refs: extract a function write_packed_entry()
[alt-git.git] / refs.c
blobe09c0457af2bf89a4530a39d2ba64f2db5fd1adb
1 #include "cache.h"
2 #include "refs.h"
3 #include "object.h"
4 #include "tag.h"
5 #include "dir.h"
7 /*
8 * Make sure "ref" is something reasonable to have under ".git/refs/";
9 * We do not like it if:
11 * - any path component of it begins with ".", or
12 * - it has double dots "..", or
13 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
14 * - it ends with a "/".
15 * - it ends with ".lock"
16 * - it contains a "\" (backslash)
19 /* Return true iff ch is not allowed in reference names. */
20 static inline int bad_ref_char(int ch)
22 if (((unsigned) ch) <= ' ' || ch == 0x7f ||
23 ch == '~' || ch == '^' || ch == ':' || ch == '\\')
24 return 1;
25 /* 2.13 Pattern Matching Notation */
26 if (ch == '*' || ch == '?' || ch == '[') /* Unsupported */
27 return 1;
28 return 0;
32 * Try to read one refname component from the front of refname. Return
33 * the length of the component found, or -1 if the component is not
34 * legal.
36 static int check_refname_component(const char *refname, int flags)
38 const char *cp;
39 char last = '\0';
41 for (cp = refname; ; cp++) {
42 char ch = *cp;
43 if (ch == '\0' || ch == '/')
44 break;
45 if (bad_ref_char(ch))
46 return -1; /* Illegal character in refname. */
47 if (last == '.' && ch == '.')
48 return -1; /* Refname contains "..". */
49 if (last == '@' && ch == '{')
50 return -1; /* Refname contains "@{". */
51 last = ch;
53 if (cp == refname)
54 return 0; /* Component has zero length. */
55 if (refname[0] == '.') {
56 if (!(flags & REFNAME_DOT_COMPONENT))
57 return -1; /* Component starts with '.'. */
59 * Even if leading dots are allowed, don't allow "."
60 * as a component (".." is prevented by a rule above).
62 if (refname[1] == '\0')
63 return -1; /* Component equals ".". */
65 if (cp - refname >= 5 && !memcmp(cp - 5, ".lock", 5))
66 return -1; /* Refname ends with ".lock". */
67 return cp - refname;
70 int check_refname_format(const char *refname, int flags)
72 int component_len, component_count = 0;
74 while (1) {
75 /* We are at the start of a path component. */
76 component_len = check_refname_component(refname, flags);
77 if (component_len <= 0) {
78 if ((flags & REFNAME_REFSPEC_PATTERN) &&
79 refname[0] == '*' &&
80 (refname[1] == '\0' || refname[1] == '/')) {
81 /* Accept one wildcard as a full refname component. */
82 flags &= ~REFNAME_REFSPEC_PATTERN;
83 component_len = 1;
84 } else {
85 return -1;
88 component_count++;
89 if (refname[component_len] == '\0')
90 break;
91 /* Skip to next component. */
92 refname += component_len + 1;
95 if (refname[component_len - 1] == '.')
96 return -1; /* Refname ends with '.'. */
97 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
98 return -1; /* Refname has only one component. */
99 return 0;
102 struct ref_entry;
105 * Information used (along with the information in ref_entry) to
106 * describe a single cached reference. This data structure only
107 * occurs embedded in a union in struct ref_entry, and only when
108 * (ref_entry->flag & REF_DIR) is zero.
110 struct ref_value {
112 * The name of the object to which this reference resolves
113 * (which may be a tag object). If REF_ISBROKEN, this is
114 * null. If REF_ISSYMREF, then this is the name of the object
115 * referred to by the last reference in the symlink chain.
117 unsigned char sha1[20];
120 * If REF_KNOWS_PEELED, then this field holds the peeled value
121 * of this reference, or null if the reference is known not to
122 * be peelable. See the documentation for peel_ref() for an
123 * exact definition of "peelable".
125 unsigned char peeled[20];
128 struct ref_cache;
131 * Information used (along with the information in ref_entry) to
132 * describe a level in the hierarchy of references. This data
133 * structure only occurs embedded in a union in struct ref_entry, and
134 * only when (ref_entry.flag & REF_DIR) is set. In that case,
135 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
136 * in the directory have already been read:
138 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
139 * or packed references, already read.
141 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
142 * references that hasn't been read yet (nor has any of its
143 * subdirectories).
145 * Entries within a directory are stored within a growable array of
146 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
147 * sorted are sorted by their component name in strcmp() order and the
148 * remaining entries are unsorted.
150 * Loose references are read lazily, one directory at a time. When a
151 * directory of loose references is read, then all of the references
152 * in that directory are stored, and REF_INCOMPLETE stubs are created
153 * for any subdirectories, but the subdirectories themselves are not
154 * read. The reading is triggered by get_ref_dir().
156 struct ref_dir {
157 int nr, alloc;
160 * Entries with index 0 <= i < sorted are sorted by name. New
161 * entries are appended to the list unsorted, and are sorted
162 * only when required; thus we avoid the need to sort the list
163 * after the addition of every reference.
165 int sorted;
167 /* A pointer to the ref_cache that contains this ref_dir. */
168 struct ref_cache *ref_cache;
170 struct ref_entry **entries;
174 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
175 * REF_ISPACKED=0x02, and REF_ISBROKEN=0x04 are public values; see
176 * refs.h.
180 * The field ref_entry->u.value.peeled of this value entry contains
181 * the correct peeled value for the reference, which might be
182 * null_sha1 if the reference is not a tag or if it is broken.
184 #define REF_KNOWS_PEELED 0x08
186 /* ref_entry represents a directory of references */
187 #define REF_DIR 0x10
190 * Entry has not yet been read from disk (used only for REF_DIR
191 * entries representing loose references)
193 #define REF_INCOMPLETE 0x20
196 * A ref_entry represents either a reference or a "subdirectory" of
197 * references.
199 * Each directory in the reference namespace is represented by a
200 * ref_entry with (flags & REF_DIR) set and containing a subdir member
201 * that holds the entries in that directory that have been read so
202 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
203 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
204 * used for loose reference directories.
206 * References are represented by a ref_entry with (flags & REF_DIR)
207 * unset and a value member that describes the reference's value. The
208 * flag member is at the ref_entry level, but it is also needed to
209 * interpret the contents of the value field (in other words, a
210 * ref_value object is not very much use without the enclosing
211 * ref_entry).
213 * Reference names cannot end with slash and directories' names are
214 * always stored with a trailing slash (except for the top-level
215 * directory, which is always denoted by ""). This has two nice
216 * consequences: (1) when the entries in each subdir are sorted
217 * lexicographically by name (as they usually are), the references in
218 * a whole tree can be generated in lexicographic order by traversing
219 * the tree in left-to-right, depth-first order; (2) the names of
220 * references and subdirectories cannot conflict, and therefore the
221 * presence of an empty subdirectory does not block the creation of a
222 * similarly-named reference. (The fact that reference names with the
223 * same leading components can conflict *with each other* is a
224 * separate issue that is regulated by is_refname_available().)
226 * Please note that the name field contains the fully-qualified
227 * reference (or subdirectory) name. Space could be saved by only
228 * storing the relative names. But that would require the full names
229 * to be generated on the fly when iterating in do_for_each_ref(), and
230 * would break callback functions, who have always been able to assume
231 * that the name strings that they are passed will not be freed during
232 * the iteration.
234 struct ref_entry {
235 unsigned char flag; /* ISSYMREF? ISPACKED? */
236 union {
237 struct ref_value value; /* if not (flags&REF_DIR) */
238 struct ref_dir subdir; /* if (flags&REF_DIR) */
239 } u;
241 * The full name of the reference (e.g., "refs/heads/master")
242 * or the full name of the directory with a trailing slash
243 * (e.g., "refs/heads/"):
245 char name[FLEX_ARRAY];
248 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
250 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
252 struct ref_dir *dir;
253 assert(entry->flag & REF_DIR);
254 dir = &entry->u.subdir;
255 if (entry->flag & REF_INCOMPLETE) {
256 read_loose_refs(entry->name, dir);
257 entry->flag &= ~REF_INCOMPLETE;
259 return dir;
262 static struct ref_entry *create_ref_entry(const char *refname,
263 const unsigned char *sha1, int flag,
264 int check_name)
266 int len;
267 struct ref_entry *ref;
269 if (check_name &&
270 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL|REFNAME_DOT_COMPONENT))
271 die("Reference has invalid format: '%s'", refname);
272 len = strlen(refname) + 1;
273 ref = xmalloc(sizeof(struct ref_entry) + len);
274 hashcpy(ref->u.value.sha1, sha1);
275 hashclr(ref->u.value.peeled);
276 memcpy(ref->name, refname, len);
277 ref->flag = flag;
278 return ref;
281 static void clear_ref_dir(struct ref_dir *dir);
283 static void free_ref_entry(struct ref_entry *entry)
285 if (entry->flag & REF_DIR) {
287 * Do not use get_ref_dir() here, as that might
288 * trigger the reading of loose refs.
290 clear_ref_dir(&entry->u.subdir);
292 free(entry);
296 * Add a ref_entry to the end of dir (unsorted). Entry is always
297 * stored directly in dir; no recursion into subdirectories is
298 * done.
300 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
302 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
303 dir->entries[dir->nr++] = entry;
304 /* optimize for the case that entries are added in order */
305 if (dir->nr == 1 ||
306 (dir->nr == dir->sorted + 1 &&
307 strcmp(dir->entries[dir->nr - 2]->name,
308 dir->entries[dir->nr - 1]->name) < 0))
309 dir->sorted = dir->nr;
313 * Clear and free all entries in dir, recursively.
315 static void clear_ref_dir(struct ref_dir *dir)
317 int i;
318 for (i = 0; i < dir->nr; i++)
319 free_ref_entry(dir->entries[i]);
320 free(dir->entries);
321 dir->sorted = dir->nr = dir->alloc = 0;
322 dir->entries = NULL;
326 * Create a struct ref_entry object for the specified dirname.
327 * dirname is the name of the directory with a trailing slash (e.g.,
328 * "refs/heads/") or "" for the top-level directory.
