doc: add another paper refering to the library
[barvinok.git] / doc / Internal.tex
blob753af7b52cc3c1bba6331df2409a93bc1751fa4c
1 \section{\protect\PolyLib/ interface of the \protect\ai[\tt]{barvinok} library
2 (obsolescent)}
4 Although \barvinok/ currently still uses \PolyLib/ internally,
5 this is likely to change in the not too distant future.
6 Consider using \isl/ based alternatives for the functions in this section
7 as the latter are likely to be removed in future releases.
9 Our \barvinok/ library is built on top of \PolyLib/
10 \shortcite{Wilde1993,Loechner1999}.
11 In particular, it reuses the implementations
12 of the algorithm of
13 \shortciteN{Loechner97parameterized}
14 for computing parametric vertices
15 and the algorithm of
16 \shortciteN{Clauss1998parametric}
17 for computing chamber decompositions.
18 Initially, our library was meant to be a replacement
19 for the algorithm of \shortciteN{Clauss1998parametric},
20 also implemented in \PolyLib/, for computing quasi-polynomials.
21 To ease the transition of application programs we
22 tried to reuse the existing data structures as much as possible.
24 \subsection{Existing Data Structures}
25 \label{a:existing}
27 Inside \PolyLib/ integer values are represented by the
28 \ai[\tt]{Value} data type.
29 Depending on a configure option, the data type may
30 either by a 32-bit integer, a 64-bit integer
31 or an arbitrary precision integer using \ai[\tt]{GMP}.
32 The \barvinok/ library requires that \PolyLib/ is compiled
33 with support for arbitrary precision integers.
35 The basic structure for representing (unions of) polyhedra is a
36 \ai[\tt]{Polyhedron}.
37 \begin{verbatim}
38 typedef struct polyhedron {
39 unsigned Dimension, NbConstraints, NbRays, NbEq, NbBid;
40 Value **Constraint;
41 Value **Ray;
42 Value *p_Init;
43 int p_Init_size;
44 struct polyhedron *next;
45 } Polyhedron;
46 \end{verbatim}
47 The attribute \ai[\tt]{Dimension} is the dimension
48 of the ambient space, i.e., the number of variables.
49 The attributes \ai[\tt]{Constraint}
50 and \ai[\tt]{Ray} point to two-dimensional arrays
51 of constraints and generators, respectively.
52 The number of rows is stored in
53 \ai[\tt]{NbConstraints} and
54 \ai[\tt]{NbRays}, respectively.
55 The number of columns in both arrays is equal
56 to \verb!1+Dimension+1!.
57 The first column of \ai[\tt]{Constraint} is either
58 $0$ or $1$ depending on whether the constraint
59 is an equality ($0$) or an inequality ($1$).
60 The number of equalities is stored in \ai[\tt]{NbEq}.
61 If the constraint is $\sp a x + c \ge 0$, then
62 the next columns contain the coefficients $a_i$
63 and the final column contains the constant $c$.
64 The first column of \ai[\tt]{Ray} is either
65 $0$ or $1$ depending on whether the generator
66 is a line ($0$) or a vertex or ray ($1$).
67 The number of lines is stored in \ai[\tt]{NbBid}.
68 Let $d$ be the \ac{lcm} of the denominators of the coordinates
69 of a vertex $\vec v$, then the next columns contain
70 $d v_i$ and the final column contains $d$.
71 For a ray, the final column contains $0$.
72 The field \ai[\tt]{next} points to the next polyhedron in
73 the union of polyhedra.
74 It is \verb+0+ if this is the last (or only) polyhedron in the union.
75 For more information on this structure, we refer to \shortciteN{Wilde1993}.
77 Quasi-polynomials are represented using the
78 \ai[\tt]{evalue} and \ai[\tt]{enode} structures.
79 \begin{verbatim}
80 typedef enum { polynomial, periodic, evector } enode_type;
82 typedef struct _evalue {
83 Value d; /* denominator */
84 union {
85 Value n; /* numerator (if denominator != 0) */
86 struct _enode *p; /* pointer (if denominator == 0) */
87 } x;
88 } evalue;
90 typedef struct _enode {
91 enode_type type; /* polynomial or periodic or evector */
92 int size; /* number of attached pointers */
93 int pos; /* parameter position */
94 evalue arr[1]; /* array of rational/pointer */
95 } enode;
96 \end{verbatim}
97 If the field \ai[\tt]{d} of an \ai[\tt]{evalue} is zero, then
98 the \ai[\tt]{evalue} is a placeholder for a pointer to
99 an \ai[\tt]{enode}, stored in \ai[\tt]{x.p}.
100 Otherwise, the \ai[\tt]{evalue} is a rational number with
101 numerator \ai[\tt]{x.n} and denominator \ai[\tt]{d}.
102 An \ai[\tt]{enode} is either a \ai[\tt]{polynomial}
103 or a \ai[\tt]{periodic}, depending on the value
104 of \ai[\tt]{type}.
105 The length of the array \ai[\tt]{arr} is stored in \ai[\tt]{size}.
106 For a \ai[\tt]{polynomial}, \ai[\tt]{arr} contains the coefficients.
107 For a \ai[\tt]{periodic}, it contains the values for the different
108 residue classes modulo the parameter indicated by \ai[\tt]{pos}.
109 For a polynomial, \ai[\tt]{pos} refers to the variable
110 of the polynomial.
111 The value of \ai[\tt]{pos} is \verb+1+ for the first parameter.
112 That is, if the value of \ai[\tt]{pos} is \verb+1+ and the first
113 parameter is $p$, and if the length of the array is $l$,
114 then in case it is a polynomial, the
115 \ai[\tt]{enode} represents
117 \verb+arr[0]+ + \verb+arr[1]+ p + \verb+arr[2]+ p^2 + \cdots +
118 \verb+arr[l-1]+ p^{l-1}
121 If it is a periodic, then it represents
123 \left[
124 \verb+arr[0]+, \verb+arr[1]+, \verb+arr[2]+, \ldots,
125 \verb+arr[l-1]+
126 \right]_p
129 Note that the elements of a \ai[\tt]{periodic} may themselves
130 be other \ai[\tt]{periodic}s or even \ai[\tt]{polynomial}s.
