /* Assuming x is finite and >= 0:
799 write x as x = 2^e * m, where m is a bignum.
800 Return the allocated memory in case of success, NULL in case of memory
801 allocation failure. */
802 static void *
803 decode_long_double (long double x, int *ep, mpn_t *mp)
805 mpn_t m;
806 int exp;
807 long double y;
808 size_t i;
810 /* Allocate memory for result. */
811 m.nlimbs = (LDBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS;
812 m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t));
813 if (m.limbs == NULL)
814 return NULL;
815 /* Split into exponential part and mantissa. */
816 y = frexpl (x, &exp);
817 if (!(y >= 0.0L && y < 1.0L))
818 abort ();
819 /* x = 2^exp * y = 2^(exp - LDBL_MANT_BIT) * (y * LDBL_MANT_BIT), and the
820 latter is an integer. */
821 /* Convert the mantissa (y * LDBL_MANT_BIT) to a sequence of limbs.
822 I'm not sure whether it's safe to cast a 'long double' value between
823 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only
824 'long double' values between 0 and 2^16 (to 'unsigned int' or 'int',
825 doesn't matter). */
826 # if (LDBL_MANT_BIT % GMP_LIMB_BITS) != 0
827 # if (LDBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2
829 mp_limb_t hi, lo;
830 y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % (GMP_LIMB_BITS / 2));
831 hi = (int) y;
832 y -= hi;
833 if (!(y >= 0.0L && y < 1.0L))
834 abort ();
835 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
836 lo = (int) y;
837 y -= lo;
838 if (!(y >= 0.0L && y < 1.0L))
839 abort ();
840 m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo;
842 # else
844 mp_limb_t d;
845 y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % GMP_LIMB_BITS);
846 d = (int) y;
847 y -= d;
848 if (!(y >= 0.0L && y < 1.0L))
849 abort ();
850 m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = d;
852 # endif
853 # endif
854 for (i = LDBL_MANT_BIT / GMP_LIMB_BITS; i > 0; )
856 mp_limb_t hi, lo;
857 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
858 hi = (int) y;
859 y -= hi;
860 if (!(y >= 0.0L && y < 1.0L))
861 abort ();
862 y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2);
863 lo = (int) y;
864 y -= lo;
865 if (!(y >= 0.0L && y < 1.0L))
866 abort ();
867 m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo;
869 if (!(y == 0.0L))
870 abort ();
871 /* Normalise. */
872 while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0)
873 m.nlimbs--;
874 *mp = m;
875 *ep = exp - LDBL_MANT_BIT;
876 return m.limbs;
879 /* Assuming x is finite and >= 0, and n is an integer:
880 Returns the decimal representation of round (x * 10^n).
881 Return the allocated memory - containing the decimal digits in low-to-high
882 order, terminated with a NUL character - in case of success, NULL in case
883 of memory allocation failure. */
884 static char *
885 scale10_round_decimal_long_double (long double x, int n)
887 int e;
888 mpn_t m;
889 void *memory = decode_long_double (x, &e, &m);
890 int s;
891 size_t extra_zeroes;
892 unsigned int abs_n;
893 unsigned int abs_s;
894 mp_limb_t *pow5_ptr;
895 size_t pow5_len;
896 unsigned int s_limbs;
897 unsigned int s_bits;
898 mpn_t pow5;
899 mpn_t z;
900 void *z_memory;
901 char *digits;
903 if (memory == NULL)
904 return NULL;
905 /* x = 2^e * m, hence
906 y = round (2^e * 10^n * m) = round (2^(e+n) * 5^n * m)
907 = round (2^s * 5^n * m). */
908 s = e + n;
909 extra_zeroes = 0;
910 /* Factor out a common power of 10 if possible. */
911 if (s > 0 && n > 0)
913 extra_zeroes = (s < n ? s : n);
914 s -= extra_zeroes;
915 n -= extra_zeroes;
917 /* Here y = round (2^s * 5^n * m) * 10^extra_zeroes.
918 Before converting to decimal, we need to compute
919 z = round (2^s * 5^n * m). */
920 /* Compute 5^|n|, possibly shifted by |s| bits if n and s have the same
921 sign. 2.322 is slightly larger than log(5)/log(2). */
922 abs_n = (n >= 0 ? n : -n);
923 abs_s = (s >= 0 ? s : -s);
924 pow5_ptr = (mp_limb_t *) malloc (((int)(abs_n * (2.322f / GMP_LIMB_BITS)) + 1
925 + abs_s / GMP_LIMB_BITS + 1)
926 * sizeof (mp_limb_t));
927 if (pow5_ptr == NULL)
929 free (memory);
930 return NULL;
932 /* Initialize with 1. */
933 pow5_ptr[0] = 1;
934 pow5_len = 1;
935 /* Multiply with 5^|n|. */
936 if (abs_n > 0)
938 static mp_limb_t const small_pow5[13 + 1] =
940 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625,
941 48828125, 244140625, 1220703125
943 unsigned int n13;
944 for (n13 = 0; n13 <= abs_n; n13 += 13)
946 mp_limb_t digit1 = small_pow5[n13 + 13 <= abs_n ? 13 : abs_n - n13];
947 size_t j;
948 mp_twolimb_t carry = 0;
949 for (j = 0; j < pow5_len; j++)
951 mp_limb_t digit2 = pow5_ptr[j];
952 carry += (mp_twolimb_t) digit1 * (mp_twolimb_t) digit2;
953 pow5_ptr[j] = (mp_limb_t) carry;
954 carry = carry >> GMP_LIMB_BITS;
956 if (carry > 0)
957 pow5_ptr[pow5_len++] = (mp_limb_t) carry;
960 s_limbs = abs_s / GMP_LIMB_BITS;
961 s_bits = abs_s % GMP_LIMB_BITS;
962 if (n >= 0 ? s >= 0 : s <= 0)
964 /* Multiply with 2^|s|. */
965 if (s_bits > 0)
967 mp_limb_t *ptr = pow5_ptr;
968 mp_twolimb_t accu = 0;
969 size_t count;
970 for (count = pow5_len; count > 0; count--)
972 accu += (mp_twolimb_t) *ptr << s_bits;
973 *ptr++ = (mp_limb_t) accu;
974 accu = accu >> GMP_LIMB_BITS;
976 if (accu > 0)
978 *ptr = (mp_limb_t) accu;
979 pow5_len++;
982 if (s_limbs > 0)
984 size_t count;
985 for (count = pow5_len; count > 0;)
987 count--;
988 pow5_ptr[s_limbs + count] = pow5_ptr[count];
990 for (count = s_limbs; count > 0;)
992 count--;
993 pow5_ptr[count] = 0;
995 pow5_len += s_limbs;
997 pow5.limbs = pow5_ptr;
998 pow5.nlimbs = pow5_len;
999 if (n >= 0)
1001 /* Multiply m with pow5. No division needed. */
1002 z_memory = multiply (m, pow5, &z);
1004 else
1006 /* Divide m by pow5 and round. */
1007 z_memory = divide (m, pow5, &z);
1010 else
1012 pow5.limbs = pow5_ptr;
1013 pow5.nlimbs = pow5_len;
1014 if (n >= 0)
1016 /* n >= 0, s < 0.
1017 Multiply m with pow5, then divide by 2^|s|. */
1018 mpn_t numerator;
1019 mpn_t denominator;
1020 void *tmp_memory;
1021 tmp_memory = multiply (m, pow5, &numerator);
1022 if (tmp_memory == NULL)
1024 free (pow5_ptr);
1025 free (memory);
1026 return NULL;
1028 /* Construct 2^|s|. */
1030 mp_limb_t *ptr = pow5_ptr + pow5_len;
1031 size_t i;
1032 for (i = 0; i < s_limbs; i++)
1033 ptr[i] = 0;
1034 ptr[s_limbs] = (mp_limb_t) 1 << s_bits;
1035 denominator.limbs = ptr;
1036 denominator.nlimbs = s_limbs + 1;
1038 z_memory = divide (numerator, denominator, &z);
1039 free (tmp_memory);
1041 else
1043 /* n < 0, s > 0.
1044 Multiply m with 2^s, then divide by pow5. */
1045 mpn_t numerator;
1046 mp_limb_t *num_ptr;
1047 num_ptr = (mp_limb_t *) malloc ((m.nlimbs + s_limbs + 1)
1048 * sizeof (mp_limb_t));
1049 if (num_ptr == NULL)
1051 free (pow5_ptr);
1052 free (memory);
1053 return NULL;
1056 mp_limb_t *destptr = num_ptr;
1058 size_t i;
1059 for (i = 0; i < s_limbs; i++)
1060 *destptr++ = 0;
1062 if (s_bits > 0)
1064 const mp_limb_t *sourceptr = m.limbs;
1065 mp_twolimb_t accu = 0;
1066 size_t count;
1067 for (count = m.nlimbs; count > 0; count--)
1069 accu += (mp_twolimb_t) *sourceptr++ << s;
1070 *destptr++ = (mp_limb_t) accu;
1071 accu = accu >> GMP_LIMB_BITS;
1073 if (accu > 0)
1074 *destptr++ = (mp_limb_t) accu;
1076 else
1078 const mp_limb_t *sourceptr = m.limbs;
1079 size_t count;
1080 for (count = m.nlimbs; count > 0; count--)
1081 *destptr++ = *sourceptr++;
1083 numerator.limbs = num_ptr;
1084 numerator.nlimbs = destptr - num_ptr;
1086 z_memory = divide (numerator, pow5, &z);
1087 free (num_ptr);
1090 free (pow5_ptr);
1091 free (memory);
1093 /* Here y = round (x * 10^n) = z * 10^extra_zeroes. */
1095 if (z_memory == NULL)
1096 return NULL;
1097 digits = convert_to_decimal (z, extra_zeroes);
1098 free (z_memory);
1099 return digits;
1102 /* Assuming x is finite and > 0:
1103 Return an approximation for n with 10^n <= x < 10^(n+1).
1104 The approximation is usually the right n, but may be off by 1 sometimes. */
1105 static int
1106 floorlog10l (long double x)
1108 int exp;
1109 long double y;
1110 double z;
1111 double l;
1113 /* Split into exponential part and mantissa. */
1114 y = frexpl (x, &exp);
1115 if (!(y >= 0.0L && y < 1.0L))
1116 abort ();
1117 if (y == 0.0L)
1118 return INT_MIN;
1119 if (y < 0.5L)
1121 while (y < (1.0L / (1 << (GMP_LIMB_BITS / 2)) / (1 << (GMP_LIMB_BITS / 2))))
1123 y *= 1.0L * (1 << (GMP_LIMB_BITS / 2)) * (1 << (GMP_LIMB_BITS / 2));
1124 exp -= GMP_LIMB_BITS;
1126 if (y < (1.0L / (1 << 16)))
1128 y *= 1.0L * (1 << 16);
1129 exp -= 16;
1131 if (y < (1.0L / (1 << 8)))
1133 y *= 1.0L * (1 << 8);
1134 exp -= 8;
1136 if (y < (1.0L / (1 << 4)))
1138 y *= 1.0L * (1 << 4);
1139 exp -= 4;
1141 if (y < (1.0L / (1 << 2)))
1143 y *= 1.0L * (1 << 2);
1144 exp -= 2;
1146 if (y < (1.0L / (1 << 1)))
1148 y *= 1.0L * (1 << 1);
1149 exp -= 1;
1152 if (!(y >= 0.5L && y < 1.0L))
1153 abort ();
1154 /* Compute an approximation for l = log2(x) = exp + log2(y). */
1155 l = exp;
1156 z = y;
1157 if (z < 0.70710678118654752444)
1159 z *= 1.4142135623730950488;
1160 l -= 0.5;
1162 if (z < 0.8408964152537145431)
1164 z *= 1.1892071150027210667;
1165 l -= 0.25;
1167 if (z < 0.91700404320467123175)
1169 z *= 1.0905077326652576592;
1170 l -= 0.125;
1172 if (z < 0.9576032806985736469)
1174 z *= 1.0442737824274138403;
1175 l -= 0.0625;
1177 /* Now 0.95 <= z <= 1.01. */
1178 z = 1 - z;
1179 /* log(1-z) = - z - z^2/2 - z^3/3 - z^4/4 - ...