330 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
331 const char *dirname, size_t len,
332 int incomplete)
334 struct ref_entry *direntry;
335 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
336 memcpy(direntry->name, dirname, len);
337 direntry->name[len] = '\0';
338 direntry->u.subdir.ref_cache = ref_cache;
339 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
340 return direntry;
343 static int ref_entry_cmp(const void *a, const void *b)
345 struct ref_entry *one = *(struct ref_entry **)a;
346 struct ref_entry *two = *(struct ref_entry **)b;
347 return strcmp(one->name, two->name);
350 static void sort_ref_dir(struct ref_dir *dir);
352 struct string_slice {
353 size_t len;
354 const char *str;
357 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
359 struct string_slice *key = (struct string_slice *)key_;
360 struct ref_entry *ent = *(struct ref_entry **)ent_;
361 int entlen = strlen(ent->name);
362 int cmplen = key->len < entlen ? key->len : entlen;
363 int cmp = memcmp(key->str, ent->name, cmplen);
364 if (cmp)
365 return cmp;
366 return key->len - entlen;
370 * Return the index of the entry with the given refname from the
371 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
372 * no such entry is found. dir must already be complete.
374 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
376 struct ref_entry **r;
377 struct string_slice key;
379 if (refname == NULL || !dir->nr)
380 return -1;
382 sort_ref_dir(dir);
383 key.len = len;
384 key.str = refname;
385 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
386 ref_entry_cmp_sslice);
388 if (r == NULL)
389 return -1;
391 return r - dir->entries;
395 * Search for a directory entry directly within dir (without
396 * recursing). Sort dir if necessary. subdirname must be a directory
397 * name (i.e., end in '/'). If mkdir is set, then create the
398 * directory if it is missing; otherwise, return NULL if the desired
399 * directory cannot be found. dir must already be complete.
401 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
402 const char *subdirname, size_t len,
403 int mkdir)
405 int entry_index = search_ref_dir(dir, subdirname, len);
406 struct ref_entry *entry;
407 if (entry_index == -1) {
408 if (!mkdir)
409 return NULL;
411 * Since dir is complete, the absence of a subdir
412 * means that the subdir really doesn't exist;
413 * therefore, create an empty record for it but mark
414 * the record complete.
416 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
417 add_entry_to_dir(dir, entry);
418 } else {
419 entry = dir->entries[entry_index];
421 return get_ref_dir(entry);
425 * If refname is a reference name, find the ref_dir within the dir
426 * tree that should hold refname. If refname is a directory name
427 * (i.e., ends in '/'), then return that ref_dir itself. dir must
428 * represent the top-level directory and must already be complete.
429 * Sort ref_dirs and recurse into subdirectories as necessary. If
430 * mkdir is set, then create any missing directories; otherwise,
431 * return NULL if the desired directory cannot be found.
433 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
434 const char *refname, int mkdir)
436 const char *slash;
437 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
438 size_t dirnamelen = slash - refname + 1;
439 struct ref_dir *subdir;
440 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
441 if (!subdir) {
442 dir = NULL;
443 break;
445 dir = subdir;
448 return dir;
452 * Find the value entry with the given name in dir, sorting ref_dirs
453 * and recursing into subdirectories as necessary. If the name is not
454 * found or it corresponds to a directory entry, return NULL.
456 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
458 int entry_index;
459 struct ref_entry *entry;
460 dir = find_containing_dir(dir, refname, 0);
461 if (!dir)
462 return NULL;
463 entry_index = search_ref_dir(dir, refname, strlen(refname));
464 if (entry_index == -1)
465 return NULL;
466 entry = dir->entries[entry_index];
467 return (entry->flag & REF_DIR) ? NULL : entry;
471 * Remove the entry with the given name from dir, recursing into
472 * subdirectories as necessary. If refname is the name of a directory
473 * (i.e., ends with '/'), then remove the directory and its contents.
474 * If the removal was successful, return the number of entries
475 * remaining in the directory entry that contained the deleted entry.
476 * If the name was not found, return -1. Please note that this
477 * function only deletes the entry from the cache; it does not delete
478 * it from the filesystem or ensure that other cache entries (which
479 * might be symbolic references to the removed entry) are updated.
480 * Nor does it remove any containing dir entries that might be made
481 * empty by the removal. dir must represent the top-level directory
482 * and must already be complete.
484 static int remove_entry(struct ref_dir *dir, const char *refname)
486 int refname_len = strlen(refname);
487 int entry_index;
488 struct ref_entry *entry;
489 int is_dir = refname[refname_len - 1] == '/';
490 if (is_dir) {
492 * refname represents a reference directory. Remove
493 * the trailing slash; otherwise we will get the
494 * directory *representing* refname rather than the
495 * one *containing* it.
497 char *dirname = xmemdupz(refname, refname_len - 1);
498 dir = find_containing_dir(dir, dirname, 0);
499 free(dirname);
500 } else {
501 dir = find_containing_dir(dir, refname, 0);
503 if (!dir)
504 return -1;
505 entry_index = search_ref_dir(dir, refname, refname_len);
506 if (entry_index == -1)
507 return -1;
508 entry = dir->entries[entry_index];
510 memmove(&dir->entries[entry_index],
511 &dir->entries[entry_index + 1],
512 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
514 dir->nr--;
515 if (dir->sorted > entry_index)
516 dir->sorted--;
517 free_ref_entry(entry);
518 return dir->nr;
522 * Add a ref_entry to the ref_dir (unsorted), recursing into
523 * subdirectories as necessary. dir must represent the top-level
524 * directory. Return 0 on success.
526 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
528 dir = find_containing_dir(dir, ref->name, 1);
529 if (!dir)
530 return -1;
531 add_entry_to_dir(dir, ref);
532 return 0;
536 * Emit a warning and return true iff ref1 and ref2 have the same name
537 * and the same sha1. Die if they have the same name but different
538 * sha1s.
540 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
542 if (strcmp(ref1->name, ref2->name))
543 return 0;
545 /* Duplicate name; make sure that they don't conflict: */
547 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
548 /* This is impossible by construction */
549 die("Reference directory conflict: %s", ref1->name);
551 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
552 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
554 warning("Duplicated ref: %s", ref1->name);
555 return 1;
559 * Sort the entries in dir non-recursively (if they are not already
560 * sorted) and remove any duplicate entries.
562 static void sort_ref_dir(struct ref_dir *dir)
564 int i, j;
565 struct ref_entry *last = NULL;
568 * This check also prevents passing a zero-length array to qsort(),
569 * which is a problem on some platforms.
571 if (dir->sorted == dir->nr)
572 return;
574 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
576 /* Remove any duplicates: */
577 for (i = 0, j = 0; j < dir->nr; j++) {
578 struct ref_entry *entry = dir->entries[j];
579 if (last && is_dup_ref(last, entry))
580 free_ref_entry(entry);
581 else
582 last = dir->entries[i++] = entry;
584 dir->sorted = dir->nr = i;
587 /* Include broken references in a do_for_each_ref*() iteration: */
588 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
591 * Return true iff the reference described by entry can be resolved to
592 * an object in the database. Emit a warning if the referred-to
593 * object does not exist.
595 static int ref_resolves_to_object(struct ref_entry *entry)
597 if (entry->flag & REF_ISBROKEN)
598 return 0;
599 if (!has_sha1_file(entry->u.value.sha1)) {
600 error("%s does not point to a valid object!", entry->name);
601 return 0;
603 return 1;
607 * current_ref is a performance hack: when iterating over references
608 * using the for_each_ref*() functions, current_ref is set to the
609 * current reference's entry before calling the callback function. If
610 * the callback function calls peel_ref(), then peel_ref() first
611 * checks whether the reference to be peeled is the current reference
612 * (it usually is) and if so, returns that reference's peeled version
613 * if it is available. This avoids a refname lookup in a common case.
615 static struct ref_entry *current_ref;
617 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
619 struct ref_entry_cb {
620 const char *base;
621 int trim;
622 int flags;
623 each_ref_fn *fn;
624 void *cb_data;
628 * Handle one reference in a do_for_each_ref*()-style iteration,
629 * calling an each_ref_fn for each entry.
631 static int do_one_ref(struct ref_entry *entry, void *cb_data)
633 struct ref_entry_cb *data = cb_data;
634 int retval;
635 if (prefixcmp(entry->name, data->base))
636 return 0;
638 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
639 !ref_resolves_to_object(entry))
640 return 0;
642 current_ref = entry;
643 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
644 entry->flag, data->cb_data);
645 current_ref = NULL;
646 return retval;
650 * Call fn for each reference in dir that has index in the range
651 * offset <= index < dir->nr. Recurse into subdirectories that are in
652 * that index range, sorting them before iterating. This function
653 * does not sort dir itself; it should be sorted beforehand. fn is
654 * called for all references, including broken ones.
656 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
657 each_ref_entry_fn fn, void *cb_data)
659 int i;
660 assert(dir->sorted == dir->nr);
661 for (i = offset; i < dir->nr; i++) {
662 struct ref_entry *entry = dir->entries[i];
663 int retval;
664 if (entry->flag & REF_DIR) {
665 struct ref_dir *subdir = get_ref_dir(entry);
666 sort_ref_dir(subdir);
667 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
668 } else {
669 retval = fn(entry, cb_data);
671 if (retval)
672 return retval;
674 return 0;
678 * Call fn for each reference in the union of dir1 and dir2, in order
679 * by refname. Recurse into subdirectories. If a value entry appears
680 * in both dir1 and dir2, then only process the version that is in
681 * dir2. The input dirs must already be sorted, but subdirs will be
682 * sorted as needed. fn is called for all references, including
683 * broken ones.
685 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
686 struct ref_dir *dir2,
687 each_ref_entry_fn fn, void *cb_data)
689 int retval;
690 int i1 = 0, i2 = 0;
692 assert(dir1->sorted == dir1->nr);
693 assert(dir2->sorted == dir2->nr);
694 while (1) {
695 struct ref_entry *e1, *e2;
696 int cmp;
697 if (i1 == dir1->nr) {
698 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
700 if (i2 == dir2->nr) {
701 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
703 e1 = dir1->entries[i1];
704 e2 = dir2->entries[i2];
705 cmp = strcmp(e1->name, e2->name);
706 if (cmp == 0) {
707 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
708 /* Both are directories; descend them in parallel. */
709 struct ref_dir *subdir1 = get_ref_dir(e1);
710 struct ref_dir *subdir2 = get_ref_dir(e2);
711 sort_ref_dir(subdir1);
712 sort_ref_dir(subdir2);
713 retval = do_for_each_entry_in_dirs(
714 subdir1, subdir2, fn, cb_data);
715 i1++;
716 i2++;
717 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
718 /* Both are references; ignore the one from dir1. */
719 retval = fn(e2, cb_data);
720 i1++;
721 i2++;
722 } else {
723 die("conflict between reference and directory: %s",
724 e1->name);
726 } else {
727 struct ref_entry *e;
728 if (cmp < 0) {
729 e = e1;
730 i1++;
731 } else {
732 e = e2;
733 i2++;
735 if (e->flag & REF_DIR) {
736 struct ref_dir *subdir = get_ref_dir(e);
737 sort_ref_dir(subdir);
738 retval = do_for_each_entry_in_dir(
739 subdir, 0, fn, cb_data);
740 } else {
741 retval = fn(e, cb_data);
744 if (retval)
745 return retval;
750 * Return true iff refname1 and refname2 conflict with each other.
