libreplace: Add support for pthread_mutex_consistent
[Samba.git] / lib / talloc / talloc.h
blob5ece54ddaa426f0ff54cff57bda9a12540f86fa8
1 #ifndef _TALLOC_H_
2 #define _TALLOC_H_
3 /*
4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
12 ** under the LGPL
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
36 /**
37 * @defgroup talloc The talloc API
39 * talloc is a hierarchical, reference counted memory pool system with
40 * destructors. It is the core memory allocator used in Samba.
42 * @{
45 #define TALLOC_VERSION_MAJOR 2
46 #define TALLOC_VERSION_MINOR 0
48 int talloc_version_major(void);
49 int talloc_version_minor(void);
51 /**
52 * @brief Define a talloc parent type
54 * As talloc is a hierarchial memory allocator, every talloc chunk is a
55 * potential parent to other talloc chunks. So defining a separate type for a
56 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
57 * as it provides an indicator for function arguments. You will frequently
58 * write code like
60 * @code
61 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
62 * {
63 * struct foo *result;
64 * result = talloc(mem_ctx, struct foo);
65 * if (result == NULL) return NULL;
66 * ... initialize foo ...
67 * return result;
68 * }
69 * @endcode
71 * In this type of allocating functions it is handy to have a general
72 * TALLOC_CTX type to indicate which parent to put allocated structures on.
74 typedef void TALLOC_CTX;
77 this uses a little trick to allow __LINE__ to be stringified
79 #ifndef __location__
80 #define __TALLOC_STRING_LINE1__(s) #s
81 #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
82 #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
83 #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
84 #endif
86 #ifndef TALLOC_DEPRECATED
87 #define TALLOC_DEPRECATED 0
88 #endif
90 #ifndef PRINTF_ATTRIBUTE
91 #if (__GNUC__ >= 3)
92 /** Use gcc attribute to check printf fns. a1 is the 1-based index of
93 * the parameter containing the format, and a2 the index of the first
94 * argument. Note that some gcc 2.x versions don't handle this
95 * properly **/
96 #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
97 #else
98 #define PRINTF_ATTRIBUTE(a1, a2)
99 #endif
100 #endif
102 #ifdef DOXYGEN
104 * @brief Create a new talloc context.
106 * The talloc() macro is the core of the talloc library. It takes a memory
107 * context and a type, and returns a pointer to a new area of memory of the
108 * given type.
110 * The returned pointer is itself a talloc context, so you can use it as the
111 * context argument to more calls to talloc if you wish.
113 * The returned pointer is a "child" of the supplied context. This means that if
114 * you talloc_free() the context then the new child disappears as well.
115 * Alternatively you can free just the child.
117 * @param[in] ctx A talloc context to create a new reference on or NULL to
118 * create a new top level context.
120 * @param[in] type The type of memory to allocate.
122 * @return A type casted talloc context or NULL on error.
124 * @code
125 * unsigned int *a, *b;
127 * a = talloc(NULL, unsigned int);
128 * b = talloc(a, unsigned int);
129 * @endcode
131 * @see talloc_zero
132 * @see talloc_array
133 * @see talloc_steal
134 * @see talloc_free
136 void *talloc(const void *ctx, #type);
137 #else
138 #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
139 void *_talloc(const void *context, size_t size);
140 #endif
143 * @brief Create a new top level talloc context.
145 * This function creates a zero length named talloc context as a top level
146 * context. It is equivalent to:
148 * @code
149 * talloc_named(NULL, 0, fmt, ...);
150 * @endcode
151 * @param[in] fmt Format string for the name.
153 * @param[in] ... Additional printf-style arguments.
155 * @return The allocated memory chunk, NULL on error.
157 * @see talloc_named()
159 void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
161 #ifdef DOXYGEN
163 * @brief Free a chunk of talloc memory.
165 * The talloc_free() function frees a piece of talloc memory, and all its
166 * children. You can call talloc_free() on any pointer returned by
167 * talloc().
169 * The return value of talloc_free() indicates success or failure, with 0
170 * returned for success and -1 for failure. A possible failure condition
171 * is if the pointer had a destructor attached to it and the destructor
172 * returned -1. See talloc_set_destructor() for details on
173 * destructors. Likewise, if "ptr" is NULL, then the function will make
174 * no modifications and return -1.
176 * From version 2.0 and onwards, as a special case, talloc_free() is
177 * refused on pointers that have more than one parent associated, as talloc
178 * would have no way of knowing which parent should be removed. This is
179 * different from older versions in the sense that always the reference to
180 * the most recently established parent has been destroyed. Hence to free a
181 * pointer that has more than one parent please use talloc_unlink().
183 * To help you find problems in your code caused by this behaviour, if
184 * you do try and free a pointer with more than one parent then the
185 * talloc logging function will be called to give output like this:
187 * @code
188 * ERROR: talloc_free with references at some_dir/source/foo.c:123
189 * reference at some_dir/source/other.c:325
190 * reference at some_dir/source/third.c:121
191 * @endcode
193 * Please see the documentation for talloc_set_log_fn() and
194 * talloc_set_log_stderr() for more information on talloc logging
195 * functions.