1180 Four terms are enough to get an approximation with error < 10^-7. */
1181 l -= z * (1.0 + z * (0.5 + z * ((1.0 / 3) + z * 0.25)));
1182 /* Finally multiply with log(2)/log(10), yields an approximation for
1183 log10(x). */
1184 l *= 0.30102999566398119523;
1185 /* Round down to the next integer. */
1186 return (int) l + (l < 0 ? -1 : 0);
1189 #endif
1191 DCHAR_T *
1192 VASNPRINTF (DCHAR_T *resultbuf, size_t *lengthp,
1193 const FCHAR_T *format, va_list args)
1195 DIRECTIVES d;
1196 arguments a;
1198 if (PRINTF_PARSE (format, &d, &a) < 0)
1200 errno = EINVAL;
1201 return NULL;
1204 #define CLEANUP() \
1205 free (d.dir); \
1206 if (a.arg) \
1207 free (a.arg);
1209 if (PRINTF_FETCHARGS (args, &a) < 0)
1211 CLEANUP ();
1212 errno = EINVAL;
1213 return NULL;
1217 size_t buf_neededlength;
1218 TCHAR_T *buf;
1219 TCHAR_T *buf_malloced;
1220 const FCHAR_T *cp;
1221 size_t i;
1222 DIRECTIVE *dp;
1223 /* Output string accumulator. */
1224 DCHAR_T *result;
1225 size_t allocated;
1226 size_t length;
1228 /* Allocate a small buffer that will hold a directive passed to
1229 sprintf or snprintf. */
1230 buf_neededlength =
1231 xsum4 (7, d.max_width_length, d.max_precision_length, 6);
1232 #if HAVE_ALLOCA
1233 if (buf_neededlength < 4000 / sizeof (TCHAR_T))
1235 buf = (TCHAR_T *) alloca (buf_neededlength * sizeof (TCHAR_T));
1236 buf_malloced = NULL;
1238 else
1239 #endif
1241 size_t buf_memsize = xtimes (buf_neededlength, sizeof (TCHAR_T));
1242 if (size_overflow_p (buf_memsize))
1243 goto out_of_memory_1;
1244 buf = (TCHAR_T *) malloc (buf_memsize);
1245 if (buf == NULL)
1246 goto out_of_memory_1;
1247 buf_malloced = buf;
1250 if (resultbuf != NULL)
1252 result = resultbuf;
1253 allocated = *lengthp;
1255 else
1257 result = NULL;
1258 allocated = 0;
1260 length = 0;
1261 /* Invariants:
1262 result is either == resultbuf or == NULL or malloc-allocated.
1263 If length > 0, then result != NULL. */
1265 /* Ensures that allocated >= needed. Aborts through a jump to
1266 out_of_memory if needed is SIZE_MAX or otherwise too big. */
1267 #define ENSURE_ALLOCATION(needed) \
1268 if ((needed) > allocated) \
1270 size_t memory_size; \
1271 DCHAR_T *memory; \
1273 allocated = (allocated > 0 ? xtimes (allocated, 2) : 12); \
1274 if ((needed) > allocated) \
1275 allocated = (needed); \
1276 memory_size = xtimes (allocated, sizeof (DCHAR_T)); \
1277 if (size_overflow_p (memory_size)) \
1278 goto out_of_memory; \
1279 if (result == resultbuf || result == NULL) \
1280 memory = (DCHAR_T *) malloc (memory_size); \
1281 else \
1282 memory = (DCHAR_T *) realloc (result, memory_size); \
1283 if (memory == NULL) \
1284 goto out_of_memory; \
1285 if (result == resultbuf && length > 0) \
1286 DCHAR_CPY (memory, result, length); \
1287 result = memory; \
1290 for (cp = format, i = 0, dp = &d.dir[0]; ; cp = dp->dir_end, i++, dp++)
1292 if (cp != dp->dir_start)
1294 size_t n = dp->dir_start - cp;
1295 size_t augmented_length = xsum (length, n);
1297 ENSURE_ALLOCATION (augmented_length);
1298 /* This copies a piece of FCHAR_T[] into a DCHAR_T[]. Here we
1299 need that the format string contains only ASCII characters
1300 if FCHAR_T and DCHAR_T are not the same type. */
1301 if (sizeof (FCHAR_T) == sizeof (DCHAR_T))
1303 DCHAR_CPY (result + length, (const DCHAR_T *) cp, n);
1304 length = augmented_length;
1306 else
1309 result[length++] = (unsigned char) *cp++;
1310 while (--n > 0);
1313 if (i == d.count)
1314 break;
1316 /* Execute a single directive. */
1317 if (dp->conversion == '%')
1319 size_t augmented_length;
1321 if (!(dp->arg_index == ARG_NONE))
1322 abort ();
1323 augmented_length = xsum (length, 1);
1324 ENSURE_ALLOCATION (augmented_length);
1325 result[length] = '%';
1326 length = augmented_length;
1328 else
1330 if (!(dp->arg_index != ARG_NONE))
1331 abort ();
1333 if (dp->conversion == 'n')
1335 switch (a.arg[dp->arg_index].type)
1337 case TYPE_COUNT_SCHAR_POINTER:
1338 *a.arg[dp->arg_index].a.a_count_schar_pointer = length;
1339 break;
1340 case TYPE_COUNT_SHORT_POINTER:
1341 *a.arg[dp->arg_index].a.a_count_short_pointer = length;
1342 break;
1343 case TYPE_COUNT_INT_POINTER:
1344 *a.arg[dp->arg_index].a.a_count_int_pointer = length;
1345 break;
1346 case TYPE_COUNT_LONGINT_POINTER:
1347 *a.arg[dp->arg_index].a.a_count_longint_pointer = length;
1348 break;
1349 #if HAVE_LONG_LONG_INT
1350 case TYPE_COUNT_LONGLONGINT_POINTER:
1351 *a.arg[dp->arg_index].a.a_count_longlongint_pointer = length;
1352 break;
1353 #endif
1354 default:
1355 abort ();
1358 #if ENABLE_UNISTDIO
1359 /* The unistdio extensions. */
1360 else if (dp->conversion == 'U')
1362 arg_type type = a.arg[dp->arg_index].type;
1363 int flags = dp->flags;
1364 int has_width;
1365 size_t width;
1366 int has_precision;
1367 size_t precision;
1369 has_width = 0;
1370 width = 0;
1371 if (dp->width_start != dp->width_end)
1373 if (dp->width_arg_index != ARG_NONE)
1375 int arg;
1377 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
1378 abort ();
1379 arg = a.arg[dp->width_arg_index].a.a_int;
1380 if (arg < 0)
1382 /* "A negative field width is taken as a '-' flag
1383 followed by a positive field width." */
1384 flags |= FLAG_LEFT;
1385 width = (unsigned int) (-arg);
1387 else
1388 width = arg;
1390 else
1392 const FCHAR_T *digitp = dp->width_start;
1395 width = xsum (xtimes (width, 10), *digitp++ - '0');
1396 while (digitp != dp->width_end);
1398 has_width = 1;
1401 has_precision = 0;
1402 precision = 0;
1403 if (dp->precision_start != dp->precision_end)
1405 if (dp->precision_arg_index != ARG_NONE)
1407 int arg;
1409 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
1410 abort ();
1411 arg = a.arg[dp->precision_arg_index].a.a_int;
1412 /* "A negative precision is taken as if the precision
1413 were omitted." */
1414 if (arg >= 0)
1416 precision = arg;
1417 has_precision = 1;
1420 else
1422 const FCHAR_T *digitp = dp->precision_start + 1;
1424 precision = 0;
1425 while (digitp != dp->precision_end)
1426 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
1427 has_precision = 1;
1431 switch (type)
1433 case TYPE_U8_STRING:
1435 const uint8_t *arg = a.arg[dp->arg_index].a.a_u8_string;
1436 const uint8_t *arg_end;
1437 size_t characters;
1439 if (has_precision)
1441 /* Use only PRECISION characters, from the left. */
1442 arg_end = arg;
1443 characters = 0;
1444 for (; precision > 0; precision--)
1446 int count = u8_strmblen (arg_end);
1447 if (count == 0)
1448 break;
1449 if (count < 0)
1451 if (!(result == resultbuf || result == NULL))
1452 free (result);
1453 if (buf_malloced != NULL)
1454 free (buf_malloced);
1455 CLEANUP ();
1456 errno = EILSEQ;
1457 return NULL;
1459 arg_end += count;
1460 characters++;
1463 else if (has_width)
1465 /* Use the entire string, and count the number of
1466 characters. */
1467 arg_end = arg;
1468 characters = 0;
1469 for (;;)
1471 int count = u8_strmblen (arg_end);
1472 if (count == 0)
1473 break;
1474 if (count < 0)
1476 if (!(result == resultbuf || result == NULL))
1477 free (result);
1478 if (buf_malloced != NULL)
1479 free (buf_malloced);
1480 CLEANUP ();
1481 errno = EILSEQ;
1482 return NULL;
1484 arg_end += count;
1485 characters++;
1488 else
1490 /* Use the entire string. */
1491 arg_end = arg + u8_strlen (arg);
1492 /* The number of characters doesn't matter. */
1493 characters = 0;
1496 if (has_width && width > characters
1497 && !(dp->flags & FLAG_LEFT))
1499 size_t n = width - characters;
1500 ENSURE_ALLOCATION (xsum (length, n));
1501 DCHAR_SET (result + length, ' ', n);
1502 length += n;
1505 # if DCHAR_IS_UINT8_T
1507 size_t n = arg_end - arg;
1508 ENSURE_ALLOCATION (xsum (length, n));
1509 DCHAR_CPY (result + length, arg, n);
1510 length += n;
1512 # else
1513 { /* Convert. */
1514 DCHAR_T *converted = result + length;
1515 size_t converted_len = allocated - length;
1516 # if DCHAR_IS_TCHAR
1517 /* Convert from UTF-8 to locale encoding. */
1518 if (u8_conv_to_encoding (locale_charset (),
1519 iconveh_question_mark,
1520 arg, arg_end - arg, NULL,
1521 &converted, &converted_len)
1522 < 0)
1523 # else
1524 /* Convert from UTF-8 to UTF-16/UTF-32. */
