util.c: compress_variables: extracted from lexmin.cc
[barvinok.git] / genfun.cc
bloba1a440d2f58d18218332bd240755e2a10f35975b
1 #include <iostream>
2 #include <vector>
3 #include <assert.h>
4 #include "config.h"
5 #include <barvinok/genfun.h>
6 #include <barvinok/barvinok.h>
7 #include "conversion.h"
8 #include "genfun_constructor.h"
9 #include "mat_util.h"
11 using std::cout;
12 using std::cerr;
13 using std::endl;
14 using std::pair;
15 using std::vector;
17 static int lex_cmp(mat_ZZ& a, mat_ZZ& b)
19 assert(a.NumCols() == b.NumCols());
20 int alen = a.NumRows();
21 int blen = b.NumRows();
22 int len = alen < blen ? alen : blen;
24 for (int i = 0; i < len; ++i) {
25 int s = lex_cmp(a[i], b[i]);
26 if (s)
27 return s;
29 return alen-blen;
32 static void lex_order_terms(struct short_rat* rat)
34 for (int i = 0; i < rat->n.power.NumRows(); ++i) {
35 int m = i;
36 for (int j = i+1; j < rat->n.power.NumRows(); ++j)
37 if (lex_cmp(rat->n.power[j], rat->n.power[m]) < 0)
38 m = j;
39 if (m != i) {
40 vec_ZZ tmp = rat->n.power[m];
41 rat->n.power[m] = rat->n.power[i];
42 rat->n.power[i] = tmp;
43 QQ tmp_coeff = rat->n.coeff[m];
44 rat->n.coeff[m] = rat->n.coeff[i];
45 rat->n.coeff[i] = tmp_coeff;
50 void short_rat::add(short_rat *r)
52 for (int i = 0; i < r->n.power.NumRows(); ++i) {
53 int len = n.coeff.length();
54 int j;
55 for (j = 0; j < len; ++j)
56 if (r->n.power[i] == n.power[j])
57 break;
58 if (j < len) {
59 n.coeff[j] += r->n.coeff[i];
60 if (n.coeff[j].n == 0) {
61 if (j < len-1) {
62 n.power[j] = n.power[len-1];
63 n.coeff[j] = n.coeff[len-1];
65 int dim = n.power.NumCols();
66 n.coeff.SetLength(len-1);
67 n.power.SetDims(len-1, dim);
69 } else {
70 int dim = n.power.NumCols();
71 n.coeff.SetLength(len+1);
72 n.power.SetDims(len+1, dim);
73 n.coeff[len] = r->n.coeff[i];
74 n.power[len] = r->n.power[i];
79 bool short_rat::reduced()
81 int dim = n.power.NumCols();
82 lex_order_terms(this);
83 if (n.power.NumRows() % 2 == 0) {
84 if (n.coeff[0].n == -n.coeff[1].n &&
85 n.coeff[0].d == n.coeff[1].d) {
86 vec_ZZ step = n.power[1] - n.power[0];
87 int k;
88 for (k = 1; k < n.power.NumRows()/2; ++k) {
89 if (n.coeff[2*k].n != -n.coeff[2*k+1].n ||
90 n.coeff[2*k].d != n.coeff[2*k+1].d)
91 break;
92 if (step != n.power[2*k+1] - n.power[2*k])
93 break;
95 if (k == n.power.NumRows()/2) {
96 for (k = 0; k < d.power.NumRows(); ++k)
97 if (d.power[k] == step)
98 break;
99 if (k < d.power.NumRows()) {
100 for (++k; k < d.power.NumRows(); ++k)
101 d.power[k-1] = d.power[k];
102 d.power.SetDims(k-1, dim);
103 for (k = 1; k < n.power.NumRows()/2; ++k) {
104 n.coeff[k] = n.coeff[2*k];
105 n.power[k] = n.power[2*k];
107 n.coeff.SetLength(k);
108 n.power.SetDims(k, dim);
109 return true;
114 return false;
117 void gen_fun::add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den)
119 if (c.n == 0)
120 return;
122 short_rat * r = new short_rat;
123 r->n.coeff.SetLength(1);
124 ZZ g = GCD(c.n, c.d);
