doc: update options and some function
[barvinok.git] / doc / Internal.tex
blob0bdbb85749e247c3d5440a5577d04328ffd174ad
1 \section{Internal Representation of the \protect\ai[\tt]{barvinok} library}
3 Our \barvinok/ library is built on top of \PolyLib/
4 \shortcite{Wilde1993,Loechner1999}.
5 In particular, it reuses the implementations
6 of the algorithm of
7 \shortciteN{Loechner97parameterized}
8 for computing parametric vertices
9 and the algorithm of
10 \shortciteN{Clauss1998parametric}
11 for computing chamber decompositions.
12 Initially, our library was meant to be a replacement
13 for the algorithm of \shortciteN{Clauss1998parametric},
14 also implemented in \PolyLib/, for computing quasi-polynomials.
15 To ease the transition of application programs we
16 tried to reuse the existing data structures as much as possible.
18 \subsection{Existing Data Structures}
19 \label{a:existing}
21 Inside \PolyLib/ integer values are represented by the
22 \ai[\tt]{Value} data type.
23 Depending on a configure option, the data type may
24 either by a 32-bit integer, a 64-bit integer
25 or an arbitrary precision integer using \ai[\tt]{GMP}.
26 The \barvinok/ library requires that \PolyLib/ is compiled
27 with support for arbitrary precision integers.
29 The basic structure for representing (unions of) polyhedra is a
30 \ai[\tt]{Polyhedron}.
31 \begin{verbatim}
32 typedef struct polyhedron {
33 unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
34 Value **Constraint;
35 Value **Ray;
36 Value *p_Init;
37 int p_Init_size;
38 struct polyhedron *next;
39 } Polyhedron;
40 \end{verbatim}
41 The attribute \ai[\tt]{Dimension} is the dimension
42 of the ambient space, i.e., the number of variables.
43 The attributes \ai[\tt]{Constraint}
44 and \ai[\tt]{Ray} point to two-dimensional arrays
45 of constraints and generators, respectively.
46 The number of rows is stored in
47 \ai[\tt]{NbConstraints} and
48 \ai[\tt]{NbRays}, respectively.
49 The number of columns in both arrays is equal
50 to \verb!1+Dimension+1!.
51 The first column of \ai[\tt]{Constraint} is either
52 $0$ or $1$ depending on whether the constraint
53 is an equality ($0$) or an inequality ($1$).
54 The number of equalities is stored in \ai[\tt]{NbEq}.
55 If the constraint is $\sp a x + c \ge 0$, then
56 the next columns contain the coefficients $a_i$
57 and the final column contains the constant $c$.
58 The first column of \ai[\tt]{Ray} is either
59 $0$ or $1$ depending on whether the generator
60 is a line ($0$) or a vertex or ray ($1$).
61 The number of lines is stored in \ai[\tt]{NbBid}.
62 Let $d$ be the \ac{lcm} of the denominators of the coordinates
63 of a vertex $\vec v$, then the next columns contain
64 $d v_i$ and the final column contains $d$.
65 For a ray, the final column contains $0$.
66 The field \ai[\tt]{next} points to the next polyhedron in
67 the union of polyhedra.
68 It is \verb+0+ if this is the last (or only) polyhedron in the union.
69 For more information on this structure, we refer to \shortciteN{Wilde1993}.
71 Quasi-polynomials are represented using the
72 \ai[\tt]{evalue} and \ai[\tt]{enode} structures.
73 \begin{verbatim}
74 typedef enum { polynomial, periodic, evector } enode_type;
76 typedef struct _evalue {
77 Value d; /* denominator */
78 union {
79 Value n; /* numerator (if denominator != 0) */
80 struct _enode *p; /* pointer (if denominator == 0) */
81 } x;
82 } evalue;
84 typedef struct _enode {
85 enode_type type; /* polynomial or periodic or evector */
86 int size; /* number of attached pointers */
87 int pos; /* parameter position */
88 evalue arr[1]; /* array of rational/pointer */
89 } enode;
90 \end{verbatim}
91 If the field \ai[\tt]{d} of an \ai[\tt]{evalue} is zero, then
92 the \ai[\tt]{evalue} is a placeholder for a pointer to
93 an \ai[\tt]{enode}, stored in \ai[\tt]{x.p}.
94 Otherwise, the \ai[\tt]{evalue} is a rational number with
95 numerator \ai[\tt]{x.n} and denominator \ai[\tt]{d}.
96 An \ai[\tt]{enode} is either a \ai[\tt]{polynomial}
97 or a \ai[\tt]{periodic}, depending on the value
98 of \ai[\tt]{type}.
99 The length of the array \ai[\tt]{arr} is stored in \ai[\tt]{size}.
100 For a \ai[\tt]{polynomial}, \ai[\tt]{arr} contains the coefficients.
101 For a \ai[\tt]{periodic}, it contains the values for the different
102 residue classes modulo the parameter indicated by \ai[\tt]{pos}.
103 For a polynomial, \ai[\tt]{pos} refers to the variable
104 of the polynomial.
105 The value of \ai[\tt]{pos} is \verb+1+ for the first parameter.
106 That is, if the value of \ai[\tt]{pos} is \verb+1+ and the first
107 parameter is $p$, and if the length of the array is $l$,
108 then in case it is a polynomial, the
109 \ai[\tt]{enode} represents
111 \verb+arr[0]+ + \verb+arr[1]+ p + \verb+arr[2]+ p^2 + \cdots +
112 \verb+arr[l-1]+ p^{l-1}
115 If it is a periodic, then it represents
117 \left[
118 \verb+arr[0]+, \verb+arr[1]+, \verb+arr[2]+, \ldots,
119 \verb+arr[l-1]+
120 \right]_p
123 Note that the elements of a \ai[\tt]{periodic} may themselves
124 be other \ai[\tt]{periodic}s or even \ai[\tt]{polynomial}s.
125 In our library, we only allow the elements of a \ai[\tt]{periodic}
126 to be other \ai[\tt]{periodic}s or rational numbers.
127 The chambers and their corresponding quasi-polynomial are
128 stored in \ai[\tt]{Enumeration} structures.
129 \begin{verbatim}
130 typedef struct _enumeration {
131 Polyhedron *ValidityDomain; /* constraints on the parameters */
132 evalue EP; /* dimension = combined space */
133 struct _enumeration *next; /* Ehrhart Polynomial,
134 corresponding to parameter
135 values inside the domain
136 ValidityDomain above */
137 } Enumeration;
138 \end{verbatim}
139 For more information on these structures, we refer to \shortciteN{Loechner1999}.
141 \begin{example}
142 Figure~\ref{f:Loechner} is a skillful reconstruction
143 of Figure~2 from \shortciteN{Loechner1999}.