131 In our library, we only allow the elements of a \ai[\tt]{periodic}
132 to be other \ai[\tt]{periodic}s or rational numbers.
133 The chambers and their corresponding quasi-polynomial are
134 stored in \ai[\tt]{Enumeration} structures.
135 \begin{verbatim}
136 typedef struct _enumeration {
137 Polyhedron *ValidityDomain; /* constraints on the parameters */
138 evalue EP; /* dimension = combined space */
139 struct _enumeration *next; /* Ehrhart Polynomial,
140 corresponding to parameter
141 values inside the domain
142 ValidityDomain above */
143 } Enumeration;
144 \end{verbatim}
145 For more information on these structures, we refer to \shortciteN{Loechner1999}.
147 \begin{example}
148 Figure~\ref{f:Loechner} is a skillful reconstruction
149 of Figure~2 from \shortciteN{Loechner1999}.
150 It shows the contents of the \ai[\tt]{enode} structures
151 representing the quasi-polynomial
153 [1,2]_p p^2 + 3 p + \frac 5 2
156 \begin{figure}
157 \begin{xy}
158 \POS(0,0)*!UL{\hbox{
160 \begin{tabular}{|c|c|c|}
161 \hline
162 \multicolumn{2}{|c|}{type} & polynomial \\
163 \hline
164 \multicolumn{2}{|c|}{size} & 3 \\
165 \hline
166 \multicolumn{2}{|c|}{pos} & 1 \\
167 \hline
168 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
169 \cline{2-3}
170 & x.n & 5 \\
171 \hline
172 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
173 \cline{2-3}
174 & x.n & 3 \\
175 \hline
176 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
177 \cline{2-3}
178 & x.p & \\
179 \hline
180 \end{tabular}
182 }="box1"
183 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
184 \POS(60,-15)*!UL{\hbox{
186 \begin{tabular}{|c|c|c|}
187 \hline
188 \multicolumn{2}{|c|}{type} & periodic \\
189 \hline
190 \multicolumn{2}{|c|}{size} & 2 \\
191 \hline
192 \multicolumn{2}{|c|}{pos} & 1 \\
193 \hline
194 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
195 \cline{2-3}
196 & x.n & 1 \\
197 \hline
198 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
199 \cline{2-3}
200 & x.n & 2 \\
201 \hline
202 \end{tabular}
204 }="box2"
205 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
206 \POS"a"\ar@(r,l) "b"
207 \POS"box1"+UC*++!D\hbox{\tt enode}
208 \POS"box2"+UC*++!D\hbox{\tt enode}
209 \end{xy}
210 \caption{The quasi-polynomial $[1,2]_p p^2 + 3 p + \frac 5 2$.}
211 \label{f:Loechner}
212 \end{figure}
213 \end{example}
215 \subsection{Options}
216 \label{a:options}
218 The \ai[\tt]{barvinok\_options} structure contains various
219 options that influence the behavior of the library.
221 \begin{verbatim}
222 struct barvinok_options {
223 struct barvinok_stats *stats;
225 /* PolyLib options */
226 unsigned MaxRays;
228 /* NTL options */
229 /* LLL reduction parameter delta=LLL_a/LLL_b */
230 long LLL_a;
231 long LLL_b;
233 /* barvinok options */
234 #define BV_SPECIALIZATION_BF 2
235 #define BV_SPECIALIZATION_DF 1
236 #define BV_SPECIALIZATION_RANDOM 0
237 #define BV_SPECIALIZATION_TODD 3
238 int incremental_specialization;
240 unsigned long max_index;
241 int primal;
242 int lookup_table;
243 int count_sample_infinite;
245 int try_Delaunay_triangulation;
247 #define BV_APPROX_SIGN_NONE 0
248 #define BV_APPROX_SIGN_APPROX 1
249 #define BV_APPROX_SIGN_LOWER 2
250 #define BV_APPROX_SIGN_UPPER 3
251 int polynomial_approximation;
252 #define BV_APPROX_NONE 0
253 #define BV_APPROX_DROP 1
254 #define BV_APPROX_SCALE 2
255 #define BV_APPROX_VOLUME 3
256 #define BV_APPROX_BERNOULLI 4
257 int approximation_method;
258 #define BV_APPROX_SCALE_FAST (1 << 0)
259 #define BV_APPROX_SCALE_NARROW (1 << 1)
260 #define BV_APPROX_SCALE_NARROW2 (1 << 2)
261 #define BV_APPROX_SCALE_CHAMBER (1 << 3)
262 int scale_flags;
263 #define BV_VOL_LIFT 0
264 #define BV_VOL_VERTEX 1
265 #define BV_VOL_BARYCENTER 2
266 int volume_triangulate;
268 /* basis reduction options */
269 #define BV_GBR_NONE 0
270 #define BV_GBR_GLPK 1
271 #define BV_GBR_CDD 2
272 int gbr_lp_solver;
274 #define BV_LP_POLYLIB 0
275 #define BV_LP_GLPK 1
276 #define BV_LP_CDD 2
277 #define BV_LP_CDDF 3
278 int lp_solver;
280 #define BV_HULL_GBR 0
281 #define BV_HULL_HILBERT 1
282 int integer_hull;
285 struct barvinok_options *barvinok_options_new_with_defaults();
286 \end{verbatim}
288 The function \ai[\tt]{barvinok\_options\_new\_with\_defaults}
289 can be used to create a \ai[\tt]{barvinok\_options} structure
290 with default values.