125 r->n.coeff[0].n = c.n/g;
126 r->n.coeff[0].d = c.d/g;
127 r->n.power.SetDims(1, num.length());
128 r->n.power[0] = num;
129 r->d.power = den;
131 /* Make all powers in denominator lexico-positive */
132 for (int i = 0; i < r->d.power.NumRows(); ++i) {
133 int j;
134 for (j = 0; j < r->d.power.NumCols(); ++j)
135 if (r->d.power[i][j] != 0)
136 break;
137 if (r->d.power[i][j] < 0) {
138 r->d.power[i] = -r->d.power[i];
139 r->n.coeff[0].n = -r->n.coeff[0].n;
140 r->n.power[0] += r->d.power[i];
144 /* Order powers in denominator */
145 lex_order_rows(r->d.power);
147 for (int i = 0; i < term.size(); ++i)
148 if (lex_cmp(term[i]->d.power, r->d.power) == 0) {
149 term[i]->add(r);
150 if (term[i]->n.coeff.length() == 0) {
151 delete term[i];
152 if (i != term.size()-1)
153 term[i] = term[term.size()-1];
154 term.pop_back();
155 } else if (term[i]->reduced()) {
156 delete r;
157 /* we've modified term[i], so removed it
158 * and add it back again
160 r = term[i];
161 if (i != term.size()-1)
162 term[i] = term[term.size()-1];
163 term.pop_back();
164 i = -1;
165 continue;
167 delete r;
168 return;
171 term.push_back(r);
174 void gen_fun::add(const QQ& c, const gen_fun *gf)
176 QQ p;
177 for (int i = 0; i < gf->term.size(); ++i) {
178 for (int j = 0; j < gf->term[i]->n.power.NumRows(); ++j) {
179 p = c;
180 p *= gf->term[i]->n.coeff[j];
181 add(p, gf->term[i]->n.power[j], gf->term[i]->d.power);
186 static void split_param_compression(Matrix *CP, mat_ZZ& map, vec_ZZ& offset)
188 Matrix *T = Transpose(CP);
189 matrix2zz(T, map, T->NbRows-1, T->NbColumns-1);
190 values2zz(T->p[T->NbRows-1], offset, T->NbColumns-1);
191 Matrix_Free(T);
195 * Perform the substitution specified by CP
197 * CP is a homogeneous matrix that maps a set of "compressed parameters"
198 * to the original set of parameters.
200 * This function is applied to a gen_fun computed with the compressed parameters
201 * and adapts it to refer to the original parameters.
203 * That is, if y are the compressed parameters and x = A y + b are the original
204 * parameters, then we want the coefficient of the monomial t^y in the original
205 * generating function to be the coefficient of the monomial u^x in the resulting
206 * generating function.
207 * The original generating function has the form
209 * a t^m/(1-t^n) = a t^m + a t^{m+n} + a t^{m+2n} + ...
211 * Since each term t^y should correspond to a term u^x, with x = A y + b, we want
213 * a u^{A m + b} + a u^{A (m+n) + b} + a u^{A (m+2n) +b} + ... =
215 * = a u^{A m + b}/(1-u^{A n})
217 * Therefore, we multiply the powers m and n in both numerator and denominator by A
218 * and add b to the power in the numerator.
219 * Since the above powers are stored as row vectors m^T and n^T,
220 * we compute, say, m'^T = m^T A^T to obtain m' = A m.
222 * The pair (map, offset) contains the same information as CP.
223 * map is the transpose of the linear part of CP, while offset is the constant part.