1525 converted =
1526 U8_TO_DCHAR (arg, arg_end - arg,
1527 converted, &converted_len);
1528 if (converted == NULL)
1529 # endif
1531 int saved_errno = errno;
1532 if (!(result == resultbuf || result == NULL))
1533 free (result);
1534 if (buf_malloced != NULL)
1535 free (buf_malloced);
1536 CLEANUP ();
1537 errno = saved_errno;
1538 return NULL;
1540 if (converted != result + length)
1542 ENSURE_ALLOCATION (xsum (length, converted_len));
1543 DCHAR_CPY (result + length, converted, converted_len);
1544 free (converted);
1546 length += converted_len;
1548 # endif
1550 if (has_width && width > characters
1551 && (dp->flags & FLAG_LEFT))
1553 size_t n = width - characters;
1554 ENSURE_ALLOCATION (xsum (length, n));
1555 DCHAR_SET (result + length, ' ', n);
1556 length += n;
1559 break;
1561 case TYPE_U16_STRING:
1563 const uint16_t *arg = a.arg[dp->arg_index].a.a_u16_string;
1564 const uint16_t *arg_end;
1565 size_t characters;
1567 if (has_precision)
1569 /* Use only PRECISION characters, from the left. */
1570 arg_end = arg;
1571 characters = 0;
1572 for (; precision > 0; precision--)
1574 int count = u16_strmblen (arg_end);
1575 if (count == 0)
1576 break;
1577 if (count < 0)
1579 if (!(result == resultbuf || result == NULL))
1580 free (result);
1581 if (buf_malloced != NULL)
1582 free (buf_malloced);
1583 CLEANUP ();
1584 errno = EILSEQ;
1585 return NULL;
1587 arg_end += count;
1588 characters++;
1591 else if (has_width)
1593 /* Use the entire string, and count the number of
1594 characters. */
1595 arg_end = arg;
1596 characters = 0;
1597 for (;;)
1599 int count = u16_strmblen (arg_end);
1600 if (count == 0)
1601 break;
1602 if (count < 0)
1604 if (!(result == resultbuf || result == NULL))
1605 free (result);
1606 if (buf_malloced != NULL)
1607 free (buf_malloced);
1608 CLEANUP ();
1609 errno = EILSEQ;
1610 return NULL;
1612 arg_end += count;
1613 characters++;
1616 else
1618 /* Use the entire string. */
1619 arg_end = arg + u16_strlen (arg);
1620 /* The number of characters doesn't matter. */
1621 characters = 0;
1624 if (has_width && width > characters
1625 && !(dp->flags & FLAG_LEFT))
1627 size_t n = width - characters;
1628 ENSURE_ALLOCATION (xsum (length, n));
1629 DCHAR_SET (result + length, ' ', n);
1630 length += n;
1633 # if DCHAR_IS_UINT16_T
1635 size_t n = arg_end - arg;
1636 ENSURE_ALLOCATION (xsum (length, n));
1637 DCHAR_CPY (result + length, arg, n);
1638 length += n;
1640 # else
1641 { /* Convert. */
1642 DCHAR_T *converted = result + length;
1643 size_t converted_len = allocated - length;
1644 # if DCHAR_IS_TCHAR
1645 /* Convert from UTF-16 to locale encoding. */
1646 if (u16_conv_to_encoding (locale_charset (),
1647 iconveh_question_mark,
1648 arg, arg_end - arg, NULL,
1649 &converted, &converted_len)
1650 < 0)
1651 # else
1652 /* Convert from UTF-16 to UTF-8/UTF-32. */
1653 converted =
1654 U16_TO_DCHAR (arg, arg_end - arg,
1655 converted, &converted_len);
1656 if (converted == NULL)
1657 # endif
1659 int saved_errno = errno;
1660 if (!(result == resultbuf || result == NULL))
1661 free (result);
1662 if (buf_malloced != NULL)
1663 free (buf_malloced);
1664 CLEANUP ();
1665 errno = saved_errno;
1666 return NULL;
1668 if (converted != result + length)
1670 ENSURE_ALLOCATION (xsum (length, converted_len));
1671 DCHAR_CPY (result + length, converted, converted_len);
1672 free (converted);
1674 length += converted_len;
1676 # endif
1678 if (has_width && width > characters
1679 && (dp->flags & FLAG_LEFT))
1681 size_t n = width - characters;
1682 ENSURE_ALLOCATION (xsum (length, n));
1683 DCHAR_SET (result + length, ' ', n);
1684 length += n;
1687 break;
1689 case TYPE_U32_STRING:
1691 const uint32_t *arg = a.arg[dp->arg_index].a.a_u32_string;
1692 const uint32_t *arg_end;
1693 size_t characters;
1695 if (has_precision)
1697 /* Use only PRECISION characters, from the left. */
1698 arg_end = arg;
1699 characters = 0;
1700 for (; precision > 0; precision--)
1702 int count = u32_strmblen (arg_end);
1703 if (count == 0)
1704 break;
1705 if (count < 0)
1707 if (!(result == resultbuf || result == NULL))
1708 free (result);
1709 if (buf_malloced != NULL)
1710 free (buf_malloced);
1711 CLEANUP ();
1712 errno = EILSEQ;
1713 return NULL;
1715 arg_end += count;
1716 characters++;
1719 else if (has_width)
1721 /* Use the entire string, and count the number of
1722 characters. */
1723 arg_end = arg;
1724 characters = 0;
1725 for (;;)
1727 int count = u32_strmblen (arg_end);
1728 if (count == 0)
1729 break;
1730 if (count < 0)
1732 if (!(result == resultbuf || result == NULL))
1733 free (result);
1734 if (buf_malloced != NULL)
1735 free (buf_malloced);
1736 CLEANUP ();
1737 errno = EILSEQ;
1738 return NULL;
1740 arg_end += count;
1741 characters++;
1744 else
1746 /* Use the entire string. */
1747 arg_end = arg + u32_strlen (arg);
1748 /* The number of characters doesn't matter. */
1749 characters = 0;
1752 if (has_width && width > characters
1753 && !(dp->flags & FLAG_LEFT))
1755 size_t n = width - characters;
1756 ENSURE_ALLOCATION (xsum (length, n));
1757 DCHAR_SET (result + length, ' ', n);
1758 length += n;
1761 # if DCHAR_IS_UINT32_T
1763 size_t n = arg_end - arg;
1764 ENSURE_ALLOCATION (xsum (length, n));
1765 DCHAR_CPY (result + length, arg, n);
1766 length += n;
1768 # else
1769 { /* Convert. */
1770 DCHAR_T *converted = result + length;
1771 size_t converted_len = allocated - length;
1772 # if DCHAR_IS_TCHAR
1773 /* Convert from UTF-32 to locale encoding. */
1774 if (u32_conv_to_encoding (locale_charset (),
1775 iconveh_question_mark,
1776 arg, arg_end - arg, NULL,
1777 &converted, &converted_len)
1778 < 0)
1779 # else
1780 /* Convert from UTF-32 to UTF-8/UTF-16. */
1781 converted =
1782 U32_TO_DCHAR (arg, arg_end - arg,
1783 converted, &converted_len);
1784 if (converted == NULL)
1785 # endif
1787 int saved_errno = errno;
1788 if (!(result == resultbuf || result == NULL))
1789 free (result);
1790 if (buf_malloced != NULL)
1791 free (buf_malloced);
1792 CLEANUP ();
1793 errno = saved_errno;
1794 return NULL;
1796 if (converted != result + length)
1798 ENSURE_ALLOCATION (xsum (length, converted_len));
1799 DCHAR_CPY (result + length, converted, converted_len);
1800 free (converted);
1802 length += converted_len;
1804 # endif
1806 if (has_width && width > characters
1807 && (dp->flags & FLAG_LEFT))
1809 size_t n = width - characters;
1810 ENSURE_ALLOCATION (xsum (length, n));
1811 DCHAR_SET (result + length, ' ', n);
1812 length += n;
1815 break;
1817 default:
1818 abort ();
1821 #endif
1822 #if NEED_PRINTF_DIRECTIVE_A && !defined IN_LIBINTL
1823 else if (dp->conversion == 'a' || dp->conversion == 'A')
1825 arg_type type = a.arg[dp->arg_index].type;
1826 int flags = dp->flags;
1827 int has_width;
1828 size_t width;
1829 int has_precision;
1830 size_t precision;
1831 size_t tmp_length;
1832 DCHAR_T tmpbuf[700];
1833 DCHAR_T *tmp;
1834 DCHAR_T *pad_ptr;
1835 DCHAR_T *p;
1837 has_width = 0;
1838 width = 0;
1839 if (dp->width_start != dp->width_end)
1841 if (dp->width_arg_index != ARG_NONE)
1843 int arg;
1845 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
1846 abort ();
1847 arg = a.arg[dp->width_arg_index].a.a_int;
1848 if (arg < 0)
1850 /* "A negative field width is taken as a '-' flag
1851 followed by a positive field width." */
1852 flags |= FLAG_LEFT;
1853 width = (unsigned int) (-arg);
1855 else
1856 width = arg;
1858 else
1860 const FCHAR_T *digitp = dp->width_start;
1863 width = xsum (xtimes (width, 10), *digitp++ - '0');
1864 while (digitp != dp->width_end);
1866 has_width = 1;
1869 has_precision = 0;
1870 precision = 0;
1871 if (dp->precision_start != dp->precision_end)
1873 if (dp->precision_arg_index != ARG_NONE)
1875 int arg;
1877 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
1878 abort ();
1879 arg = a.arg[dp->precision_arg_index].a.a_int;
1880 /* "A negative precision is taken as if the precision
1881 were omitted." */
1882 if (arg >= 0)
1884 precision = arg;
1885 has_precision = 1;
1888 else
1890 const FCHAR_T *digitp = dp->precision_start + 1;
1892 precision = 0;
1893 while (digitp != dp->precision_end)
