[CPML] s/cpml_(.*?)_length/cpml_\1_get_length/
[adg.git] / cpml / cpml-arc.c
blobdf0781e3f20ee0053796ca22e7f856b156b22a32
1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
21 /**
22 * SECTION:cpml-arc
23 * @Section_Id:CpmlArc
24 * @title: CpmlArc
25 * @short_description: Manipulation of circular arcs
27 * The following functions manipulate #CAIRO_PATH_ARC_TO #CpmlPrimitive.
28 * No validation is made on the input so use the following methods
29 * only when you are sure the <varname>primitive</varname> argument
30 * is effectively an arc-to.
32 * The arc primitive is defined by 3 points: the first one is the usual
33 * implicit point got from the previous primitive, the second point is
34 * an arbitrary intermediate point laying on the arc and the third point
35 * is the end of the arc. These points identify univocally an arc:
36 * furthermore, the intermediate point also gives the side of
37 * the arc.
39 * As a special case, when the first point is coincident with the end
40 * point the primitive is considered a circle with diameter defined by
41 * the segment between the first and the intermediate point.
43 * <important>
44 * <para>
45 * An arc is not a native cairo primitive and should be treated specially.
46 * </para>
47 * </important>
49 * Using these CPML APIs you are free to use #CAIRO_PATH_ARC_TO whenever
50 * you want but, if you are directly accessing the struct fields, you
51 * are responsible of converting arcs to curves before passing them
52 * to cairo. In other words, do not directly feed #CpmlPath struct to
53 * cairo (throught cairo_append_path() for example) or at least do not
54 * expect it will work.
56 * The conversion is provided by two APIs: cpml_arc_to_cairo() and
57 * cpml_arc_to_curves(). The former directly renders to a cairo context
58 * and is internally used by all the ..._to_cairo() functions when an
59 * arc is met. The latter provided a more powerful (and more complex)
60 * approach as it allows to specify the number of curves to use and do
61 * not need a cairo context.
62 **/
65 #include "cpml-arc.h"
66 #include "cpml-pair.h"
68 #include <stdlib.h>
69 #include <math.h>
72 /* Hardcoded max angle of the arc to be approximated by a Bézier curve:
73 * this influence the arc quality (the default value is got from cairo) */
74 #define ARC_MAX_ANGLE M_PI_2
77 static cairo_bool_t get_center (const CpmlPair *p,
78 CpmlPair *dest);
79 static void get_angles (const CpmlPair *p,
80 const CpmlPair *center,
81 double *start,
82 double *end);
83 static void arc_to_curve (CpmlPrimitive *curve,
84 const CpmlPair *center,
85 double r,
86 double start,
87 double end);
90 /**
91 * cpml_arc_type_get_npoints:
93 * Returns the number of point needed to properly specify an arc primitive.
95 * Returns: 3
96 **/
97 int
98 cpml_arc_type_get_npoints(void)
100 return 3;
104 * cpml_arc_info:
105 * @arc: the #CpmlPrimitive arc data
106 * @center: where to store the center coordinates (can be %NULL)
107 * @r: where to store the radius (can be %NULL)
108 * @start: where to store the starting angle (can be %NULL)
109 * @end: where to store the ending angle (can be %NULL)
111 * Given an @arc, this function calculates and returns its basic data.
112 * Any pointer can be %NULL, in which case the requested info is not
113 * returned. This function can fail (when the three points lay on a
114 * straight line, for example) in which case 0 is returned and no
115 * data can be considered valid.
117 * The radius @r can be 0 when the three points are coincidents: a
118 * circle with radius 0 is considered a valid path.
120 * When the start and end angle are returned, together with their
121 * values these angles implicitely gives another important information:
122 * the arc direction.
124 * If @start < @end the arc must be rendered with increasing angle
125 * value (clockwise direction using the ordinary cairo coordinate
126 * system) while if @start > @end the arc must be rendered in reverse
127 * order (that is counterclockwise in the cairo world). This is the
128 * reason the angle values are returned in the range
129 * { -M_PI < value < 3*M_PI } inclusive instead of the usual
130 * { -M_PI < value < M_PI } range.
