Add missing linefeed in error message
[armpft.git] / hw / ppc.c
bloba01bde9b38c2e032ae51da873e92e74282435355
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
31 //#define PPC_DEBUG_IRQ
32 //#define PPC_DEBUG_TB
34 #ifdef PPC_DEBUG_IRQ
35 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
36 #else
37 # define LOG_IRQ(...) do { } while (0)
38 #endif
41 #ifdef PPC_DEBUG_TB
42 # define LOG_TB(...) qemu_log(__VA_ARGS__)
43 #else
44 # define LOG_TB(...) do { } while (0)
45 #endif
47 static void cpu_ppc_tb_stop (CPUState *env);
48 static void cpu_ppc_tb_start (CPUState *env);
50 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
52 if (level) {
53 env->pending_interrupts |= 1 << n_IRQ;
54 cpu_interrupt(env, CPU_INTERRUPT_HARD);
55 } else {
56 env->pending_interrupts &= ~(1 << n_IRQ);
57 if (env->pending_interrupts == 0)
58 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
60 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
61 "req %08x\n", __func__, env, n_IRQ, level,
62 env->pending_interrupts, env->interrupt_request);
65 /* PowerPC 6xx / 7xx internal IRQ controller */
66 static void ppc6xx_set_irq (void *opaque, int pin, int level)
68 CPUState *env = opaque;
69 int cur_level;
71 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
72 env, pin, level);
73 cur_level = (env->irq_input_state >> pin) & 1;
74 /* Don't generate spurious events */
75 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
76 switch (pin) {
77 case PPC6xx_INPUT_TBEN:
78 /* Level sensitive - active high */
79 LOG_IRQ("%s: %s the time base\n",
80 __func__, level ? "start" : "stop");
81 if (level) {
82 cpu_ppc_tb_start(env);
83 } else {
84 cpu_ppc_tb_stop(env);
86 case PPC6xx_INPUT_INT:
87 /* Level sensitive - active high */
88 LOG_IRQ("%s: set the external IRQ state to %d\n",
89 __func__, level);
90 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
91 break;
92 case PPC6xx_INPUT_SMI:
93 /* Level sensitive - active high */
94 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
95 __func__, level);
96 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
97 break;
98 case PPC6xx_INPUT_MCP:
99 /* Negative edge sensitive */
100 /* XXX: TODO: actual reaction may depends on HID0 status
101 * 603/604/740/750: check HID0[EMCP]
103 if (cur_level == 1 && level == 0) {
104 LOG_IRQ("%s: raise machine check state\n",
105 __func__);
106 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
108 break;
109 case PPC6xx_INPUT_CKSTP_IN:
110 /* Level sensitive - active low */
111 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
112 /* XXX: Note that the only way to restart the CPU is to reset it */
113 if (level) {
114 LOG_IRQ("%s: stop the CPU\n", __func__);
115 env->halted = 1;
117 break;
118 case PPC6xx_INPUT_HRESET:
119 /* Level sensitive - active low */
120 if (level) {
121 LOG_IRQ("%s: reset the CPU\n", __func__);
122 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
123 /* XXX: TOFIX */
124 #if 0
125 cpu_ppc_reset(env);
126 #else
127 qemu_system_reset_request();
128 #endif
130 break;
131 case PPC6xx_INPUT_SRESET:
132 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
133 __func__, level);
134 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
135 break;
136 default:
137 /* Unknown pin - do nothing */
138 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
139 return;
141 if (level)
142 env->irq_input_state |= 1 << pin;
143 else
144 env->irq_input_state &= ~(1 << pin);
148 void ppc6xx_irq_init (CPUState *env)
150 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
151 PPC6xx_INPUT_NB);
154 #if defined(TARGET_PPC64)
155 /* PowerPC 970 internal IRQ controller */
156 static void ppc970_set_irq (void *opaque, int pin, int level)
158 CPUState *env = opaque;
159 int cur_level;
161 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
162 env, pin, level);
163 cur_level = (env->irq_input_state >> pin) & 1;
164 /* Don't generate spurious events */
165 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
166 switch (pin) {
167 case PPC970_INPUT_INT:
168 /* Level sensitive - active high */
169 LOG_IRQ("%s: set the external IRQ state to %d\n",
170 __func__, level);
171 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
172 break;
173 case PPC970_INPUT_THINT:
174 /* Level sensitive - active high */
175 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
176 level);
177 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
178 break;
179 case PPC970_INPUT_MCP:
180 /* Negative edge sensitive */
181 /* XXX: TODO: actual reaction may depends on HID0 status
182 * 603/604/740/750: check HID0[EMCP]
184 if (cur_level == 1 && level == 0) {
185 LOG_IRQ("%s: raise machine check state\n",
186 __func__);
187 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
189 break;
190 case PPC970_INPUT_CKSTP:
191 /* Level sensitive - active low */
192 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
193 if (level) {
194 LOG_IRQ("%s: stop the CPU\n", __func__);
195 env->halted = 1;
196 } else {
197 LOG_IRQ("%s: restart the CPU\n", __func__);
198 env->halted = 0;
200 break;
201 case PPC970_INPUT_HRESET:
202 /* Level sensitive - active low */
203 if (level) {
204 #if 0 // XXX: TOFIX
205 LOG_IRQ("%s: reset the CPU\n", __func__);
206 cpu_reset(env);
207 #endif
209 break;
210 case PPC970_INPUT_SRESET:
211 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
212 __func__, level);
213 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
214 break;
215 case PPC970_INPUT_TBEN:
216 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
217 level);
218 /* XXX: TODO */
219 break;
220 default:
221 /* Unknown pin - do nothing */
222 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
223 return;
225 if (level)
226 env->irq_input_state |= 1 << pin;
227 else
228 env->irq_input_state &= ~(1 << pin);
232 void ppc970_irq_init (CPUState *env)
234 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
235 PPC970_INPUT_NB);
237 #endif /* defined(TARGET_PPC64) */
239 /* PowerPC 40x internal IRQ controller */
240 static void ppc40x_set_irq (void *opaque, int pin, int level)
242 CPUState *env = opaque;
243 int cur_level;
245 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
246 env, pin, level);
247 cur_level = (env->irq_input_state >> pin) & 1;
248 /* Don't generate spurious events */
249 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
250 switch (pin) {
251 case PPC40x_INPUT_RESET_SYS:
252 if (level) {
253 LOG_IRQ("%s: reset the PowerPC system\n",
254 __func__);
255 ppc40x_system_reset(env);
257 break;
258 case PPC40x_INPUT_RESET_CHIP:
259 if (level) {
260 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
261 ppc40x_chip_reset(env);
263 break;
264 case PPC40x_INPUT_RESET_CORE:
265 /* XXX: TODO: update DBSR[MRR] */
266 if (level) {
267 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
268 ppc40x_core_reset(env);
270 break;
271 case PPC40x_INPUT_CINT:
272 /* Level sensitive - active high */
273 LOG_IRQ("%s: set the critical IRQ state to %d\n",
274 __func__, level);
275 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
276 break;
277 case PPC40x_INPUT_INT:
278 /* Level sensitive - active high */
279 LOG_IRQ("%s: set the external IRQ state to %d\n",
280 __func__, level);
281 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
282 break;
283 case PPC40x_INPUT_HALT:
284 /* Level sensitive - active low */
285 if (level) {
286 LOG_IRQ("%s: stop the CPU\n", __func__);
287 env->halted = 1;
288 } else {
289 LOG_IRQ("%s: restart the CPU\n", __func__);
290 env->halted = 0;
292 break;
293 case PPC40x_INPUT_DEBUG:
294 /* Level sensitive - active high */
295 LOG_IRQ("%s: set the debug pin state to %d\n",
296 __func__, level);
297 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
298 break;
299 default:
300 /* Unknown pin - do nothing */
301 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
302 return;
304 if (level)
305 env->irq_input_state |= 1 << pin;
306 else
307 env->irq_input_state &= ~(1 << pin);
311 void ppc40x_irq_init (CPUState *env)
313 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
314 env, PPC40x_INPUT_NB);
317 /* PowerPC E500 internal IRQ controller */
318 static void ppce500_set_irq (void *opaque, int pin, int level)
320 CPUState *env = opaque;
321 int cur_level;
323 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
324 env, pin, level);
325 cur_level = (env->irq_input_state >> pin) & 1;
326 /* Don't generate spurious events */
327 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