1894 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
1895 has_precision = 1;
1899 /* Allocate a temporary buffer of sufficient size. */
1900 if (type == TYPE_LONGDOUBLE)
1901 tmp_length =
1902 (unsigned int) ((LDBL_DIG + 1)
1903 * 0.831 /* decimal -> hexadecimal */
1905 + 1; /* turn floor into ceil */
1906 else
1907 tmp_length =
1908 (unsigned int) ((DBL_DIG + 1)
1909 * 0.831 /* decimal -> hexadecimal */
1911 + 1; /* turn floor into ceil */
1912 if (tmp_length < precision)
1913 tmp_length = precision;
1914 /* Account for sign, decimal point etc. */
1915 tmp_length = xsum (tmp_length, 12);
1917 if (tmp_length < width)
1918 tmp_length = width;
1920 tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
1922 if (tmp_length <= sizeof (tmpbuf) / sizeof (DCHAR_T))
1923 tmp = tmpbuf;
1924 else
1926 size_t tmp_memsize = xtimes (tmp_length, sizeof (DCHAR_T));
1928 if (size_overflow_p (tmp_memsize))
1929 /* Overflow, would lead to out of memory. */
1930 goto out_of_memory;
1931 tmp = (DCHAR_T *) malloc (tmp_memsize);
1932 if (tmp == NULL)
1933 /* Out of memory. */
1934 goto out_of_memory;
1937 pad_ptr = NULL;
1938 p = tmp;
1939 if (type == TYPE_LONGDOUBLE)
1941 long double arg = a.arg[dp->arg_index].a.a_longdouble;
1943 if (isnanl (arg))
1945 if (dp->conversion == 'A')
1947 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
1949 else
1951 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
1954 else
1956 int sign = 0;
1957 DECL_LONG_DOUBLE_ROUNDING
1959 BEGIN_LONG_DOUBLE_ROUNDING ();
1961 if (signbit (arg)) /* arg < 0.0L or negative zero */
1963 sign = -1;
1964 arg = -arg;
1967 if (sign < 0)
1968 *p++ = '-';
1969 else if (flags & FLAG_SHOWSIGN)
1970 *p++ = '+';
1971 else if (flags & FLAG_SPACE)
1972 *p++ = ' ';
1974 if (arg > 0.0L && arg + arg == arg)
1976 if (dp->conversion == 'A')
1978 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
1980 else
1982 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
1985 else
1987 int exponent;
1988 long double mantissa;
1990 if (arg > 0.0L)
1991 mantissa = printf_frexpl (arg, &exponent);
1992 else
1994 exponent = 0;
1995 mantissa = 0.0L;
1998 if (has_precision
1999 && precision < (unsigned int) ((LDBL_DIG + 1) * 0.831) + 1)
2001 /* Round the mantissa. */
2002 long double tail = mantissa;
2003 size_t q;
2005 for (q = precision; ; q--)
2007 int digit = (int) tail;
2008 tail -= digit;
2009 if (q == 0)
2011 if (digit & 1 ? tail >= 0.5L : tail > 0.5L)
2012 tail = 1 - tail;
2013 else
2014 tail = - tail;
2015 break;
2017 tail *= 16.0L;
2019 if (tail != 0.0L)
2020 for (q = precision; q > 0; q--)
2021 tail *= 0.0625L;
2022 mantissa += tail;
2025 *p++ = '0';
2026 *p++ = dp->conversion - 'A' + 'X';
2027 pad_ptr = p;
2029 int digit;
2031 digit = (int) mantissa;
2032 mantissa -= digit;
2033 *p++ = '0' + digit;
2034 if ((flags & FLAG_ALT)
2035 || mantissa > 0.0L || precision > 0)
2037 *p++ = decimal_point_char ();
2038 /* This loop terminates because we assume
2039 that FLT_RADIX is a power of 2. */
2040 while (mantissa > 0.0L)
2042 mantissa *= 16.0L;
2043 digit = (int) mantissa;
2044 mantissa -= digit;
2045 *p++ = digit
2046 + (digit < 10
2047 ? '0'
2048 : dp->conversion - 10);
2049 if (precision > 0)
2050 precision--;
2052 while (precision > 0)
2054 *p++ = '0';
2055 precision--;
2059 *p++ = dp->conversion - 'A' + 'P';
2060 # if WIDE_CHAR_VERSION
2062 static const wchar_t decimal_format[] =
2063 { '%', '+', 'd', '\0' };
2064 SNPRINTF (p, 6 + 1, decimal_format, exponent);
2066 while (*p != '\0')
2067 p++;
2068 # else
2069 if (sizeof (DCHAR_T) == 1)
2071 sprintf ((char *) p, "%+d", exponent);
2072 while (*p != '\0')
2073 p++;
2075 else
2077 char expbuf[6 + 1];
2078 const char *ep;
2079 sprintf (expbuf, "%+d", exponent);
2080 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
2081 p++;
2083 # endif
2086 END_LONG_DOUBLE_ROUNDING ();
2089 else
2091 double arg = a.arg[dp->arg_index].a.a_double;
2093 if (isnan (arg))
2095 if (dp->conversion == 'A')
2097 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
2099 else
2101 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
2104 else
2106 int sign = 0;
2108 if (signbit (arg)) /* arg < 0.0 or negative zero */
2110 sign = -1;
2111 arg = -arg;
2114 if (sign < 0)
2115 *p++ = '-';
2116 else if (flags & FLAG_SHOWSIGN)
2117 *p++ = '+';
2118 else if (flags & FLAG_SPACE)
2119 *p++ = ' ';
2121 if (arg > 0.0 && arg + arg == arg)
2123 if (dp->conversion == 'A')
2125 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
2127 else
2129 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
2132 else
2134 int exponent;
2135 double mantissa;
2137 if (arg > 0.0)
2138 mantissa = printf_frexp (arg, &exponent);
2139 else
2141 exponent = 0;
2142 mantissa = 0.0;
2145 if (has_precision
2146 && precision < (unsigned int) ((DBL_DIG + 1) * 0.831) + 1)
2148 /* Round the mantissa. */
2149 double tail = mantissa;
2150 size_t q;
2152 for (q = precision; ; q--)
2154 int digit = (int) tail;
2155 tail -= digit;
2156 if (q == 0)
2158 if (digit & 1 ? tail >= 0.5 : tail > 0.5)
2159 tail = 1 - tail;
2160 else
2161 tail = - tail;
2162 break;
2164 tail *= 16.0;
2166 if (tail != 0.0)
2167 for (q = precision; q > 0; q--)
2168 tail *= 0.0625;
2169 mantissa += tail;
2172 *p++ = '0';
2173 *p++ = dp->conversion - 'A' + 'X';
2174 pad_ptr = p;
2176 int digit;
2178 digit = (int) mantissa;
2179 mantissa -= digit;
2180 *p++ = '0' + digit;
2181 if ((flags & FLAG_ALT)
2182 || mantissa > 0.0 || precision > 0)
2184 *p++ = decimal_point_char ();
2185 /* This loop terminates because we assume
2186 that FLT_RADIX is a power of 2. */
2187 while (mantissa > 0.0)
2189 mantissa *= 16.0;
2190 digit = (int) mantissa;
2191 mantissa -= digit;
2192 *p++ = digit
2193 + (digit < 10
2194 ? '0'
2195 : dp->conversion - 10);
2196 if (precision > 0)
2197 precision--;
2199 while (precision > 0)
2201 *p++ = '0';
2202 precision--;
2206 *p++ = dp->conversion - 'A' + 'P';
2207 # if WIDE_CHAR_VERSION
2209 static const wchar_t decimal_format[] =
2210 { '%', '+', 'd', '\0' };
2211 SNPRINTF (p, 6 + 1, decimal_format, exponent);
2213 while (*p != '\0')
2214 p++;
2215 # else
2216 if (sizeof (DCHAR_T) == 1)
2218 sprintf ((char *) p, "%+d", exponent);
2219 while (*p != '\0')
2220 p++;
2222 else
2224 char expbuf[6 + 1];
2225 const char *ep;
2226 sprintf (expbuf, "%+d", exponent);
2227 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
2228 p++;
2230 # endif
2234 /* The generated string now extends from tmp to p, with the
2235 zero padding insertion point being at pad_ptr. */
2236 if (has_width && p - tmp < width)
2238 size_t pad = width - (p - tmp);
2239 DCHAR_T *end = p + pad;
2241 if (flags & FLAG_LEFT)
2243 /* Pad with spaces on the right. */
2244 for (; pad > 0; pad--)
2245 *p++ = ' ';
2247 else if ((flags & FLAG_ZERO) && pad_ptr != NULL)
2249 /* Pad with zeroes. */
2250 DCHAR_T *q = end;
2252 while (p > pad_ptr)
2253 *--q = *--p;
2254 for (; pad > 0; pad--)
2255 *p++ = '0';
2257 else
2259 /* Pad with spaces on the left. */
2260 DCHAR_T *q = end;
2262 while (p > tmp)
2263 *--q = *--p;
2264 for (; pad > 0; pad--)
2265 *p++ = ' ';
2268 p = end;
2272 size_t count = p - tmp;
2274 if (count >= tmp_length)
2275 /* tmp_length was incorrectly calculated - fix the
2276 code above! */
2277 abort ();
2279 /* Make room for the result. */
2280 if (count >= allocated - length)
2282 size_t n = xsum (length, count);
2284 ENSURE_ALLOCATION (n);
2287 /* Append the result. */
2288 memcpy (result + length, tmp, count * sizeof (DCHAR_T));
2289 if (tmp != tmpbuf)
2290 free (tmp);
2291 length += count;
2294 #endif
2295 #if (NEED_PRINTF_INFINITE_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE || NEED_PRINTF_LONG_DOUBLE) && !defined IN_LIBINTL
2296 else if ((dp->conversion == 'f' || dp->conversion == 'F'
2297 || dp->conversion == 'e' || dp->conversion == 'E'
2298 || dp->conversion == 'g' || dp->conversion == 'G'
2299 || dp->conversion == 'a' || dp->conversion == 'A')
2300 && (0
2301 # if NEED_PRINTF_INFINITE_DOUBLE
2302 || (a.arg[dp->arg_index].type == TYPE_DOUBLE
2303 /* The systems (mingw) which produce wrong output
2304 for Inf, -Inf, and NaN also do so for -0.0.