144 It shows the contents of the \ai[\tt]{enode} structures
145 representing the quasi-polynomial
147 [1,2]_p p^2 + 3 p + \frac 5 2
150 \begin{figure}
151 \begin{xy}
152 \POS(0,0)*!UL{\hbox{
154 \begin{tabular}{|c|c|c|}
155 \hline
156 \multicolumn{2}{|c|}{type} & polynomial \\
157 \hline
158 \multicolumn{2}{|c|}{size} & 3 \\
159 \hline
160 \multicolumn{2}{|c|}{pos} & 1 \\
161 \hline
162 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
163 \cline{2-3}
164 & x.n & 5 \\
165 \hline
166 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
167 \cline{2-3}
168 & x.n & 3 \\
169 \hline
170 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
171 \cline{2-3}
172 & x.p & \\
173 \hline
174 \end{tabular}
176 }="box1"
177 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
178 \POS(60,-15)*!UL{\hbox{
180 \begin{tabular}{|c|c|c|}
181 \hline
182 \multicolumn{2}{|c|}{type} & periodic \\
183 \hline
184 \multicolumn{2}{|c|}{size} & 2 \\
185 \hline
186 \multicolumn{2}{|c|}{pos} & 1 \\
187 \hline
188 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
189 \cline{2-3}
190 & x.n & 1 \\
191 \hline
192 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
193 \cline{2-3}
194 & x.n & 2 \\
195 \hline
196 \end{tabular}
198 }="box2"
199 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
200 \POS"a"\ar@(r,l) "b"
201 \POS"box1"+UC*++!D\hbox{\tt enode}
202 \POS"box2"+UC*++!D\hbox{\tt enode}
203 \end{xy}
204 \caption{The quasi-polynomial $[1,2]_p p^2 + 3 p + \frac 5 2$.}
205 \label{f:Loechner}
206 \end{figure}
207 \end{example}
209 \subsection{Options}
210 \label{a:options}
212 The \ai[\tt]{barvinok\_options} structure contains various
213 options that influence the behavior of the library.
215 \begin{verbatim}
216 struct barvinok_options {
217 struct barvinok_stats *stats;
219 /* PolyLib options */
220 unsigned MaxRays;
222 /* NTL options */
223 /* LLL reduction parameter delta=LLL_a/LLL_b */
224 long LLL_a;
225 long LLL_b;
227 /* barvinok options */
228 #define BV_SPECIALIZATION_BF 2
229 #define BV_SPECIALIZATION_DF 1
230 #define BV_SPECIALIZATION_RANDOM 0
231 int incremental_specialization;
233 unsigned long max_index;
234 int primal;
235 int lookup_table;
236 int count_sample_infinite;
238 int try_Delaunay_triangulation;
240 #define BV_APPROX_SIGN_NONE 0
241 #define BV_APPROX_SIGN_APPROX 1
242 #define BV_APPROX_SIGN_LOWER 2
243 #define BV_APPROX_SIGN_UPPER 3
244 int polynomial_approximation;
245 #define BV_APPROX_NONE 0
246 #define BV_APPROX_DROP 1
247 #define BV_APPROX_SCALE 2
248 #define BV_APPROX_VOLUME 3
249 int approximation_method;
250 #define BV_APPROX_SCALE_FAST (1 << 0)
251 #define BV_APPROX_SCALE_NARROW (1 << 1)
252 #define BV_APPROX_SCALE_NARROW2 (1 << 2)
253 #define BV_APPROX_SCALE_CHAMBER (1 << 3)
254 int scale_flags;
255 #define BV_VOL_LIFT 0
256 #define BV_VOL_VERTEX 1
257 #define BV_VOL_BARYCENTER 2
258 int volume_triangulate;
260 /* basis reduction options */
261 #define BV_GBR_NONE 0
262 #define BV_GBR_GLPK 1
263 #define BV_GBR_CDD 2
264 int gbr_lp_solver;
266 /* bernstein options */
267 #define BV_BERNSTEIN_NONE 0
268 #define BV_BERNSTEIN_MAX 1
269 #define BV_BERNSTEIN_MIN -1
270 int bernstein_optimize;
272 #define BV_BERNSTEIN_FACTORS 1
273 #define BV_BERNSTEIN_INTERVALS 2
274 int bernstein_recurse;
277 struct barvinok_options *barvinok_options_new_with_defaults();
278 \end{verbatim}
280 The function \ai[\tt]{barvinok\_options\_new\_with\_defaults}
281 can be used to create a \ai[\tt]{barvinok\_options} structure
282 with default values.
284 \begin{itemize}
285 \item \PolyLib/ options
287 \begin{itemize}
289 \item \ai[\tt]{MaxRays}
291 The value of \ai[\tt]{MaxRays} is passed to various \PolyLib/
292 functions and defines the
293 maximum size of a table used in the \ai{double description} computation
294 in the \PolyLib/ function \ai[\tt]{Chernikova}.
295 In earlier versions of \PolyLib/,
296 this parameter had to be conservatively set
297 to a high number to ensure successful operation,
298 resulting in significant memory overhead.
299 Our change to allow this table to grow
300 dynamically is available in recent versions of \PolyLib/.
301 In these versions, the value no longer indicates the maximal
302 table size, but rather the size of the initial allocation.
303 This value may be set to \verb+0+ or left as set
304 by \ai[\tt]{barvinok\_options\_new\_with\_defaults}.
306 \end{itemize}
308 \item \ai[\tt]{NTL} options
310 \begin{itemize}
312 \item \ai[\tt]{LLL\_a}
313 \item \ai[\tt]{LLL\_b}
315 The values used for the \ai{reduction parameter}
316 in the call to \ai[\tt]{NTL}'s implementation of \indac{LLL}.
318 \end{itemize}
320 \item \ai[\tt]{barvinok} specific options
322 \begin{itemize}
324 \item \ai[\tt]{incremental\_specialization}
326 Selects the \ai{specialization} algorithm to be used.
327 If set to {\tt 0} then a direct specialization is performed
328 using a random vector.
329 Value {\tt 1} selects a depth first incremental specialization,
330 while value {\tt 2} selects a breadth first incremental specialization.
331 The default is selected by the \ai[\tt]{--enable-incremental}
332 \ai[\tt]{configure} option.
