[AdgStroke] Using adg_entity_apply_local_matrix()
[adg.git] / cpml / cpml-curve.c
blob42f0fe845493c390fc50aba45393848cacc52465
1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
20 /**
21 * SECTION:curve
22 * @Section_Id:CpmlCurve
23 * @title: CpmlCurve
24 * @short_description: Bézier cubic curve primitive management
26 * The following functions manipulate %CAIRO_PATH_CURVE_TO #CpmlPrimitive.
27 * No validation is made on the input so use the following methods
28 * only when you are sure the <varname>primitive</varname> argument
29 * is effectively a cubic Bézier curve.
30 **/
33 #include "cpml-curve.h"
34 #include "cpml-pair.h"
37 /**
38 * cpml_curve_type_get_npoints:
40 * Returns the number of point needed to properly specify a curve primitive.
42 * Return value: 4
43 **/
44 int
45 cpml_curve_type_get_npoints(void)
47 return 4;
50 /**
51 * cpml_curve_length:
52 * @curve: the #CpmlPrimitive curve data
54 * Given the @curve primitive, returns the approximated length of
55 * the Bézier curve.
57 * <important>
58 * <title>TODO</title>
59 * <itemizedlist>
60 * <listitem>To be implemented...</listitem>
61 * </itemizedlist>
62 * </important>
64 * Return value: the requested length
65 **/
66 double
67 cpml_curve_length(const CpmlPrimitive *curve)
69 return 0.;
72 /**
73 * cpml_curve_pair_at_time:
74 * @curve: the #CpmlPrimitive curve data
75 * @pair: the destination pair
76 * @t: the "time" value
78 * Given the @curve Bézier cubic, finds the coordinates at time @t
79 * (where 0 is the start and 1 is the end) and stores the result
80 * in @pair. Keep in mind @t is not homogeneous, so 0.5 does not
81 * necessarily means the mid point.
83 * The relation 0 < @t < 1 must be satisfied, as interpolating on
84 * cubic curves is not allowed.
85 **/
86 void
87 cpml_curve_pair_at_time(const CpmlPrimitive *curve, CpmlPair *pair, double t)
89 cairo_path_data_t *p1, *p2, *p3, *p4;
90 double t_2, t_3, t1, t1_2, t1_3;
92 p1 = cpml_primitive_get_point(curve, 0);
93 p2 = cpml_primitive_get_point(curve, 1);
94 p3 = cpml_primitive_get_point(curve, 2);
95 p4 = cpml_primitive_get_point(curve, 3);
97 t_2 = t * t;
98 t_3 = t_2 * t;
99 t1 = 1 - t;
100 t1_2 = t1 * t1;
101 t1_3 = t1_2 * t1;
103 pair->x = t1_3 * p1->point.x + 3 * t1_2 * t * p2->point.x
104 + 3 * t1 * t_2 * p3->point.x + t_3 * p4->point.x;
105 pair->y = t1_3 * p1->point.y + 3 * t1_2 * t * p2->point.y
106 + 3 * t1 * t_2 * p3->point.y + t_3 * p4->point.y;
110 * cpml_curve_pair_at:
111 * @curve: the #CpmlPrimitive curve data
112 * @pair: the destination #AdgPair
113 * @pos: the position value
115 * Given the @curve Bézier cubic, finds the coordinates at position
116 * @pos (where 0 is the start and 1 is the end) and stores the result
117 * in @pair. It is similar to cpml_curve_pair_at_time() but the @pos
118 * value is evenly distribuited, that is 0.5 is exactly the mid point.
119 * If you do not need this feature, use cpml_curve_pair_at_time()
120 * as it is considerable faster.
122 * The relation 0 < @pos < 1 must be satisfied, as interpolating on
123 * cubic curves is not allowed.
125 * <important>
126 * <title>TODO</title>
127 * <itemizedlist>
128 * <listitem>To be implemented...</listitem>
129 * </itemizedlist>
130 * </important>
132 void
133 cpml_curve_pair_at(const CpmlPrimitive *curve, CpmlPair *pair, double pos)
138 * cpml_curve_vector_at_time:
139 * @curve: the #CpmlPrimitive curve data
140 * @vector: the destination vector
141 * @t: the "time" value
143 * Given the @curve Bézier cubic, finds the slope at time @t
144 * (where 0 is the start and 1 is the end) and stores the result
145 * in @vector. Keep in mind @t is not homogeneous, so 0.5
146 * does not necessarily means the mid point.
148 * @t must be inside the range 0 .. 1, as interpolating is not
149 * allowed.