2305 Therefore we treat this case here as well. */
2306 && is_infinite_or_zero (a.arg[dp->arg_index].a.a_double))
2307 # endif
2308 # if NEED_PRINTF_LONG_DOUBLE
2309 || a.arg[dp->arg_index].type == TYPE_LONGDOUBLE
2310 # elif NEED_PRINTF_INFINITE_LONG_DOUBLE
2311 || (a.arg[dp->arg_index].type == TYPE_LONGDOUBLE
2312 /* Some systems produce wrong output for Inf,
2313 -Inf, and NaN. */
2314 && is_infinitel (a.arg[dp->arg_index].a.a_longdouble))
2315 # endif
2318 # if NEED_PRINTF_INFINITE_DOUBLE && (NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE)
2319 arg_type type = a.arg[dp->arg_index].type;
2320 # endif
2321 int flags = dp->flags;
2322 int has_width;
2323 size_t width;
2324 int has_precision;
2325 size_t precision;
2326 size_t tmp_length;
2327 DCHAR_T tmpbuf[700];
2328 DCHAR_T *tmp;
2329 DCHAR_T *pad_ptr;
2330 DCHAR_T *p;
2332 has_width = 0;
2333 width = 0;
2334 if (dp->width_start != dp->width_end)
2336 if (dp->width_arg_index != ARG_NONE)
2338 int arg;
2340 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
2341 abort ();
2342 arg = a.arg[dp->width_arg_index].a.a_int;
2343 if (arg < 0)
2345 /* "A negative field width is taken as a '-' flag
2346 followed by a positive field width." */
2347 flags |= FLAG_LEFT;
2348 width = (unsigned int) (-arg);
2350 else
2351 width = arg;
2353 else
2355 const FCHAR_T *digitp = dp->width_start;
2358 width = xsum (xtimes (width, 10), *digitp++ - '0');
2359 while (digitp != dp->width_end);
2361 has_width = 1;
2364 has_precision = 0;
2365 precision = 0;
2366 if (dp->precision_start != dp->precision_end)
2368 if (dp->precision_arg_index != ARG_NONE)
2370 int arg;
2372 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
2373 abort ();
2374 arg = a.arg[dp->precision_arg_index].a.a_int;
2375 /* "A negative precision is taken as if the precision
2376 were omitted." */
2377 if (arg >= 0)
2379 precision = arg;
2380 has_precision = 1;
2383 else
2385 const FCHAR_T *digitp = dp->precision_start + 1;
2387 precision = 0;
2388 while (digitp != dp->precision_end)
2389 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
2390 has_precision = 1;
2394 /* POSIX specifies the default precision to be 6 for %f, %F,
2395 %e, %E, but not for %g, %G. Implementations appear to use
2396 the same default precision also for %g, %G. */
2397 if (!has_precision)
2398 precision = 6;
2400 /* Allocate a temporary buffer of sufficient size. */
2401 # if NEED_PRINTF_INFINITE_DOUBLE && NEED_PRINTF_LONG_DOUBLE
2402 tmp_length = (type == TYPE_LONGDOUBLE ? LDBL_DIG + 1 : 0);
2403 # elif NEED_PRINTF_LONG_DOUBLE
2404 tmp_length = LDBL_DIG + 1;
2405 # else
2406 tmp_length = 0;
2407 # endif
2408 if (tmp_length < precision)
2409 tmp_length = precision;
2410 # if NEED_PRINTF_LONG_DOUBLE
2411 # if NEED_PRINTF_INFINITE_DOUBLE
2412 if (type == TYPE_LONGDOUBLE)
2413 # endif
2414 if (dp->conversion == 'f' || dp->conversion == 'F')
2416 long double arg = a.arg[dp->arg_index].a.a_longdouble;
2417 if (!(isnanl (arg) || arg + arg == arg))
2419 /* arg is finite and nonzero. */
2420 int exponent = floorlog10l (arg < 0 ? -arg : arg);
2421 if (exponent >= 0 && tmp_length < exponent + precision)
2422 tmp_length = exponent + precision;
2425 # endif
2426 /* Account for sign, decimal point etc. */
2427 tmp_length = xsum (tmp_length, 12);
2429 if (tmp_length < width)
2430 tmp_length = width;
2432 tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
2434 if (tmp_length <= sizeof (tmpbuf) / sizeof (DCHAR_T))
2435 tmp = tmpbuf;
2436 else
2438 size_t tmp_memsize = xtimes (tmp_length, sizeof (DCHAR_T));
2440 if (size_overflow_p (tmp_memsize))
2441 /* Overflow, would lead to out of memory. */
2442 goto out_of_memory;
2443 tmp = (DCHAR_T *) malloc (tmp_memsize);
2444 if (tmp == NULL)
2445 /* Out of memory. */
2446 goto out_of_memory;
2449 pad_ptr = NULL;
2450 p = tmp;
2452 # if NEED_PRINTF_LONG_DOUBLE || NEED_PRINTF_INFINITE_LONG_DOUBLE
2453 # if NEED_PRINTF_INFINITE_DOUBLE
2454 if (type == TYPE_LONGDOUBLE)
2455 # endif
2457 long double arg = a.arg[dp->arg_index].a.a_longdouble;
2459 if (isnanl (arg))
2461 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
2463 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
2465 else
2467 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
2470 else
2472 int sign = 0;
2473 DECL_LONG_DOUBLE_ROUNDING
2475 BEGIN_LONG_DOUBLE_ROUNDING ();
2477 if (signbit (arg)) /* arg < 0.0L or negative zero */
2479 sign = -1;
2480 arg = -arg;
2483 if (sign < 0)
2484 *p++ = '-';
2485 else if (flags & FLAG_SHOWSIGN)
2486 *p++ = '+';
2487 else if (flags & FLAG_SPACE)
2488 *p++ = ' ';
2490 if (arg > 0.0L && arg + arg == arg)
2492 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
2494 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
2496 else
2498 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
2501 else
2503 # if NEED_PRINTF_LONG_DOUBLE
2504 pad_ptr = p;
2506 if (dp->conversion == 'f' || dp->conversion == 'F')
2508 char *digits;
2509 size_t ndigits;
2511 digits =
2512 scale10_round_decimal_long_double (arg, precision);
2513 if (digits == NULL)
2515 END_LONG_DOUBLE_ROUNDING ();
2516 goto out_of_memory;
2518 ndigits = strlen (digits);
2520 if (ndigits > precision)
2523 --ndigits;
2524 *p++ = digits[ndigits];
2526 while (ndigits > precision);
2527 else
2528 *p++ = '0';
2529 /* Here ndigits <= precision. */
2530 if ((flags & FLAG_ALT) || precision > 0)
2532 *p++ = decimal_point_char ();
2533 for (; precision > ndigits; precision--)
2534 *p++ = '0';
2535 while (ndigits > 0)
2537 --ndigits;
2538 *p++ = digits[ndigits];
2542 free (digits);
2544 else if (dp->conversion == 'e' || dp->conversion == 'E')
2546 int exponent;
2548 if (arg == 0.0L)
2550 exponent = 0;
2551 *p++ = '0';
2552 if ((flags & FLAG_ALT) || precision > 0)
2554 *p++ = decimal_point_char ();
2555 for (; precision > 0; precision--)
2556 *p++ = '0';
2559 else
2561 /* arg > 0.0L. */
2562 int adjusted;
2563 char *digits;
2564 size_t ndigits;
2566 exponent = floorlog10l (arg);
2567 adjusted = 0;
2568 for (;;)
2570 digits =
2571 scale10_round_decimal_long_double (arg,
2572 (int)precision - exponent);
2573 if (digits == NULL)
2575 END_LONG_DOUBLE_ROUNDING ();
2576 goto out_of_memory;
2578 ndigits = strlen (digits);
2580 if (ndigits == precision + 1)
2581 break;
2582 if (ndigits < precision
2583 || ndigits > precision + 2)
2584 /* The exponent was not guessed
2585 precisely enough. */
2586 abort ();
2587 if (adjusted)
2588 /* None of two values of exponent is
2589 the right one. Prevent an endless
2590 loop. */
2591 abort ();
2592 free (digits);
2593 if (ndigits == precision)
2594 exponent -= 1;
2595 else
2596 exponent += 1;
2597 adjusted = 1;
2600 /* Here ndigits = precision+1. */
2601 *p++ = digits[--ndigits];
2602 if ((flags & FLAG_ALT) || precision > 0)
2604 *p++ = decimal_point_char ();
2605 while (ndigits > 0)
2607 --ndigits;
2608 *p++ = digits[ndigits];
2612 free (digits);
2615 *p++ = dp->conversion; /* 'e' or 'E' */
2616 # if WIDE_CHAR_VERSION
2618 static const wchar_t decimal_format[] =
2619 { '%', '+', '.', '2', 'd', '\0' };
2620 SNPRINTF (p, 6 + 1, decimal_format, exponent);
2622 while (*p != '\0')
2623 p++;
2624 # else
2625 if (sizeof (DCHAR_T) == 1)
2627 sprintf ((char *) p, "%+.2d", exponent);
2628 while (*p != '\0')
2629 p++;
2631 else
2633 char expbuf[6 + 1];
2634 const char *ep;
2635 sprintf (expbuf, "%+.2d", exponent);
2636 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
2637 p++;
2639 # endif
2641 else if (dp->conversion == 'g' || dp->conversion == 'G')
2643 if (precision == 0)
2644 precision = 1;
2645 /* precision >= 1. */
2647 if (arg == 0.0L)
2648 /* The exponent is 0, >= -4, < precision.
2649 Use fixed-point notation. */
2651 size_t ndigits = precision;
2652 /* Number of trailing zeroes that have to be
2653 dropped. */
2654 size_t nzeroes =
2655 (flags & FLAG_ALT ? 0 : precision - 1);
2657 --ndigits;
2658 *p++ = '0';
2659 if ((flags & FLAG_ALT) || ndigits > nzeroes)
2661 *p++ = decimal_point_char ();
2662 while (ndigits > nzeroes)
2664 --ndigits;
2665 *p++ = '0';
2669 else
2671 /* arg > 0.0L. */
2672 int exponent;
2673 int adjusted;
2674 char *digits;
2675 size_t ndigits;
2676 size_t nzeroes;
2678 exponent = floorlog10l (arg);
2679 adjusted = 0;
2680 for (;;)
2682 digits =
2683 scale10_round_decimal_long_double (arg,
2684 (int)(precision - 1) - exponent);
2685 if (digits == NULL)
2687 END_LONG_DOUBLE_ROUNDING ();
2688 goto out_of_memory;
2690 ndigits = strlen (digits);
2692 if (ndigits == precision)
2693 break;
2694 if (ndigits < precision - 1
2695 || ndigits > precision + 1)
2696 /* The exponent was not guessed
2697 precisely enough. */
2698 abort ();
2699 if (adjusted)
2700 /* None of two values of exponent is
2701 the right one. Prevent an endless
2702 loop. */
2703 abort ();
2704 free (digits);
2705 if (ndigits < precision)
2706 exponent -= 1;
2707 else
2708 exponent += 1;
2709 adjusted = 1;
2711 /* Here ndigits = precision. */
2713 /* Determine the number of trailing zeroes
2714 that have to be dropped. */
2715 nzeroes = 0;
2716 if ((flags & FLAG_ALT) == 0)
2717 while (nzeroes < ndigits
2718 && digits[nzeroes] == '0')
2719 nzeroes++;
2721 /* The exponent is now determined. */
2722 if (exponent >= -4
2723 && exponent < (long)precision)
2725 /* Fixed-point notation:
2726 max(exponent,0)+1 digits, then the
2727 decimal point, then the remaining
2728 digits without trailing zeroes. */
2729 if (exponent >= 0)
2731 size_t count = exponent + 1;
2732 /* Note: count <= precision = ndigits. */
2733 for (; count > 0; count--)
2734 *p++ = digits[--ndigits];
2735 if ((flags & FLAG_ALT) || ndigits > nzeroes)
2737 *p++ = decimal_point_char ();
2738 while (ndigits > nzeroes)
2740 --ndigits;
2741 *p++ = digits[ndigits];
2745 else
2747 size_t count = -exponent - 1;
2748 *p++ = '0';
2749 *p++ = decimal_point_char ();
2750 for (; count > 0; count--)
2751 *p++ = '0';
2752 while (ndigits > nzeroes)
2754 --ndigits;
2755 *p++ = digits[ndigits];
2759 else
2761 /* Exponential notation. */
2762 *p++ = digits[--ndigits];
2763 if ((flags & FLAG_ALT) || ndigits > nzeroes)
2765 *p++ = decimal_point_char ();
2766 while (ndigits > nzeroes)
2768 --ndigits;
2769 *p++ = digits[ndigits];
2772 *p++ = dp->conversion - 'G' + 'E'; /* 'e' or 'E' */
2773 # if WIDE_CHAR_VERSION
2775 static const wchar_t decimal_format[] =
2776 { '%', '+', '.', '2', 'd', '\0' };
2777 SNPRINTF (p, 6 + 1, decimal_format, exponent);
2779 while (*p != '\0')
2780 p++;
2781 # else
2782 if (sizeof (DCHAR_T) == 1)
2784 sprintf ((char *) p, "%+.2d", exponent);
2785 while (*p != '\0')
2786 p++;
2788 else
2790 char expbuf[6 + 1];
2791 const char *ep;
2792 sprintf (expbuf, "%+.2d", exponent);
2793 for (ep = expbuf; (*p = *ep) != '\0'; ep++)
2794 p++;
2796 # endif
2799 free (digits);
2802 else
2803 abort ();
2804 # else
2805 /* arg is finite. */
2806 abort ();
2807 # endif
2810 END_LONG_DOUBLE_ROUNDING ();
2813 # if NEED_PRINTF_INFINITE_DOUBLE
2814 else
2815 # endif
2816 # endif
2817 # if NEED_PRINTF_INFINITE_DOUBLE
2819 /* Simpler than above: handle only NaN, Infinity, zero. */
2820 double arg = a.arg[dp->arg_index].a.a_double;
2822 if (isnan (arg))