333 For more information we refer to~\citeN[Section~4.4.3]{Verdoolaege2005PhD}.
335 \end{itemize}
337 \end{itemize}
339 \subsection{Data Structures for Quasi-polynomials}
340 \label{a:data}
342 Internally, we do not represent our \ai{quasi-polynomial}s
343 as step-polynomials, but, similarly to \shortciteN{Loechner1999},
344 as polynomials with periodic numbers for coefficients.
345 However, we also allow our periodic numbers to be represented by
346 fractional parts of degree-$1$ polynomials rather than
347 an explicit enumeration using the \ai[\tt]{periodic} type.
348 By default, the current version of \barvinok/ uses
349 \ai[\tt]{periodic}s, but this can be changed through
350 the \ai[\tt]{--enable-fractional} configure option.
351 In the latter case, the quasi-polynomial using fractional
352 parts can also be converted to an actual step-polynomial
353 using \ai[\tt]{evalue\_frac2floor}, but this is not fully
354 supported yet.
356 For reasons of compatibility,%
357 \footnote{Also known as laziness.}
358 we shoehorned our representations for piecewise quasi-polynomials
359 into the existing data structures.
360 To this effect, we introduced four new types,
361 \ai[\tt]{fractional}, \ai[\tt]{relation},
362 \ai[\tt]{partition} and \ai[\tt]{flooring}.
363 \begin{verbatim}
364 typedef enum { polynomial, periodic, evector, fractional,
365 relation, partition, flooring } enode_type;
366 \end{verbatim}
367 The field \ai[\tt]{pos} is not used in most of these
368 additional types and is therefore set to \verb+-1+.
370 The types \ai[\tt]{fractional} and \ai[\tt]{flooring}
371 represent polynomial expressions in a fractional part or a floor respectively.
372 The generator is stored in \verb+arr[0]+, while the
373 coefficients are stored in the remaining array elements.
374 That is, an \ai[\tt]{enode} of type \ai[\tt]{fractional}
375 represents
377 \verb+arr[1]+ + \verb+arr[2]+ \{\verb+arr[0]+\} +
378 \verb+arr[3]+ \{\verb+arr[0]+\}^2 + \cdots +
379 \verb+arr[l-1]+ \{\verb+arr[0]+\}^{l-2}
382 An \ai[\tt]{enode} of type \ai[\tt]{flooring}
383 represents
385 \verb+arr[1]+ + \verb+arr[2]+ \lfloor\verb+arr[0]+\rfloor +
386 \verb+arr[3]+ \lfloor\verb+arr[0]+\rfloor^2 + \cdots +
387 \verb+arr[l-1]+ \lfloor\verb+arr[0]+\rfloor^{l-2}
391 \begin{example}
392 The internal representation of the quasi-polynomial
393 $$\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$$
394 is shown in Figure~\ref{f:fractional}.
396 \begin{figure}
397 \begin{xy}
398 \POS(0,0)*!UL{\hbox{
400 \begin{tabular}{|c|c|c|}
401 \hline
402 \multicolumn{2}{|c|}{type} & polynomial \\
403 \hline
404 \multicolumn{2}{|c|}{size} & 3 \\
405 \hline
406 \multicolumn{2}{|c|}{pos} & 1 \\
407 \hline
408 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
409 \cline{2-3}
410 & x.n & 5 \\
411 \hline
412 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
413 \cline{2-3}
414 & x.n & 3 \\
415 \hline
416 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
417 \cline{2-3}
418 & x.p & \\
419 \hline
420 \end{tabular}
422 }="box1"
423 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
424 \POS(60,0)*!UL{\hbox{
426 \begin{tabular}{|c|c|c|}
427 \hline
428 \multicolumn{2}{|c|}{type} & fractional \\
429 \hline
430 \multicolumn{2}{|c|}{size} & 3 \\
431 \hline
432 \multicolumn{2}{|c|}{pos} & -1 \\
433 \hline
434 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 0 \\
435 \cline{2-3}
436 & x.p & \\
437 \hline
438 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
439 \cline{2-3}
440 & x.n & 1 \\
441 \hline
442 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 1 \\
443 \cline{2-3}
444 & x.n & 2 \\
445 \hline
446 \end{tabular}
448 }="box2"
449 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
450 \POS"a"\ar@(r,l) "b"
451 \POS"box2"+UR*!UR{\hbox{
453 \begin{tabular}{|c|}
454 \hline
455 fractional \\
456 \hline
457 3 \\
458 \hline
459 -1 \\
460 \hline
461 0 \\
462 \hline
463 \end{tabular}
465 }+CD*!U{\strut}+C="c"
466 \POS(60,-50)*!UL{\hbox{
468 \begin{tabular}{|c|c|c|}
469 \hline
470 \multicolumn{2}{|c|}{type} & polynomial \\
471 \hline
472 \multicolumn{2}{|c|}{size} & 2 \\
473 \hline
474 \multicolumn{2}{|c|}{pos} & 1 \\
475 \hline
476 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
477 \cline{2-3}
478 & x.n & 0 \\
479 \hline
480 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 2 \\
481 \cline{2-3}
482 & x.n & 1 \\
483 \hline
484 \end{tabular}
486 }="box3"
487 +UR-<0.8\tabcolsep,0pt>*!UR\hbox{\strut}+CR="d"
488 \POS"c"\ar@(r,r) "d"
489 \POS"box1"+UC*++!D\hbox{\tt enode}
490 \POS"box2"+UC*++!D\hbox{\tt enode}
491 \POS"box3"+UC*++!D\hbox{\tt enode}
492 \end{xy}
493 \caption{The quasi-polynomial
494 $\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$.}
495 \label{f:fractional}
496 \end{figure}
498 \end{example}
500 The \ai[\tt]{relation} type is used to represent \ai{stride}s.
501 In particular, if the value of \ai[\tt]{size} is 2, then
502 the value of a \ai[\tt]{relation} is (in pseudo-code):
503 \begin{verbatim}
504 (value(arr[0]) == 0) ? value(arr[1]) : 0
505 \end{verbatim}
506 If the size is 3, then the value is:
507 \begin{verbatim}
508 (value(arr[0]) == 0) ? value(arr[1]) : value(arr[2])
509 \end{verbatim}
510 The type of \verb+arr[0]+ is typically \ai[\tt]{fractional}.
512 Finally, the \ai[\tt]{partition} type is used to
513 represent piecewise quasi-polynomials.