328 switch (pin) {
329 case PPCE500_INPUT_MCK:
330 if (level) {
331 LOG_IRQ("%s: reset the PowerPC system\n",
332 __func__);
333 qemu_system_reset_request();
335 break;
336 case PPCE500_INPUT_RESET_CORE:
337 if (level) {
338 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
339 ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
341 break;
342 case PPCE500_INPUT_CINT:
343 /* Level sensitive - active high */
344 LOG_IRQ("%s: set the critical IRQ state to %d\n",
345 __func__, level);
346 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
347 break;
348 case PPCE500_INPUT_INT:
349 /* Level sensitive - active high */
350 LOG_IRQ("%s: set the core IRQ state to %d\n",
351 __func__, level);
352 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
353 break;
354 case PPCE500_INPUT_DEBUG:
355 /* Level sensitive - active high */
356 LOG_IRQ("%s: set the debug pin state to %d\n",
357 __func__, level);
358 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
359 break;
360 default:
361 /* Unknown pin - do nothing */
362 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
363 return;
365 if (level)
366 env->irq_input_state |= 1 << pin;
367 else
368 env->irq_input_state &= ~(1 << pin);
372 void ppce500_irq_init (CPUState *env)
374 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
375 env, PPCE500_INPUT_NB);
377 /*****************************************************************************/
378 /* PowerPC time base and decrementer emulation */
379 struct ppc_tb_t {
380 /* Time base management */
381 int64_t tb_offset; /* Compensation */
382 int64_t atb_offset; /* Compensation */
383 uint32_t tb_freq; /* TB frequency */
384 /* Decrementer management */
385 uint64_t decr_next; /* Tick for next decr interrupt */
386 uint32_t decr_freq; /* decrementer frequency */
387 struct QEMUTimer *decr_timer;
388 /* Hypervisor decrementer management */
389 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
390 struct QEMUTimer *hdecr_timer;
391 uint64_t purr_load;
392 uint64_t purr_start;
393 void *opaque;
396 static inline uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk,
397 int64_t tb_offset)
399 /* TB time in tb periods */
400 return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset;
403 uint32_t cpu_ppc_load_tbl (CPUState *env)
405 ppc_tb_t *tb_env = env->tb_env;
406 uint64_t tb;
408 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
409 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
411 return tb & 0xFFFFFFFF;
414 static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
416 ppc_tb_t *tb_env = env->tb_env;
417 uint64_t tb;
419 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
420 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
422 return tb >> 32;
425 uint32_t cpu_ppc_load_tbu (CPUState *env)
427 return _cpu_ppc_load_tbu(env);
430 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
431 int64_t *tb_offsetp, uint64_t value)
433 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec);
434 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
435 __func__, value, *tb_offsetp);
438 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
440 ppc_tb_t *tb_env = env->tb_env;
441 uint64_t tb;
443 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
444 tb &= 0xFFFFFFFF00000000ULL;
445 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
446 &tb_env->tb_offset, tb | (uint64_t)value);
449 static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
451 ppc_tb_t *tb_env = env->tb_env;
452 uint64_t tb;
454 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
455 tb &= 0x00000000FFFFFFFFULL;
456 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
457 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
460 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
462 _cpu_ppc_store_tbu(env, value);
465 uint32_t cpu_ppc_load_atbl (CPUState *env)
467 ppc_tb_t *tb_env = env->tb_env;
468 uint64_t tb;
470 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
471 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
473 return tb & 0xFFFFFFFF;
476 uint32_t cpu_ppc_load_atbu (CPUState *env)
478 ppc_tb_t *tb_env = env->tb_env;
479 uint64_t tb;
481 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