151 void
152 cpml_curve_vector_at_time(const CpmlPrimitive *curve,
153 CpmlVector *vector, double t)
155 cairo_path_data_t *p1, *p2, *p3, *p4;
156 CpmlPair p21, p32, p43;
157 double t1, t1_2, t_2;
159 p1 = cpml_primitive_get_point(curve, 0);
160 p2 = cpml_primitive_get_point(curve, 1);
161 p3 = cpml_primitive_get_point(curve, 2);
162 p4 = cpml_primitive_get_point(curve, 3);
164 p21.x = p2->point.x - p1->point.x;
165 p21.y = p2->point.y - p1->point.y;
166 p32.x = p3->point.x - p2->point.x;
167 p32.y = p3->point.y - p2->point.y;
168 p43.x = p4->point.x - p3->point.x;
169 p43.y = p4->point.y - p3->point.y;
171 t1 = 1 - t;
172 t1_2 = t1 * t1;
173 t_2 = t * t;
175 vector->x = 3 * t1_2 * p21.x + 6 * t1 * t * p32.x + 3 * t_2 * p43.x;
176 vector->y = 3 * t1_2 * p21.y + 6 * t1 * t * p32.y + 3 * t_2 * p43.y;
180 * cpml_curve_vector_at:
181 * @curve: the #CpmlPrimitive curve data
182 * @vector: the destination vector
183 * @pos: the position value
185 * Given the @curve Bézier cubic, finds the slope at position @pos
186 * (where 0 is the start and 1 is the end) and stores the result
187 * in @vector. It is similar to cpml_curve_vector_at_time() but the
188 * @pos value is evenly distribuited, that is 0.5 is exactly the
189 * mid point. If you do not need this feature, use
190 * cpml_curve_vector_at_time() as it is considerable faster.
192 * @pos must be inside the range 0 .. 1, as interpolating is not
193 * allowed.
195 * <important>
196 * <title>TODO</title>
197 * <itemizedlist>
198 * <listitem>To be implemented...</listitem>
199 * </itemizedlist>
200 * </important>
202 void
203 cpml_curve_vector_at(const CpmlPrimitive *curve,
204 CpmlVector *vector, double pos)
209 * cpml_curve_near_pos:
210 * @curve: the #CpmlPrimitive curve data
211 * @pair: the coordinates of the subject point
213 * Returns the pos value of the point on @curve nearest to @pair.
214 * The returned value is always between 0 and 1.
216 * <important>
217 * <title>TODO</title>
218 * <itemizedlist>
219 * <listitem>To be implemented...</listitem>
220 * </itemizedlist>
221 * </important>
223 * Return value: the pos value, always between 0 and 1
225 double
226 cpml_curve_near_pos(const CpmlPrimitive *curve, const CpmlPair *pair)
228 /* TODO */
230 return 0;
234 * cpml_curve_intersection:
235 * @curve: the first curve
236 * @curve2: the second curve
237 * @dest: a vector of #CpmlPair
238 * @max: maximum number of intersections to return
239 * (that is, the size of @dest)
241 * Given two Bézier cubic curves (@curve and @curve2), gets their
242 * intersection points and store the result in @dest. Because two
243 * curves can have 4 intersections, @dest MUST be at least an array
244 * of 4 #CpmlPair.
246 * If @max is 0, the function returns 0 immediately without any
247 * further processing. If @curve and @curve2 are cohincident,
248 * their intersections are not considered.
250 * <important>
251 * <title>TODO</title>
252 * <itemizedlist>
253 * <listitem>To be implemented...</listitem>
254 * </itemizedlist>
255 * </important>
257 * Return value: the number of intersections found (max 4)
258 * or 0 if the primitives do not intersect
261 cpml_curve_intersection(const CpmlPrimitive *curve,
262 const CpmlPrimitive *curve2,
263 CpmlPair *dest, int max)
265 return 0;
269 * cpml_curve_intersection_with_arc:
270 * @curve: a curve
271 * @arc: an arc
272 * @dest: a vector of #CpmlPair
273 * @max: maximum number of intersections to return
274 * (that is, the size of @dest)
276 * Given a Bézier cubic @curve and an @arc, gets their intersection
277 * points and store the result in @dest. Because an arc and a cubic
278 * curve can have up to 4 intersections, @dest MUST be at least an
279 * array of 4 #CpmlPair.
281 * If @max is 0, the function returns 0 immediately without any
282 * further processing.
284 * <important>
285 * <title>TODO</title>
286 * <itemizedlist>
287 * <listitem>To be implemented...</listitem>
288 * </itemizedlist>
289 * </important>
291 * Return value: the number of intersections found (max 4)
292 * or 0 if the primitives do not intersect
295 cpml_curve_intersection_with_arc(const CpmlPrimitive *curve,
296 const CpmlPrimitive *arc,
297 CpmlPair *dest, int max)
299 return 0;
303 * cpml_curve_intersection_with_line:
304 * @curve: a curve
305 * @line: a line
306 * @dest: a vector of #CpmlPair
307 * @max: maximum number of intersections to return
308 * (that is, the size of @dest)
310 * Given a Bézier cubic @curve and a @line, gets their intersection
311 * points and store the result in @dest. Because a line and a cubic
312 * curve can have up to 4 intersections, @dest MUST be at least an
313 * array of 4 #CpmlPair.