197 * If <code>TALLOC_FREE_FILL</code> environment variable is set,
198 * the memory occupied by the context is filled with the value of this variable.
199 * The value should be a numeric representation of the character you want to
200 * use.
202 * talloc_free() operates recursively on its children.
204 * @param[in] ptr The chunk to be freed.
206 * @return Returns 0 on success and -1 on error. A possible
207 * failure condition is if the pointer had a destructor
208 * attached to it and the destructor returned -1. Likewise,
209 * if "ptr" is NULL, then the function will make no
210 * modifications and returns -1.
212 * Example:
213 * @code
214 * unsigned int *a, *b;
215 * a = talloc(NULL, unsigned int);
216 * b = talloc(a, unsigned int);
218 * talloc_free(a); // Frees a and b
219 * @endcode
221 * @see talloc_set_destructor()
222 * @see talloc_unlink()
224 int talloc_free(void *ptr);
225 #else
226 #define talloc_free(ctx) _talloc_free(ctx, __location__)
227 int _talloc_free(void *ptr, const char *location);
228 #endif
231 * @brief Free a talloc chunk's children.
233 * The function walks along the list of all children of a talloc context and
234 * talloc_free()s only the children, not the context itself.
236 * A NULL argument is handled as no-op.
238 * @param[in] ptr The chunk that you want to free the children of
239 * (NULL is allowed too)
241 void talloc_free_children(void *ptr);
243 #ifdef DOXYGEN
245 * @brief Assign a destructor function to be called when a chunk is freed.
247 * The function talloc_set_destructor() sets the "destructor" for the pointer
248 * "ptr". A destructor is a function that is called when the memory used by a
249 * pointer is about to be released. The destructor receives the pointer as an
250 * argument, and should return 0 for success and -1 for failure.
252 * The destructor can do anything it wants to, including freeing other pieces
253 * of memory. A common use for destructors is to clean up operating system
254 * resources (such as open file descriptors) contained in the structure the
255 * destructor is placed on.
257 * You can only place one destructor on a pointer. If you need more than one
258 * destructor then you can create a zero-length child of the pointer and place
259 * an additional destructor on that.
261 * To remove a destructor call talloc_set_destructor() with NULL for the
262 * destructor.
264 * If your destructor attempts to talloc_free() the pointer that it is the
265 * destructor for then talloc_free() will return -1 and the free will be
266 * ignored. This would be a pointless operation anyway, as the destructor is
267 * only called when the memory is just about to go away.
269 * @param[in] ptr The talloc chunk to add a destructor to.
271 * @param[in] destructor The destructor function to be called. NULL to remove
272 * it.
274 * Example:
275 * @code
276 * static int destroy_fd(int *fd) {
277 * close(*fd);
278 * return 0;
281 * int *open_file(const char *filename) {
282 * int *fd = talloc(NULL, int);
283 * *fd = open(filename, O_RDONLY);
284 * if (*fd < 0) {
285 * talloc_free(fd);
286 * return NULL;
288 * // Whenever they free this, we close the file.
289 * talloc_set_destructor(fd, destroy_fd);
290 * return fd;
292 * @endcode
294 * @see talloc()
295 * @see talloc_free()
297 void talloc_set_destructor(const void *ptr, int (*destructor)(void *));
300 * @brief Change a talloc chunk's parent.
302 * The talloc_steal() function changes the parent context of a talloc
303 * pointer. It is typically used when the context that the pointer is
304 * currently a child of is going to be freed and you wish to keep the
305 * memory for a longer time.
307 * To make the changed hierarchy less error-prone, you might consider to use
308 * talloc_move().
310 * If you try and call talloc_steal() on a pointer that has more than one
311 * parent then the result is ambiguous. Talloc will choose to remove the
312 * parent that is currently indicated by talloc_parent() and replace it with
313 * the chosen parent. You will also get a message like this via the talloc
314 * logging functions:
316 * @code
317 * WARNING: talloc_steal with references at some_dir/source/foo.c:123
318 * reference at some_dir/source/other.c:325
319 * reference at some_dir/source/third.c:121
320 * @endcode
322 * To unambiguously change the parent of a pointer please see the function
323 * talloc_reparent(). See the talloc_set_log_fn() documentation for more
324 * information on talloc logging.
326 * @param[in] new_ctx The new parent context.
328 * @param[in] ptr The talloc chunk to move.
330 * @return Returns the pointer that you pass it. It does not have
331 * any failure modes.
333 * @note It is possible to produce loops in the parent/child relationship
334 * if you are not careful with talloc_steal(). No guarantees are provided
335 * as to your sanity or the safety of your data if you do this.