482 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
484 return tb >> 32;
487 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
489 ppc_tb_t *tb_env = env->tb_env;
490 uint64_t tb;
492 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
493 tb &= 0xFFFFFFFF00000000ULL;
494 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
495 &tb_env->atb_offset, tb | (uint64_t)value);
498 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
500 ppc_tb_t *tb_env = env->tb_env;
501 uint64_t tb;
503 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
504 tb &= 0x00000000FFFFFFFFULL;
505 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
506 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
509 static void cpu_ppc_tb_stop (CPUState *env)
511 ppc_tb_t *tb_env = env->tb_env;
512 uint64_t tb, atb, vmclk;
514 /* If the time base is already frozen, do nothing */
515 if (tb_env->tb_freq != 0) {
516 vmclk = qemu_get_clock(vm_clock);
517 /* Get the time base */
518 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
519 /* Get the alternate time base */
520 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
521 /* Store the time base value (ie compute the current offset) */
522 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
523 /* Store the alternate time base value (compute the current offset) */
524 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
525 /* Set the time base frequency to zero */
526 tb_env->tb_freq = 0;
527 /* Now, the time bases are frozen to tb_offset / atb_offset value */
531 static void cpu_ppc_tb_start (CPUState *env)
533 ppc_tb_t *tb_env = env->tb_env;
534 uint64_t tb, atb, vmclk;
536 /* If the time base is not frozen, do nothing */
537 if (tb_env->tb_freq == 0) {
538 vmclk = qemu_get_clock(vm_clock);
539 /* Get the time base from tb_offset */
540 tb = tb_env->tb_offset;
541 /* Get the alternate time base from atb_offset */
542 atb = tb_env->atb_offset;
543 /* Restore the tb frequency from the decrementer frequency */
544 tb_env->tb_freq = tb_env->decr_freq;
545 /* Store the time base value */
546 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
547 /* Store the alternate time base value */
548 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
552 static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
554 ppc_tb_t *tb_env = env->tb_env;
555 uint32_t decr;
556 int64_t diff;
558 diff = next - qemu_get_clock(vm_clock);
559 if (diff >= 0)
560 decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec);
561 else
562 decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec);
563 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
565 return decr;
568 uint32_t cpu_ppc_load_decr (CPUState *env)
570 ppc_tb_t *tb_env = env->tb_env;
572 return _cpu_ppc_load_decr(env, tb_env->decr_next);
575 uint32_t cpu_ppc_load_hdecr (CPUState *env)
577 ppc_tb_t *tb_env = env->tb_env;
579 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
582 uint64_t cpu_ppc_load_purr (CPUState *env)
584 ppc_tb_t *tb_env = env->tb_env;
585 uint64_t diff;
587 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
589 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
592 /* When decrementer expires,
593 * all we need to do is generate or queue a CPU exception
595 static inline void cpu_ppc_decr_excp(CPUState *env)
597 /* Raise it */
598 LOG_TB("raise decrementer exception\n");
599 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
602 static inline void cpu_ppc_hdecr_excp(CPUState *env)
604 /* Raise it */
605 LOG_TB("raise decrementer exception\n");
606 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
609 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
610 struct QEMUTimer *timer,
611 void (*raise_excp)(CPUState *),
612 uint32_t decr, uint32_t value,
613 int is_excp)
615 ppc_tb_t *tb_env = env->tb_env;
616 uint64_t now, next;
618 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
619 decr, value);
620 now = qemu_get_clock(vm_clock);
621 next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq);
622 if (is_excp)
623 next += *nextp - now;
624 if (next == now)
625 next++;
626 *nextp = next;
627 /* Adjust timer */
628 qemu_mod_timer(timer, next);
629 /* If we set a negative value and the decrementer was positive,
630 * raise an exception.