751 * Two reference names conflict if one of them exactly matches the
752 * leading components of the other; e.g., "foo/bar" conflicts with
753 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
754 * "foo/barbados".
756 static int names_conflict(const char *refname1, const char *refname2)
758 for (; *refname1 && *refname1 == *refname2; refname1++, refname2++)
760 return (*refname1 == '\0' && *refname2 == '/')
761 || (*refname1 == '/' && *refname2 == '\0');
764 struct name_conflict_cb {
765 const char *refname;
766 const char *oldrefname;
767 const char *conflicting_refname;
770 static int name_conflict_fn(struct ref_entry *entry, void *cb_data)
772 struct name_conflict_cb *data = (struct name_conflict_cb *)cb_data;
773 if (data->oldrefname && !strcmp(data->oldrefname, entry->name))
774 return 0;
775 if (names_conflict(data->refname, entry->name)) {
776 data->conflicting_refname = entry->name;
777 return 1;
779 return 0;
783 * Return true iff a reference named refname could be created without
784 * conflicting with the name of an existing reference in dir. If
785 * oldrefname is non-NULL, ignore potential conflicts with oldrefname
786 * (e.g., because oldrefname is scheduled for deletion in the same
787 * operation).
789 static int is_refname_available(const char *refname, const char *oldrefname,
790 struct ref_dir *dir)
792 struct name_conflict_cb data;
793 data.refname = refname;
794 data.oldrefname = oldrefname;
795 data.conflicting_refname = NULL;
797 sort_ref_dir(dir);
798 if (do_for_each_entry_in_dir(dir, 0, name_conflict_fn, &data)) {
799 error("'%s' exists; cannot create '%s'",
800 data.conflicting_refname, refname);
801 return 0;
803 return 1;
807 * Future: need to be in "struct repository"
808 * when doing a full libification.
810 static struct ref_cache {
811 struct ref_cache *next;
812 struct ref_entry *loose;
813 struct ref_entry *packed;
814 /* The submodule name, or "" for the main repo. */
815 char name[FLEX_ARRAY];
816 } *ref_cache;
818 static void clear_packed_ref_cache(struct ref_cache *refs)
820 if (refs->packed) {
821 free_ref_entry(refs->packed);
822 refs->packed = NULL;
826 static void clear_loose_ref_cache(struct ref_cache *refs)
828 if (refs->loose) {
829 free_ref_entry(refs->loose);
830 refs->loose = NULL;
834 static struct ref_cache *create_ref_cache(const char *submodule)
836 int len;
837 struct ref_cache *refs;
838 if (!submodule)
839 submodule = "";
840 len = strlen(submodule) + 1;
841 refs = xcalloc(1, sizeof(struct ref_cache) + len);
842 memcpy(refs->name, submodule, len);
843 return refs;
847 * Return a pointer to a ref_cache for the specified submodule. For
848 * the main repository, use submodule==NULL. The returned structure
849 * will be allocated and initialized but not necessarily populated; it
850 * should not be freed.
852 static struct ref_cache *get_ref_cache(const char *submodule)
854 struct ref_cache *refs = ref_cache;
855 if (!submodule)
856 submodule = "";
857 while (refs) {
858 if (!strcmp(submodule, refs->name))
859 return refs;
860 refs = refs->next;
863 refs = create_ref_cache(submodule);
864 refs->next = ref_cache;
865 ref_cache = refs;
866 return refs;
869 void invalidate_ref_cache(const char *submodule)
871 struct ref_cache *refs = get_ref_cache(submodule);
872 clear_packed_ref_cache(refs);
873 clear_loose_ref_cache(refs);
876 /* The length of a peeled reference line in packed-refs, including EOL: */
877 #define PEELED_LINE_LENGTH 42
880 * The packed-refs header line that we write out. Perhaps other
881 * traits will be added later. The trailing space is required.
883 static const char PACKED_REFS_HEADER[] =
884 "# pack-refs with: peeled fully-peeled \n";
887 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
888 * Return a pointer to the refname within the line (null-terminated),
889 * or NULL if there was a problem.
891 static const char *parse_ref_line(char *line, unsigned char *sha1)
894 * 42: the answer to everything.
896 * In this case, it happens to be the answer to
897 * 40 (length of sha1 hex representation)
898 * +1 (space in between hex and name)
899 * +1 (newline at the end of the line)
901 int len = strlen(line) - 42;
903 if (len <= 0)
904 return NULL;
905 if (get_sha1_hex(line, sha1) < 0)
906 return NULL;
907 if (!isspace(line[40]))
908 return NULL;
909 line += 41;
910 if (isspace(*line))
911 return NULL;
912 if (line[len] != '\n')
913 return NULL;
914 line[len] = 0;
916 return line;
920 * Read f, which is a packed-refs file, into dir.
922 * A comment line of the form "# pack-refs with: " may contain zero or
923 * more traits. We interpret the traits as follows:
925 * No traits:
927 * Probably no references are peeled. But if the file contains a
928 * peeled value for a reference, we will use it.
930 * peeled:
932 * References under "refs/tags/", if they *can* be peeled, *are*
933 * peeled in this file. References outside of "refs/tags/" are
934 * probably not peeled even if they could have been, but if we find
935 * a peeled value for such a reference we will use it.
937 * fully-peeled:
939 * All references in the file that can be peeled are peeled.
940 * Inversely (and this is more important), any references in the
941 * file for which no peeled value is recorded is not peelable. This
942 * trait should typically be written alongside "peeled" for
943 * compatibility with older clients, but we do not require it
944 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
946 static void read_packed_refs(FILE *f, struct ref_dir *dir)
948 struct ref_entry *last = NULL;
949 char refline[PATH_MAX];
950 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
952 while (fgets(refline, sizeof(refline), f)) {
953 unsigned char sha1[20];
954 const char *refname;
955 static const char header[] = "# pack-refs with:";
957 if (!strncmp(refline, header, sizeof(header)-1)) {
958 const char *traits = refline + sizeof(header) - 1;
959 if (strstr(traits, " fully-peeled "))
960 peeled = PEELED_FULLY;
961 else if (strstr(traits, " peeled "))
962 peeled = PEELED_TAGS;
963 /* perhaps other traits later as well */
964 continue;
967 refname = parse_ref_line(refline, sha1);
968 if (refname) {
969 last = create_ref_entry(refname, sha1, REF_ISPACKED, 1);
970 if (peeled == PEELED_FULLY ||
971 (peeled == PEELED_TAGS && !prefixcmp(refname, "refs/tags/")))
972 last->flag |= REF_KNOWS_PEELED;
973 add_ref(dir, last);
974 continue;
976 if (last &&
977 refline[0] == '^' &&
978 strlen(refline) == PEELED_LINE_LENGTH &&
979 refline[PEELED_LINE_LENGTH - 1] == '\n' &&
980 !get_sha1_hex(refline + 1, sha1)) {
981 hashcpy(last->u.value.peeled, sha1);
983 * Regardless of what the file header said,
984 * we definitely know the value of *this*
985 * reference:
987 last->flag |= REF_KNOWS_PEELED;
992 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
994 if (!refs->packed) {
995 const char *packed_refs_file;
996 FILE *f;
998 refs->packed = create_dir_entry(refs, "", 0, 0);
999 if (*refs->name)
1000 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1001 else
1002 packed_refs_file = git_path("packed-refs");
1003 f = fopen(packed_refs_file, "r");
1004 if (f) {
1005 read_packed_refs(f, get_ref_dir(refs->packed));
1006 fclose(f);
1009 return get_ref_dir(refs->packed);
1012 void add_packed_ref(const char *refname, const unsigned char *sha1)
1014 add_ref(get_packed_refs(get_ref_cache(NULL)),
1015 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1019 * Read the loose references from the namespace dirname into dir
1020 * (without recursing). dirname must end with '/'. dir must be the
1021 * directory entry corresponding to dirname.
1023 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1025 struct ref_cache *refs = dir->ref_cache;
1026 DIR *d;
1027 const char *path;
1028 struct dirent *de;
1029 int dirnamelen = strlen(dirname);
1030 struct strbuf refname;
1032 if (*refs->name)
1033 path = git_path_submodule(refs->name, "%s", dirname);
1034 else
1035 path = git_path("%s", dirname);
1037 d = opendir(path);
1038 if (!d)
1039 return;
1041 strbuf_init(&refname, dirnamelen + 257);
1042 strbuf_add(&refname, dirname, dirnamelen);
1044 while ((de = readdir(d)) != NULL) {
1045 unsigned char sha1[20];
1046 struct stat st;
1047 int flag;
1048 const char *refdir;
1050 if (de->d_name[0] == '.')
1051 continue;
1052 if (has_extension(de->d_name, ".lock"))
1053 continue;
1054 strbuf_addstr(&refname, de->d_name);
1055 refdir = *refs->name
1056 ? git_path_submodule(refs->name, "%s", refname.buf)
1057 : git_path("%s", refname.buf);
1058 if (stat(refdir, &st) < 0) {
1059 ; /* silently ignore */
1060 } else if (S_ISDIR(st.st_mode)) {
1061 strbuf_addch(&refname, '/');
1062 add_entry_to_dir(dir,
1063 create_dir_entry(refs, refname.buf,
1064 refname.len, 1));
1065 } else {
1066 if (*refs->name) {
1067 hashclr(sha1);
1068 flag = 0;
1069 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1070 hashclr(sha1);
1071 flag |= REF_ISBROKEN;
1073 } else if (read_ref_full(refname.buf, sha1, 1, &flag)) {
1074 hashclr(sha1);
1075 flag |= REF_ISBROKEN;
1077 add_entry_to_dir(dir,
1078 create_ref_entry(refname.buf, sha1, flag, 1));
1080 strbuf_setlen(&refname, dirnamelen);
1082 strbuf_release(&refname);
1083 closedir(d);
1086 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1088 if (!refs->loose) {
1090 * Mark the top-level directory complete because we
1091 * are about to read the only subdirectory that can
1092 * hold references:
1094 refs->loose = create_dir_entry(refs, "", 0, 0);
1096 * Create an incomplete entry for "refs/":
1098 add_entry_to_dir(get_ref_dir(refs->loose),
1099 create_dir_entry(refs, "refs/", 5, 1));
1101 return get_ref_dir(refs->loose);
1104 /* We allow "recursive" symbolic refs. Only within reason, though */
1105 #define MAXDEPTH 5
1106 #define MAXREFLEN (1024)
1109 * Called by resolve_gitlink_ref_recursive() after it failed to read
1110 * from the loose refs in ref_cache refs. Find <refname> in the
1111 * packed-refs file for the submodule.