292 \begin{itemize}
293 \item \PolyLib/ options
295 \begin{itemize}
297 \item \ai[\tt]{MaxRays}
299 The value of \ai[\tt]{MaxRays} is passed to various \PolyLib/
300 functions and defines the
301 maximum size of a table used in the \ai{double description} computation
302 in the \PolyLib/ function \ai[\tt]{Chernikova}.
303 In earlier versions of \PolyLib/,
304 this parameter had to be conservatively set
305 to a high number to ensure successful operation,
306 resulting in significant memory overhead.
307 Our change to allow this table to grow
308 dynamically is available in recent versions of \PolyLib/.
309 In these versions, the value no longer indicates the maximal
310 table size, but rather the size of the initial allocation.
311 This value may be set to \verb+0+ or left as set
312 by \ai[\tt]{barvinok\_options\_new\_with\_defaults}.
314 \end{itemize}
316 \item \ai[\tt]{NTL} options
318 \begin{itemize}
320 \item \ai[\tt]{LLL\_a}
321 \item \ai[\tt]{LLL\_b}
323 The values used for the \ai{reduction parameter}
324 in the call to \ai[\tt]{NTL}'s implementation of \indac{LLL}.
326 \end{itemize}
328 \item \ai[\tt]{barvinok} specific options
330 \begin{itemize}
332 \item \ai[\tt]{incremental\_specialization}
334 Selects the \ai{specialization} algorithm to be used.
335 If set to {\tt 0} then a direct specialization is performed
336 using a random vector.
337 Value {\tt 1} selects a depth first incremental specialization,
338 while value {\tt 2} selects a breadth first incremental specialization.
339 The default is selected by the \ai[\tt]{--enable-incremental}
340 \ai[\tt]{configure} option.
341 For more information we refer to~\citeN[Section~4.4.3]{Verdoolaege2005PhD}.
343 \end{itemize}
345 \end{itemize}
347 \subsection{Data Structures for Quasi-polynomials}
348 \label{a:data}
350 Internally, we do not represent our \ai{quasi-polynomial}s
351 as step-polynomials, but instead as polynomials of
352 fractional parts of degree-$1$ polynomials.
353 However, we also allow our quasi-polynomials to be represented
354 as polynomials with periodic numbers for coefficients,
355 similarly to \shortciteN{Loechner1999}.
356 By default, the current version of \barvinok/ uses
357 \ai[\tt]{fractional}s, but this can be changed through
358 the \ai[\tt]{--disable-fractional} configure option.
359 When this option is specified, the periodic numbers
360 are represented as
361 an explicit enumeration using the \ai[\tt]{periodic} type.
362 A quasi-polynomial based on fractional
363 parts can also be converted to an actual step-polynomial
364 using \ai[\tt]{evalue\_frac2floor}, but this is not fully
365 supported yet.
367 For reasons of compatibility,%
368 \footnote{Also known as laziness.}
369 we shoehorned our representations for piecewise quasi-polynomials
370 into the existing data structures.
371 To this effect, we introduced four new types,
372 \ai[\tt]{fractional}, \ai[\tt]{relation},
373 \ai[\tt]{partition} and \ai[\tt]{flooring}.
374 \begin{verbatim}
375 typedef enum { polynomial, periodic, evector, fractional,
376 relation, partition, flooring } enode_type;
377 \end{verbatim}
378 The field \ai[\tt]{pos} is not used in most of these
379 additional types and is therefore set to \verb+-1+.
381 The types \ai[\tt]{fractional} and \ai[\tt]{flooring}
382 represent polynomial expressions in a fractional part or a floor respectively.
383 The generator is stored in \verb+arr[0]+, while the
384 coefficients are stored in the remaining array elements.
385 That is, an \ai[\tt]{enode} of type \ai[\tt]{fractional}
386 represents
388 \verb+arr[1]+ + \verb+arr[2]+ \{\verb+arr[0]+\} +
389 \verb+arr[3]+ \{\verb+arr[0]+\}^2 + \cdots +
390 \verb+arr[l-1]+ \{\verb+arr[0]+\}^{l-2}
393 An \ai[\tt]{enode} of type \ai[\tt]{flooring}
394 represents
396 \verb+arr[1]+ + \verb+arr[2]+ \lfloor\verb+arr[0]+\rfloor +
397 \verb+arr[3]+ \lfloor\verb+arr[0]+\rfloor^2 + \cdots +
398 \verb+arr[l-1]+ \lfloor\verb+arr[0]+\rfloor^{l-2}
402 \begin{example}
403 The internal representation of the quasi-polynomial
404 $$\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$$
405 is shown in Figure~\ref{f:fractional}.