132 * Returns: 1 if the function worked succesfully, 0 on errors
134 cairo_bool_t
135 cpml_arc_info(const CpmlPrimitive *arc, CpmlPair *center,
136 double *r, double *start, double *end)
138 CpmlPair p[3], l_center;
140 cpml_pair_from_cairo(&p[0], arc->org);
141 cpml_pair_from_cairo(&p[1], &arc->data[1]);
142 cpml_pair_from_cairo(&p[2], &arc->data[2]);
144 if (!get_center(p, &l_center))
145 return 0;
147 if (center)
148 *center = l_center;
150 if (r != NULL)
151 *r = cpml_pair_distance(&p[0], &l_center);
153 if (start != NULL || end != NULL) {
154 double l_start, l_end;
156 get_angles(p, &l_center, &l_start, &l_end);
158 if (start != NULL)
159 *start = l_start;
160 if (end != NULL)
161 *end = l_end;
164 return 1;
168 * cpml_arc_get_length:
169 * @arc: the #CpmlPrimitive arc data
171 * Given the @arc primitive, returns its length.
173 * Returns: the requested length or 0 on errors
175 double
176 cpml_arc_get_length(const CpmlPrimitive *arc)
178 double r, start, end, delta;
180 if (!cpml_arc_info(arc, NULL, &r, &start, &end) || start == end)
181 return 0.;
183 delta = end - start;
184 if (delta < 0)
185 delta += M_PI*2;
187 return r*delta;
190 /* Hardcoded macro to save a lot of typing and make the
191 * cpml_arc_extents() code clearer */
192 #define ANGLE_INCLUDED(d) \
193 ((start < (d) && end > (d)) || (start > (d) && end < (d)))
196 * cpml_arc_extents:
197 * @arc: the #CpmlPrimitive arc data
198 * @extents: where to store the extents
200 * Given an @arc primitive, returns its boundary box in @extents.
202 void
203 cpml_arc_extents(const CpmlPrimitive *arc, CpmlExtents *extents)
205 double r, start, end;
206 CpmlPair center, pair;
208 extents->is_defined = 0;
210 if (!cpml_arc_info(arc, &center, &r, &start, &end))
211 return;
213 /* Add the right quadrant point if needed */
214 if (ANGLE_INCLUDED(0) || ANGLE_INCLUDED(M_PI * 2)) {
215 pair.x = center.x + r;
216 pair.y = center.y;
217 cpml_extents_pair_add(extents, &pair);
220 /* Add the bottom quadrant point if needed */
221 if (ANGLE_INCLUDED(M_PI_2) || ANGLE_INCLUDED(M_PI_2 * 5)) {
222 pair.x = center.x;
223 pair.y = center.y + r;
224 cpml_extents_pair_add(extents, &pair);
227 /* Add the left quadrant point if needed */
228 if (ANGLE_INCLUDED(M_PI)) {
229 pair.x = center.x - r;
230 pair.y = center.y;
231 cpml_extents_pair_add(extents, &pair);
234 /* Add the top quadrant point if needed */
235 if (ANGLE_INCLUDED(M_PI_2 * 3) || ANGLE_INCLUDED(-M_PI_2)) {
236 pair.x = center.x;
237 pair.y = center.y - r;
238 cpml_extents_pair_add(extents, &pair);
241 /* Add the start point */
242 cpml_pair_from_cairo(&pair, cpml_primitive_get_point(arc, 0));
243 cpml_extents_pair_add(extents, &pair);
245 /* Add the end point */
246 cpml_pair_from_cairo(&pair, cpml_primitive_get_point(arc, -1));
247 cpml_extents_pair_add(extents, &pair);
251 * cpml_arc_pair_at:
252 * @arc: the #CpmlPrimitive arc data
253 * @pair: the destination #CpmlPair
254 * @pos: the position value
256 * Given an @arc, finds the coordinates at position @pos (where 0 is
257 * the start and 1 is the end) and stores the result in @pair.
259 * @pos can also be outside the 0..1 limit, as interpolating on an
260 * arc is quite trivial.