2824 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
2826 *p++ = 'N'; *p++ = 'A'; *p++ = 'N';
2828 else
2830 *p++ = 'n'; *p++ = 'a'; *p++ = 'n';
2833 else
2835 int sign = 0;
2837 if (signbit (arg)) /* arg < 0.0L or negative zero */
2839 sign = -1;
2840 arg = -arg;
2843 if (sign < 0)
2844 *p++ = '-';
2845 else if (flags & FLAG_SHOWSIGN)
2846 *p++ = '+';
2847 else if (flags & FLAG_SPACE)
2848 *p++ = ' ';
2850 if (arg > 0.0 && arg + arg == arg)
2852 if (dp->conversion >= 'A' && dp->conversion <= 'Z')
2854 *p++ = 'I'; *p++ = 'N'; *p++ = 'F';
2856 else
2858 *p++ = 'i'; *p++ = 'n'; *p++ = 'f';
2861 else
2863 if (!(arg == 0.0))
2864 abort ();
2866 pad_ptr = p;
2868 if (dp->conversion == 'f' || dp->conversion == 'F')
2870 *p++ = '0';
2871 if ((flags & FLAG_ALT) || precision > 0)
2873 *p++ = decimal_point_char ();
2874 for (; precision > 0; precision--)
2875 *p++ = '0';
2878 else if (dp->conversion == 'e' || dp->conversion == 'E')
2880 *p++ = '0';
2881 if ((flags & FLAG_ALT) || precision > 0)
2883 *p++ = decimal_point_char ();
2884 for (; precision > 0; precision--)
2885 *p++ = '0';
2887 *p++ = dp->conversion; /* 'e' or 'E' */
2888 *p++ = '+';
2889 /* Produce the same number of exponent digits as
2890 the native printf implementation. */
2891 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
2892 *p++ = '0';
2893 # endif
2894 *p++ = '0';
2895 *p++ = '0';
2897 else if (dp->conversion == 'g' || dp->conversion == 'G')
2899 *p++ = '0';
2900 if (flags & FLAG_ALT)
2902 size_t ndigits =
2903 (precision > 0 ? precision - 1 : 0);
2904 *p++ = decimal_point_char ();
2905 for (; ndigits > 0; --ndigits)
2906 *p++ = '0';
2909 else
2910 abort ();
2914 # endif
2916 /* The generated string now extends from tmp to p, with the
2917 zero padding insertion point being at pad_ptr. */
2918 if (has_width && p - tmp < width)
2920 size_t pad = width - (p - tmp);
2921 DCHAR_T *end = p + pad;
2923 if (flags & FLAG_LEFT)
2925 /* Pad with spaces on the right. */
2926 for (; pad > 0; pad--)
2927 *p++ = ' ';
2929 else if ((flags & FLAG_ZERO) && pad_ptr != NULL)
2931 /* Pad with zeroes. */
2932 DCHAR_T *q = end;
2934 while (p > pad_ptr)
2935 *--q = *--p;
2936 for (; pad > 0; pad--)
2937 *p++ = '0';
2939 else
2941 /* Pad with spaces on the left. */
2942 DCHAR_T *q = end;
2944 while (p > tmp)
2945 *--q = *--p;
2946 for (; pad > 0; pad--)
2947 *p++ = ' ';
2950 p = end;
2954 size_t count = p - tmp;
2956 if (count >= tmp_length)
2957 /* tmp_length was incorrectly calculated - fix the
2958 code above! */
2959 abort ();
2961 /* Make room for the result. */
2962 if (count >= allocated - length)
2964 size_t n = xsum (length, count);
2966 ENSURE_ALLOCATION (n);
2969 /* Append the result. */
2970 memcpy (result + length, tmp, count * sizeof (DCHAR_T));
2971 if (tmp != tmpbuf)
2972 free (tmp);
2973 length += count;
2976 #endif
2977 else
2979 arg_type type = a.arg[dp->arg_index].type;
2980 int flags = dp->flags;
2981 #if !USE_SNPRINTF || !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO
2982 int has_width;
2983 size_t width;
2984 #endif
2985 #if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO
2986 int pad_ourselves;
2987 #else
2988 # define pad_ourselves 0
2989 #endif
2990 TCHAR_T *fbp;
2991 unsigned int prefix_count;
2992 int prefixes[2];
2993 #if !USE_SNPRINTF
2994 size_t tmp_length;
2995 TCHAR_T tmpbuf[700];
2996 TCHAR_T *tmp;
2997 #endif
2999 #if !USE_SNPRINTF || !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO
3000 has_width = 0;
3001 width = 0;
3002 if (dp->width_start != dp->width_end)
3004 if (dp->width_arg_index != ARG_NONE)
3006 int arg;
3008 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
3009 abort ();
3010 arg = a.arg[dp->width_arg_index].a.a_int;
3011 if (arg < 0)
3013 /* "A negative field width is taken as a '-' flag
3014 followed by a positive field width." */
3015 flags |= FLAG_LEFT;
3016 width = (unsigned int) (-arg);
3018 else
3019 width = arg;
3021 else
3023 const FCHAR_T *digitp = dp->width_start;
3026 width = xsum (xtimes (width, 10), *digitp++ - '0');
3027 while (digitp != dp->width_end);
3029 has_width = 1;
3031 #endif
3033 #if !USE_SNPRINTF
3034 /* Allocate a temporary buffer of sufficient size for calling
3035 sprintf. */
3037 size_t precision;
3039 precision = 6;
3040 if (dp->precision_start != dp->precision_end)
3042 if (dp->precision_arg_index != ARG_NONE)
3044 int arg;
3046 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
3047 abort ();
3048 arg = a.arg[dp->precision_arg_index].a.a_int;
3049 precision = (arg < 0 ? 0 : arg);
3051 else
3053 const FCHAR_T *digitp = dp->precision_start + 1;
3055 precision = 0;
3056 while (digitp != dp->precision_end)
3057 precision = xsum (xtimes (precision, 10), *digitp++ - '0');
3061 switch (dp->conversion)
3064 case 'd': case 'i': case 'u':
3065 # if HAVE_LONG_LONG_INT
3066 if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
3067 tmp_length =
3068 (unsigned int) (sizeof (unsigned long long) * CHAR_BIT
3069 * 0.30103 /* binary -> decimal */
3071 + 1; /* turn floor into ceil */
3072 else
3073 # endif
3074 if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
3075 tmp_length =
3076 (unsigned int) (sizeof (unsigned long) * CHAR_BIT
3077 * 0.30103 /* binary -> decimal */
3079 + 1; /* turn floor into ceil */
3080 else
3081 tmp_length =
3082 (unsigned int) (sizeof (unsigned int) * CHAR_BIT
3083 * 0.30103 /* binary -> decimal */
3085 + 1; /* turn floor into ceil */
3086 if (tmp_length < precision)
3087 tmp_length = precision;
3088 /* Multiply by 2, as an estimate for FLAG_GROUP. */
3089 tmp_length = xsum (tmp_length, tmp_length);
3090 /* Add 1, to account for a leading sign. */
3091 tmp_length = xsum (tmp_length, 1);
3092 break;
3094 case 'o':
3095 # if HAVE_LONG_LONG_INT
3096 if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
3097 tmp_length =
3098 (unsigned int) (sizeof (unsigned long long) * CHAR_BIT
3099 * 0.333334 /* binary -> octal */
3101 + 1; /* turn floor into ceil */
3102 else
3103 # endif
3104 if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
3105 tmp_length =
3106 (unsigned int) (sizeof (unsigned long) * CHAR_BIT
3107 * 0.333334 /* binary -> octal */
3109 + 1; /* turn floor into ceil */
3110 else
3111 tmp_length =
3112 (unsigned int) (sizeof (unsigned int) * CHAR_BIT
3113 * 0.333334 /* binary -> octal */
3115 + 1; /* turn floor into ceil */
3116 if (tmp_length < precision)
3117 tmp_length = precision;
3118 /* Add 1, to account for a leading sign. */
3119 tmp_length = xsum (tmp_length, 1);
3120 break;
3122 case 'x': case 'X':
3123 # if HAVE_LONG_LONG_INT
3124 if (type == TYPE_LONGLONGINT || type == TYPE_ULONGLONGINT)
3125 tmp_length =
3126 (unsigned int) (sizeof (unsigned long long) * CHAR_BIT
3127 * 0.25 /* binary -> hexadecimal */
3129 + 1; /* turn floor into ceil */
3130 else
3131 # endif
3132 if (type == TYPE_LONGINT || type == TYPE_ULONGINT)
3133 tmp_length =
3134 (unsigned int) (sizeof (unsigned long) * CHAR_BIT
3135 * 0.25 /* binary -> hexadecimal */
3137 + 1; /* turn floor into ceil */
3138 else
3139 tmp_length =
3140 (unsigned int) (sizeof (unsigned int) * CHAR_BIT
3141 * 0.25 /* binary -> hexadecimal */
3143 + 1; /* turn floor into ceil */
3144 if (tmp_length < precision)
3145 tmp_length = precision;
3146 /* Add 2, to account for a leading sign or alternate form. */
3147 tmp_length = xsum (tmp_length, 2);
3148 break;
3150 case 'f': case 'F':
3151 if (type == TYPE_LONGDOUBLE)
3152 tmp_length =
3153 (unsigned int) (LDBL_MAX_EXP
3154 * 0.30103 /* binary -> decimal */
3155 * 2 /* estimate for FLAG_GROUP */
3157 + 1 /* turn floor into ceil */
3158 + 10; /* sign, decimal point etc. */
3159 else
3160 tmp_length =
3161 (unsigned int) (DBL_MAX_EXP
3162 * 0.30103 /* binary -> decimal */
3163 * 2 /* estimate for FLAG_GROUP */
3165 + 1 /* turn floor into ceil */
3166 + 10; /* sign, decimal point etc. */
3167 tmp_length = xsum (tmp_length, precision);
3168 break;
3170 case 'e': case 'E': case 'g': case 'G':
3171 tmp_length =
3172 12; /* sign, decimal point, exponent etc. */
3173 tmp_length = xsum (tmp_length, precision);
3174 break;
3176 case 'a': case 'A':
3177 if (type == TYPE_LONGDOUBLE)
3178 tmp_length =
3179 (unsigned int) (LDBL_DIG
3180 * 0.831 /* decimal -> hexadecimal */
3182 + 1; /* turn floor into ceil */
3183 else
3184 tmp_length =
3185 (unsigned int) (DBL_DIG
3186 * 0.831 /* decimal -> hexadecimal */
3188 + 1; /* turn floor into ceil */
3189 if (tmp_length < precision)
3190 tmp_length = precision;
3191 /* Account for sign, decimal point etc. */
3192 tmp_length = xsum (tmp_length, 12);
3193 break;
3195 case 'c':
3196 # if HAVE_WINT_T && !WIDE_CHAR_VERSION
3197 if (type == TYPE_WIDE_CHAR)
3198 tmp_length = MB_CUR_MAX;
3199 else
3200 # endif
3201 tmp_length = 1;
3202 break;
3204 case 's':
3205 # if HAVE_WCHAR_T
3206 if (type == TYPE_WIDE_STRING)
3208 tmp_length =
3209 local_wcslen (a.arg[dp->arg_index].a.a_wide_string);
3211 # if !WIDE_CHAR_VERSION
3212 tmp_length = xtimes (tmp_length, MB_CUR_MAX);
3213 # endif
3215 else
3216 # endif
3217 tmp_length = strlen (a.arg[dp->arg_index].a.a_string);
3218 break;
3220 case 'p':
3221 tmp_length =
3222 (unsigned int) (sizeof (void *) * CHAR_BIT
3223 * 0.25 /* binary -> hexadecimal */
3225 + 1 /* turn floor into ceil */
3226 + 2; /* account for leading 0x */
3227 break;
3229 default:
3230 abort ();
3233 # if ENABLE_UNISTDIO
3234 /* Padding considers the number of characters, therefore the
3235 number of elements after padding may be
3236 > max (tmp_length, width)
3237 but is certainly
3238 <= tmp_length + width. */
3239 tmp_length = xsum (tmp_length, width);
3240 # else
3241 /* Padding considers the number of elements, says POSIX. */
3242 if (tmp_length < width)
3243 tmp_length = width;
3244 # endif
3246 tmp_length = xsum (tmp_length, 1); /* account for trailing NUL */
3249 if (tmp_length <= sizeof (tmpbuf) / sizeof (TCHAR_T))
3250 tmp = tmpbuf;
3251 else
3253 size_t tmp_memsize = xtimes (tmp_length, sizeof (TCHAR_T));
3255 if (size_overflow_p (tmp_memsize))
3256 /* Overflow, would lead to out of memory. */
3257 goto out_of_memory;
3258 tmp = (TCHAR_T *) malloc (tmp_memsize);
3259 if (tmp == NULL)
3260 /* Out of memory. */
3261 goto out_of_memory;
3263 #endif
3265 /* Decide whether to perform the padding ourselves. */
3266 #if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO
3267 switch (dp->conversion)
3269 # if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO
3270 /* If we need conversion from TCHAR_T[] to DCHAR_T[], we need
3271 to perform the padding after this conversion. Functions
3272 with unistdio extensions perform the padding based on
3273 character count rather than element count. */
3274 case 'c': case 's':
3275 # endif
3276 # if NEED_PRINTF_FLAG_ZERO
3277 case 'f': case 'F': case 'e': case 'E': case 'g': case 'G':
3278 case 'a': case 'A':
3279 # endif
3280 pad_ourselves = 1;
3281 break;
3282 default:
3283 pad_ourselves = 0;
3284 break;
3286 #endif
3288 /* Construct the format string for calling snprintf or
3289 sprintf. */
3290 fbp = buf;
3291 *fbp++ = '%';
3292 #if NEED_PRINTF_FLAG_GROUPING
3293 /* The underlying implementation doesn't support the ' flag.