407 \begin{figure}
408 \begin{xy}
409 \POS(0,0)*!UL{\hbox{
411 \begin{tabular}{|c|c|c|}
412 \hline
413 \multicolumn{2}{|c|}{type} & polynomial \\
414 \hline
415 \multicolumn{2}{|c|}{size} & 3 \\
416 \hline
417 \multicolumn{2}{|c|}{pos} & 1 \\
418 \hline
419 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 2 \\
420 \cline{2-3}
421 & x.n & 5 \\
422 \hline
423 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
424 \cline{2-3}
425 & x.n & 3 \\
426 \hline
427 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 0 \\
428 \cline{2-3}
429 & x.p & \\
430 \hline
431 \end{tabular}
433 }="box1"
434 +DR*!DR\hbox{\strut\hskip 1.5\tabcolsep\phantom{\tt polynomial}\hskip 1.5\tabcolsep}+C="a"
435 \POS(60,0)*!UL{\hbox{
437 \begin{tabular}{|c|c|c|}
438 \hline
439 \multicolumn{2}{|c|}{type} & fractional \\
440 \hline
441 \multicolumn{2}{|c|}{size} & 3 \\
442 \hline
443 \multicolumn{2}{|c|}{pos} & -1 \\
444 \hline
445 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 0 \\
446 \cline{2-3}
447 & x.p & \\
448 \hline
449 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 1 \\
450 \cline{2-3}
451 & x.n & 1 \\
452 \hline
453 \smash{\lower 6.25pt\hbox{arr[2]}} & d & 1 \\
454 \cline{2-3}
455 & x.n & 2 \\
456 \hline
457 \end{tabular}
459 }="box2"
460 +UL+<0.5\tabcolsep,0pt>*!UL\hbox{\strut}+CL="b"
461 \POS"a"\ar@(r,l) "b"
462 \POS"box2"+UR*!UR{\hbox{
464 \begin{tabular}{|c|}
465 \hline
466 fractional \\
467 \hline
468 3 \\
469 \hline
470 -1 \\
471 \hline
472 0 \\
473 \hline
474 \end{tabular}
476 }+CD*!U{\strut}+C="c"
477 \POS(60,-50)*!UL{\hbox{
479 \begin{tabular}{|c|c|c|}
480 \hline
481 \multicolumn{2}{|c|}{type} & polynomial \\
482 \hline
483 \multicolumn{2}{|c|}{size} & 2 \\
484 \hline
485 \multicolumn{2}{|c|}{pos} & 1 \\
486 \hline
487 \smash{\lower 6.25pt\hbox{arr[0]}} & d & 1 \\
488 \cline{2-3}
489 & x.n & 0 \\
490 \hline
491 \smash{\lower 6.25pt\hbox{arr[1]}} & d & 2 \\
492 \cline{2-3}
493 & x.n & 1 \\
494 \hline
495 \end{tabular}
497 }="box3"
498 +UR-<0.8\tabcolsep,0pt>*!UR\hbox{\strut}+CR="d"
499 \POS"c"\ar@(r,r) "d"
500 \POS"box1"+UC*++!D\hbox{\tt enode}
501 \POS"box2"+UC*++!D\hbox{\tt enode}
502 \POS"box3"+UC*++!D\hbox{\tt enode}
503 \end{xy}
504 \caption{The quasi-polynomial
505 $\left(1+2 \left\{\frac p 2\right\}\right) p^2 + 3 p + \frac 5 2$.}
506 \label{f:fractional}
507 \end{figure}
509 \end{example}
511 The \ai[\tt]{relation} type is used to represent \ai{stride}s.
512 In particular, if the value of \ai[\tt]{size} is 2, then
513 the value of a \ai[\tt]{relation} is (in pseudo-code):
514 \begin{verbatim}
515 (value(arr[0]) == 0) ? value(arr[1]) : 0
516 \end{verbatim}
517 If the size is 3, then the value is:
518 \begin{verbatim}
519 (value(arr[0]) == 0) ? value(arr[1]) : value(arr[2])
520 \end{verbatim}
521 The type of \verb+arr[0]+ is typically \ai[\tt]{fractional}.
523 Finally, the \ai[\tt]{partition} type is used to
524 represent piecewise quasi-polynomials.
525 We prefer to encode this information inside \ai[\tt]{evalue}s
526 themselves
527 rather than using \ai[\tt]{Enumeration}s since we want
528 to perform the same kinds of operations on both quasi-polynomials
529 and piecewise quasi-polynomials.
530 An \ai[\tt]{enode} of type \ai[\tt]{partition} may not be nested
531 inside another \ai[\tt]{enode}.
532 The size of the array is twice the number of ``chambers''.
533 Pointers to chambers are stored in the even slots,
534 whereas pointer to the associated quasi-polynomials
535 are stored in the odd slots.
536 To be able to store pointers to chambers, the
537 definition of \ai[\tt]{evalue} was changed as follows.
538 \begin{verbatim}
539 typedef struct _evalue {
540 Value d; /* denominator */
541 union {
542 Value n; /* numerator (if denominator > 0) */
543 struct _enode *p; /* pointer (if denominator == 0) */
544 Polyhedron *D; /* domain (if denominator == -1) */
545 } x;
546 } evalue;
547 \end{verbatim}
548 Note that we allow a ``chamber'' to be a union of polyhedra
549 as discussed in \citeN[Section~4.5.1]{Verdoolaege2005PhD}.
550 Chambers with extra variables, i.e., those of
551 \citeN[Section~4.6.5]{Verdoolaege2005PhD},
552 are only partially supported.
553 The field \ai[\tt]{pos} is set to the actual dimension,
554 i.e., the number of parameters.
556 \subsection{Operations on Quasi-polynomials}
557 \label{a:operations}
559 In this section we discuss some of the more important
560 operations on \ai[\tt]{evalue}s provided by the
561 \barvinok/ library.
562 Some of these operations are extensions
563 of the functions from \PolyLib/ with the same name.
565 Most of these operation are also provided by \isl/ on
566 \ai[\tt]{isl\_pw\_qpolynomial}s, which are set to replace
567 \ai[\tt]{evalue}s. Use \ai[\tt]{isl\_pw\_qpolynomial\_from\_evalue} to convert
568 from \ai[\tt]{evalue}s to \ai[\tt]{isl\_pw\_qpolynomial}s.
569 \begin{verbatim}
570 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_evalue(
571 __isl_take isl_space *dim, const evalue *e);
572 \end{verbatim}
574 \begin{verbatim}
575 void eadd(const evalue *e1,evalue *res);
576 void emul(const evalue *e1, evalue *res);
577 \end{verbatim}
578 The functions \ai[\tt]{eadd} and \ai[\tt]{emul} takes
579 two (pointers to) \ai[\tt]{evalue}s \verb+e1+ and \verb+res+
580 and computes their sum and product respectively.
581 The result is stored in \verb+res+, overwriting (and deallocating)
582 the original value of \verb+res+.
583 It is an error if exactly one of
584 the arguments of \ai[\tt]{eadd} is of type \ai[\tt]{partition}
585 (unless the other argument is \verb+0+).