1113 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1114 const char *refname, unsigned char *sha1)
1116 struct ref_entry *ref;
1117 struct ref_dir *dir = get_packed_refs(refs);
1119 ref = find_ref(dir, refname);
1120 if (ref == NULL)
1121 return -1;
1123 memcpy(sha1, ref->u.value.sha1, 20);
1124 return 0;
1127 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1128 const char *refname, unsigned char *sha1,
1129 int recursion)
1131 int fd, len;
1132 char buffer[128], *p;
1133 char *path;
1135 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1136 return -1;
1137 path = *refs->name
1138 ? git_path_submodule(refs->name, "%s", refname)
1139 : git_path("%s", refname);
1140 fd = open(path, O_RDONLY);
1141 if (fd < 0)
1142 return resolve_gitlink_packed_ref(refs, refname, sha1);
1144 len = read(fd, buffer, sizeof(buffer)-1);
1145 close(fd);
1146 if (len < 0)
1147 return -1;
1148 while (len && isspace(buffer[len-1]))
1149 len--;
1150 buffer[len] = 0;
1152 /* Was it a detached head or an old-fashioned symlink? */
1153 if (!get_sha1_hex(buffer, sha1))
1154 return 0;
1156 /* Symref? */
1157 if (strncmp(buffer, "ref:", 4))
1158 return -1;
1159 p = buffer + 4;
1160 while (isspace(*p))
1161 p++;
1163 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1166 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1168 int len = strlen(path), retval;
1169 char *submodule;
1170 struct ref_cache *refs;
1172 while (len && path[len-1] == '/')
1173 len--;
1174 if (!len)
1175 return -1;
1176 submodule = xstrndup(path, len);
1177 refs = get_ref_cache(submodule);
1178 free(submodule);
1180 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1181 return retval;
1185 * Return the ref_entry for the given refname from the packed
1186 * references. If it does not exist, return NULL.
1188 static struct ref_entry *get_packed_ref(const char *refname)
1190 return find_ref(get_packed_refs(get_ref_cache(NULL)), refname);
1193 const char *resolve_ref_unsafe(const char *refname, unsigned char *sha1, int reading, int *flag)
1195 int depth = MAXDEPTH;
1196 ssize_t len;
1197 char buffer[256];
1198 static char refname_buffer[256];
1200 if (flag)
1201 *flag = 0;
1203 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
1204 return NULL;
1206 for (;;) {
1207 char path[PATH_MAX];
1208 struct stat st;
1209 char *buf;
1210 int fd;
1212 if (--depth < 0)
1213 return NULL;
1215 git_snpath(path, sizeof(path), "%s", refname);
1217 if (lstat(path, &st) < 0) {
1218 struct ref_entry *entry;
1220 if (errno != ENOENT)
1221 return NULL;
1223 * The loose reference file does not exist;
1224 * check for a packed reference.
1226 entry = get_packed_ref(refname);
1227 if (entry) {
1228 hashcpy(sha1, entry->u.value.sha1);
1229 if (flag)
1230 *flag |= REF_ISPACKED;
1231 return refname;
1233 /* The reference is not a packed reference, either. */
1234 if (reading) {
1235 return NULL;
1236 } else {
1237 hashclr(sha1);
1238 return refname;
1242 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1243 if (S_ISLNK(st.st_mode)) {
1244 len = readlink(path, buffer, sizeof(buffer)-1);
1245 if (len < 0)
1246 return NULL;
1247 buffer[len] = 0;
1248 if (!prefixcmp(buffer, "refs/") &&
1249 !check_refname_format(buffer, 0)) {
1250 strcpy(refname_buffer, buffer);
1251 refname = refname_buffer;
1252 if (flag)
1253 *flag |= REF_ISSYMREF;
1254 continue;
1258 /* Is it a directory? */
1259 if (S_ISDIR(st.st_mode)) {
1260 errno = EISDIR;
1261 return NULL;
1265 * Anything else, just open it and try to use it as
1266 * a ref
1268 fd = open(path, O_RDONLY);
1269 if (fd < 0)
1270 return NULL;
1271 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1272 close(fd);
1273 if (len < 0)
1274 return NULL;
1275 while (len && isspace(buffer[len-1]))
1276 len--;
1277 buffer[len] = '\0';
1280 * Is it a symbolic ref?
1282 if (prefixcmp(buffer, "ref:"))
1283 break;
1284 if (flag)
1285 *flag |= REF_ISSYMREF;
1286 buf = buffer + 4;
1287 while (isspace(*buf))
1288 buf++;
1289 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1290 if (flag)
1291 *flag |= REF_ISBROKEN;
1292 return NULL;
1294 refname = strcpy(refname_buffer, buf);
1296 /* Please note that FETCH_HEAD has a second line containing other data. */
1297 if (get_sha1_hex(buffer, sha1) || (buffer[40] != '\0' && !isspace(buffer[40]))) {
1298 if (flag)
1299 *flag |= REF_ISBROKEN;
1300 return NULL;
1302 return refname;
1305 char *resolve_refdup(const char *ref, unsigned char *sha1, int reading, int *flag)
1307 const char *ret = resolve_ref_unsafe(ref, sha1, reading, flag);
1308 return ret ? xstrdup(ret) : NULL;
1311 /* The argument to filter_refs */
1312 struct ref_filter {
1313 const char *pattern;
1314 each_ref_fn *fn;
1315 void *cb_data;
1318 int read_ref_full(const char *refname, unsigned char *sha1, int reading, int *flags)
1320 if (resolve_ref_unsafe(refname, sha1, reading, flags))
1321 return 0;
1322 return -1;
1325 int read_ref(const char *refname, unsigned char *sha1)
1327 return read_ref_full(refname, sha1, 1, NULL);
1330 int ref_exists(const char *refname)
1332 unsigned char sha1[20];
1333 return !!resolve_ref_unsafe(refname, sha1, 1, NULL);
1336 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1337 void *data)
1339 struct ref_filter *filter = (struct ref_filter *)data;
1340 if (fnmatch(filter->pattern, refname, 0))
1341 return 0;
1342 return filter->fn(refname, sha1, flags, filter->cb_data);
1345 enum peel_status {
1346 /* object was peeled successfully: */
1347 PEEL_PEELED = 0,
1350 * object cannot be peeled because the named object (or an
1351 * object referred to by a tag in the peel chain), does not
1352 * exist.
1354 PEEL_INVALID = -1,
1356 /* object cannot be peeled because it is not a tag: */
1357 PEEL_NON_TAG = -2,
1359 /* ref_entry contains no peeled value because it is a symref: */
1360 PEEL_IS_SYMREF = -3,
1363 * ref_entry cannot be peeled because it is broken (i.e., the
1364 * symbolic reference cannot even be resolved to an object
1365 * name):
1367 PEEL_BROKEN = -4
1371 * Peel the named object; i.e., if the object is a tag, resolve the
1372 * tag recursively until a non-tag is found. If successful, store the
1373 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1374 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1375 * and leave sha1 unchanged.
1377 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1379 struct object *o = lookup_unknown_object(name);
1381 if (o->type == OBJ_NONE) {
1382 int type = sha1_object_info(name, NULL);
1383 if (type < 0)
1384 return PEEL_INVALID;
1385 o->type = type;
1388 if (o->type != OBJ_TAG)
1389 return PEEL_NON_TAG;
1391 o = deref_tag_noverify(o);
1392 if (!o)
1393 return PEEL_INVALID;
1395 hashcpy(sha1, o->sha1);
1396 return PEEL_PEELED;
1400 * Peel the entry (if possible) and return its new peel_status.
1402 * It is OK to call this function with a packed reference entry that
1403 * might be stale and might even refer to an object that has since
1404 * been garbage-collected. In such a case, if the entry has
1405 * REF_KNOWS_PEELED then leave the status unchanged and return
1406 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1408 static enum peel_status peel_entry(struct ref_entry *entry)
1410 enum peel_status status;
1412 if (entry->flag & REF_KNOWS_PEELED)
1413 return is_null_sha1(entry->u.value.peeled) ?
1414 PEEL_NON_TAG : PEEL_PEELED;
1415 if (entry->flag & REF_ISBROKEN)
1416 return PEEL_BROKEN;
1417 if (entry->flag & REF_ISSYMREF)
1418 return PEEL_IS_SYMREF;
1420 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1421 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1422 entry->flag |= REF_KNOWS_PEELED;
1423 return status;
1426 int peel_ref(const char *refname, unsigned char *sha1)
1428 int flag;
1429 unsigned char base[20];
1431 if (current_ref && (current_ref->name == refname
1432 || !strcmp(current_ref->name, refname))) {
1433 if (peel_entry(current_ref))
1434 return -1;
1435 hashcpy(sha1, current_ref->u.value.peeled);
1436 return 0;
1439 if (read_ref_full(refname, base, 1, &flag))
1440 return -1;
1443 * If the reference is packed, read its ref_entry from the
1444 * cache in the hope that we already know its peeled value.
1445 * We only try this optimization on packed references because
1446 * (a) forcing the filling of the loose reference cache could
1447 * be expensive and (b) loose references anyway usually do not
1448 * have REF_KNOWS_PEELED.
1450 if (flag & REF_ISPACKED) {
1451 struct ref_entry *r = get_packed_ref(refname);
1452 if (r) {
1453 if (peel_entry(r))
1454 return -1;
1455 hashcpy(sha1, r->u.value.peeled);
1456 return 0;
1460 return peel_object(base, sha1);
1463 struct warn_if_dangling_data {
1464 FILE *fp;
1465 const char *refname;
1466 const char *msg_fmt;
1469 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1470 int flags, void *cb_data)
1472 struct warn_if_dangling_data *d = cb_data;
1473 const char *resolves_to;
1474 unsigned char junk[20];
1476 if (!(flags & REF_ISSYMREF))
1477 return 0;
1479 resolves_to = resolve_ref_unsafe(refname, junk, 0, NULL);
1480 if (!resolves_to || strcmp(resolves_to, d->refname))
1481 return 0;
1483 fprintf(d->fp, d->msg_fmt, refname);
1484 fputc('\n', d->fp);
1485 return 0;
1488 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1490 struct warn_if_dangling_data data;
1492 data.fp = fp;
1493 data.refname = refname;
1494 data.msg_fmt = msg_fmt;
1495 for_each_rawref(warn_if_dangling_symref, &data);
1499 * Call fn for each reference in the specified submodule, omitting
1500 * references not in the containing_dir of base. fn is called for all
1501 * references, including broken ones. If fn ever returns a non-zero
1502 * value, stop the iteration and return that value; otherwise, return
1503 * 0.