3294 Produce no grouping characters in this case; this is
3295 acceptable because the grouping is locale dependent. */
3296 #else
3297 if (flags & FLAG_GROUP)
3298 *fbp++ = '\'';
3299 #endif
3300 if (flags & FLAG_LEFT)
3301 *fbp++ = '-';
3302 if (flags & FLAG_SHOWSIGN)
3303 *fbp++ = '+';
3304 if (flags & FLAG_SPACE)
3305 *fbp++ = ' ';
3306 if (flags & FLAG_ALT)
3307 *fbp++ = '#';
3308 if (!pad_ourselves)
3310 if (flags & FLAG_ZERO)
3311 *fbp++ = '0';
3312 if (dp->width_start != dp->width_end)
3314 size_t n = dp->width_end - dp->width_start;
3315 /* The width specification is known to consist only
3316 of standard ASCII characters. */
3317 if (sizeof (FCHAR_T) == sizeof (TCHAR_T))
3319 memcpy (fbp, dp->width_start, n * sizeof (TCHAR_T));
3320 fbp += n;
3322 else
3324 const FCHAR_T *mp = dp->width_start;
3326 *fbp++ = (unsigned char) *mp++;
3327 while (--n > 0);
3331 if (dp->precision_start != dp->precision_end)
3333 size_t n = dp->precision_end - dp->precision_start;
3334 /* The precision specification is known to consist only
3335 of standard ASCII characters. */
3336 if (sizeof (FCHAR_T) == sizeof (TCHAR_T))
3338 memcpy (fbp, dp->precision_start, n * sizeof (TCHAR_T));
3339 fbp += n;
3341 else
3343 const FCHAR_T *mp = dp->precision_start;
3345 *fbp++ = (unsigned char) *mp++;
3346 while (--n > 0);
3350 switch (type)
3352 #if HAVE_LONG_LONG_INT
3353 case TYPE_LONGLONGINT:
3354 case TYPE_ULONGLONGINT:
3355 # if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
3356 *fbp++ = 'I';
3357 *fbp++ = '6';
3358 *fbp++ = '4';
3359 break;
3360 # else
3361 *fbp++ = 'l';
3362 /*FALLTHROUGH*/
3363 # endif
3364 #endif
3365 case TYPE_LONGINT:
3366 case TYPE_ULONGINT:
3367 #if HAVE_WINT_T
3368 case TYPE_WIDE_CHAR:
3369 #endif
3370 #if HAVE_WCHAR_T
3371 case TYPE_WIDE_STRING:
3372 #endif
3373 *fbp++ = 'l';
3374 break;
3375 case TYPE_LONGDOUBLE:
3376 *fbp++ = 'L';
3377 break;
3378 default:
3379 break;
3381 #if NEED_PRINTF_DIRECTIVE_F
3382 if (dp->conversion == 'F')
3383 *fbp = 'f';
3384 else
3385 #endif
3386 *fbp = dp->conversion;
3387 #if USE_SNPRINTF
3388 fbp[1] = '%';
3389 fbp[2] = 'n';
3390 fbp[3] = '\0';
3391 #else
3392 fbp[1] = '\0';
3393 #endif
3395 /* Construct the arguments for calling snprintf or sprintf. */
3396 prefix_count = 0;
3397 if (!pad_ourselves && dp->width_arg_index != ARG_NONE)
3399 if (!(a.arg[dp->width_arg_index].type == TYPE_INT))
3400 abort ();
3401 prefixes[prefix_count++] = a.arg[dp->width_arg_index].a.a_int;
3403 if (dp->precision_arg_index != ARG_NONE)
3405 if (!(a.arg[dp->precision_arg_index].type == TYPE_INT))
3406 abort ();
3407 prefixes[prefix_count++] = a.arg[dp->precision_arg_index].a.a_int;
3410 #if USE_SNPRINTF
3411 /* The SNPRINTF result is appended after result[0..length].
3412 The latter is an array of DCHAR_T; SNPRINTF appends an
3413 array of TCHAR_T to it. This is possible because
3414 sizeof (TCHAR_T) divides sizeof (DCHAR_T) and
3415 alignof (TCHAR_T) <= alignof (DCHAR_T). */
3416 # define TCHARS_PER_DCHAR (sizeof (DCHAR_T) / sizeof (TCHAR_T))
3417 /* Prepare checking whether snprintf returns the count
3418 via %n. */
3419 ENSURE_ALLOCATION (xsum (length, 1));
3420 *(TCHAR_T *) (result + length) = '\0';
3421 #endif
3423 for (;;)
3425 int count = -1;
3427 #if USE_SNPRINTF
3428 int retcount = 0;
3429 size_t maxlen = allocated - length;
3430 /* SNPRINTF can fail if its second argument is
3431 > INT_MAX. */
3432 if (maxlen > INT_MAX / TCHARS_PER_DCHAR)
3433 goto overflow;
3434 maxlen = maxlen * TCHARS_PER_DCHAR;
3435 # define SNPRINTF_BUF(arg) \
3436 switch (prefix_count) \
3438 case 0: \
3439 retcount = SNPRINTF ((TCHAR_T *) (result + length), \
3440 maxlen, buf, \
3441 arg, &count); \
3442 break; \
3443 case 1: \
3444 retcount = SNPRINTF ((TCHAR_T *) (result + length), \
3445 maxlen, buf, \
3446 prefixes[0], arg, &count); \
3447 break; \
3448 case 2: \
3449 retcount = SNPRINTF ((TCHAR_T *) (result + length), \
3450 maxlen, buf, \
3451 prefixes[0], prefixes[1], arg, \
3452 &count); \
3453 break; \
3454 default: \
3455 abort (); \
3457 #else
3458 # define SNPRINTF_BUF(arg) \
3459 switch (prefix_count) \
3461 case 0: \
3462 count = sprintf (tmp, buf, arg); \
3463 break; \
3464 case 1: \
3465 count = sprintf (tmp, buf, prefixes[0], arg); \
3466 break; \
3467 case 2: \
3468 count = sprintf (tmp, buf, prefixes[0], prefixes[1],\
3469 arg); \
3470 break; \
3471 default: \
3472 abort (); \
3474 #endif
3476 switch (type)
3478 case TYPE_SCHAR:
3480 int arg = a.arg[dp->arg_index].a.a_schar;
3481 SNPRINTF_BUF (arg);
3483 break;
3484 case TYPE_UCHAR:
3486 unsigned int arg = a.arg[dp->arg_index].a.a_uchar;
3487 SNPRINTF_BUF (arg);
3489 break;
3490 case TYPE_SHORT:
3492 int arg = a.arg[dp->arg_index].a.a_short;
3493 SNPRINTF_BUF (arg);
3495 break;
3496 case TYPE_USHORT:
3498 unsigned int arg = a.arg[dp->arg_index].a.a_ushort;
3499 SNPRINTF_BUF (arg);
3501 break;
3502 case TYPE_INT:
3504 int arg = a.arg[dp->arg_index].a.a_int;
3505 SNPRINTF_BUF (arg);
3507 break;
3508 case TYPE_UINT:
3510 unsigned int arg = a.arg[dp->arg_index].a.a_uint;
3511 SNPRINTF_BUF (arg);
3513 break;
3514 case TYPE_LONGINT:
3516 long int arg = a.arg[dp->arg_index].a.a_longint;
3517 SNPRINTF_BUF (arg);
3519 break;
3520 case TYPE_ULONGINT:
3522 unsigned long int arg = a.arg[dp->arg_index].a.a_ulongint;
3523 SNPRINTF_BUF (arg);
3525 break;
3526 #if HAVE_LONG_LONG_INT
3527 case TYPE_LONGLONGINT:
3529 long long int arg = a.arg[dp->arg_index].a.a_longlongint;
3530 SNPRINTF_BUF (arg);
3532 break;
3533 case TYPE_ULONGLONGINT:
3535 unsigned long long int arg = a.arg[dp->arg_index].a.a_ulonglongint;
3536 SNPRINTF_BUF (arg);
3538 break;
3539 #endif
3540 case TYPE_DOUBLE:
3542 double arg = a.arg[dp->arg_index].a.a_double;
3543 SNPRINTF_BUF (arg);
3545 break;
3546 case TYPE_LONGDOUBLE:
3548 long double arg = a.arg[dp->arg_index].a.a_longdouble;
3549 SNPRINTF_BUF (arg);
3551 break;
3552 case TYPE_CHAR:
3554 int arg = a.arg[dp->arg_index].a.a_char;
3555 SNPRINTF_BUF (arg);
3557 break;
3558 #if HAVE_WINT_T
3559 case TYPE_WIDE_CHAR:
3561 wint_t arg = a.arg[dp->arg_index].a.a_wide_char;
3562 SNPRINTF_BUF (arg);
3564 break;
3565 #endif
3566 case TYPE_STRING:
3568 const char *arg = a.arg[dp->arg_index].a.a_string;
3569 SNPRINTF_BUF (arg);
3571 break;
3572 #if HAVE_WCHAR_T
3573 case TYPE_WIDE_STRING:
3575 const wchar_t *arg = a.arg[dp->arg_index].a.a_wide_string;
3576 SNPRINTF_BUF (arg);
3578 break;
3579 #endif
3580 case TYPE_POINTER:
3582 void *arg = a.arg[dp->arg_index].a.a_pointer;
3583 SNPRINTF_BUF (arg);
3585 break;
3586 default:
3587 abort ();
3590 #if USE_SNPRINTF
3591 /* Portability: Not all implementations of snprintf()
3592 are ISO C 99 compliant. Determine the number of
3593 bytes that snprintf() has produced or would have
3594 produced. */
3595 if (count >= 0)
3597 /* Verify that snprintf() has NUL-terminated its
3598 result. */
3599 if (count < maxlen
3600 && ((TCHAR_T *) (result + length)) [count] != '\0')
3601 abort ();
3602 /* Portability hack. */
3603 if (retcount > count)
3604 count = retcount;
3606 else
3608 /* snprintf() doesn't understand the '%n'
3609 directive. */
3610 if (fbp[1] != '\0')
3612 /* Don't use the '%n' directive; instead, look
3613 at the snprintf() return value. */
3614 fbp[1] = '\0';
3615 continue;
3617 else
3619 /* Look at the snprintf() return value. */
3620 if (retcount < 0)
3622 /* HP-UX 10.20 snprintf() is doubly deficient:
3623 It doesn't understand the '%n' directive,
3624 *and* it returns -1 (rather than the length
3625 that would have been required) when the
3626 buffer is too small. */
3627 size_t bigger_need =
3628 xsum (xtimes (allocated, 2), 12);
3629 ENSURE_ALLOCATION (bigger_need);
3630 continue;
3632 else
3633 count = retcount;
3636 #endif
3638 /* Attempt to handle failure. */
3639 if (count < 0)
3641 if (!(result == resultbuf || result == NULL))
3642 free (result);
3643 if (buf_malloced != NULL)
3644 free (buf_malloced);
3645 CLEANUP ();
3646 errno = EINVAL;
3647 return NULL;
3650 #if USE_SNPRINTF
3651 /* Handle overflow of the allocated buffer. */
3652 if (count >= maxlen)
3654 /* Need at least count * sizeof (TCHAR_T) bytes. But
3655 allocate proportionally, to avoid looping eternally
3656 if snprintf() reports a too small count. */
3657 size_t n =
3658 xmax (xsum (length,
3659 (count + TCHARS_PER_DCHAR - 1)
3660 / TCHARS_PER_DCHAR),
3661 xtimes (allocated, 2));
3663 ENSURE_ALLOCATION (n);
3664 continue;
3666 #endif
3668 #if !DCHAR_IS_TCHAR
3669 # if !USE_SNPRINTF
3670 if (count >= tmp_length)
3671 /* tmp_length was incorrectly calculated - fix the
3672 code above! */
3673 abort ();
3674 # endif
3676 /* Convert from TCHAR_T[] to DCHAR_T[]. */
3677 if (dp->conversion == 'c' || dp->conversion == 's')