586 The addition and multiplication operations are described
587 in \citeN[Section~4.5.1]{Verdoolaege2005PhD}
588 and~\citeN[Section~4.5.2]{Verdoolaege2005PhD}
589 respectively.
591 The function \ai[\tt]{eadd} is an extension of the function
592 \ai[\tt]{new\_eadd} from \shortciteN{Seghir2002}.
593 Apart from supporting the additional types from Section~\ref{a:data},
594 the new version also additionally imposes an order on the nesting of
595 different \ai[\tt]{enode}s.
596 Without such an ordering, \ai[\tt]{evalue}s could be constructed
597 representing for example
599 (0 y^ 0 + ( 0 x^0 + 1 x^1 ) y^1 ) x^0 + (0 y^0 - 1 y^1) x^1
602 which is just a funny way of saying $0$.
604 \begin{verbatim}
605 void eor(evalue *e1, evalue *res);
606 \end{verbatim}
607 The function \ai[\tt]{eor} implements the \ai{union}
608 operation from \citeN[Section~4.5.3]{Verdoolaege2005PhD}. Both arguments
609 are assumed to correspond to indicator functions.
611 \begin{verbatim}
612 evalue *esum(evalue *E, int nvar);
613 evalue *evalue_sum(evalue *E, int nvar, unsigned MaxRays);
614 \end{verbatim}
615 The function \ai[\tt]{esum} has been superseded by
616 \ai[\tt]{evalue\_sum}.
617 The function \ai[\tt]{evalue\_sum} performs the summation
618 operation from \citeN[Section~4.5.4]{Verdoolaege2005PhD}.
619 The piecewise step-polynomial represented by \verb+E+ is summated
620 over its first \verb+nvar+ variables.
621 Note that \verb+E+ must be zero or of type \ai[\tt]{partition}.
622 The function returns the result in a newly allocated
623 \ai[\tt]{evalue}.
624 Note also that \verb+E+ needs to have been converted
625 from \ai[\tt]{fractional}s to \ai[\tt]{flooring}s using
626 the function \ai[\tt]{evalue\_frac2floor}.
627 \begin{verbatim}
628 void evalue_frac2floor(evalue *e);
629 \end{verbatim}
630 This function also ensures that the arguments of the
631 \ai[\tt]{flooring}s are positive in the relevant chambers.
632 It currently assumes that the argument of each
633 \ai[\tt]{fractional} in the original \ai[\tt]{evalue}
634 has a minimum in the corresponding chamber.
636 \begin{verbatim}
637 double compute_evalue(const evalue *e, Value *list_args);
638 Value *compute_poly(Enumeration *en,Value *list_args);
639 evalue *evalue_eval(const evalue *e, Value *values);
640 \end{verbatim}
641 The functions \ai[\tt]{compute\_evalue},
642 \ai[\tt]{compute\_poly} and
643 \ai[\tt]{evalue\_eval}
644 evaluate a (piecewise) quasi-polynomial
645 at a certain point. The argument \verb+list_args+
646 points to an array of \ai[\tt]{Value}s that is assumed
647 to be long enough.
648 The \verb+double+ return value of \ai[\tt]{compute\_evalue}
649 is inherited from \PolyLib/.
651 \begin{verbatim}
652 void print_evalue(FILE *DST, const evalue *e, char **pname);
653 \end{verbatim}
654 The function \ai[\tt]{print\_evalue} dumps a human-readable
655 representation to the stream pointed to by \verb+DST+.
656 The argument \verb+pname+ points
657 to an array of character strings representing the parameter names.
658 The array is assumed to be long enough.
660 \begin{verbatim}
661 int eequal(const evalue *e1, const evalue *e2);
662 \end{verbatim}
663 The function \ai[\tt]{eequal} return true (\verb+1+) if its
664 two arguments are structurally identical.
665 I.e., it does {\em not\/} check whether the two
666 (piecewise) quasi-polynomial represent the same function.
668 \begin{verbatim}
669 void reduce_evalue (evalue *e);
670 \end{verbatim}
671 The function \ai[\tt]{reduce\_evalue} performs some
672 simplifications on \ai[\tt]{evalue}s.
673 Here, we only describe the simplifications that are directly
674 related to the internal representation.
675 Some other simplifications are explained in
676 \citeN[Section~4.7.2]{Verdoolaege2005PhD}.
677 If the highest order coefficients of a \ai[\tt]{polynomial},
678 \ai[\tt]{fractional} or \ai[\tt]{flooring} are zero (possibly
679 after some other simplifications), then the size of the array
680 is reduced. If only the constant term remains, i.e.,
681 the size is reduced to $1$ for \ai[\tt]{polynomial} or to $2$
682 for the other types, then the whole node is replaced by
683 the constant term.
684 Additionally, if the argument of a \ai[\tt]{fractional}
685 has been reduced to a constant, then the whole node
686 is replaced by its partial evaluation.
687 A \ai[\tt]{relation} is similarly reduced if its second
688 branch or both its branches are zero.
689 Chambers with zero associated quasi-polynomials are
690 discarded from a \ai[\tt]{partition}.
692 \subsection{Generating Functions}
694 The representation of \rgf/s uses
695 some basic types from the \ai[\tt]{NTL} library \shortcite{NTL}
696 for representing arbitrary precision integers
697 (\ai[\tt]{ZZ})
698 as well as vectors (\ai[\tt]{vec\_ZZ}) and matrices (\ai[\tt]{mat\_ZZ})
699 of such integers.
700 We further introduces a type \ai[\tt]{QQ} for representing a rational
701 number and use vectors (\ai[\tt]{vec\_QQ}) of such numbers.
702 \begin{verbatim}
703 struct QQ {
704 ZZ n;
705 ZZ d;
708 NTL_vector_decl(QQ,vec_QQ);
709 \end{verbatim}
711 Each term in a \rgf/ is represented by a \ai[\tt]{short\_rat}
712 structure.