225 void gen_fun::substitute(Matrix *CP)
227 mat_ZZ map;
228 vec_ZZ offset;
229 split_param_compression(CP, map, offset);
230 Polyhedron *C = Polyhedron_Image(context, CP, 0);
231 Polyhedron_Free(context);
232 context = C;
233 for (int i = 0; i < term.size(); ++i) {
234 term[i]->d.power *= map;
235 term[i]->n.power *= map;
236 for (int j = 0; j < term[i]->n.power.NumRows(); ++j)
237 term[i]->n.power[j] += offset;
241 struct cone {
242 int *pos;
243 vector<pair<Vector *, QQ> > vertices;
244 cone(int *pos) : pos(pos) {}
247 #ifndef HAVE_COMPRESS_PARMS
248 static Matrix *compress_parms(Matrix *M, unsigned nparam)
250 assert(0);
252 #endif
254 struct parallel_polytopes {
255 gf_base *red;
256 Matrix *Constraints;
257 Matrix *CP, *T;
258 int dim;
259 int nparam;
260 vector<cone> cones;
262 parallel_polytopes(int n, Polyhedron *context, int dim, int nparam) :
263 dim(dim), nparam(nparam) {
264 red = gf_base::create(Polyhedron_Copy(context), dim, nparam);
265 Constraints = NULL;
266 CP = NULL;
267 T = NULL;
269 void add(const QQ& c, Polyhedron *P, unsigned MaxRays) {
270 Polyhedron *Q = remove_equalities_p(Polyhedron_Copy(P), P->Dimension-nparam,
271 NULL);
272 POL_ENSURE_VERTICES(Q);
273 if (emptyQ(Q)) {
274 Polyhedron_Free(Q);
275 return;
278 if (Q->NbEq != 0) {
279 Polyhedron *R;
280 if (!CP) {
281 Matrix *M;
282 M = Matrix_Alloc(Q->NbEq, Q->Dimension+2);
283 Vector_Copy(Q->Constraint[0], M->p[0], Q->NbEq * (Q->Dimension+2));
284 CP = compress_parms(M, nparam);
285 T = align_matrix(CP, Q->Dimension+1);
286 Matrix_Free(M);
288 R = Polyhedron_Preimage(Q, T, MaxRays);
289 Polyhedron_Free(Q);
290 Q = remove_equalities_p(R, R->Dimension-nparam, NULL);
292 assert(Q->NbEq == 0);
293 assert(Q->Dimension == dim);
295 if (First_Non_Zero(Q->Constraint[Q->NbConstraints-1]+1, Q->Dimension) == -1)
296 Q->NbConstraints--;
298 if (!Constraints) {
299 red->base->init(Q);
300 Constraints = Matrix_Alloc(Q->NbConstraints, Q->Dimension);
301 for (int i = 0; i < Q->NbConstraints; ++i) {
302 Vector_Copy(Q->Constraint[i]+1, Constraints->p[i], Q->Dimension);
304 } else {
305 for (int i = 0; i < Q->NbConstraints; ++i) {
306 int j;
307 for (j = 0; j < Constraints->NbRows; ++j)
308 if (Vector_Equal(Q->Constraint[i]+1, Constraints->p[j],
309 Q->Dimension))
310 break;
311 assert(j < Constraints->NbRows);
315 for (int i = 0; i < Q->NbRays; ++i) {
316 if (!value_pos_p(Q->Ray[i][dim+1]))
317 continue;
319 Polyhedron *C = supporting_cone(Q, i);
321 if (First_Non_Zero(C->Constraint[C->NbConstraints-1]+1,
322 C->Dimension) == -1)
323 C->NbConstraints--;
325 int *pos = new int[1+C->NbConstraints];
326 pos[0] = C->NbConstraints;
327 int l = 0;
328 for (int k = 0; k < Constraints->NbRows; ++k) {
329 for (int j = 0; j < C->NbConstraints; ++j) {