514 We prefer to encode this information inside \ai[\tt]{evalue}s
515 themselves
516 rather than using \ai[\tt]{Enumeration}s since we want
517 to perform the same kinds of operations on both quasi-polynomials
518 and piecewise quasi-polynomials.
519 An \ai[\tt]{enode} of type \ai[\tt]{partition} may not be nested
520 inside another \ai[\tt]{enode}.
521 The size of the array is twice the number of ``chambers''.
522 Pointers to chambers are stored in the even slots,
523 whereas pointer to the associated quasi-polynomials
524 are stored in the odd slots.
525 To be able to store pointers to chambers, the
526 definition of \ai[\tt]{evalue} was changed as follows.
527 \begin{verbatim}
528 typedef struct _evalue {
529 Value d; /* denominator */
530 union {
531 Value n; /* numerator (if denominator > 0) */
532 struct _enode *p; /* pointer (if denominator == 0) */
533 Polyhedron *D; /* domain (if denominator == -1) */
534 } x;
535 } evalue;
536 \end{verbatim}
537 Note that we allow a ``chamber'' to be a union of polyhedra
538 as discussed in \citeN[Section~4.5.1]{Verdoolaege2005PhD}.
539 Chambers with extra variables, i.e., those of
540 \citeN[Section~4.6.5]{Verdoolaege2005PhD},
541 are only partially supported.
542 The field \ai[\tt]{pos} is set to the actual dimension,
543 i.e., the number of parameters.
545 \subsection{Operations on Quasi-polynomials}
546 \label{a:operations}
548 In this section we discuss some of the more important
549 operations on \ai[\tt]{evalue}s provided by the
550 \barvinok/ library.
551 Some of these operations are extensions
552 of the functions from \PolyLib/ with the same name.
554 \begin{verbatim}
555 void eadd(const evalue *e1,evalue *res);
556 void emul (evalue *e1, evalue *res );
557 \end{verbatim}
558 The functions \ai[\tt]{eadd} and \ai[\tt]{emul} takes
559 two (pointers to) \ai[\tt]{evalue}s \verb+e1+ and \verb+res+
560 and computes their sum and product respectively.
561 The result is stored in \verb+res+, overwriting (and deallocating)
562 the original value of \verb+res+.
563 It is an error if exactly one of
564 the arguments of \ai[\tt]{eadd} is of type \ai[\tt]{partition}
565 (unless the other argument is \verb+0+).
566 The addition and multiplication operations are described
567 in \citeN[Section~4.5.1]{Verdoolaege2005PhD}
568 and~\citeN[Section~4.5.2]{Verdoolaege2005PhD}
569 respectively.
571 The function \ai[\tt]{eadd} is an extension of the function
572 \ai[\tt]{new\_eadd} from \shortciteN{Seghir2002}.
573 Apart from supporting the additional types from Section~\ref{a:data},
574 the new version also additionally imposes an order on the nesting of
575 different \ai[\tt]{enode}s.
576 Without such an ordering, \ai[\tt]{evalue}s could be constructed
577 representing for example
579 (0 y^ 0 + ( 0 x^0 + 1 x^1 ) y^1 ) x^0 + (0 y^0 - 1 y^1) x^1
582 which is just a funny way of saying $0$.
584 \begin{verbatim}
585 void eor(evalue *e1, evalue *res);
586 \end{verbatim}
587 The function \ai[\tt]{eor} implements the \ai{union}
588 operation from \citeN[Section~4.5.3]{Verdoolaege2005PhD}. Both arguments
589 are assumed to correspond to indicator functions.
591 \begin{verbatim}
592 evalue *esum(evalue *E, int nvar);
593 \end{verbatim}
594 The function \ai[\tt]{esum} performs the summation
595 operation from \citeN[Section~4.5.4]{Verdoolaege2005PhD}.
596 The piecewise step-polynomial represented by \verb+E+ is summated
597 over its first \verb+nvar+ variables.
598 Note that \verb+E+ must be zero or of type \ai[\tt]{partition}.
599 The function returns the result in a newly allocated
600 \ai[\tt]{evalue}.
601 Note also that \verb+E+ needs to have been converted
602 from \ai[\tt]{fractional}s to \ai[\tt]{flooring}s using
603 the function \ai[\tt]{evalue\_frac2floor}.
604 \begin{verbatim}
605 void evalue_frac2floor(evalue *e);
606 \end{verbatim}
607 This function also ensures that the arguments of the
608 \ai[\tt]{flooring}s are positive in the relevant chambers.
609 It currently assumes that the argument of each
610 \ai[\tt]{fractional} in the original \ai[\tt]{evalue}
611 has a minimum in the corresponding chamber.
613 \begin{verbatim}
614 double compute_evalue(const evalue *e, Value *list_args);
615 Value *compute_poly(Enumeration *en,Value *list_args);
616 evalue *evalue_eval(const evalue *e, Value *values);
617 \end{verbatim}
618 The functions \ai[\tt]{compute\_evalue},
619 \ai[\tt]{compute\_poly} and
620 \ai[\tt]{evalue\_eval}
621 evaluate a (piecewise) quasi-polynomial
622 at a certain point. The argument \verb+list_args+
623 points to an array of \ai[\tt]{Value}s that is assumed
624 to be long enough.
625 The \verb+double+ return value of \ai[\tt]{compute\_evalue}
626 is inherited from \PolyLib/.
628 \begin{verbatim}
629 void print_evalue(FILE *DST, const evalue *e, char **pname);
630 \end{verbatim}
631 The function \ai[\tt]{print\_evalue} dumps a human-readable
632 representation to the stream pointed to by \verb+DST+.
633 The argument \verb+pname+ points
634 to an array of character strings representing the parameter names.
635 The array is assumed to be long enough.
637 \begin{verbatim}
638 int eequal(const evalue *e1, const evalue *e2);
639 \end{verbatim}
640 The function \ai[\tt]{eequal} return true (\verb+1+) if its
641 two arguments are structurally identical.
642 I.e., it does {\em not\/} check whether the two
643 (piecewise) quasi-polynomial represent the same function.
645 \begin{verbatim}
646 void reduce_evalue (evalue *e);
647 \end{verbatim}
648 The function \ai[\tt]{reduce\_evalue} performs some
649 simplifications on \ai[\tt]{evalue}s.
650 Here, we only describe the simplifications that are directly
651 related to the internal representation.
652 Some other simplifications are explained in
653 \citeN[Section~4.7.2]{Verdoolaege2005PhD}.