713 \begin{verbatim}
714 struct short_rat {
715 struct {
716 /* rows: terms in numerator */
717 vec_QQ coeff;
718 mat_ZZ power;
719 } n;
720 struct {
721 /* rows: factors in denominator */
722 mat_ZZ power;
723 } d;
725 \end{verbatim}
726 The fields \ai[\tt]{n} and \ai[\tt]{d} represent the
727 numerator and the denominator respectively.
728 Note that in our implementation we combine terms
729 with the same denominator.
730 In the numerator, each element of \ai[\tt]{coeff} and each row of \ai[\tt]{power}
731 represents a single such term.
732 The vector \ai[\tt]{coeff} contains the rational coefficients
733 $\alpha_i$ of each term.
734 The columns of \ai[\tt]{power} correspond to the powers
735 of the variables.
736 In the denominator, each row of \ai[\tt]{power}
737 corresponds to the power $\vec b_{ij}$ of a
738 factor in the denominator.
740 \begin{example}
741 Figure~\ref{fig:rat}
742 shows the internal representation of
744 \frac{\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}}
745 { (1 - x_0 x_1^{-3}) (1 - x_1^2)}
749 \begin{figure}
750 \begin{center}
751 \begin{minipage}{0cm}
752 \begin{xy}
753 *\hbox{
755 \begin{tabular}{|c|c|c|}
756 \hline
757 n.coeff & 3 & 2 \\
758 \cline{2-3}
759 & 2 & 1 \\
760 \hline
761 n.power & 2 & 3 \\
762 \cline{2-3}
763 & 5 & -7 \\
764 \hline
765 d.power & 1 & -3 \\
766 \cline{2-3}
767 & 0 & 2 \\
768 \hline
769 \end{tabular}
770 }+UC*++!D\hbox{\tt short\_rat}
771 \end{xy}
772 \end{minipage}
773 \end{center}
774 \caption{Representation of
776 \left(\frac 3 2 \, x_0^2 x_1^3 + 2 \, x_0^5 x_1^{-7}\right)
777 / \left( (1 - x_0 x_1^{-3}) (1 - x_1^2)\right)
779 \label{fig:rat}
780 \end{figure}
782 \end{example}
784 The whole \rgf/ is represented by a \ai[\tt]{gen\_fun}
785 structure.
786 \begin{verbatim}
787 typedef std::set<short_rat *,
788 short_rat_lex_smaller_denominator > short_rat_list;
790 struct gen_fun {
791 short_rat_list term;
792 Polyhedron *context;
794 void add(const QQ& c, const vec_ZZ& num, const mat_ZZ& den);
795 void add(short_rat *r);
796 void add(const QQ& c, const gen_fun *gf,
797 barvinok_options *options);
798 void substitute(Matrix *CP);
799 gen_fun *Hadamard_product(const gen_fun *gf,
800 barvinok_options *options);
801 void print(std::ostream& os,
802 unsigned int nparam, char **param_name) const;
803 operator evalue *() const;
804 ZZ coefficient(Value* params, barvinok_options *options) const;
805 void coefficient(Value* params, Value* c) const;
807 gen_fun(Polyhedron *C);
808 gen_fun(Value c);
809 gen_fun(const gen_fun *gf);
810 ~gen_fun();
812 \end{verbatim}
813 A new \ai[\tt]{gen\_fun} can be constructed either as empty \rgf/ (possibly
814 with a given context \verb+C+), as a copy of an existing \rgf/ \verb+gf+, or as
815 constant \rgf/ with value for the constant term specified by \verb+c+.
817 The first \ai[\tt]{gen\_fun::add} method adds a new term to the \rgf/,
818 described by the coefficient \verb+c+, the numerator \verb+num+ and the
819 denominator \verb+den+.
820 It makes all powers in the denominator lexico-positive,
821 orders them in lexicographical order and inserts the new
822 term in \ai[\tt]{term} according to the lexicographical
823 order of the combined powers in the denominator.
824 The second \ai[\tt]{gen\_fun::add} method adds \verb+c+ times \verb+gf+
825 to the \rgf/.
827 The method \ai[\tt]{gen\_fun::operator evalue *} performs
828 the conversion from \rgf/ to \psp/ explained in
829 \citeN[Section~4.5.5]{Verdoolaege2005PhD}.
830 The \ai[\tt]{Polyhedron} \ai[\tt]{context} is the superset
831 of all points where the enumerator is non-zero used during this conversion,
832 i.e., it is the set $Q$ from \citeN[Equation~4.31]{Verdoolaege2005PhD}.
833 If \ai[\tt]{context} is \verb+NULL+ the maximal
834 allowed context is assumed, i.e., the maximal
835 region with lexico-positive rays.
837 The method \ai[\tt]{gen\_fun::coefficient} computes the coefficient
838 of the term with power given by \verb+params+ and stores the result
839 in \verb+c+.
840 This method performs essentially the same computations as
841 \ai[\tt]{gen\_fun::operator evalue *}, except that it adds extra
842 equality constraints based on the specified values for the power.
844 The method \ai[\tt]{gen\_fun::substitute} performs the
845 \ai{monomial substitution} specified by the homogeneous matrix \verb+CP+
846 that maps a set of ``\ai{compressed parameter}s'' \shortcite{Meister2004PhD}
847 to the original set of parameters.
848 That is, if we are given a \rgf/ $G(\vec z)$ that encodes the
849 explicit function $g(\vec i')$, where $\vec i'$ are the coordinates of
850 the transformed space, and \verb+CP+ represents the map
851 $\vec i = A \vec i' + \vec a$ back to the original space with coordinates $\vec i$,
852 then this method transforms the \rgf/ to $F(\vec x)$ encoding the
853 same explicit function $f(\vec i)$, i.e.,
854 $$f(\vec i) = f(A \vec i' + \vec a) = g(\vec i ').$$
855 This means that the coefficient of the term
856 $\vec x^{\vec i} = \vec x^{A \vec i' + \vec a}$ in $F(\vec x)$ should be equal to the
857 coefficient of the term $\vec z^{\vec i'}$ in $G(\vec z)$.