330 if (Vector_Equal(C->Constraint[j]+1, Constraints->p[k],
331 C->Dimension)) {
332 pos[1+l++] = k;
333 break;
337 assert(l == C->NbConstraints);
339 int j;
340 for (j = 0; j < cones.size(); ++j)
341 if (!memcmp(pos, cones[j].pos, (1+C->NbConstraints)*sizeof(int)))
342 break;
343 if (j == cones.size())
344 cones.push_back(cone(pos));
345 else
346 delete [] pos;
348 Polyhedron_Free(C);
350 int k;
351 for (k = 0; k < cones[j].vertices.size(); ++k)
352 if (Vector_Equal(Q->Ray[i]+1, cones[j].vertices[k].first->p,
353 Q->Dimension+1))
354 break;
356 if (k == cones[j].vertices.size()) {
357 Vector *vertex = Vector_Alloc(Q->Dimension+1);
358 Vector_Copy(Q->Ray[i]+1, vertex->p, Q->Dimension+1);
359 cones[j].vertices.push_back(pair<Vector*,QQ>(vertex, c));
360 } else {
361 cones[j].vertices[k].second += c;
362 if (cones[j].vertices[k].second.n == 0) {
363 int size = cones[j].vertices.size();
364 Vector_Free(cones[j].vertices[k].first);
365 if (k < size-1)
366 cones[j].vertices[k] = cones[j].vertices[size-1];
367 cones[j].vertices.pop_back();
372 Polyhedron_Free(Q);
374 gen_fun *compute(unsigned MaxRays) {
375 for (int i = 0; i < cones.size(); ++i) {
376 Matrix *M = Matrix_Alloc(cones[i].pos[0], 1+Constraints->NbColumns+1);
377 Polyhedron *Cone;
378 for (int j = 0; j <cones[i].pos[0]; ++j) {
379 value_set_si(M->p[j][0], 1);
380 Vector_Copy(Constraints->p[cones[i].pos[1+j]], M->p[j]+1,
381 Constraints->NbColumns);
383 Cone = Constraints2Polyhedron(M, MaxRays);
384 Matrix_Free(M);
385 for (int j = 0; j < cones[i].vertices.size(); ++j) {
386 red->base->do_vertex_cone(cones[i].vertices[j].second,
387 Polyhedron_Copy(Cone),
388 cones[i].vertices[j].first->p,
389 MaxRays);
391 Polyhedron_Free(Cone);
393 if (CP)
394 red->gf->substitute(CP);
395 return red->gf;
397 void print(std::ostream& os) const {
398 for (int i = 0; i < cones.size(); ++i) {
399 os << "[";
400 for (int j = 0; j < cones[i].pos[0]; ++j) {
401 if (j)
402 os << ", ";
403 os << cones[i].pos[1+j];
405 os << "]" << endl;
406 for (int j = 0; j < cones[i].vertices.size(); ++j) {
407 Vector_Print(stderr, P_VALUE_FMT, cones[i].vertices[j].first);
408 os << cones[i].vertices[j].second << endl;
412 ~parallel_polytopes() {
413 for (int i = 0; i < cones.size(); ++i) {
414 delete [] cones[i].pos;
415 for (int j = 0; j < cones[i].vertices.size(); ++j)
416 Vector_Free(cones[i].vertices[j].first);
418 if (Constraints)
419 Matrix_Free(Constraints);
420 if (CP)
421 Matrix_Free(CP);
422 if (T)
423 Matrix_Free(T);
424 delete red;
428 gen_fun *gen_fun::Hadamard_product(const gen_fun *gf, unsigned MaxRays)
430 QQ one(1, 1);
431 Polyhedron *C = DomainIntersection(context, gf->context, MaxRays);
432 Polyhedron *U = Universe_Polyhedron(C->Dimension);