632 if ((value & 0x80000000) && !(decr & 0x80000000))
633 (*raise_excp)(env);
636 static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
637 uint32_t value, int is_excp)
639 ppc_tb_t *tb_env = env->tb_env;
641 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
642 &cpu_ppc_decr_excp, decr, value, is_excp);
645 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
647 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
650 static void cpu_ppc_decr_cb (void *opaque)
652 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
655 static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
656 uint32_t value, int is_excp)
658 ppc_tb_t *tb_env = env->tb_env;
660 if (tb_env->hdecr_timer != NULL) {
661 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
662 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
666 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
668 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
671 static void cpu_ppc_hdecr_cb (void *opaque)
673 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
676 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
678 ppc_tb_t *tb_env = env->tb_env;
680 tb_env->purr_load = value;
681 tb_env->purr_start = qemu_get_clock(vm_clock);
684 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
686 CPUState *env = opaque;
687 ppc_tb_t *tb_env = env->tb_env;
689 tb_env->tb_freq = freq;
690 tb_env->decr_freq = freq;
691 /* There is a bug in Linux 2.4 kernels:
692 * if a decrementer exception is pending when it enables msr_ee at startup,
693 * it's not ready to handle it...
695 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
696 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
697 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
700 /* Set up (once) timebase frequency (in Hz) */
701 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
703 ppc_tb_t *tb_env;
705 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
706 env->tb_env = tb_env;
707 /* Create new timer */
708 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
709 if (0) {
710 /* XXX: find a suitable condition to enable the hypervisor decrementer
712 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
713 } else {
714 tb_env->hdecr_timer = NULL;
716 cpu_ppc_set_tb_clk(env, freq);
718 return &cpu_ppc_set_tb_clk;
721 /* Specific helpers for POWER & PowerPC 601 RTC */
722 #if 0
723 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
725 return cpu_ppc_tb_init(env, 7812500);
727 #endif
729 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
731 _cpu_ppc_store_tbu(env, value);
734 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
736 return _cpu_ppc_load_tbu(env);
739 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
741 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
744 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
746 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
749 /*****************************************************************************/
750 /* Embedded PowerPC timers */
752 /* PIT, FIT & WDT */
753 typedef struct ppcemb_timer_t ppcemb_timer_t;
754 struct ppcemb_timer_t {
755 uint64_t pit_reload; /* PIT auto-reload value */
756 uint64_t fit_next; /* Tick for next FIT interrupt */
757 struct QEMUTimer *fit_timer;
758 uint64_t wdt_next; /* Tick for next WDT interrupt */
759 struct QEMUTimer *wdt_timer;
762 /* Fixed interval timer */
763 static void cpu_4xx_fit_cb (void *opaque)
765 CPUState *env;
766 ppc_tb_t *tb_env;
767 ppcemb_timer_t *ppcemb_timer;
768 uint64_t now, next;
770 env = opaque;
771 tb_env = env->tb_env;
772 ppcemb_timer = tb_env->opaque;
773 now = qemu_get_clock(vm_clock);
774 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
775 case 0:
776 next = 1 << 9;
777 break;
778 case 1:
779 next = 1 << 13;
780 break;
781 case 2:
782 next = 1 << 17;
783 break;
784 case 3:
785 next = 1 << 21;
786 break;
787 default:
788 /* Cannot occur, but makes gcc happy */
789 return;
791 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
792 if (next == now)
793 next++;
794 qemu_mod_timer(ppcemb_timer->fit_timer, next);
795 env->spr[SPR_40x_TSR] |= 1 << 26;
796 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