858 In other words, if
860 G(\vec z) =
861 \sum_i \epsilon_i \frac{\vec z^{\vec v_i}}{\prod_j (1-\vec z^{\vec b_{ij}})}
863 then
865 F(\vec x) =
866 \sum_i \epsilon_i \frac{\vec x^{A \vec v_i + \vec a}}
867 {\prod_j (1-\vec x^{A \vec b_{ij}})}
871 The method \ai[\tt]{gen\_fun::Hadamard\_product} computes the
872 \ai{Hadamard product} of the current \rgf/ with the \rgf/ \verb+gf+,
873 as explained in \citeN[Section~4.5.2]{Verdoolaege2005PhD}.
875 \subsection{Counting Functions}
876 \label{a:counting:functions}
878 Our library provides essentially three different counting functions:
879 one for non-parametric polytopes, one for parametric polytopes
880 and one for parametric sets with existential variables.
881 The old versions of these functions have a ``\ai[\tt]{MaxRays}''
882 argument, while the new versions have a more general
883 \ai[\tt]{barvinok\_options} argument.
884 For more information on \ai[\tt]{barvinok\_options}, see Section~\ref{a:options}.
886 \begin{verbatim}
887 void barvinok_count(Polyhedron *P, Value* result,
888 unsigned NbMaxCons);
889 void barvinok_count_with_options(Polyhedron *P, Value* result,
890 struct barvinok_options *options);
891 \end{verbatim}
892 The function \ai[\tt]{barvinok\_count} or
893 \ai[\tt]{barvinok\_count\_with\_options} enumerates the non-parametric
894 polytope \verb+P+ and returns the result in the \ai[\tt]{Value}
895 pointed to by \verb+result+, which needs to have been allocated
896 and initialized.
897 If \verb+P+ is a union, then only the first set in the union will
898 be taken into account.
899 For the meaning of the argument \verb+NbMaxCons+, see
900 the discussion on \ai[\tt]{MaxRays} in Section~\ref{a:options}.
902 The function \ai[\tt]{barvinok\_enumerate} for enumerating
903 parametric polytopes was meant to be
904 a drop-in replacement of \PolyLib/'s \ai[\tt]{Polyhedron\_Enumerate}
905 function.
906 Unfortunately, the latter has been changed to
907 accept an extra argument in recent versions of \PolyLib/ as shown below.
908 \begin{verbatim}
909 Enumeration* barvinok_enumerate(Polyhedron *P, Polyhedron* C,
910 unsigned MaxRays);
911 extern Enumeration *Polyhedron_Enumerate(Polyhedron *P,
912 Polyhedron *C, unsigned MAXRAYS, char **pname);
913 \end{verbatim}
914 The argument \verb+MaxRays+ has the same meaning as the argument
915 \verb+NbMaxCons+ above.
916 The argument \verb+P+ refers to the $(d+n)$-dimensional
917 polyhedron defining the parametric polytope.
918 The argument \verb+C+ is an $n$-dimensional polyhedron containing
919 extra constraints on the parameter space.
920 Its primary use is to indicate how many of the dimensions
921 in \verb+P+ refer to parameters as any constraint in \verb+C+
922 could equally well have been added to \verb+P+ itself.
923 Note that the dimensions referring to the parameters should
924 appear {\em last}.
925 If either \verb+P+ or \verb+C+ is a union,
926 then only the first set in the union will be taken into account.
927 The result is a newly allocated \ai[\tt]{Enumeration}.
928 As an alternative we also provide a function
929 (\ai[\tt]{barvinok\_enumerate\_ev} or
930 \ai[\tt]{barvinok\_enumerate\_with\_options}) that returns
931 an \ai[\tt]{evalue}.
932 \begin{verbatim}
933 evalue* barvinok_enumerate_ev(Polyhedron *P, Polyhedron* C,
934 unsigned MaxRays);
935 evalue* barvinok_enumerate_with_options(Polyhedron *P,
936 Polyhedron* C, struct barvinok_options *options);
937 \end{verbatim}
939 For enumerating parametric sets with existentially quantified variables,
940 we provide two functions:
941 \ai[\tt]{barvinok\_enumerate\_e},
943 \ai[\tt]{barvinok\_enumerate\_isl}.
944 \begin{verbatim}
945 evalue* barvinok_enumerate_e(Polyhedron *P,
946 unsigned exist, unsigned nparam, unsigned MaxRays);
947 evalue* barvinok_enumerate_e_with_options(Polyhedron *P,
948 unsigned exist, unsigned nparam,
949 struct barvinok_options *options);
950 evalue *barvinok_enumerate_isl(Polyhedron *P,
951 unsigned exist, unsigned nparam,
952 struct barvinok_options *options);
953 evalue *barvinok_enumerate_scarf(Polyhedron *P,
954 unsigned exist, unsigned nparam,
955 struct barvinok_options *options);
956 \end{verbatim}
957 The first function tries the simplification rules from
958 \citeN[Section~4.6.2]{Verdoolaege2005PhD} before resorting to the method
959 based on \indac{PIP} from \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
960 The second function immediately applies the technique from
961 \citeN[Section~4.6.3]{Verdoolaege2005PhD}.
962 The argument \verb+exist+ refers to the number of existential variables,
963 whereas
964 the argument \verb+nparam+ refers to the number of parameters.
965 The order of the dimensions in \verb+P+ is:
966 counted variables first, then existential variables and finally
967 the parameters.