315 * If @max is 0, the function returns 0 immediately without any
316 * further processing.
318 * <important>
319 * <title>TODO</title>
320 * <itemizedlist>
321 * <listitem>To be implemented...</listitem>
322 * </itemizedlist>
323 * </important>
325 * Return value: the number of intersections found (max 4)
326 * or 0 if the primitives do not intersect
329 cpml_curve_intersection_with_line(const CpmlPrimitive *curve,
330 const CpmlPrimitive *line,
331 CpmlPair *dest, int max)
333 return 0;
337 * cpml_curve_offset:
338 * @curve: the #CpmlPrimitive curve data
339 * @offset: distance for the computed parallel curve
341 * Given a cubic Bézier primitive in @curve, this function finds
342 * the approximated Bézier curve parallel to @curve at distance
343 * @offset (an offset curve). The four points needed to build the
344 * new curve are returned in the @curve struct.
346 * To solve the offset problem, a custom algorithm is used. First, the
347 * resulting curve MUST have the same slope at the start and end point.
348 * These constraints are not sufficient to resolve the system, so I let
349 * the curve pass thought a given point (pm, known and got from the
350 * original curve) at a given time (m, now hardcoded to 0.5).
352 * Firstly, I define some useful variables:
354 * v0 = unitvector(p[1]-p[0]) * offset;
355 * v3 = unitvector(p[3]-p[2]) * offset;
356 * p0 = p[0] + normal v0;
357 * p3 = p[3] + normal v3.
359 * Now I want the curve to have the specified slopes at the start
360 * and end point. Forcing the same slope at the start point means:
362 * p1 = p0 + k0 v0.
364 * where k0 is an arbitrary factor. Decomposing for x and y components:
366 * p1.x = p0.x + k0 v0.x;
367 * p1.y = p0.y + k0 v0.y.
369 * Doing the same for the end point gives:
371 * p2.x = p3.x + k3 v3.x;
372 * p2.y = p3.y + k3 v3.y.
374 * Now I interpolate the curve by forcing it to pass throught pm
375 * when "time" is m, where 0 < m < 1. The cubic Bézier function is:
377 * C(t) = (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3.
379 * and forcing t=m and C(t) = pm:
381 * pm = (1-m)³p0 + 3m(1-m)²p1 + 3m²(1-m)p2 + m³p3.
383 * (1-m) p1 + m p2 = (pm - (1-m)³p0 - m³p3) / (3m (1-m)).
385 * So the final system is:
387 * p1.x = p0.x + k0 v0.x;
388 * p1.y = p0.y + k0 v0.y;
389 * p2.x = p3.x + k3 v3.x;
390 * p2.y = p3.y + k3 v3.y;
391 * (1-m) p1.x + m p2.x = (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m));
392 * (1-m) p1.y + m p2.y = (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)).
394 * Substituting and resolving for k0 and k3:
396 * (1-m) k0 v0.x + m k3 v3.x =
397 * (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m)) - (1-m) p0.x - m p3.x;
398 * (1-m) k0 v0.y + m k3 v3.y =
399 * (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)) - (1-m) p0.y - m p3.y.
401 * (1-m) k0 v0.x + m k3 v3.x =
402 * (pm.x - (1-m)²(1+2m) p0.x - m²(3-2m) p3.x) / (3m (1-m));
403 * (1-m) k0 v0.y + m k3 v3.y =
404 * (pm.y - (1-m)²(1+2m) p0.y - m²(3-2m) p3.y) / (3m (1-m)).
406 * Let:
408 * pk = (pm - (1-m)²(1+2m) p0 - m²(3-2m) p3) / (3m (1-m)).
410 * gives the following system:
412 * (1-m) k0 v0.x + m k3 v3.x = pk.x;
413 * (1-m) k0 v0.y + m k3 v3.y = pk.y.
415 * Now I should avoid division by 0 troubles. If either v0.x and v3.x
416 * are 0, the first equation will be inconsistent. More in general the
417 * v0.x*v3.y = v3.x*v3.y condition should be avoided. This is the first
418 * case to check, in which case an alternative approach is used. In the
419 * other cases the above system can be used.
421 * If v0.x != 0 I can resolve for k0 and then find k3:
423 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
424 * (pk.x - m k3 v3.x) v0.y / v0.x + m k3 v3.y = pk.y.
426 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
427 * k3 m (v3.y - v3.x v0.y / v0.x) = pk.y - pk.x v0.y / v0.x.