1505 static int do_for_each_entry(const char *submodule, const char *base,
1506 each_ref_entry_fn fn, void *cb_data)
1508 struct ref_cache *refs = get_ref_cache(submodule);
1509 struct ref_dir *packed_dir = get_packed_refs(refs);
1510 struct ref_dir *loose_dir = get_loose_refs(refs);
1511 int retval = 0;
1513 if (base && *base) {
1514 packed_dir = find_containing_dir(packed_dir, base, 0);
1515 loose_dir = find_containing_dir(loose_dir, base, 0);
1518 if (packed_dir && loose_dir) {
1519 sort_ref_dir(packed_dir);
1520 sort_ref_dir(loose_dir);
1521 retval = do_for_each_entry_in_dirs(
1522 packed_dir, loose_dir, fn, cb_data);
1523 } else if (packed_dir) {
1524 sort_ref_dir(packed_dir);
1525 retval = do_for_each_entry_in_dir(
1526 packed_dir, 0, fn, cb_data);
1527 } else if (loose_dir) {
1528 sort_ref_dir(loose_dir);
1529 retval = do_for_each_entry_in_dir(
1530 loose_dir, 0, fn, cb_data);
1533 return retval;
1537 * Call fn for each reference in the specified submodule for which the
1538 * refname begins with base. If trim is non-zero, then trim that many
1539 * characters off the beginning of each refname before passing the
1540 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1541 * broken references in the iteration. If fn ever returns a non-zero
1542 * value, stop the iteration and return that value; otherwise, return
1543 * 0.
1545 static int do_for_each_ref(const char *submodule, const char *base, each_ref_fn fn,
1546 int trim, int flags, void *cb_data)
1548 struct ref_entry_cb data;
1549 data.base = base;
1550 data.trim = trim;
1551 data.flags = flags;
1552 data.fn = fn;
1553 data.cb_data = cb_data;
1555 return do_for_each_entry(submodule, base, do_one_ref, &data);
1558 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1560 unsigned char sha1[20];
1561 int flag;
1563 if (submodule) {
1564 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1565 return fn("HEAD", sha1, 0, cb_data);
1567 return 0;
1570 if (!read_ref_full("HEAD", sha1, 1, &flag))
1571 return fn("HEAD", sha1, flag, cb_data);
1573 return 0;
1576 int head_ref(each_ref_fn fn, void *cb_data)
1578 return do_head_ref(NULL, fn, cb_data);
1581 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1583 return do_head_ref(submodule, fn, cb_data);
1586 int for_each_ref(each_ref_fn fn, void *cb_data)
1588 return do_for_each_ref(NULL, "", fn, 0, 0, cb_data);
1591 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1593 return do_for_each_ref(submodule, "", fn, 0, 0, cb_data);
1596 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1598 return do_for_each_ref(NULL, prefix, fn, strlen(prefix), 0, cb_data);
1601 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1602 each_ref_fn fn, void *cb_data)
1604 return do_for_each_ref(submodule, prefix, fn, strlen(prefix), 0, cb_data);
1607 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1609 return for_each_ref_in("refs/tags/", fn, cb_data);
1612 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1614 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
1617 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
1619 return for_each_ref_in("refs/heads/", fn, cb_data);
1622 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1624 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
1627 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
1629 return for_each_ref_in("refs/remotes/", fn, cb_data);
1632 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1634 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
1637 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
1639 return do_for_each_ref(NULL, "refs/replace/", fn, 13, 0, cb_data);
1642 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
1644 struct strbuf buf = STRBUF_INIT;
1645 int ret = 0;
1646 unsigned char sha1[20];
1647 int flag;
1649 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
1650 if (!read_ref_full(buf.buf, sha1, 1, &flag))
1651 ret = fn(buf.buf, sha1, flag, cb_data);
1652 strbuf_release(&buf);
1654 return ret;
1657 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
1659 struct strbuf buf = STRBUF_INIT;
1660 int ret;
1661 strbuf_addf(&buf, "%srefs/", get_git_namespace());
1662 ret = do_for_each_ref(NULL, buf.buf, fn, 0, 0, cb_data);
1663 strbuf_release(&buf);
1664 return ret;
1667 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
1668 const char *prefix, void *cb_data)
1670 struct strbuf real_pattern = STRBUF_INIT;
1671 struct ref_filter filter;
1672 int ret;
1674 if (!prefix && prefixcmp(pattern, "refs/"))
1675 strbuf_addstr(&real_pattern, "refs/");
1676 else if (prefix)
1677 strbuf_addstr(&real_pattern, prefix);
1678 strbuf_addstr(&real_pattern, pattern);
1680 if (!has_glob_specials(pattern)) {
1681 /* Append implied '/' '*' if not present. */
1682 if (real_pattern.buf[real_pattern.len - 1] != '/')
1683 strbuf_addch(&real_pattern, '/');
1684 /* No need to check for '*', there is none. */
1685 strbuf_addch(&real_pattern, '*');
1688 filter.pattern = real_pattern.buf;
1689 filter.fn = fn;
1690 filter.cb_data = cb_data;
1691 ret = for_each_ref(filter_refs, &filter);
1693 strbuf_release(&real_pattern);
1694 return ret;
1697 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
1699 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
1702 int for_each_rawref(each_ref_fn fn, void *cb_data)
1704 return do_for_each_ref(NULL, "", fn, 0,
1705 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
1708 const char *prettify_refname(const char *name)
1710 return name + (
1711 !prefixcmp(name, "refs/heads/") ? 11 :
1712 !prefixcmp(name, "refs/tags/") ? 10 :
1713 !prefixcmp(name, "refs/remotes/") ? 13 :
1717 const char *ref_rev_parse_rules[] = {
1718 "%.*s",
1719 "refs/%.*s",
1720 "refs/tags/%.*s",
1721 "refs/heads/%.*s",
1722 "refs/remotes/%.*s",
1723 "refs/remotes/%.*s/HEAD",
1724 NULL
1727 int refname_match(const char *abbrev_name, const char *full_name, const char **rules)
1729 const char **p;
1730 const int abbrev_name_len = strlen(abbrev_name);
1732 for (p = rules; *p; p++) {
1733 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
1734 return 1;
1738 return 0;
1741 static struct ref_lock *verify_lock(struct ref_lock *lock,
1742 const unsigned char *old_sha1, int mustexist)
1744 if (read_ref_full(lock->ref_name, lock->old_sha1, mustexist, NULL)) {
1745 error("Can't verify ref %s", lock->ref_name);
1746 unlock_ref(lock);
1747 return NULL;
1749 if (hashcmp(lock->old_sha1, old_sha1)) {
1750 error("Ref %s is at %s but expected %s", lock->ref_name,
1751 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
1752 unlock_ref(lock);
1753 return NULL;
1755 return lock;
1758 static int remove_empty_directories(const char *file)
1760 /* we want to create a file but there is a directory there;
1761 * if that is an empty directory (or a directory that contains
1762 * only empty directories), remove them.
1764 struct strbuf path;
1765 int result;
1767 strbuf_init(&path, 20);
1768 strbuf_addstr(&path, file);
1770 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
1772 strbuf_release(&path);
1774 return result;
1778 * *string and *len will only be substituted, and *string returned (for
1779 * later free()ing) if the string passed in is a magic short-hand form
1780 * to name a branch.
1782 static char *substitute_branch_name(const char **string, int *len)
1784 struct strbuf buf = STRBUF_INIT;
1785 int ret = interpret_branch_name(*string, &buf);
1787 if (ret == *len) {
1788 size_t size;
1789 *string = strbuf_detach(&buf, &size);
1790 *len = size;
1791 return (char *)*string;
1794 return NULL;
1797 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
1799 char *last_branch = substitute_branch_name(&str, &len);
1800 const char **p, *r;
1801 int refs_found = 0;
1803 *ref = NULL;
1804 for (p = ref_rev_parse_rules; *p; p++) {
1805 char fullref[PATH_MAX];
1806 unsigned char sha1_from_ref[20];
1807 unsigned char *this_result;
1808 int flag;
1810 this_result = refs_found ? sha1_from_ref : sha1;
1811 mksnpath(fullref, sizeof(fullref), *p, len, str);
1812 r = resolve_ref_unsafe(fullref, this_result, 1, &flag);
1813 if (r) {
1814 if (!refs_found++)
1815 *ref = xstrdup(r);
1816 if (!warn_ambiguous_refs)
1817 break;
1818 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
1819 warning("ignoring dangling symref %s.", fullref);
1820 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
1821 warning("ignoring broken ref %s.", fullref);
1824 free(last_branch);
1825 return refs_found;
1828 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
1830 char *last_branch = substitute_branch_name(&str, &len);
1831 const char **p;
1832 int logs_found = 0;
1834 *log = NULL;
1835 for (p = ref_rev_parse_rules; *p; p++) {
1836 struct stat st;
1837 unsigned char hash[20];
1838 char path[PATH_MAX];
1839 const char *ref, *it;
1841 mksnpath(path, sizeof(path), *p, len, str);
1842 ref = resolve_ref_unsafe(path, hash, 1, NULL);
1843 if (!ref)
1844 continue;
1845 if (!stat(git_path("logs/%s", path), &st) &&
1846 S_ISREG(st.st_mode))
1847 it = path;
1848 else if (strcmp(ref, path) &&
1849 !stat(git_path("logs/%s", ref), &st) &&
1850 S_ISREG(st.st_mode))
1851 it = ref;
1852 else
1853 continue;
1854 if (!logs_found++) {
1855 *log = xstrdup(it);
1856 hashcpy(sha1, hash);
1858 if (!warn_ambiguous_refs)
1859 break;
1861 free(last_branch);
1862 return logs_found;
1865 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
1866 const unsigned char *old_sha1,
1867 int flags, int *type_p)
1869 char *ref_file;
1870 const char *orig_refname = refname;
1871 struct ref_lock *lock;
1872 int last_errno = 0;
1873 int type, lflags;
1874 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
1875 int missing = 0;
1877 lock = xcalloc(1, sizeof(struct ref_lock));
1878 lock->lock_fd = -1;
1880 refname = resolve_ref_unsafe(refname, lock->old_sha1, mustexist, &type);
1881 if (!refname && errno == EISDIR) {
1882 /* we are trying to lock foo but we used to
1883 * have foo/bar which now does not exist;
1884 * it is normal for the empty directory 'foo'
1885 * to remain.