262 void
263 cpml_arc_pair_at(const CpmlPrimitive *arc, CpmlPair *pair, double pos)
265 if (pos == 0.) {
266 cpml_pair_from_cairo(pair, arc->org);
267 } else if (pos == 1.) {
268 cpml_pair_from_cairo(pair, &arc->data[2]);
269 } else {
270 CpmlPair center;
271 double r, start, end, angle;
273 if (!cpml_arc_info(arc, &center, &r, &start, &end))
274 return;
276 angle = (end-start)*pos + start;
277 cpml_vector_from_angle(pair, angle);
278 cpml_vector_set_length(pair, r);
279 cpml_pair_add(pair, &center);
284 * cpml_arc_vector_at:
285 * @arc: the #CpmlPrimitive arc data
286 * @vector: the destination vector
287 * @pos: the position value
289 * Given an @arc, finds the slope at position @pos (where 0 is
290 * the start and 1 is the end) and stores the result in @vector.
292 * @pos can also be outside the 0..1 limit, as interpolating on an
293 * arc is quite trivial.
295 void
296 cpml_arc_vector_at(const CpmlPrimitive *arc, CpmlVector *vector, double pos)
298 double start, end, angle;
300 if (!cpml_arc_info(arc, NULL, NULL, &start, &end))
301 return;
303 angle = (end-start)*pos + start;
304 cpml_vector_from_angle(vector, angle);
305 cpml_vector_normal(vector);
307 if (start > end)
308 cpml_pair_negate(vector);
312 * cpml_arc_near_pos:
313 * @arc: the #CpmlPrimitive arc data
314 * @pair: the coordinates of the subject point
316 * Returns the pos value of the point on @arc nearest to @pair.
317 * The returned value is always between 0 and 1.
319 * <important>
320 * <title>TODO</title>
321 * <itemizedlist>
322 * <listitem>To be implemented...</listitem>
323 * </itemizedlist>
324 * </important>
326 * Returns: the pos value, always between 0 and 1
328 double
329 cpml_arc_near_pos(const CpmlPrimitive *arc, const CpmlPair *pair)
331 /* TODO */
333 return 0;
337 * cpml_arc_intersection:
338 * @arc: the first arc
339 * @arc2: the second arc
340 * @dest: a vector of #CpmlPair
341 * @max: maximum number of intersections to return
342 * (that is, the size of @dest)
344 * Given two arcs (@arc and @arc2), gets their intersection points
345 * and store the result in @dest. Keep in mind two arcs can have
346 * up to 2 intersections.
348 * If @max is 0, the function returns 0 immediately without any
349 * further processing. If @arc and @arc2 are cohincident (same
350 * center and same radius), their intersections are not considered.
352 * <important>
353 * <title>TODO</title>
354 * <itemizedlist>
355 * <listitem>To be implemented...</listitem>
356 * </itemizedlist>
357 * </important>
359 * Returns: the number of intersections found (max 2)
360 * or 0 if the primitives do not intersect
363 cpml_arc_intersection(const CpmlPrimitive *arc, const CpmlPrimitive *arc2,
364 CpmlPair *dest, int max)
366 return 0;
370 * cpml_arc_intersection_with_line:
371 * @arc: an arc
372 * @line: a line
373 * @dest: a vector of #CpmlPair
374 * @max: maximum number of intersections to return
375 * (that is, the size of @dest)
377 * Given an @arc and a @line, gets their intersection points
378 * and store the result in @dest. Keep in mind an arc and a
379 * line can have up to 2 intersections.
381 * If @max is 0, the function returns 0 immediately without any
382 * further processing.
384 * <important>
385 * <title>TODO</title>
386 * <itemizedlist>
387 * <listitem>To be implemented...</listitem>
388 * </itemizedlist>
389 * </important>
391 * Returns: the number of intersections found (max 2)
392 * or 0 if the primitives do not intersect
395 cpml_arc_intersection_with_line(const CpmlPrimitive *arc,
396 const CpmlPrimitive *line,
397 CpmlPair *dest, int max)
399 return 0;
403 * cpml_arc_offset:
404 * @arc: the #CpmlPrimitive arc data
405 * @offset: distance for the computed parallel arc
407 * Given an @arc, this function computes the parallel arc at
408 * distance @offset. The three points needed to build the
409 * new arc are returned in the @arc data (substituting the
410 * previous ones.