654 If the highest order coefficients of a \ai[\tt]{polynomial},
655 \ai[\tt]{fractional} or \ai[\tt]{flooring} are zero (possibly
656 after some other simplifications), then the size of the array
657 is reduced. If only the constant term remains, i.e.,
658 the size is reduced to $1$ for \ai[\tt]{polynomial} or to $2$
659 for the other types, then the whole node is replaced by
660 the constant term.
661 Additionally, if the argument of a \ai[\tt]{fractional}
662 has been reduced to a constant, then the whole node
663 is replaced by its partial evaluation.
664 A \ai[\tt]{relation} is similarly reduced if its second
665 branch or both its branches are zero.
666 Chambers with zero associated quasi-polynomials are
667 discarded from a \ai[\tt]{partition}.
669 \subsection{Generating Functions}
671 The representation of \rgf/s uses
672 some basic types from the \ai[\tt]{NTL} library \shortcite{NTL}
673 for representing arbitrary precision integers
674 (\ai[\tt]{ZZ})
675 as well as vectors (\ai[\tt]{vec\_ZZ}) and matrices (\ai[\tt]{mat\_ZZ})
676 of such integers.
677 We further introduces a type \ai[\tt]{QQ} for representing a rational
678 number and use vectors (\ai[\tt]{vec\_QQ}) of such numbers.
679 \begin{verbatim}
680 struct QQ {
681 ZZ n;
682 ZZ d;
685 NTL_vector_decl(QQ,vec_QQ);
686 \end{verbatim}
688 Each term in a \rgf/ is represented by a \ai[\tt]{short\_rat}
689 structure.
690 \begin{verbatim}
691 struct short_rat {
692 struct {
693 /* rows: terms in numerator */
694 vec_QQ coeff;
695 mat_ZZ power;
696 } n;
697 struct {
698 /* rows: factors in denominator */
699 mat_ZZ power;
700 } d;
702 \end{verbatim}
703 The fields \ai[\tt]{n} and \ai[\tt]{d} represent the
704 numerator and the denominator respectively.
705 Note that in our implementation we combine terms
706 with the same denominator.
707 In the numerator, each element of \ai[\tt]{coeff} and each row of \ai[\tt]{power}
708 represents a single such term.
709 The vector \ai[\tt]{coeff} contains the rational coefficients
710 $\alpha_i$ of each term.
711 The columns of \ai[\tt]{power} correspond to the powers
712 of the variables.
713 In the denominator, each row of \ai[\tt]{power}
714 corresponds to the power $\vec b_{ij}$ of a
715 factor in the denominator.
717 \begin{example}
718 Figure~\ref{fig:rat}
719 shows the internal representation of
721 \frac{\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}}
722 { (1 - x_0 x_1^{-3}) (1 - x_1^2)}
726 \begin{figure}
727 \begin{center}
728 \begin{minipage}{0cm}
729 \begin{xy}
730 *\hbox{
732 \begin{tabular}{|c|c|c|}
733 \hline
734 n.coeff & 3 & 2 \\
735 \cline{2-3}
736 & 2 & 1 \\
737 \hline
738 n.power & 2 & 3 \\
739 \cline{2-3}
740 & 5 & -7 \\
741 \hline
742 d.power & 1 & -3 \\
743 \cline{2-3}
744 & 0 & 2 \\
745 \hline
746 \end{tabular}
747 }+UC*++!D\hbox{\tt short\_rat}
748 \end{xy}
749 \end{minipage}
750 \end{center}
751 \caption{Representation of
753 \left(\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}\right)
754 / \left( (1 - x_0 x_1^{-3}) (1 - x_1^2)\right)
756 \label{fig:rat}
757 \end{figure}
759 \end{example}
761 The whole \rgf/ is represented by a \ai[\tt]{gen\_fun}
762 structure.
763 \begin{verbatim}
764 typedef std::set<short_rat *,
765 short_rat_lex_smaller_denominator > short_rat_list;
767 struct gen_fun {
768 short_rat_list term;
769 Polyhedron *context;
771 void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);
772 void add(short_rat *r);
773 void add(const QQ& c, const gen_fun *gf);
774 void substitute(Matrix *CP);
775 gen_fun *Hadamard_product(const gen_fun *gf,
776 barvinok_options *options);
777 void print(std::ostream& os,
778 unsigned int nparam, char **param_name) const;
779 operator evalue *() const;
780 ZZ coefficient(Value* params, barvinok_options *options) const;
781 void coefficient(Value* params, Value* c) const;
783 gen_fun(Polyhedron *C = NULL);
784 gen_fun(Value c);
785 gen_fun(const gen_fun *gf);
786 ~gen_fun();
788 \end{verbatim}
789 A new \ai[\tt]{gen\_fun} can be constructed either as empty \rgf/ (possibly
790 with a given context \verb+C+), as a copy of an existing \rgf/ \verb+gf+, or as
791 constant \rgf/ with value for the constant term specified by \verb+c+.
793 The first \ai[\tt]{gen\_fun::add} method adds a new term to the \rgf/,
794 described by the coefficient \verb+c+, the numerator \verb+num+ and the
795 denominator \verb+den+.
796 It makes all powers in the denominator lexico-positive,
797 orders them in lexicographical order and inserts the new
798 term in \ai[\tt]{term} according to the lexicographical
799 order of the combined powers in the denominator.
800 The second \ai[\tt]{gen\_fun::add} method adds \verb+c+ times \verb+gf+
801 to the \rgf/.
803 The method \ai[\tt]{gen\_fun::operator evalue *} performs
804 the conversion from \rgf/ to \psp/ explained in
805 \citeN[Section~4.5.5]{Verdoolaege2005PhD}.
806 The \ai[\tt]{Polyhedron} \ai[\tt]{context} is the superset
807 of all points where the enumerator is non-zero used during this conversion,
808 i.e., it is the set $Q$ from \citeN[Equation~4.31]{Verdoolaege2005PhD}.
809 If \ai[\tt]{context} is \verb+NULL+ the maximal
810 allowed context is assumed, i.e., the maximal
811 region with lexico-positive rays.
813 The method \ai[\tt]{gen\_fun::coefficient} computes the coefficient
814 of the term with power given by \verb+params+ and stores the result
815 in \verb+c+.
816 This method performs essentially the same computations as
817 \ai[\tt]{gen\_fun::operator evalue *}, except that it adds extra
818 equality constraints based on the specified values for the power.