1887 ref_file = git_path("%s", orig_refname);
1888 if (remove_empty_directories(ref_file)) {
1889 last_errno = errno;
1890 error("there are still refs under '%s'", orig_refname);
1891 goto error_return;
1893 refname = resolve_ref_unsafe(orig_refname, lock->old_sha1, mustexist, &type);
1895 if (type_p)
1896 *type_p = type;
1897 if (!refname) {
1898 last_errno = errno;
1899 error("unable to resolve reference %s: %s",
1900 orig_refname, strerror(errno));
1901 goto error_return;
1903 missing = is_null_sha1(lock->old_sha1);
1904 /* When the ref did not exist and we are creating it,
1905 * make sure there is no existing ref that is packed
1906 * whose name begins with our refname, nor a ref whose
1907 * name is a proper prefix of our refname.
1909 if (missing &&
1910 !is_refname_available(refname, NULL, get_packed_refs(get_ref_cache(NULL)))) {
1911 last_errno = ENOTDIR;
1912 goto error_return;
1915 lock->lk = xcalloc(1, sizeof(struct lock_file));
1917 lflags = LOCK_DIE_ON_ERROR;
1918 if (flags & REF_NODEREF) {
1919 refname = orig_refname;
1920 lflags |= LOCK_NODEREF;
1922 lock->ref_name = xstrdup(refname);
1923 lock->orig_ref_name = xstrdup(orig_refname);
1924 ref_file = git_path("%s", refname);
1925 if (missing)
1926 lock->force_write = 1;
1927 if ((flags & REF_NODEREF) && (type & REF_ISSYMREF))
1928 lock->force_write = 1;
1930 if (safe_create_leading_directories(ref_file)) {
1931 last_errno = errno;
1932 error("unable to create directory for %s", ref_file);
1933 goto error_return;
1936 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
1937 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
1939 error_return:
1940 unlock_ref(lock);
1941 errno = last_errno;
1942 return NULL;
1945 struct ref_lock *lock_ref_sha1(const char *refname, const unsigned char *old_sha1)
1947 char refpath[PATH_MAX];
1948 if (check_refname_format(refname, 0))
1949 return NULL;
1950 strcpy(refpath, mkpath("refs/%s", refname));
1951 return lock_ref_sha1_basic(refpath, old_sha1, 0, NULL);
1954 struct ref_lock *lock_any_ref_for_update(const char *refname,
1955 const unsigned char *old_sha1, int flags)
1957 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
1958 return NULL;
1959 return lock_ref_sha1_basic(refname, old_sha1, flags, NULL);
1963 * Write an entry to the packed-refs file for the specified refname.
1964 * If peeled is non-NULL, write it as the entry's peeled value.
1966 static void write_packed_entry(int fd, char *refname, unsigned char *sha1,
1967 unsigned char *peeled)
1969 char line[PATH_MAX + 100];
1970 int len;
1972 len = snprintf(line, sizeof(line), "%s %s\n",
1973 sha1_to_hex(sha1), refname);
1974 /* this should not happen but just being defensive */
1975 if (len > sizeof(line))
1976 die("too long a refname '%s'", refname);
1977 write_or_die(fd, line, len);
1979 if (peeled) {
1980 if (snprintf(line, sizeof(line), "^%s\n",
1981 sha1_to_hex(peeled)) != PEELED_LINE_LENGTH)
1982 die("internal error");
1983 write_or_die(fd, line, PEELED_LINE_LENGTH);
1987 static int repack_ref_fn(struct ref_entry *entry, void *cb_data)
1989 int *fd = cb_data;
1990 enum peel_status peel_status;
1992 if (entry->flag & REF_ISBROKEN) {
1993 /* This shouldn't happen to packed refs. */
1994 error("%s is broken!", entry->name);
1995 return 0;
1997 if (!has_sha1_file(entry->u.value.sha1)) {
1998 unsigned char sha1[20];
1999 int flags;
2001 if (read_ref_full(entry->name, sha1, 0, &flags))
2002 /* We should at least have found the packed ref. */
2003 die("Internal error");
2004 if ((flags & REF_ISSYMREF) || !(flags & REF_ISPACKED))
2006 * This packed reference is overridden by a
2007 * loose reference, so it is OK that its value
2008 * is no longer valid; for example, it might
2009 * refer to an object that has been garbage
2010 * collected. For this purpose we don't even
2011 * care whether the loose reference itself is
2012 * invalid, broken, symbolic, etc. Silently
2013 * omit the packed reference from the output.
2015 return 0;
2017 * There is no overriding loose reference, so the fact
2018 * that this reference doesn't refer to a valid object
2019 * indicates some kind of repository corruption.
2020 * Report the problem, then omit the reference from
2021 * the output.
2023 error("%s does not point to a valid object!", entry->name);
2024 return 0;
2027 peel_status = peel_entry(entry);
2028 write_packed_entry(*fd, entry->name, entry->u.value.sha1,
2029 peel_status == PEEL_PEELED ?
2030 entry->u.value.peeled : NULL);
2032 return 0;
2035 static struct lock_file packlock;
2037 static int repack_without_ref(const char *refname)
2039 int fd;
2040 struct ref_cache *refs = get_ref_cache(NULL);
2041 struct ref_dir *packed;
2043 if (!get_packed_ref(refname))
2044 return 0; /* refname does not exist in packed refs */
2046 fd = hold_lock_file_for_update(&packlock, git_path("packed-refs"), 0);
2047 if (fd < 0) {
2048 unable_to_lock_error(git_path("packed-refs"), errno);
2049 return error("cannot delete '%s' from packed refs", refname);
2051 clear_packed_ref_cache(refs);
2052 packed = get_packed_refs(refs);
2053 /* Remove refname from the cache. */
2054 if (remove_entry(packed, refname) == -1) {
2056 * The packed entry disappeared while we were
2057 * acquiring the lock.
2059 rollback_lock_file(&packlock);
2060 return 0;
2062 write_or_die(fd, PACKED_REFS_HEADER, strlen(PACKED_REFS_HEADER));
2063 do_for_each_entry_in_dir(packed, 0, repack_ref_fn, &fd);
2064 return commit_lock_file(&packlock);
2067 int delete_ref(const char *refname, const unsigned char *sha1, int delopt)
2069 struct ref_lock *lock;
2070 int err, i = 0, ret = 0, flag = 0;
2072 lock = lock_ref_sha1_basic(refname, sha1, delopt, &flag);
2073 if (!lock)
2074 return 1;
2075 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2076 /* loose */
2077 i = strlen(lock->lk->filename) - 5; /* .lock */
2078 lock->lk->filename[i] = 0;
2079 err = unlink_or_warn(lock->lk->filename);
2080 if (err && errno != ENOENT)
2081 ret = 1;
2083 lock->lk->filename[i] = '.';
2085 /* removing the loose one could have resurrected an earlier
2086 * packed one. Also, if it was not loose we need to repack
2087 * without it.
2089 ret |= repack_without_ref(lock->ref_name);
2091 unlink_or_warn(git_path("logs/%s", lock->ref_name));
2092 clear_loose_ref_cache(get_ref_cache(NULL));
2093 unlock_ref(lock);
2094 return ret;
2098 * People using contrib's git-new-workdir have .git/logs/refs ->
2099 * /some/other/path/.git/logs/refs, and that may live on another device.
2101 * IOW, to avoid cross device rename errors, the temporary renamed log must
2102 * live into logs/refs.
2104 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2106 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2108 unsigned char sha1[20], orig_sha1[20];
2109 int flag = 0, logmoved = 0;
2110 struct ref_lock *lock;
2111 struct stat loginfo;
2112 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2113 const char *symref = NULL;
2114 struct ref_cache *refs = get_ref_cache(NULL);
2116 if (log && S_ISLNK(loginfo.st_mode))
2117 return error("reflog for %s is a symlink", oldrefname);
2119 symref = resolve_ref_unsafe(oldrefname, orig_sha1, 1, &flag);
2120 if (flag & REF_ISSYMREF)
2121 return error("refname %s is a symbolic ref, renaming it is not supported",
2122 oldrefname);
2123 if (!symref)
2124 return error("refname %s not found", oldrefname);
2126 if (!is_refname_available(newrefname, oldrefname, get_packed_refs(refs)))
2127 return 1;
2129 if (!is_refname_available(newrefname, oldrefname, get_loose_refs(refs)))
2130 return 1;
2132 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2133 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2134 oldrefname, strerror(errno));
2136 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2137 error("unable to delete old %s", oldrefname);
2138 goto rollback;
2141 if (!read_ref_full(newrefname, sha1, 1, &flag) &&
2142 delete_ref(newrefname, sha1, REF_NODEREF)) {
2143 if (errno==EISDIR) {
2144 if (remove_empty_directories(git_path("%s", newrefname))) {
2145 error("Directory not empty: %s", newrefname);
2146 goto rollback;
2148 } else {
2149 error("unable to delete existing %s", newrefname);
2150 goto rollback;
2154 if (log && safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2155 error("unable to create directory for %s", newrefname);
2156 goto rollback;
2159 retry:
2160 if (log && rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2161 if (errno==EISDIR || errno==ENOTDIR) {
2163 * rename(a, b) when b is an existing
2164 * directory ought to result in ISDIR, but
2165 * Solaris 5.8 gives ENOTDIR. Sheesh.