797 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
798 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
799 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
800 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
803 /* Programmable interval timer */
804 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
806 ppcemb_timer_t *ppcemb_timer;
807 uint64_t now, next;
809 ppcemb_timer = tb_env->opaque;
810 if (ppcemb_timer->pit_reload <= 1 ||
811 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
812 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
813 /* Stop PIT */
814 LOG_TB("%s: stop PIT\n", __func__);
815 qemu_del_timer(tb_env->decr_timer);
816 } else {
817 LOG_TB("%s: start PIT %016" PRIx64 "\n",
818 __func__, ppcemb_timer->pit_reload);
819 now = qemu_get_clock(vm_clock);
820 next = now + muldiv64(ppcemb_timer->pit_reload,
821 ticks_per_sec, tb_env->decr_freq);
822 if (is_excp)
823 next += tb_env->decr_next - now;
824 if (next == now)
825 next++;
826 qemu_mod_timer(tb_env->decr_timer, next);
827 tb_env->decr_next = next;
831 static void cpu_4xx_pit_cb (void *opaque)
833 CPUState *env;
834 ppc_tb_t *tb_env;
835 ppcemb_timer_t *ppcemb_timer;
837 env = opaque;
838 tb_env = env->tb_env;
839 ppcemb_timer = tb_env->opaque;
840 env->spr[SPR_40x_TSR] |= 1 << 27;
841 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
842 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
843 start_stop_pit(env, tb_env, 1);
844 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
845 "%016" PRIx64 "\n", __func__,
846 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
847 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
848 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
849 ppcemb_timer->pit_reload);
852 /* Watchdog timer */
853 static void cpu_4xx_wdt_cb (void *opaque)
855 CPUState *env;
856 ppc_tb_t *tb_env;
857 ppcemb_timer_t *ppcemb_timer;
858 uint64_t now, next;
860 env = opaque;
861 tb_env = env->tb_env;
862 ppcemb_timer = tb_env->opaque;
863 now = qemu_get_clock(vm_clock);
864 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
865 case 0:
866 next = 1 << 17;
867 break;
868 case 1:
869 next = 1 << 21;
870 break;
871 case 2:
872 next = 1 << 25;
873 break;
874 case 3:
875 next = 1 << 29;
876 break;
877 default:
878 /* Cannot occur, but makes gcc happy */
879 return;
881 next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq);
882 if (next == now)
883 next++;
884 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
885 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
886 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
887 case 0x0:
888 case 0x1:
889 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
890 ppcemb_timer->wdt_next = next;
891 env->spr[SPR_40x_TSR] |= 1 << 31;
892 break;
893 case 0x2:
894 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
895 ppcemb_timer->wdt_next = next;
896 env->spr[SPR_40x_TSR] |= 1 << 30;
897 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
898 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
899 break;
900 case 0x3:
901 env->spr[SPR_40x_TSR] &= ~0x30000000;
902 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
903 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
904 case 0x0:
905 /* No reset */
906 break;
907 case 0x1: /* Core reset */
908 ppc40x_core_reset(env);
909 break;
910 case 0x2: /* Chip reset */
911 ppc40x_chip_reset(env);
912 break;
913 case 0x3: /* System reset */
914 ppc40x_system_reset(env);
915 break;
920 void store_40x_pit (CPUState *env, target_ulong val)
922 ppc_tb_t *tb_env;
923 ppcemb_timer_t *ppcemb_timer;
925 tb_env = env->tb_env;
926 ppcemb_timer = tb_env->opaque;
927 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
928 ppcemb_timer->pit_reload = val;
929 start_stop_pit(env, tb_env, 0);
932 target_ulong load_40x_pit (CPUState *env)
934 return cpu_ppc_load_decr(env);
937 void store_booke_tsr (CPUState *env, target_ulong val)
939 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
940 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
941 if (val & 0x80000000)
942 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
945 void store_booke_tcr (CPUState *env, target_ulong val)