820 The method \ai[\tt]{gen\_fun::substitute} performs the
821 \ai{monomial substitution} specified by the homogeneous matrix \verb+CP+
822 that maps a set of ``\ai{compressed parameter}s'' \shortcite{Meister2004PhD}
823 to the original set of parameters.
824 That is, if we are given a \rgf/ $G(\vec z)$ that encodes the
825 explicit function $g(\vec i')$, where $\vec i'$ are the coordinates of
826 the transformed space, and \verb+CP+ represents the map
827 $\vec i = A \vec i' + \vec a$ back to the original space with coordinates $\vec i$,
828 then this method transforms the \rgf/ to $F(\vec x)$ encoding the
829 same explicit function $f(\vec i)$, i.e.,
830 $$f(\vec i) = f(A \vec i' + \vec a) = g(\vec i ').$$
831 This means that the coefficient of the term
832 $\vec x^{\vec i} = \vec x^{A \vec i' + \vec a}$ in $F(\vec x)$ should be equal to the
833 coefficient of the term $\vec z^{\vec i'}$ in $G(\vec z)$.
834 In other words, if
836 G(\vec z) =
837 \sum_i \epsilon_i \frac{\vec z^{\vec v_i}}{\prod_j (1-\vec z^{\vec b_{ij}})}
839 then
841 F(\vec x) =
842 \sum_i \epsilon_i \frac{\vec x^{A \vec v_i + \vec a}}
843 {\prod_j (1-\vec x^{A \vec b_{ij}})}
847 The method \ai[\tt]{gen\_fun::Hadamard\_product} computes the
848 \ai{Hadamard product} of the current \rgf/ with the \rgf/ \verb+gf+,
849 as explained in \citeN[Section~4.5.2]{Verdoolaege2005PhD}.
851 \subsection{Counting Functions}
852 \label{a:counting:functions}
854 Our library provides essentially three different counting functions:
855 one for non-parametric polytopes, one for parametric polytopes
856 and one for parametric sets with existential variables.
857 The old versions of these functions have a ``\ai[\tt]{MaxRays}''
858 argument, while the new versions have a more general
859 \ai[\tt]{barvinok\_options} argument.
860 For more information on \ai[\tt]{barvinok\_options}, see Section~\ref{a:options}.
862 \begin{verbatim}
863 void barvinok_count(Polyhedron *P, Value* result,
864 unsigned NbMaxCons);
865 void barvinok_count_with_options(Polyhedron *P, Value* result,
866 struct barvinok_options *options);
867 \end{verbatim}
868 The function \ai[\tt]{barvinok\_count} or
869 \ai[\tt]{barvinok\_count\_with\_options} enumerates the non-parametric
870 polytope \verb+P+ and returns the result in the \ai[\tt]{Value}
871 pointed to by \verb+result+, which needs to have been allocated
872 and initialized.
873 If \verb+P+ is a union, then only the first set in the union will
874 be taken into account.
875 For the meaning of the argument \verb+NbMaxCons+, see
876 the discussion on \ai[\tt]{MaxRays} in Section~\ref{a:options}.
878 The function \ai[\tt]{barvinok\_enumerate} for enumerating
879 parametric polytopes was meant to be
880 a drop-in replacement of \PolyLib/'s \ai[\tt]{Polyhedron\_Enumerate}
881 function.
882 Unfortunately, the latter has been changed to
883 accept an extra argument in recent versions of \PolyLib/ as shown below.
884 \begin{verbatim}
885 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,
886 unsigned MaxRays);
887 extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,
888 Polyhedron *C, unsigned MAXRAYS, char **pname);
889 \end{verbatim}
890 The argument \verb+MaxRays+ has the same meaning as the argument
891 \verb+NbMaxCons+ above.
892 The argument \verb+P+ refers to the $(d+n)$-dimensional
893 polyhedron defining the parametric polytope.
894 The argument \verb+C+ is an $n$-dimensional polyhedron containing
895 extra constraints on the parameter space.
896 Its primary use is to indicate how many of the dimensions
897 in \verb+P+ refer to parameters as any constraint in \verb+C+
898 could equally well have been added to \verb+P+ itself.
899 Note that the dimensions referring to the parameters should
900 appear {\em last}.
901 If either \verb+P+ or \verb+C+ is a union,
902 then only the first set in the union will be taken into account.
903 The result is a newly allocated \ai[\tt]{Enumeration}.
904 As an alternative we also provide a function
905 (\ai[\tt]{barvinok\_enumerate\_ev} or
906 \ai[\tt]{barvinok\_enumerate\_with\_options}) that returns
907 an \ai[\tt]{evalue}.
908 \begin{verbatim}
909 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,
910 unsigned MaxRays);
911 evalue* barvinok_enumerate_with_options(Polyhedron *P,
912 Polyhedron* C, struct barvinok_options *options);
913 \end{verbatim}
915 For enumerating parametric sets with existentially quantified variables,
916 we provide two functions:
917 \ai[\tt]{barvinok\_enumerate\_e}
919 \ai[\tt]{barvinok\_enumerate\_pip}.
920 \begin{verbatim}
921 evalue* barvinok_enumerate_e(Polyhedron *P,
922 unsigned exist, unsigned nparam, unsigned MaxRays);
923 evalue* barvinok_enumerate_e_with_options(Polyhedron *P,
924 unsigned exist, unsigned nparam,
925 struct barvinok_options *options);
926 evalue *barvinok_enumerate_pip(Polyhedron *P,
927 unsigned exist, unsigned nparam, unsigned MaxRays);
928 evalue* barvinok_enumerate_pip_with_options(Polyhedron *P,
929 unsigned exist, unsigned nparam,
930 struct barvinok_options *options);
931 evalue *barvinok_enumerate_scarf(Polyhedron *P,
932 unsigned exist, unsigned nparam,
933 struct barvinok_options *options);
934 \end{verbatim}
935 The first function tries the simplification rules from
936 \citeN[Section~4.6.2]{Verdoolaege2005PhD} before resorting to the method
937 based on \indac{PIP} from \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
938 The second function immediately applies the technique from
939 \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
940 The argument \verb+exist+ refers to the number of existential variables,
941 whereas
942 the argument \verb+nparam+ refers to the number of parameters.
943 The order of the dimensions in \verb+P+ is:
944 counted variables first, then existential variables and finally
945 the parameters.
946 The function \ai[\tt]{barvinok\_enumerate\_scarf} performs the same
947 computation as the function \ai[\tt]{barvinok\_enumerate\_scarf\_series}
948 below, but produces an explicit representation instead of a generating function.