2167 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2168 error("Directory not empty: logs/%s", newrefname);
2169 goto rollback;
2171 goto retry;
2172 } else {
2173 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2174 newrefname, strerror(errno));
2175 goto rollback;
2178 logmoved = log;
2180 lock = lock_ref_sha1_basic(newrefname, NULL, 0, NULL);
2181 if (!lock) {
2182 error("unable to lock %s for update", newrefname);
2183 goto rollback;
2185 lock->force_write = 1;
2186 hashcpy(lock->old_sha1, orig_sha1);
2187 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2188 error("unable to write current sha1 into %s", newrefname);
2189 goto rollback;
2192 return 0;
2194 rollback:
2195 lock = lock_ref_sha1_basic(oldrefname, NULL, 0, NULL);
2196 if (!lock) {
2197 error("unable to lock %s for rollback", oldrefname);
2198 goto rollbacklog;
2201 lock->force_write = 1;
2202 flag = log_all_ref_updates;
2203 log_all_ref_updates = 0;
2204 if (write_ref_sha1(lock, orig_sha1, NULL))
2205 error("unable to write current sha1 into %s", oldrefname);
2206 log_all_ref_updates = flag;
2208 rollbacklog:
2209 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2210 error("unable to restore logfile %s from %s: %s",
2211 oldrefname, newrefname, strerror(errno));
2212 if (!logmoved && log &&
2213 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2214 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2215 oldrefname, strerror(errno));
2217 return 1;
2220 int close_ref(struct ref_lock *lock)
2222 if (close_lock_file(lock->lk))
2223 return -1;
2224 lock->lock_fd = -1;
2225 return 0;
2228 int commit_ref(struct ref_lock *lock)
2230 if (commit_lock_file(lock->lk))
2231 return -1;
2232 lock->lock_fd = -1;
2233 return 0;
2236 void unlock_ref(struct ref_lock *lock)
2238 /* Do not free lock->lk -- atexit() still looks at them */
2239 if (lock->lk)
2240 rollback_lock_file(lock->lk);
2241 free(lock->ref_name);
2242 free(lock->orig_ref_name);
2243 free(lock);
2247 * copy the reflog message msg to buf, which has been allocated sufficiently
2248 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2249 * because reflog file is one line per entry.
2251 static int copy_msg(char *buf, const char *msg)
2253 char *cp = buf;
2254 char c;
2255 int wasspace = 1;
2257 *cp++ = '\t';
2258 while ((c = *msg++)) {
2259 if (wasspace && isspace(c))
2260 continue;
2261 wasspace = isspace(c);
2262 if (wasspace)
2263 c = ' ';
2264 *cp++ = c;
2266 while (buf < cp && isspace(cp[-1]))
2267 cp--;
2268 *cp++ = '\n';
2269 return cp - buf;
2272 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2274 int logfd, oflags = O_APPEND | O_WRONLY;
2276 git_snpath(logfile, bufsize, "logs/%s", refname);
2277 if (log_all_ref_updates &&
2278 (!prefixcmp(refname, "refs/heads/") ||
2279 !prefixcmp(refname, "refs/remotes/") ||
2280 !prefixcmp(refname, "refs/notes/") ||
2281 !strcmp(refname, "HEAD"))) {
2282 if (safe_create_leading_directories(logfile) < 0)
2283 return error("unable to create directory for %s",
2284 logfile);
2285 oflags |= O_CREAT;
2288 logfd = open(logfile, oflags, 0666);
2289 if (logfd < 0) {
2290 if (!(oflags & O_CREAT) && errno == ENOENT)
2291 return 0;
2293 if ((oflags & O_CREAT) && errno == EISDIR) {
2294 if (remove_empty_directories(logfile)) {
2295 return error("There are still logs under '%s'",
2296 logfile);
2298 logfd = open(logfile, oflags, 0666);
2301 if (logfd < 0)
2302 return error("Unable to append to %s: %s",
2303 logfile, strerror(errno));
2306 adjust_shared_perm(logfile);
2307 close(logfd);
2308 return 0;
2311 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2312 const unsigned char *new_sha1, const char *msg)
2314 int logfd, result, written, oflags = O_APPEND | O_WRONLY;
2315 unsigned maxlen, len;
2316 int msglen;
2317 char log_file[PATH_MAX];
2318 char *logrec;
2319 const char *committer;
2321 if (log_all_ref_updates < 0)
2322 log_all_ref_updates = !is_bare_repository();
2324 result = log_ref_setup(refname, log_file, sizeof(log_file));
2325 if (result)
2326 return result;
2328 logfd = open(log_file, oflags);
2329 if (logfd < 0)
2330 return 0;
2331 msglen = msg ? strlen(msg) : 0;
2332 committer = git_committer_info(0);
2333 maxlen = strlen(committer) + msglen + 100;
2334 logrec = xmalloc(maxlen);
2335 len = sprintf(logrec, "%s %s %s\n",
2336 sha1_to_hex(old_sha1),
2337 sha1_to_hex(new_sha1),
2338 committer);
2339 if (msglen)
2340 len += copy_msg(logrec + len - 1, msg) - 1;
2341 written = len <= maxlen ? write_in_full(logfd, logrec, len) : -1;
2342 free(logrec);
2343 if (close(logfd) != 0 || written != len)
2344 return error("Unable to append to %s", log_file);
2345 return 0;
2348 static int is_branch(const char *refname)
2350 return !strcmp(refname, "HEAD") || !prefixcmp(refname, "refs/heads/");
2353 int write_ref_sha1(struct ref_lock *lock,
2354 const unsigned char *sha1, const char *logmsg)
2356 static char term = '\n';
2357 struct object *o;
2359 if (!lock)
2360 return -1;
2361 if (!lock->force_write && !hashcmp(lock->old_sha1, sha1)) {
2362 unlock_ref(lock);
2363 return 0;
2365 o = parse_object(sha1);
2366 if (!o) {
2367 error("Trying to write ref %s with nonexistent object %s",
2368 lock->ref_name, sha1_to_hex(sha1));
2369 unlock_ref(lock);
2370 return -1;
2372 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2373 error("Trying to write non-commit object %s to branch %s",
2374 sha1_to_hex(sha1), lock->ref_name);
2375 unlock_ref(lock);
2376 return -1;
2378 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
2379 write_in_full(lock->lock_fd, &term, 1) != 1
2380 || close_ref(lock) < 0) {
2381 error("Couldn't write %s", lock->lk->filename);
2382 unlock_ref(lock);
2383 return -1;
2385 clear_loose_ref_cache(get_ref_cache(NULL));
2386 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
2387 (strcmp(lock->ref_name, lock->orig_ref_name) &&
2388 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
2389 unlock_ref(lock);
2390 return -1;
2392 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
2394 * Special hack: If a branch is updated directly and HEAD
2395 * points to it (may happen on the remote side of a push
2396 * for example) then logically the HEAD reflog should be
2397 * updated too.
2398 * A generic solution implies reverse symref information,
2399 * but finding all symrefs pointing to the given branch
2400 * would be rather costly for this rare event (the direct
2401 * update of a branch) to be worth it. So let's cheat and
2402 * check with HEAD only which should cover 99% of all usage
2403 * scenarios (even 100% of the default ones).
2405 unsigned char head_sha1[20];
2406 int head_flag;
2407 const char *head_ref;
2408 head_ref = resolve_ref_unsafe("HEAD", head_sha1, 1, &head_flag);
2409 if (head_ref && (head_flag & REF_ISSYMREF) &&
2410 !strcmp(head_ref, lock->ref_name))
2411 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
2413 if (commit_ref(lock)) {
2414 error("Couldn't set %s", lock->ref_name);
2415 unlock_ref(lock);
2416 return -1;
2418 unlock_ref(lock);
2419 return 0;
2422 int create_symref(const char *ref_target, const char *refs_heads_master,
2423 const char *logmsg)
2425 const char *lockpath;
2426 char ref[1000];
2427 int fd, len, written;
2428 char *git_HEAD = git_pathdup("%s", ref_target);
2429 unsigned char old_sha1[20], new_sha1[20];
2431 if (logmsg && read_ref(ref_target, old_sha1))
2432 hashclr(old_sha1);
2434 if (safe_create_leading_directories(git_HEAD) < 0)
2435 return error("unable to create directory for %s", git_HEAD);
2437 #ifndef NO_SYMLINK_HEAD
2438 if (prefer_symlink_refs) {
2439 unlink(git_HEAD);
2440 if (!symlink(refs_heads_master, git_HEAD))
2441 goto done;
2442 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
2444 #endif
2446 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
2447 if (sizeof(ref) <= len) {
2448 error("refname too long: %s", refs_heads_master);
2449 goto error_free_return;
2451 lockpath = mkpath("%s.lock", git_HEAD);
2452 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
2453 if (fd < 0) {
2454 error("Unable to open %s for writing", lockpath);
2455 goto error_free_return;
2457 written = write_in_full(fd, ref, len);
2458 if (close(fd) != 0 || written != len) {
2459 error("Unable to write to %s", lockpath);
2460 goto error_unlink_return;
2462 if (rename(lockpath, git_HEAD) < 0) {
2463 error("Unable to create %s", git_HEAD);
2464 goto error_unlink_return;
2466 if (adjust_shared_perm(git_HEAD)) {
2467 error("Unable to fix permissions on %s", lockpath);
2468 error_unlink_return:
2469 unlink_or_warn(lockpath);
2470 error_free_return:
2471 free(git_HEAD);
2472 return -1;
2475 #ifndef NO_SYMLINK_HEAD
2476 done:
2477 #endif
2478 if (logmsg && !read_ref(refs_heads_master, new_sha1))
2479 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
2481 free(git_HEAD);
2482 return 0;
2485 static char *ref_msg(const char *line, const char *endp)
2487 const char *ep;
2488 line += 82;
2489 ep = memchr(line, '\n', endp - line);
2490 if (!ep)
2491 ep = endp;
2492 return xmemdupz(line, ep - line);
2495 int read_ref_at(const char *refname, unsigned long at_time, int cnt,
2496 unsigned char *sha1, char **msg,
2497 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
2499 const char *logfile, *logdata, *logend, *rec, *lastgt, *lastrec;
2500 char *tz_c;
2501 int logfd, tz, reccnt = 0;
2502 struct stat st;
2503 unsigned long date;
2504 unsigned char logged_sha1[20];
2505 void *log_mapped;
2506 size_t mapsz;