412 void
413 cpml_arc_offset(CpmlPrimitive *arc, double offset)
415 CpmlPair p[3], center;
416 double r;
418 cpml_pair_from_cairo(&p[0], arc->org);
419 cpml_pair_from_cairo(&p[1], &arc->data[1]);
420 cpml_pair_from_cairo(&p[2], &arc->data[2]);
422 if (!get_center(p, &center))
423 return;
425 r = cpml_pair_distance(&p[0], &center) + offset;
427 /* Offset the three points by calculating their vector from the center,
428 * setting the new radius as length and readding the center */
429 cpml_pair_sub(&p[0], &center);
430 cpml_pair_sub(&p[1], &center);
431 cpml_pair_sub(&p[2], &center);
433 cpml_vector_set_length(&p[0], r);
434 cpml_vector_set_length(&p[1], r);
435 cpml_vector_set_length(&p[2], r);
437 cpml_pair_add(&p[0], &center);
438 cpml_pair_add(&p[1], &center);
439 cpml_pair_add(&p[2], &center);
441 cpml_pair_to_cairo(&p[0], arc->org);
442 cpml_pair_to_cairo(&p[1], &arc->data[1]);
443 cpml_pair_to_cairo(&p[2], &arc->data[2]);
447 * cpml_arc_to_cairo:
448 * @arc: the #CpmlPrimitive arc data
449 * @cr: the destination cairo context
451 * Renders @arc to the @cr cairo context. As cairo does not support
452 * arcs natively, it is approximated using one or more Bézier curves.
454 * The number of curves used is dependent from the angle of the arc.
455 * Anyway, this function uses internally the hardcoded %M_PI_2 value
456 * as threshold value. This means the maximum arc approximated by a
457 * single curve will be a quarter of a circle and, consequently, a
458 * whole circle will be approximated by 4 Bézier curves.
460 void
461 cpml_arc_to_cairo(const CpmlPrimitive *arc, cairo_t *cr)
463 CpmlPair center;
464 double r, start, end;
465 int n_curves;
466 double step, angle;
467 CpmlPrimitive curve;
468 cairo_path_data_t data[4];
470 if (!cpml_arc_info(arc, &center, &r, &start, &end))
471 return;
473 n_curves = ceil(fabs(end-start) / ARC_MAX_ANGLE);
474 step = (end-start) / (double) n_curves;
475 curve.data = data;
477 for (angle = start; n_curves--; angle += step) {
478 arc_to_curve(&curve, &center, r, angle, angle+step);
479 cairo_curve_to(cr,
480 curve.data[1].point.x, curve.data[1].point.y,
481 curve.data[2].point.x, curve.data[2].point.y,
482 curve.data[3].point.x, curve.data[3].point.y);
487 * cpml_arc_to_curves:
488 * @arc: the #CpmlPrimitive arc data
489 * @segment: the destination #CpmlSegment
490 * @n_curves: number of Bézier to use
492 * Converts @arc to a serie of @n_curves Bézier curves and puts them
493 * inside @segment. Obviously, @segment must have enough space to
494 * contain at least @n_curves curves.
496 * This function works in a similar way as cpml_arc_to_cairo() but
497 * has two important differences: it does not need a cairo context
498 * and the number of curves to be generated is explicitely defined.
499 * The latter difference allows a more specific error control from
500 * the application: in the file src/cairo-arc.c, found in the cairo
501 * tarball (at least in cairo-1.9.1), there is a table showing the
502 * magnitude of error of this curve approximation algorithm.