947 ppc_tb_t *tb_env;
949 tb_env = env->tb_env;
950 LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
951 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
952 start_stop_pit(env, tb_env, 1);
953 cpu_4xx_wdt_cb(env);
956 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
958 CPUState *env = opaque;
959 ppc_tb_t *tb_env = env->tb_env;
961 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
962 freq);
963 tb_env->tb_freq = freq;
964 tb_env->decr_freq = freq;
965 /* XXX: we should also update all timers */
968 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
970 ppc_tb_t *tb_env;
971 ppcemb_timer_t *ppcemb_timer;
973 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
974 env->tb_env = tb_env;
975 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
976 tb_env->tb_freq = freq;
977 tb_env->decr_freq = freq;
978 tb_env->opaque = ppcemb_timer;
979 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
980 if (ppcemb_timer != NULL) {
981 /* We use decr timer for PIT */
982 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
983 ppcemb_timer->fit_timer =
984 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
985 ppcemb_timer->wdt_timer =
986 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
989 return &ppc_emb_set_tb_clk;
992 /*****************************************************************************/
993 /* Embedded PowerPC Device Control Registers */
994 typedef struct ppc_dcrn_t ppc_dcrn_t;
995 struct ppc_dcrn_t {
996 dcr_read_cb dcr_read;
997 dcr_write_cb dcr_write;
998 void *opaque;
1001 /* XXX: on 460, DCR addresses are 32 bits wide,
1002 * using DCRIPR to get the 22 upper bits of the DCR address
1004 #define DCRN_NB 1024
1005 struct ppc_dcr_t {
1006 ppc_dcrn_t dcrn[DCRN_NB];
1007 int (*read_error)(int dcrn);
1008 int (*write_error)(int dcrn);
1011 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
1013 ppc_dcrn_t *dcr;
1015 if (dcrn < 0 || dcrn >= DCRN_NB)
1016 goto error;
1017 dcr = &dcr_env->dcrn[dcrn];
1018 if (dcr->dcr_read == NULL)
1019 goto error;
1020 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1022 return 0;
1024 error:
1025 if (dcr_env->read_error != NULL)
1026 return (*dcr_env->read_error)(dcrn);
1028 return -1;
1031 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
1033 ppc_dcrn_t *dcr;
1035 if (dcrn < 0 || dcrn >= DCRN_NB)
1036 goto error;
1037 dcr = &dcr_env->dcrn[dcrn];
1038 if (dcr->dcr_write == NULL)
1039 goto error;
1040 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1042 return 0;
1044 error:
1045 if (dcr_env->write_error != NULL)
1046 return (*dcr_env->write_error)(dcrn);
1048 return -1;
1051 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1052 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1054 ppc_dcr_t *dcr_env;
1055 ppc_dcrn_t *dcr;
1057 dcr_env = env->dcr_env;
1058 if (dcr_env == NULL)
1059 return -1;
1060 if (dcrn < 0 || dcrn >= DCRN_NB)
1061 return -1;
1062 dcr = &dcr_env->dcrn[dcrn];
1063 if (dcr->opaque != NULL ||
1064 dcr->dcr_read != NULL ||
1065 dcr->dcr_write != NULL)
1066 return -1;
1067 dcr->opaque = opaque;
1068 dcr->dcr_read = dcr_read;
1069 dcr->dcr_write = dcr_write;
1071 return 0;
1074 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1075 int (*write_error)(int dcrn))
1077 ppc_dcr_t *dcr_env;
1079 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1080 dcr_env->read_error = read_error;
1081 dcr_env->write_error = write_error;
1082 env->dcr_env = dcr_env;
1084 return 0;
1087 #if 0
1088 /*****************************************************************************/
1089 /* Handle system reset (for now, just stop emulation) */
1090 void cpu_ppc_reset (CPUState *env)
1092 printf("Reset asked... Stop emulation\n");
1093 abort();
1095 #endif
1097 /*****************************************************************************/
1098 /* Debug port */
1099 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1101 addr &= 0xF;
1102 switch (addr) {
1103 case 0:
1104 printf("%c", val);
1105 break;
1106 case 1:
1107 printf("\n");
1108 fflush(stdout);
1109 break;
1110 case 2:
1111 printf("Set loglevel to %04" PRIx32 "\n", val);
1112 cpu_set_log(val | 0x100);
1113 break;