433 gen_fun *sum = new gen_fun(C);
434 for (int i = 0; i < term.size(); ++i) {
435 for (int i2 = 0; i2 < gf->term.size(); ++i2) {
436 int d = term[i]->d.power.NumCols();
437 int k1 = term[i]->d.power.NumRows();
438 int k2 = gf->term[i2]->d.power.NumRows();
439 assert(term[i]->d.power.NumCols() == gf->term[i2]->d.power.NumCols());
441 parallel_polytopes pp(term[i]->n.power.NumRows() *
442 gf->term[i2]->n.power.NumRows(),
443 sum->context, k1+k2-d, d);
445 for (int j = 0; j < term[i]->n.power.NumRows(); ++j) {
446 for (int j2 = 0; j2 < gf->term[i2]->n.power.NumRows(); ++j2) {
447 Matrix *M = Matrix_Alloc(k1+k2+d+d, 1+k1+k2+d+1);
448 for (int k = 0; k < k1+k2; ++k) {
449 value_set_si(M->p[k][0], 1);
450 value_set_si(M->p[k][1+k], 1);
452 for (int k = 0; k < d; ++k) {
453 value_set_si(M->p[k1+k2+k][1+k1+k2+k], -1);
454 zz2value(term[i]->n.power[j][k], M->p[k1+k2+k][1+k1+k2+d]);
455 for (int l = 0; l < k1; ++l)
456 zz2value(term[i]->d.power[l][k], M->p[k1+k2+k][1+l]);
458 for (int k = 0; k < d; ++k) {
459 value_set_si(M->p[k1+k2+d+k][1+k1+k2+k], -1);
460 zz2value(gf->term[i2]->n.power[j2][k],
461 M->p[k1+k2+d+k][1+k1+k2+d]);
462 for (int l = 0; l < k2; ++l)
463 zz2value(gf->term[i2]->d.power[l][k],
464 M->p[k1+k2+d+k][1+k1+l]);
466 Polyhedron *P = Constraints2Polyhedron(M, MaxRays);
467 Matrix_Free(M);
469 QQ c = term[i]->n.coeff[j];
470 c *= gf->term[i2]->n.coeff[j2];
471 pp.add(c, P, MaxRays);
473 Polyhedron_Free(P);
477 gen_fun *t = pp.compute(MaxRays);
478 sum->add(one, t);
479 delete t;
482 Polyhedron_Free(U);
483 return sum;
486 void gen_fun::add_union(gen_fun *gf, unsigned MaxRays)
488 QQ one(1, 1), mone(-1, 1);
490 gen_fun *hp = Hadamard_product(gf, MaxRays);
491 add(one, gf);
492 add(mone, hp);
493 delete hp;
496 static void Polyhedron_Shift(Polyhedron *P, Vector *offset)
498 Value tmp;
499 value_init(tmp);
500 for (int i = 0; i < P->NbConstraints; ++i) {
501 Inner_Product(P->Constraint[i]+1, offset->p, P->Dimension, &tmp);
502 value_subtract(P->Constraint[i][1+P->Dimension],
503 P->Constraint[i][1+P->Dimension], tmp);
505 for (int i = 0; i < P->NbRays; ++i) {
506 if (value_notone_p(P->Ray[i][0]))
507 continue;
508 if (value_zero_p(P->Ray[i][1+P->Dimension]))
509 continue;
510 Vector_Combine(P->Ray[i]+1, offset->p, P->Ray[i]+1,
511 P->Ray[i][0], P->Ray[i][1+P->Dimension], P->Dimension);
513 value_clear(tmp);
516 void gen_fun::shift(const vec_ZZ& offset)
518 for (int i = 0; i < term.size(); ++i)
519 for (int j = 0; j < term[i]->n.power.NumRows(); ++j)
520 term[i]->n.power[j] += offset;
522 Vector *v = Vector_Alloc(offset.length());
523 zz2values(offset, v->p);
524 Polyhedron_Shift(context, v);
525 Vector_Free(v);
528 /* Divide the generating functin by 1/(1-z^power).