950 \begin{verbatim}
951 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,
952 unsigned MaxRays);
953 gen_fun * barvinok_series_with_options(Polyhedron *P,
954 Polyhedron* C, barvinok_options *options);
955 gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
956 unsigned exist, unsigned nparam,
957 barvinok_options *options);
958 \end{verbatim}
959 The function
960 \ai[\tt]{barvinok\_series} or
961 \ai[\tt]{barvinok\_series\_with\_options} enumerates parametric polytopes
962 in the form of a \rgf/.
963 The polyhedron \verb+P+ is assumed to have only
964 revlex-positive rays.
966 The function \ai[\tt]{barvinok\_enumerate\_scarf\_series} computes a
967 generating function for the number of point in the parametric set
968 defined by \verb+P+ with \verb+exist+ existentially quantified
969 variables, which is assumed to be 2.
970 This function implements the technique of
971 \shortciteN{Scarf2006Neighborhood} using the \ai{neighborhood complex}
972 description of \shortciteN{Scarf1981indivisibilities:II}.
973 It is currently restricted to problems with 3 or 4 constraints involving
974 the existentially quantified variables.
976 \subsection{Auxiliary Functions}
978 In this section we briefly mention some auxiliary functions
979 available in the \barvinok/ library.
981 \begin{verbatim}
982 void Polyhedron_Polarize(Polyhedron *P);
983 \end{verbatim}
984 The function \ai[\tt]{Polyhedron\_Polarize}
985 polarizes its argument and is explained
986 in \citeN[Section~4.4.2]{Verdoolaege2005PhD}.
988 \begin{verbatim}
989 int unimodular_complete(Matrix *M, int row);
990 \end{verbatim}
991 The function \ai[\tt]{unimodular\_complete} extends
992 the first \verb+row+ rows of
993 \verb+M+ with an integral basis of the orthogonal complement
994 as explained in Section~\ref{s:completion}.
995 Returns non-zero
996 if the resulting matrix is unimodular\index{unimodular matrix}.
998 \begin{verbatim}
999 int DomainIncludes(Polyhedron *D1, Polyhedron *D2);
1000 \end{verbatim}
1001 The function \ai[\tt]{DomainIncludes} extends
1002 the function \ai[\tt]{PolyhedronIncludes}
1003 provided by \PolyLib/
1004 to unions of polyhedra.
1005 It checks whether every polyhedron in the union {\tt D2}
1006 is included in some polyhedron of {\tt D1}.
1008 \begin{verbatim}
1009 Polyhedron *DomainConstraintSimplify(Polyhedron *P,
1010 unsigned MaxRays);
1011 \end{verbatim}
1012 The value returned by
1013 \ai[\tt]{DomainConstraintSimplify} is a pointer to
1014 a newly allocated \ai[\tt]{Polyhedron} that contains the
1015 same integer points as its first argument but possibly
1016 has simpler constraints.
1017 Each constraint $ g \sp a x \ge c $
1018 is replaced by $ \sp a x \ge \ceil{ \frac c g } $,
1019 where $g$ is the \ac{gcd} of the coefficients in the original
1020 constraint.
1021 The \ai[\tt]{Polyhedron} pointed to by \verb+P+ is destroyed.
1023 \begin{verbatim}
1024 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);
1025 \end{verbatim}
1026 The function \ai[\tt]{Polyhedron\_Project} projects
1027 \verb+P+ onto its last \verb+dim+ dimensions.
1029 \begin{verbatim}
1030 Matrix *left_inverse(Matrix *M, Matrix **Eq);
1031 \end{verbatim}
1032 The \ai[\tt]{left\_inverse} function computes the left inverse
1033 of \verb+M+ as explained in Section~\ref{s:inverse}.
1035 \sindex{reduced}{basis}
1036 \sindex{generalized}{reduced basis}
1037 \begin{verbatim}
1038 Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,
1039 struct barvinok_options *options);
1040 \end{verbatim}
1041 \ai[\tt]{Polyhedron\_Reduced\_Basis} computes
1042 a \ai{generalized reduced basis} of {\tt P}, which
1043 is assumed to be a polytope, using the algorithm
1044 of~\shortciteN{Cook1993implementation}.
1045 The basis vectors are stored in the rows of the matrix returned.
1046 This function currently uses \ai[\tt]{GLPK}~\shortcite{GLPK}
1047 to perform the linear optimizations and so is only available
1048 if you have \ai[\tt]{GLPK}.
1050 \begin{verbatim}
1051 Vector *Polyhedron_Sample(Polyhedron *P,
1052 struct barvinok_options *options);
1053 \end{verbatim}
1054 \ai[\tt]{Polyhedron\_Sample} returns an \ai{integer point} of {\tt P}
1055 or {\tt NULL} if {\tt P} contains no integer points.
1056 The integer point is found using the algorithm
1057 of~\shortciteN{Cook1993implementation} and uses
1058 \ai[\tt]{Polyhedron\_Reduced\_Basis} to compute the reduced bases
1059 and therefore also requires \ai[\tt]{GLPK}.
1061 \subsection{\protect\ai[\tt]{bernstein} Data Structures and Functions}
1063 The \bernstein/ library used \ai[\tt]{GiNaC} data structures to
1064 represent the data it manipulates.
1065 In particular, a polynomial is stored in a \ai[\tt]{GiNaC::ex},
1066 a list of variable or parameter names is stored in a \ai[\tt]{GiNaC::exvector},
1067 while the parametric vertices or generators are stored in a \ai[\tt]{GiNaC::matrix},
1068 where the rows refer to the generators and the columns to the coordinates
1069 of each generator.
1071 \begin{verbatim}
1072 namespace bernstein {
1073 GiNaC::exvector constructParameterVector(
1074 const char * const *param_names, unsigned nbParams);
1075 GiNaC::exvector constructVariableVector(unsigned nbVariables,
1076 const char *prefix);
1078 \end{verbatim}
1079 The functions \ai[\tt]{constructParameterVector}
1080 and \ai[\tt]{constructVariableVector} construct a list of variable
1081 names either from a list of {\tt char *}s or
1082 by suffixing {\tt prefix} with a number starting from 0.
1083 Such lists are needed for the functions
1084 \ai[\tt]{domainVertices}, \ai[\tt]{bernsteinExpansion}
1085 and \ai[\tt]{evalue\_bernstein\_coefficients}.