1117 /*****************************************************************************/
1118 /* NVRAM helpers */
1119 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1121 return (*nvram->read_fn)(nvram->opaque, addr);;
1124 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1126 (*nvram->write_fn)(nvram->opaque, addr, val);
1129 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1131 nvram_write(nvram, addr, value);
1134 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1136 return nvram_read(nvram, addr);
1139 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1141 nvram_write(nvram, addr, value >> 8);
1142 nvram_write(nvram, addr + 1, value & 0xFF);
1145 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1147 uint16_t tmp;
1149 tmp = nvram_read(nvram, addr) << 8;
1150 tmp |= nvram_read(nvram, addr + 1);
1152 return tmp;
1155 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1157 nvram_write(nvram, addr, value >> 24);
1158 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1159 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1160 nvram_write(nvram, addr + 3, value & 0xFF);
1163 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1165 uint32_t tmp;
1167 tmp = nvram_read(nvram, addr) << 24;
1168 tmp |= nvram_read(nvram, addr + 1) << 16;
1169 tmp |= nvram_read(nvram, addr + 2) << 8;
1170 tmp |= nvram_read(nvram, addr + 3);
1172 return tmp;
1175 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1176 const char *str, uint32_t max)
1178 int i;
1180 for (i = 0; i < max && str[i] != '\0'; i++) {
1181 nvram_write(nvram, addr + i, str[i]);
1183 nvram_write(nvram, addr + i, str[i]);
1184 nvram_write(nvram, addr + max - 1, '\0');
1187 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1189 int i;
1191 memset(dst, 0, max);
1192 for (i = 0; i < max; i++) {
1193 dst[i] = NVRAM_get_byte(nvram, addr + i);
1194 if (dst[i] == '\0')
1195 break;
1198 return i;
1201 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1203 uint16_t tmp;
1204 uint16_t pd, pd1, pd2;
1206 tmp = prev >> 8;
1207 pd = prev ^ value;
1208 pd1 = pd & 0x000F;
1209 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1210 tmp ^= (pd1 << 3) | (pd1 << 8);
1211 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1213 return tmp;
1216 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1218 uint32_t i;
1219 uint16_t crc = 0xFFFF;
1220 int odd;
1222 odd = count & 1;
1223 count &= ~1;
1224 for (i = 0; i != count; i++) {
1225 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1227 if (odd) {
1228 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1231 return crc;
1234 #define CMDLINE_ADDR 0x017ff000
1236 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1237 const char *arch,
1238 uint32_t RAM_size, int boot_device,
1239 uint32_t kernel_image, uint32_t kernel_size,
1240 const char *cmdline,
1241 uint32_t initrd_image, uint32_t initrd_size,
1242 uint32_t NVRAM_image,
1243 int width, int height, int depth)
1245 uint16_t crc;
1247 /* Set parameters for Open Hack'Ware BIOS */
1248 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1249 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1250 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1251 NVRAM_set_string(nvram, 0x20, arch, 16);
1252 NVRAM_set_lword(nvram, 0x30, RAM_size);
1253 NVRAM_set_byte(nvram, 0x34, boot_device);
1254 NVRAM_set_lword(nvram, 0x38, kernel_image);
1255 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1256 if (cmdline) {
1257 /* XXX: put the cmdline in NVRAM too ? */
1258 pstrcpy_targphys(CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1259 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1260 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1261 } else {
1262 NVRAM_set_lword(nvram, 0x40, 0);
1263 NVRAM_set_lword(nvram, 0x44, 0);
1265 NVRAM_set_lword(nvram, 0x48, initrd_image);
1266 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1267 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1269 NVRAM_set_word(nvram, 0x54, width);
1270 NVRAM_set_word(nvram, 0x56, height);
1271 NVRAM_set_word(nvram, 0x58, depth);
1272 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1273 NVRAM_set_word(nvram, 0xFC, crc);
1275 return 0;