3679 /* type = TYPE_CHAR or TYPE_WIDE_CHAR or TYPE_STRING
3680 TYPE_WIDE_STRING.
3681 The result string is not certainly ASCII. */
3682 const TCHAR_T *tmpsrc;
3683 DCHAR_T *tmpdst;
3684 size_t tmpdst_len;
3685 /* This code assumes that TCHAR_T is 'char'. */
3686 typedef int TCHAR_T_verify
3687 [2 * (sizeof (TCHAR_T) == 1) - 1];
3688 # if USE_SNPRINTF
3689 tmpsrc = (TCHAR_T *) (result + length);
3690 # else
3691 tmpsrc = tmp;
3692 # endif
3693 tmpdst = NULL;
3694 tmpdst_len = 0;
3695 if (DCHAR_CONV_FROM_ENCODING (locale_charset (),
3696 iconveh_question_mark,
3697 tmpsrc, count,
3698 NULL,
3699 &tmpdst, &tmpdst_len)
3700 < 0)
3702 int saved_errno = errno;
3703 if (!(result == resultbuf || result == NULL))
3704 free (result);
3705 if (buf_malloced != NULL)
3706 free (buf_malloced);
3707 CLEANUP ();
3708 errno = saved_errno;
3709 return NULL;
3711 ENSURE_ALLOCATION (xsum (length, tmpdst_len));
3712 DCHAR_CPY (result + length, tmpdst, tmpdst_len);
3713 free (tmpdst);
3714 count = tmpdst_len;
3716 else
3718 /* The result string is ASCII.
3719 Simple 1:1 conversion. */
3720 # if USE_SNPRINTF
3721 /* If sizeof (DCHAR_T) == sizeof (TCHAR_T), it's a
3722 no-op conversion, in-place on the array starting
3723 at (result + length). */
3724 if (sizeof (DCHAR_T) != sizeof (TCHAR_T))
3725 # endif
3727 const TCHAR_T *tmpsrc;
3728 DCHAR_T *tmpdst;
3729 size_t n;
3731 # if USE_SNPRINTF
3732 if (result == resultbuf)
3734 tmpsrc = (TCHAR_T *) (result + length);
3735 /* ENSURE_ALLOCATION will not move tmpsrc
3736 (because it's part of resultbuf). */
3737 ENSURE_ALLOCATION (xsum (length, count));
3739 else
3741 /* ENSURE_ALLOCATION will move the array
3742 (because it uses realloc(). */
3743 ENSURE_ALLOCATION (xsum (length, count));
3744 tmpsrc = (TCHAR_T *) (result + length);
3746 # else
3747 tmpsrc = tmp;
3748 ENSURE_ALLOCATION (xsum (length, count));
3749 # endif
3750 tmpdst = result + length;
3751 /* Copy backwards, because of overlapping. */
3752 tmpsrc += count;
3753 tmpdst += count;
3754 for (n = count; n > 0; n--)
3755 *--tmpdst = (unsigned char) *--tmpsrc;
3758 #endif
3760 #if DCHAR_IS_TCHAR && !USE_SNPRINTF
3761 /* Make room for the result. */
3762 if (count > allocated - length)
3764 /* Need at least count elements. But allocate
3765 proportionally. */
3766 size_t n =
3767 xmax (xsum (length, count), xtimes (allocated, 2));
3769 ENSURE_ALLOCATION (n);
3771 #endif
3773 /* Here count <= allocated - length. */
3775 /* Perform padding. */
3776 #if !DCHAR_IS_TCHAR || ENABLE_UNISTDIO || NEED_PRINTF_FLAG_ZERO
3777 if (pad_ourselves && has_width)
3779 size_t w;
3780 # if ENABLE_UNISTDIO
3781 /* Outside POSIX, it's preferrable to compare the width
3782 against the number of _characters_ of the converted
3783 value. */
3784 w = DCHAR_MBSNLEN (result + length, count);
3785 # else
3786 /* The width is compared against the number of _bytes_
3787 of the converted value, says POSIX. */
3788 w = count;
3789 # endif
3790 if (w < width)
3792 size_t pad = width - w;
3793 # if USE_SNPRINTF
3794 /* Make room for the result. */
3795 if (xsum (count, pad) > allocated - length)
3797 /* Need at least count + pad elements. But
3798 allocate proportionally. */
3799 size_t n =
3800 xmax (xsum3 (length, count, pad),
3801 xtimes (allocated, 2));
3803 length += count;
3804 ENSURE_ALLOCATION (n);
3805 length -= count;
3807 /* Here count + pad <= allocated - length. */
3808 # endif
3810 # if !DCHAR_IS_TCHAR || USE_SNPRINTF
3811 DCHAR_T * const rp = result + length;
3812 # else
3813 DCHAR_T * const rp = tmp;
3814 # endif
3815 DCHAR_T *p = rp + count;
3816 DCHAR_T *end = p + pad;
3817 # if NEED_PRINTF_FLAG_ZERO
3818 DCHAR_T *pad_ptr;
3819 # if !DCHAR_IS_TCHAR
3820 if (dp->conversion == 'c'
3821 || dp->conversion == 's')
3822 /* No zero-padding for string directives. */
3823 pad_ptr = NULL;
3824 else
3825 # endif
3827 pad_ptr = (*rp == '-' ? rp + 1 : rp);
3828 /* No zero-padding of "inf" and "nan". */
3829 if ((*pad_ptr >= 'A' && *pad_ptr <= 'Z')
3830 || (*pad_ptr >= 'a' && *pad_ptr <= 'z'))
3831 pad_ptr = NULL;
3833 # endif
3834 /* The generated string now extends from rp to p,
3835 with the zero padding insertion point being at
3836 pad_ptr. */
3838 count = count + pad; /* = end - rp */
3840 if (flags & FLAG_LEFT)
3842 /* Pad with spaces on the right. */
3843 for (; pad > 0; pad--)
3844 *p++ = ' ';
3846 # if NEED_PRINTF_FLAG_ZERO
3847 else if ((flags & FLAG_ZERO) && pad_ptr != NULL)
3849 /* Pad with zeroes. */
3850 DCHAR_T *q = end;
3852 while (p > pad_ptr)
3853 *--q = *--p;
3854 for (; pad > 0; pad--)
3855 *p++ = '0';
3857 # endif
3858 else
3860 /* Pad with spaces on the left. */
3861 DCHAR_T *q = end;
3863 while (p > rp)
3864 *--q = *--p;
3865 for (; pad > 0; pad--)
3866 *p++ = ' ';
3871 #endif
3873 #if DCHAR_IS_TCHAR && !USE_SNPRINTF
3874 if (count >= tmp_length)
3875 /* tmp_length was incorrectly calculated - fix the
3876 code above! */
3877 abort ();
3878 #endif
3880 /* Here still count <= allocated - length. */
3882 #if !DCHAR_IS_TCHAR || USE_SNPRINTF
3883 /* The snprintf() result did fit. */
3884 #else
3885 /* Append the sprintf() result. */
3886 memcpy (result + length, tmp, count * sizeof (DCHAR_T));
3887 #endif
3888 #if !USE_SNPRINTF
3889 if (tmp != tmpbuf)
3890 free (tmp);
3891 #endif
3893 #if NEED_PRINTF_DIRECTIVE_F
3894 if (dp->conversion == 'F')
3896 /* Convert the %f result to upper case for %F. */
3897 DCHAR_T *rp = result + length;
3898 size_t rc;
3899 for (rc = count; rc > 0; rc--, rp++)
3900 if (*rp >= 'a' && *rp <= 'z')
3901 *rp = *rp - 'a' + 'A';
3903 #endif
3905 length += count;
3906 break;
3912 /* Add the final NUL. */
3913 ENSURE_ALLOCATION (xsum (length, 1));
3914 result[length] = '\0';
3916 if (result != resultbuf && length + 1 < allocated)
3918 /* Shrink the allocated memory if possible. */
3919 DCHAR_T *memory;
3921 memory = (DCHAR_T *) realloc (result, (length + 1) * sizeof (DCHAR_T));
3922 if (memory != NULL)
3923 result = memory;
3926 if (buf_malloced != NULL)
3927 free (buf_malloced);
3928 CLEANUP ();
3929 *lengthp = length;
3930 /* Note that we can produce a big string of a length > INT_MAX. POSIX
3931 says that snprintf() fails with errno = EOVERFLOW in this case, but
3932 that's only because snprintf() returns an 'int'. This function does
3933 not have this limitation. */
3934 return result;
3936 overflow:
3937 if (!(result == resultbuf || result == NULL))
3938 free (result);
3939 if (buf_malloced != NULL)
3940 free (buf_malloced);
3941 CLEANUP ();
3942 errno = EOVERFLOW;
3943 return NULL;
3945 out_of_memory:
3946 if (!(result == resultbuf || result == NULL))
3947 free (result);
3948 if (buf_malloced != NULL)
3949 free (buf_malloced);
3950 out_of_memory_1:
3951 CLEANUP ();
3952 errno = ENOMEM;
3953 return NULL;
3957 #undef TCHARS_PER_DCHAR
3958 #undef SNPRINTF
3959 #undef USE_SNPRINTF
3960 #undef PRINTF_PARSE
3961 #undef DIRECTIVES
3962 #undef DIRECTIVE
3963 #undef TCHAR_T
3964 #undef DCHAR_T
3965 #undef FCHAR_T
3966 #undef VASNPRINTF