429 * k3 = (pk.y - pk.x v0.y / v0.x) / (m (v3.y - v3.x v0.y / v0.x));
430 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x).
432 * If v3.x != 0 I can resolve for k3 and then find k0:
434 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
435 * (1-m) k0 v0.y + (pk.x - (1-m) k0 v0.x) v3.y / v3.x = pk.y.
437 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
438 * k0 (1-m) (v0.y - k0 v0.x v3.y / v3.x) = pk.y - pk.x v3.y / v3.x.
440 * k0 = (pk.y - pk.x v3.y / v3.x) / ((1-m) (v0.y - v0.x v3.y / v3.x));
441 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x).
443 * <important>
444 * <title>TODO</title>
445 * <itemizedlist>
446 * <listitem>By default, interpolation of the new curve is made by offseting
447 * the mid point: use a better candidate.</listitem>
448 * <listitem>When the equations are inconsistent, the alternative approach
449 * performs very bad if <varname>v0</varname> and
450 * <varname>v3</varname> are opposite or staggered.</listitem>
451 * </itemizedlist>
452 * </important>
454 void
455 cpml_curve_offset(CpmlPrimitive *curve, double offset)
457 double m, mm;
458 CpmlVector v0, v3, vm, vtmp;
459 CpmlPair p0, p1, p2, p3, pm;
461 m = 0.5;
462 mm = 1-m;
464 /* Firstly, convert the curve points from cairo format to cpml format
465 * and store them (temporary) in p0..p3 */
466 cpml_pair_from_cairo(&p0, curve->org);
467 cpml_pair_from_cairo(&p1, &curve->data[1]);
468 cpml_pair_from_cairo(&p2, &curve->data[2]);
469 cpml_pair_from_cairo(&p3, &curve->data[3]);
471 /* v0 = p1-p0 */
472 cpml_pair_sub(cpml_pair_copy(&v0, &p1), &p0);
474 /* v3 = p3-p2 */
475 cpml_pair_sub(cpml_pair_copy(&v3, &p3), &p2);
477 /* pm = point in C(m) offseted the requested @offset distance */
478 cpml_curve_vector_at_time(curve, &vm, m);
479 cpml_vector_set_length(&vm, offset);
480 cpml_vector_normal(&vm);
481 cpml_curve_pair_at_time(curve, &pm, m);
482 cpml_pair_add(&pm, &vm);
484 /* p0 = p0 + normal of v0 of @offset magnitude (exact value) */
485 cpml_vector_set_length(cpml_pair_copy(&vtmp, &v0), offset);
486 cpml_vector_normal(&vtmp);
487 cpml_pair_add(&p0, &vtmp);
489 /* p3 = p3 + normal of v3 of @offset magnitude, as done for p0 */
490 cpml_vector_set_length(cpml_pair_copy(&vtmp, &v3), offset);
491 cpml_vector_normal(&vtmp);
492 cpml_pair_add(&p3, &vtmp);
494 if (v0.x*v3.y == v3.x*v0.y) {
495 /* Inconsistent equations: use the alternative approach */
496 p1.x = p0.x + v0.x + vm.x * 4/3;
497 p1.y = p0.y + v0.y + vm.y * 4/3;
498 p2.x = p3.x - v3.x + vm.x * 4/3;
499 p2.y = p3.y - v3.y + vm.y * 4/3;
500 } else {
501 CpmlPair pk;
502 double k0, k3;
504 pk.x = (pm.x - mm*mm*(1+m+m)*p0.x - m*m*(1+mm+mm)*p3.x) / (3*m*(1-m));
505 pk.y = (pm.y - mm*mm*(1+m+m)*p0.y - m*m*(1+mm+mm)*p3.y) / (3*m*(1-m));
507 if (v0.x != 0) {
508 k3 = (pk.y - pk.x*v0.y / v0.x) / (m*(v3.y - v3.x*v0.y / v0.x));
509 k0 = (pk.x - m*k3*v3.x) / (mm*v0.x);
510 } else {
511 k0 = (pk.y - pk.x*v3.y / v3.x) / (mm*(v0.y - v0.x*v3.y / v3.x));
512 k3 = (pk.x - mm*k0*v0.x) / (m*v3.x);
515 p1.x = p0.x + k0*v0.x;
516 p1.y = p0.y + k0*v0.y;
517 p2.x = p3.x + k3*v3.x;
518 p2.y = p3.y + k3*v3.y;
521 /* Return the new curve in the original array */
522 cpml_pair_to_cairo(&p0, curve->org);
523 cpml_pair_to_cairo(&p1, &curve->data[1]);
524 cpml_pair_to_cairo(&p2, &curve->data[2]);
525 cpml_pair_to_cairo(&p3, &curve->data[3]);