2508 logfile = git_path("logs/%s", refname);
2509 logfd = open(logfile, O_RDONLY, 0);
2510 if (logfd < 0)
2511 die_errno("Unable to read log '%s'", logfile);
2512 fstat(logfd, &st);
2513 if (!st.st_size)
2514 die("Log %s is empty.", logfile);
2515 mapsz = xsize_t(st.st_size);
2516 log_mapped = xmmap(NULL, mapsz, PROT_READ, MAP_PRIVATE, logfd, 0);
2517 logdata = log_mapped;
2518 close(logfd);
2520 lastrec = NULL;
2521 rec = logend = logdata + st.st_size;
2522 while (logdata < rec) {
2523 reccnt++;
2524 if (logdata < rec && *(rec-1) == '\n')
2525 rec--;
2526 lastgt = NULL;
2527 while (logdata < rec && *(rec-1) != '\n') {
2528 rec--;
2529 if (*rec == '>')
2530 lastgt = rec;
2532 if (!lastgt)
2533 die("Log %s is corrupt.", logfile);
2534 date = strtoul(lastgt + 1, &tz_c, 10);
2535 if (date <= at_time || cnt == 0) {
2536 tz = strtoul(tz_c, NULL, 10);
2537 if (msg)
2538 *msg = ref_msg(rec, logend);
2539 if (cutoff_time)
2540 *cutoff_time = date;
2541 if (cutoff_tz)
2542 *cutoff_tz = tz;
2543 if (cutoff_cnt)
2544 *cutoff_cnt = reccnt - 1;
2545 if (lastrec) {
2546 if (get_sha1_hex(lastrec, logged_sha1))
2547 die("Log %s is corrupt.", logfile);
2548 if (get_sha1_hex(rec + 41, sha1))
2549 die("Log %s is corrupt.", logfile);
2550 if (hashcmp(logged_sha1, sha1)) {
2551 warning("Log %s has gap after %s.",
2552 logfile, show_date(date, tz, DATE_RFC2822));
2555 else if (date == at_time) {
2556 if (get_sha1_hex(rec + 41, sha1))
2557 die("Log %s is corrupt.", logfile);
2559 else {
2560 if (get_sha1_hex(rec + 41, logged_sha1))
2561 die("Log %s is corrupt.", logfile);
2562 if (hashcmp(logged_sha1, sha1)) {
2563 warning("Log %s unexpectedly ended on %s.",
2564 logfile, show_date(date, tz, DATE_RFC2822));
2567 munmap(log_mapped, mapsz);
2568 return 0;
2570 lastrec = rec;
2571 if (cnt > 0)
2572 cnt--;
2575 rec = logdata;
2576 while (rec < logend && *rec != '>' && *rec != '\n')
2577 rec++;
2578 if (rec == logend || *rec == '\n')
2579 die("Log %s is corrupt.", logfile);
2580 date = strtoul(rec + 1, &tz_c, 10);
2581 tz = strtoul(tz_c, NULL, 10);
2582 if (get_sha1_hex(logdata, sha1))
2583 die("Log %s is corrupt.", logfile);
2584 if (is_null_sha1(sha1)) {
2585 if (get_sha1_hex(logdata + 41, sha1))
2586 die("Log %s is corrupt.", logfile);
2588 if (msg)
2589 *msg = ref_msg(logdata, logend);
2590 munmap(log_mapped, mapsz);
2592 if (cutoff_time)
2593 *cutoff_time = date;
2594 if (cutoff_tz)
2595 *cutoff_tz = tz;
2596 if (cutoff_cnt)
2597 *cutoff_cnt = reccnt;
2598 return 1;
2601 int for_each_recent_reflog_ent(const char *refname, each_reflog_ent_fn fn, long ofs, void *cb_data)
2603 const char *logfile;
2604 FILE *logfp;
2605 struct strbuf sb = STRBUF_INIT;
2606 int ret = 0;
2608 logfile = git_path("logs/%s", refname);
2609 logfp = fopen(logfile, "r");
2610 if (!logfp)
2611 return -1;
2613 if (ofs) {
2614 struct stat statbuf;
2615 if (fstat(fileno(logfp), &statbuf) ||
2616 statbuf.st_size < ofs ||
2617 fseek(logfp, -ofs, SEEK_END) ||
2618 strbuf_getwholeline(&sb, logfp, '\n')) {
2619 fclose(logfp);
2620 strbuf_release(&sb);
2621 return -1;
2625 while (!strbuf_getwholeline(&sb, logfp, '\n')) {
2626 unsigned char osha1[20], nsha1[20];
2627 char *email_end, *message;
2628 unsigned long timestamp;
2629 int tz;
2631 /* old SP new SP name <email> SP time TAB msg LF */
2632 if (sb.len < 83 || sb.buf[sb.len - 1] != '\n' ||
2633 get_sha1_hex(sb.buf, osha1) || sb.buf[40] != ' ' ||
2634 get_sha1_hex(sb.buf + 41, nsha1) || sb.buf[81] != ' ' ||
2635 !(email_end = strchr(sb.buf + 82, '>')) ||
2636 email_end[1] != ' ' ||
2637 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
2638 !message || message[0] != ' ' ||
2639 (message[1] != '+' && message[1] != '-') ||
2640 !isdigit(message[2]) || !isdigit(message[3]) ||
2641 !isdigit(message[4]) || !isdigit(message[5]))
2642 continue; /* corrupt? */
2643 email_end[1] = '\0';
2644 tz = strtol(message + 1, NULL, 10);
2645 if (message[6] != '\t')
2646 message += 6;
2647 else
2648 message += 7;
2649 ret = fn(osha1, nsha1, sb.buf + 82, timestamp, tz, message,
2650 cb_data);
2651 if (ret)
2652 break;
2654 fclose(logfp);
2655 strbuf_release(&sb);
2656 return ret;
2659 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
2661 return for_each_recent_reflog_ent(refname, fn, 0, cb_data);
2665 * Call fn for each reflog in the namespace indicated by name. name
2666 * must be empty or end with '/'. Name will be used as a scratch
2667 * space, but its contents will be restored before return.
2669 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
2671 DIR *d = opendir(git_path("logs/%s", name->buf));
2672 int retval = 0;
2673 struct dirent *de;
2674 int oldlen = name->len;
2676 if (!d)
2677 return name->len ? errno : 0;
2679 while ((de = readdir(d)) != NULL) {
2680 struct stat st;
2682 if (de->d_name[0] == '.')
2683 continue;
2684 if (has_extension(de->d_name, ".lock"))
2685 continue;
2686 strbuf_addstr(name, de->d_name);
2687 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
2688 ; /* silently ignore */
2689 } else {
2690 if (S_ISDIR(st.st_mode)) {
2691 strbuf_addch(name, '/');
2692 retval = do_for_each_reflog(name, fn, cb_data);
2693 } else {
2694 unsigned char sha1[20];
2695 if (read_ref_full(name->buf, sha1, 0, NULL))
2696 retval = error("bad ref for %s", name->buf);
2697 else
2698 retval = fn(name->buf, sha1, 0, cb_data);
2700 if (retval)
2701 break;
2703 strbuf_setlen(name, oldlen);
2705 closedir(d);
2706 return retval;
2709 int for_each_reflog(each_ref_fn fn, void *cb_data)
2711 int retval;
2712 struct strbuf name;
2713 strbuf_init(&name, PATH_MAX);
2714 retval = do_for_each_reflog(&name, fn, cb_data);
2715 strbuf_release(&name);
2716 return retval;
2719 int update_ref(const char *action, const char *refname,
2720 const unsigned char *sha1, const unsigned char *oldval,
2721 int flags, enum action_on_err onerr)
2723 static struct ref_lock *lock;
2724 lock = lock_any_ref_for_update(refname, oldval, flags);
2725 if (!lock) {
2726 const char *str = "Cannot lock the ref '%s'.";
2727 switch (onerr) {
2728 case MSG_ON_ERR: error(str, refname); break;
2729 case DIE_ON_ERR: die(str, refname); break;
2730 case QUIET_ON_ERR: break;
2732 return 1;
2734 if (write_ref_sha1(lock, sha1, action) < 0) {
2735 const char *str = "Cannot update the ref '%s'.";
2736 switch (onerr) {
2737 case MSG_ON_ERR: error(str, refname); break;
2738 case DIE_ON_ERR: die(str, refname); break;
2739 case QUIET_ON_ERR: break;
2741 return 1;
2743 return 0;
2746 struct ref *find_ref_by_name(const struct ref *list, const char *name)
2748 for ( ; list; list = list->next)
2749 if (!strcmp(list->name, name))
2750 return (struct ref *)list;
2751 return NULL;
2755 * generate a format suitable for scanf from a ref_rev_parse_rules
2756 * rule, that is replace the "%.*s" spec with a "%s" spec
2758 static void gen_scanf_fmt(char *scanf_fmt, const char *rule)
2760 char *spec;
2762 spec = strstr(rule, "%.*s");
2763 if (!spec || strstr(spec + 4, "%.*s"))
2764 die("invalid rule in ref_rev_parse_rules: %s", rule);
2766 /* copy all until spec */
2767 strncpy(scanf_fmt, rule, spec - rule);
2768 scanf_fmt[spec - rule] = '\0';
2769 /* copy new spec */
2770 strcat(scanf_fmt, "%s");
2771 /* copy remaining rule */
2772 strcat(scanf_fmt, spec + 4);
2774 return;
2777 char *shorten_unambiguous_ref(const char *refname, int strict)
2779 int i;
2780 static char **scanf_fmts;
2781 static int nr_rules;
2782 char *short_name;
2784 /* pre generate scanf formats from ref_rev_parse_rules[] */
2785 if (!nr_rules) {
2786 size_t total_len = 0;
2788 /* the rule list is NULL terminated, count them first */
2789 for (; ref_rev_parse_rules[nr_rules]; nr_rules++)
2790 /* no +1 because strlen("%s") < strlen("%.*s") */
2791 total_len += strlen(ref_rev_parse_rules[nr_rules]);
2793 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
2795 total_len = 0;
2796 for (i = 0; i < nr_rules; i++) {
2797 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules]
2798 + total_len;
2799 gen_scanf_fmt(scanf_fmts[i], ref_rev_parse_rules[i]);
2800 total_len += strlen(ref_rev_parse_rules[i]);
2804 /* bail out if there are no rules */
2805 if (!nr_rules)
2806 return xstrdup(refname);
2808 /* buffer for scanf result, at most refname must fit */
2809 short_name = xstrdup(refname);
2811 /* skip first rule, it will always match */
2812 for (i = nr_rules - 1; i > 0 ; --i) {
2813 int j;
2814 int rules_to_fail = i;
2815 int short_name_len;
2817 if (1 != sscanf(refname, scanf_fmts[i], short_name))
2818 continue;
2820 short_name_len = strlen(short_name);
2823 * in strict mode, all (except the matched one) rules
2824 * must fail to resolve to a valid non-ambiguous ref
2826 if (strict)
2827 rules_to_fail = nr_rules;
2830 * check if the short name resolves to a valid ref,
2831 * but use only rules prior to the matched one
2833 for (j = 0; j < rules_to_fail; j++) {
2834 const char *rule = ref_rev_parse_rules[j];
2835 char refname[PATH_MAX];
2837 /* skip matched rule */
2838 if (i == j)
2839 continue;
2842 * the short name is ambiguous, if it resolves
2843 * (with this previous rule) to a valid ref
2844 * read_ref() returns 0 on success
2846 mksnpath(refname, sizeof(refname),
2847 rule, short_name_len, short_name);
2848 if (ref_exists(refname))
2849 break;
2853 * short name is non-ambiguous if all previous rules
2854 * haven't resolved to a valid ref
2856 if (j == rules_to_fail)
2857 return short_name;
2860 free(short_name);
2861 return xstrdup(refname);