529 * The effect on the corresponding explicit function f(x) is
530 * f'(x) = \sum_{i=0}^\infty f(x - i * power)
532 void gen_fun::divide(const vec_ZZ& power)
534 for (int i = 0; i < term.size(); ++i) {
535 int r = term[i]->d.power.NumRows();
536 int c = term[i]->d.power.NumCols();
537 term[i]->d.power.SetDims(r+1, c);
538 term[i]->d.power[r] = power;
541 Vector *v = Vector_Alloc(1+power.length()+1);
542 value_set_si(v->p[0], 1);
543 zz2values(power, v->p+1);
544 Polyhedron *C = AddRays(v->p, 1, context, context->NbConstraints+1);
545 Vector_Free(v);
546 Polyhedron_Free(context);
547 context = C;
550 static void print_power(std::ostream& os, QQ& c, vec_ZZ& p,
551 unsigned int nparam, char **param_name)
553 bool first = true;
555 for (int i = 0; i < p.length(); ++i) {
556 if (p[i] == 0)
557 continue;
558 if (first) {
559 if (c.n == -1 && c.d == 1)
560 os << "-";
561 else if (c.n != 1 || c.d != 1) {
562 os << c.n;
563 if (c.d != 1)
564 os << " / " << c.d;
565 os << "*";
567 first = false;
568 } else
569 os << "*";
570 if (i < nparam)
571 os << param_name[i];
572 else
573 os << "x" << i;
574 if (p[i] == 1)
575 continue;
576 if (p[i] < 0)
577 os << "^(" << p[i] << ")";
578 else
579 os << "^" << p[i];
581 if (first) {
582 os << c.n;
583 if (c.d != 1)
584 os << " / " << c.d;
588 void gen_fun::print(std::ostream& os, unsigned int nparam, char **param_name) const
590 QQ mone(-1, 1);
591 for (int i = 0; i < term.size(); ++i) {
592 if (i != 0)
593 os << " + ";
594 os << "(";
595 for (int j = 0; j < term[i]->n.coeff.length(); ++j) {
596 if (j != 0 && term[i]->n.coeff[j].n > 0)
597 os << "+";
598 print_power(os, term[i]->n.coeff[j], term[i]->n.power[j],
599 nparam, param_name);
601 os << ")/(";
602 for (int j = 0; j < term[i]->d.power.NumRows(); ++j) {
603 if (j != 0)
604 os << " * ";
605 os << "(1";
606 print_power(os, mone, term[i]->d.power[j], nparam, param_name);
607 os << ")";
609 os << ")";
613 gen_fun::operator evalue *() const
615 evalue *EP = NULL;
616 evalue factor;
617 value_init(factor.d);
618 value_init(factor.x.n);
619 for (int i = 0; i < term.size(); ++i) {
620 unsigned nvar = term[i]->d.power.NumRows();
621 unsigned nparam = term[i]->d.power.NumCols();
622 Matrix *C = Matrix_Alloc(nparam + nvar, 1 + nvar + nparam + 1);
623 mat_ZZ& d = term[i]->d.power;
624 Polyhedron *U = context ? context : Universe_Polyhedron(nparam);
626 for (int j = 0; j < term[i]->n.coeff.length(); ++j) {
627 for (int r = 0; r < nparam; ++r) {
628 value_set_si(C->p[r][0], 0);
629 for (int c = 0; c < nvar; ++c) {
630 zz2value(d[c][r], C->p[r][1+c]);
632 Vector_Set(&C->p[r][1+nvar], 0, nparam);
633 value_set_si(C->p[r][1+nvar+r], -1);
634 zz2value(term[i]->n.power[j][r], C->p[r][1+nvar+nparam]);
636 for (int r = 0; r < nvar; ++r) {
637 value_set_si(C->p[nparam+r][0], 1);
638 Vector_Set(&C->p[nparam+r][1], 0, nvar + nparam + 1);
639 value_set_si(C->p[nparam+r][1+r], 1);
641 Polyhedron *P = Constraints2Polyhedron(C, 0);
642 evalue *E = barvinok_enumerate_ev(P, U, 0);
643 Polyhedron_Free(P);
644 if (EVALUE_IS_ZERO(*E)) {
645 free_evalue_refs(E);
646 free(E);
647 continue;
649 zz2value(term[i]->n.coeff[j].n, factor.x.n);
650 zz2value(term[i]->n.coeff[j].d, factor.d);
651 emul(&factor, E);
653 Matrix_Print(stdout, P_VALUE_FMT, C);