1087 \begin{verbatim}
1088 namespace bernstein {
1089 GiNaC::matrix domainVertices(Param_Polyhedron *PP, Param_Domain *Q,
1090 const GiNaC::exvector& params);
1092 \end{verbatim}
1093 The function \ai[\tt]{domainVertices} constructs a matrix representing the
1094 generators (in this case vertices) of the \ai[\tt]{Param\_Polyhedron} {\tt PP}
1095 for the \ai[\tt]{Param\_Domain} {\tt Q}, to be used
1096 in a call to \ai[\tt]{bernsteinExpansion}.
1097 The elements of {\tt params} are used in the resulting matrix
1098 to refer to the parameters.
1100 \begin{verbatim}
1101 namespace bernstein {
1102 GiNaC::lst bernsteinExpansion(const GiNaC::matrix& vert,
1103 const GiNaC::ex& poly,
1104 const GiNaC::exvector& vars,
1105 const GiNaC::exvector& params);
1107 \end{verbatim}
1108 The function \ai[\tt]{bernsteinExpansion} computes the
1109 \ai{Bernstein coefficient}s of the polynomial \verb+poly+
1110 over the \ai{parametric polytope} that is the \ai{convex hull}
1111 of the rows in \verb+vert+. The vectors \verb+vars+
1112 and \verb+params+ identify the variables (i.e., the coordinates
1113 of the space in which the parametric polytope lives) and
1114 the parameters, respectively.
1116 \begin{verbatim}
1117 namespace bernstein {
1119 typedef std::pair< Polyhedron *, GiNaC::lst > guarded_lst;
1121 struct piecewise_lst {
1122 const GiNaC::exvector vars;
1123 std::vector<guarded_lst> list;
1124 /* 0: just collect terms
1125 * 1: remove obviously smaller terms (maximize)
1126 * -1: remove obviously bigger terms (minimize)
1128 int sign;
1130 piecewise_lst(const GiNaC::exvector& vars);
1131 piecewise_lst& combine(const piecewise_lst& other);
1132 void maximize();
1133 void simplify_domains(Polyhedron *ctx, unsigned MaxRays);
1134 GiNaC::numeric evaluate(const GiNaC::exvector& values);
1135 void add(const GiNaC::ex& poly);
1139 \end{verbatim}
1140 A \ai[\tt]{piecewise\_list} structure represents a list of (disjoint)
1141 polyhedral domains, each with an associated \ai[\tt]{GiNaC::lst}
1142 of polynomials.
1143 The \ai[\tt]{vars} member contains the variable names of the
1144 dimensions of the polyhedral domains.
1146 \ai[\tt]{piecewise\_lst::combine} computes the \ai{common refinement}
1147 of the polyhedral domains in \verb+this+ and \verb+other+ and associates
1148 to each of the resulting subdomains the union of the sets of polynomials
1149 associated to the domains from \verb+this+ and \verb+other+ that contain
1150 the subdomain.
1151 If the \verb+sign+s of the \ai[\tt]{piecewise\_list}s are not zero,
1152 then the (obviously) redundant elements of these sets are removed
1153 from the union.
1154 The result is stored in \verb+this+.
1156 \ai[\tt]{piecewise\_lst::maximize} removes polynomials from domains that evaluate
1157 to a value that is smaller than or equal to the value of some
1158 other polynomial associated to the same domain for each point in the domain.
1160 \ai[\tt]{piecewise\_lst::evaluate} ``evaluates'' the \ai[\tt]{piecewise\_list}
1161 by looking for the domain (if any) that contains the point given by
1162 \verb+values+ and computing the maximal value attained by any of the
1163 associated polynomials evaluated at that point.
1165 \ai[\tt]{piecewise\_lst::add} adds the polynomial \verb+poly+
1166 to each of the polynomial associated to each of the domains.
1168 \ai[\tt]{piecewise\_lst::simplify\_domains} ``simplifies'' the domains
1169 by removing the constraints that are implied by the constraints
1170 in \verb+ctx+, basically by calling \PolyLib/'s
1171 \ai[\tt]{DomainSimplify}. Note that you should only do this
1172 at the end of your computation. In particular, you do not
1173 want to call this method before calling
1174 \ai[\tt]{piecewise\_lst::maximize}, since this method will then
1175 have less information on the domains to exploit.
1178 \begin{verbatim}
1179 namespace barvinok {
1180 bernstein::piecewise_lst *evalue_bernstein_coefficients(
1181 bernstein::piecewise_lst *pl_all, evalue *e,
1182 Polyhedron *ctx, const GiNaC::exvector& params);
1183 bernstein::piecewise_lst *evalue_bernstein_coefficients(
1184 bernstein::piecewise_lst *pl_all, evalue *e,
1185 Polyhedron *ctx, const GiNaC::exvector& params,
1186 barvinok_options *options);
1188 \end{verbatim}
1189 The \ai[\tt]{evalue\_bernstein\_coefficients} function will compute the
1190 \ai{Bernstein coefficient}s of the piecewise parametric polynomial stored in the
1191 \ai[\tt]{evalue} \verb+e+.
1192 The \verb+params+ vector specifies the names to be used for the parameters,
1193 while the context \ai[\tt]{Polyhedron} \verb+ctx+ specifies extra constraints
1194 on the parameters.
1195 The dimension of \verb+ctx+ needs to be the same as the length of \verb+params+.
1196 The \ai[\tt]{evalue} \verb+e+ is assumed to be of type \ai[\tt]{partition}
1197 and each of the domains in this \ai[\tt]{partition} is interpreted
1198 as a parametric polytope in the given parameters. The procedure
1199 will compute the \ai{Bernstein coefficient}s of the associated polynomial
1200 over each such parametric polytope.
1201 The resulting \ai[\tt]{bernstein::piecewise\_lst} collects the
1202 Bernstein coefficients over all parametric polytopes in \verb+e+.
1203 If \verb+pl_all+ is not \verb+NULL+ then this list will be combined
1204 with the list computed by calling \ai[\tt]{piecewise\_lst::combine}.
1205 If \ai[\tt]{bernstein\_optimize} is set to \ai[\tt]{BV\_BERNSTEIN\_MAX}
1206 in \verb+options+, then this combination will remove obviously
1207 redundant Bernstein coefficients with respect to upper bound computation
1208 and similarly for \ai[\tt]{BV\_BERNSTEIN\_MIN}.
1209 The default (\ai[\tt]{BV\_BERNSTEIN\_NONE}) is to only remove duplicate
1210 Bernstein coefficients.