504 void
505 cpml_arc_to_curves(const CpmlPrimitive *arc, CpmlSegment *segment,
506 int n_curves)
508 CpmlPair center;
509 double r, start, end;
510 double step, angle;
511 CpmlPrimitive curve;
513 if (!cpml_arc_info(arc, &center, &r, &start, &end))
514 return;
516 step = (end-start) / (double) n_curves;
517 segment->num_data = n_curves*4;
518 curve.segment = segment;
519 curve.data = segment->data;
521 for (angle = start; n_curves--; angle += step) {
522 arc_to_curve(&curve, &center, r, angle, angle+step);
523 curve.data += 4;
528 static cairo_bool_t
529 get_center(const CpmlPair *p, CpmlPair *dest)
531 CpmlPair b, c;
532 double d, b2, c2;
534 /* When p[0] == p[2], p[0]..p[1] is considered the diameter of a circle */
535 if (p[0].x == p[2].x && p[0].y == p[2].y) {
536 dest->x = (p[0].x + p[1].x) / 2;
537 dest->y = (p[0].y + p[1].y) / 2;
538 return 1;
541 /* Translate the 3 points of -p0, to simplify the formula */
542 cpml_pair_copy(&b, &p[1]);
543 cpml_pair_sub(&b, &p[0]);
544 cpml_pair_copy(&c, &p[2]);
545 cpml_pair_sub(&c, &p[0]);
547 /* Check for division by 0, that is the case where the 3 given points
548 * are laying on a straight line and there is no fitting circle */
549 d = (b.x*c.y - b.y*c.x) * 2;
550 if (d == 0.)
551 return 0;
553 b2 = b.x*b.x + b.y*b.y;
554 c2 = c.x*c.x + c.y*c.y;
556 dest->x = (c.y*b2 - b.y*c2) / d + p[0].x;
557 dest->y = (b.x*c2 - c.x*b2) / d + p[0].y;
559 return 1;
562 static void
563 get_angles(const CpmlPair *p, const CpmlPair *center,
564 double *start, double *end)
566 CpmlVector vector;
567 double mid;
569 /* Calculate the starting angle */
570 cpml_pair_copy(&vector, &p[0]);
571 cpml_pair_sub(&vector, center);
572 *start = cpml_vector_angle(&vector);
574 if (p[0].x == p[2].x && p[0].y == p[2].y) {
575 /* When p[0] and p[2] are cohincidents, p[0]..p[1] is the diameter
576 * of a circle: return by convention start=start end=start+2PI */
577 *end = *start + M_PI*2;
578 } else {
579 /* Calculate the mid and end angle: cpml_vector_angle()
580 * returns an angle between -M_PI and M_PI */
581 cpml_pair_copy(&vector, &p[1]);
582 cpml_pair_sub(&vector, center);
583 mid = cpml_vector_angle(&vector);
584 cpml_pair_copy(&vector, &p[2]);
585 cpml_pair_sub(&vector, center);
586 *end = cpml_vector_angle(&vector);
588 if (*end > *start) {
589 /* If the middle angle is outside the start..end range,
590 * the arc should be reversed (that is, start must
591 * be greather than end) */
592 if (mid < *start || mid > *end)
593 *start += M_PI*2;
594 } else {
595 /* Here the arc is reversed: if the middle angle is
596 * outside the end..start range, the arc should be
597 * re-reversed to get a straight arc (that is, end
598 * must be greather than start) */
599 if (mid < *end || mid > *start)
600 *end += M_PI*2;
605 static void
606 arc_to_curve(CpmlPrimitive *curve, const CpmlPair *center,
607 double r, double start, double end)
609 double r_sin1, r_cos1;
610 double r_sin2, r_cos2;
611 double h;
613 r_sin1 = r*sin(start);
614 r_cos1 = r*cos(start);
615 r_sin2 = r*sin(end);
616 r_cos2 = r*cos(end);
618 h = 4./3. * tan((end-start) / 4.);
620 curve->data[0].header.type = CAIRO_PATH_CURVE_TO;
621 curve->data[0].header.length = 4;
622 curve->data[1].point.x = center->x + r_cos1 - h*r_sin1;
623 curve->data[1].point.y = center->y + r_sin1 + h*r_cos1;
624 curve->data[2].point.x = center->x + r_cos2 + h*r_sin2;
625 curve->data[2].point.y = center->y + r_sin2 - h*r_cos2;
626 curve->data[3].point.x = center->x + r_cos2;
627 curve->data[3].point.y = center->y + r_sin2;