654 char *test[] = { "A", "B", "C", "D", "E", "F", "G" };
655 print_evalue(stdout, E, test);
657 if (!EP)
658 EP = E;
659 else {
660 eadd(E, EP);
661 free_evalue_refs(E);
662 free(E);
665 Matrix_Free(C);
666 if (!context)
667 Polyhedron_Free(U);
669 value_clear(factor.d);
670 value_clear(factor.x.n);
671 return EP;
674 void gen_fun::coefficient(Value* params, Value* c) const
676 if (context && !in_domain(context, params)) {
677 value_set_si(*c, 0);
678 return;
681 evalue part;
682 value_init(part.d);
683 value_init(part.x.n);
684 evalue sum;
685 value_init(sum.d);
686 evalue_set_si(&sum, 0, 1);
687 Value tmp;
688 value_init(tmp);
690 for (int i = 0; i < term.size(); ++i) {
691 unsigned nvar = term[i]->d.power.NumRows();
692 unsigned nparam = term[i]->d.power.NumCols();
693 Matrix *C = Matrix_Alloc(nparam + nvar, 1 + nvar + 1);
694 mat_ZZ& d = term[i]->d.power;
696 for (int j = 0; j < term[i]->n.coeff.length(); ++j) {
697 for (int r = 0; r < nparam; ++r) {
698 value_set_si(C->p[r][0], 0);
699 for (int c = 0; c < nvar; ++c) {
700 zz2value(d[c][r], C->p[r][1+c]);
702 zz2value(term[i]->n.power[j][r], C->p[r][1+nvar]);
703 value_subtract(C->p[r][1+nvar], C->p[r][1+nvar], params[r]);
705 for (int r = 0; r < nvar; ++r) {
706 value_set_si(C->p[nparam+r][0], 1);
707 Vector_Set(&C->p[nparam+r][1], 0, nvar + 1);
708 value_set_si(C->p[nparam+r][1+r], 1);
710 Polyhedron *P = Constraints2Polyhedron(C, 0);
711 if (emptyQ(P)) {
712 Polyhedron_Free(P);
713 continue;
715 barvinok_count(P, &tmp, 0);
716 Polyhedron_Free(P);
717 if (value_zero_p(tmp))
718 continue;
719 zz2value(term[i]->n.coeff[j].n, part.x.n);
720 zz2value(term[i]->n.coeff[j].d, part.d);
721 value_multiply(part.x.n, part.x.n, tmp);
722 eadd(&part, &sum);
724 Matrix_Free(C);
727 assert(value_one_p(sum.d));
728 value_assign(*c, sum.x.n);
730 value_clear(tmp);
731 value_clear(part.d);
732 value_clear(part.x.n);
733 value_clear(sum.d);
734 value_clear(sum.x.n);
737 gen_fun *gen_fun::summate(int nvar) const
739 int dim = context->Dimension;
740 int nparam = dim - nvar;
742 #ifdef USE_INCREMENTAL_DF
743 partial_ireducer red(Polyhedron_Project(context, nparam), dim, nparam);
744 #else
745 partial_reducer red(Polyhedron_Project(context, nparam), dim, nparam);
746 #endif
747 red.init(context);
748 for (int i = 0; i < term.size(); ++i)
749 for (int j = 0; j < term[i]->n.power.NumRows(); ++j)
750 red.reduce(term[i]->n.coeff[j], term[i]->n.power[j], term[i]->d.power);
751 return red.gf;
754 /* returns true if the set was finite and false otherwise */
755 bool gen_fun::summate(Value *sum) const
757 if (term.size() == 0) {
758 value_set_si(*sum, 0);
759 return true;
762 int maxlen = 0;
763 for (int i = 0; i < term.size(); ++i)
764 if (term[i]->d.power.NumRows() > maxlen)
765 maxlen = term[i]->d.power.NumRows();
767 infinite_icounter cnt(term[0]->d.power.NumCols(), maxlen);
768 for (int i = 0; i < term.size(); ++i)
769 for (int j = 0; j < term[i]->n.power.NumRows(); ++j)
770 cnt.reduce(term[i]->n.coeff[j], term[i]->n.power[j], term[i]->d.power);
772 for (int i = 1; i <= maxlen; ++i)
773 if (value_notzero_p(mpq_numref(cnt.count[i]))) {
774 value_set_si(*sum, -1);
775 return false;
778 assert(value_one_p(mpq_denref(cnt.count[0])));
779 value_assign(*sum, mpq_numref(cnt.count[0]));
780 return true;