968 The function \ai[\tt]{barvinok\_enumerate\_scarf} performs the same
969 computation as the function \ai[\tt]{barvinok\_enumerate\_scarf\_series}
970 below, but produces an explicit representation instead of a generating function.
972 \begin{verbatim}
973 gen_fun * barvinok_series(Polyhedron *P, Polyhedron* C,
974 unsigned MaxRays);
975 gen_fun * barvinok_series_with_options(Polyhedron *P,
976 Polyhedron* C, barvinok_options *options);
977 gen_fun *barvinok_enumerate_e_series(Polyhedron *P,
978 unsigned exist, unsigned nparam,
979 barvinok_options *options);
980 gen_fun *barvinok_enumerate_scarf_series(Polyhedron *P,
981 unsigned exist, unsigned nparam,
982 barvinok_options *options);
983 \end{verbatim}
984 The function
985 \ai[\tt]{barvinok\_series} or
986 \ai[\tt]{barvinok\_series\_with\_options} enumerates parametric polytopes
987 in the form of a \rgf/.
988 The polyhedron \verb+P+ is assumed to have only
989 revlex-positive rays.
991 The function \ai[\tt]{barvinok\_enumerate\_e\_series} computes a
992 generating function for the number of point in the parametric set
993 defined by \verb+P+ with \verb+exist+ existentially quantified
994 variables using the \ai{projection theorem}, as explained
995 in \autoref{s:projection}.
996 The function \ai[\tt]{barvinok\_enumerate\_scarf\_series} computes a
997 generating function for the number of point in the parametric set
998 defined by \verb+P+ with \verb+exist+ existentially quantified
999 variables, which is assumed to be 2.
1000 This function implements the technique of
1001 \shortciteN{Scarf2006Neighborhood} using the \ai{neighborhood complex}
1002 description of \shortciteN{Scarf1981indivisibilities:II}.
1003 It is currently restricted to problems with 3 or 4 constraints involving
1004 the existentially quantified variables.
1006 \subsection{Auxiliary Functions}
1008 In this section we briefly mention some auxiliary functions
1009 available in the \barvinok/ library.
1011 \begin{verbatim}
1012 void Polyhedron_Polarize(Polyhedron *P);
1013 \end{verbatim}
1014 The function \ai[\tt]{Polyhedron\_Polarize}
1015 polarizes its argument and is explained
1016 in \citeN[Section~4.4.2]{Verdoolaege2005PhD}.
1018 \begin{verbatim}
1019 int unimodular_complete(Matrix *M, int row);
1020 \end{verbatim}
1021 The function \ai[\tt]{unimodular\_complete} extends
1022 the first \verb+row+ rows of
1023 \verb+M+ with an integral basis of the orthogonal complement
1024 as explained in Section~\ref{s:completion}.
1025 Returns non-zero
1026 if the resulting matrix is unimodular\index{unimodular matrix}.
1028 \begin{verbatim}
1029 int DomainIncludes(Polyhedron *D1, Polyhedron *D2);
1030 \end{verbatim}
1031 The function \ai[\tt]{DomainIncludes} extends
1032 the function \ai[\tt]{PolyhedronIncludes}
1033 provided by \PolyLib/
1034 to unions of polyhedra.
1035 It checks whether every polyhedron in the union {\tt D2}
1036 is included in some polyhedron of {\tt D1}.
1038 \begin{verbatim}
1039 Polyhedron *DomainConstraintSimplify(Polyhedron *P,
1040 unsigned MaxRays);
1041 \end{verbatim}
1042 The value returned by
1043 \ai[\tt]{DomainConstraintSimplify} is a pointer to
1044 a newly allocated \ai[\tt]{Polyhedron} that contains the
1045 same integer points as its first argument but possibly
1046 has simpler constraints.
1047 Each constraint $ g \sp a x \ge c $
1048 is replaced by $ \sp a x \ge \ceil{ \frac c g } $,
1049 where $g$ is the \ac{gcd} of the coefficients in the original
1050 constraint.
1051 The \ai[\tt]{Polyhedron} pointed to by \verb+P+ is destroyed.
1053 \begin{verbatim}
1054 Polyhedron* Polyhedron_Project(Polyhedron *P, int dim);
1055 \end{verbatim}
1056 The function \ai[\tt]{Polyhedron\_Project} projects
1057 \verb+P+ onto its last \verb+dim+ dimensions.
1059 \begin{verbatim}
1060 Matrix *left_inverse(Matrix *M, Matrix **Eq);
1061 \end{verbatim}
1062 The \ai[\tt]{left\_inverse} function computes the left inverse
1063 of \verb+M+ as explained in Section~\ref{s:inverse}.
1065 \sindex{reduced}{basis}
1066 \sindex{generalized}{reduced basis}
1067 \begin{verbatim}
1068 Matrix *Polyhedron_Reduced_Basis(Polyhedron *P,
1069 struct barvinok_options *options);
1070 \end{verbatim}
1071 \ai[\tt]{Polyhedron\_Reduced\_Basis} computes
1072 a \ai{generalized reduced basis} of {\tt P}, which
1073 is assumed to be a polytope, using the algorithm
1074 of~\shortciteN{Cook1993implementation}.
1075 See \autoref{s:feasibility} for more information.
1076 The basis vectors are stored in the rows of the matrix returned.
1078 \begin{verbatim}
1079 Vector *Polyhedron_Sample(Polyhedron *P,
1080 struct barvinok_options *options);
1081 \end{verbatim}
1082 \ai[\tt]{Polyhedron\_Sample} returns an \ai{integer point} of {\tt P}
1083 or {\tt NULL} if {\tt P} contains no integer points.
1084 The integer point is found using the algorithm
1085 of~\shortciteN{Cook1993implementation} and uses
1086 \ai[\tt]{Polyhedron\_Reduced\_Basis} to compute the reduced bases.
1087 See \autoref{s:feasibility} for more information.