337 void *talloc_steal(const void *new_ctx, const void *ptr);
338 #else /* DOXYGEN */
339 /* try to make talloc_set_destructor() and talloc_steal() type safe,
340 if we have a recent gcc */
341 #if (__GNUC__ >= 3)
342 #define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
343 #define talloc_set_destructor(ptr, function) \
344 do { \
345 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
346 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
347 } while(0)
348 /* this extremely strange macro is to avoid some braindamaged warning
349 stupidity in gcc 4.1.x */
350 #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__); __talloc_steal_ret; })
351 #else /* __GNUC__ >= 3 */
352 #define talloc_set_destructor(ptr, function) \
353 _talloc_set_destructor((ptr), (int (*)(void *))(function))
354 #define _TALLOC_TYPEOF(ptr) void *
355 #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__)
356 #endif /* __GNUC__ >= 3 */
357 void _talloc_set_destructor(const void *ptr, int (*_destructor)(void *));
358 void *_talloc_steal_loc(const void *new_ctx, const void *ptr, const char *location);
359 #endif /* DOXYGEN */
362 * @brief Assign a name to a talloc chunk.
364 * Each talloc pointer has a "name". The name is used principally for
365 * debugging purposes, although it is also possible to set and get the name on
366 * a pointer in as a way of "marking" pointers in your code.
368 * The main use for names on pointer is for "talloc reports". See
369 * talloc_report() and talloc_report_full() for details. Also see
370 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
372 * The talloc_set_name() function allocates memory as a child of the
373 * pointer. It is logically equivalent to:
375 * @code
376 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
377 * @endcode
379 * @param[in] ptr The talloc chunk to assign a name to.
381 * @param[in] fmt Format string for the name.
383 * @param[in] ... Add printf-style additional arguments.
385 * @return The assigned name, NULL on error.
387 * @note Multiple calls to talloc_set_name() will allocate more memory without
388 * releasing the name. All of the memory is released when the ptr is freed
389 * using talloc_free().
391 const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
393 #ifdef DOXYGEN
395 * @brief Change a talloc chunk's parent.
397 * This function has the same effect as talloc_steal(), and additionally sets
398 * the source pointer to NULL. You would use it like this:
400 * @code
401 * struct foo *X = talloc(tmp_ctx, struct foo);
402 * struct foo *Y;
403 * Y = talloc_move(new_ctx, &X);
404 * @endcode
406 * @param[in] new_ctx The new parent context.
408 * @param[in] pptr Pointer to the talloc chunk to move.
410 * @return The pointer of the talloc chunk it has been moved to,
411 * NULL on error.
413 void *talloc_move(const void *new_ctx, void **pptr);
414 #else
415 #define talloc_move(ctx, pptr) (_TALLOC_TYPEOF(*(pptr)))_talloc_move((ctx),(void *)(pptr))
416 void *_talloc_move(const void *new_ctx, const void *pptr);
417 #endif
420 * @brief Assign a name to a talloc chunk.
422 * The function is just like talloc_set_name(), but it takes a string constant,
423 * and is much faster. It is extensively used by the "auto naming" macros, such
424 * as talloc_p().
426 * This function does not allocate any memory. It just copies the supplied
427 * pointer into the internal representation of the talloc ptr. This means you
428 * must not pass a name pointer to memory that will disappear before the ptr
429 * is freed with talloc_free().
431 * @param[in] ptr The talloc chunk to assign a name to.
433 * @param[in] name Format string for the name.
435 void talloc_set_name_const(const void *ptr, const char *name);
438 * @brief Create a named talloc chunk.
440 * The talloc_named() function creates a named talloc pointer. It is
441 * equivalent to:
443 * @code
444 * ptr = talloc_size(context, size);
445 * talloc_set_name(ptr, fmt, ....);
446 * @endcode
448 * @param[in] context The talloc context to hang the result off.
450 * @param[in] size Number of char's that you want to allocate.
452 * @param[in] fmt Format string for the name.
454 * @param[in] ... Additional printf-style arguments.
456 * @return The allocated memory chunk, NULL on error.
458 * @see talloc_set_name()
460 void *talloc_named(const void *context, size_t size,
461 const char *fmt, ...) PRINTF_ATTRIBUTE(3,4);
464 * @brief Basic routine to allocate a chunk of memory.
466 * This is equivalent to:
468 * @code
469 * ptr = talloc_size(context, size);
470 * talloc_set_name_const(ptr, name);
471 * @endcode
473 * @param[in] context The parent context.
475 * @param[in] size The number of char's that we want to allocate.
477 * @param[in] name The name the talloc block has.
479 * @return The allocated memory chunk, NULL on error.
481 void *talloc_named_const(const void *context, size_t size, const char *name);
483 #ifdef DOXYGEN
485 * @brief Untyped allocation.
487 * The function should be used when you don't have a convenient type to pass to
488 * talloc(). Unlike talloc(), it is not type safe (as it returns a void *), so
489 * you are on your own for type checking.
491 * Best to use talloc() or talloc_array() instead.
493 * @param[in] ctx The talloc context to hang the result off.
495 * @param[in] size Number of char's that you want to allocate.
497 * @return The allocated memory chunk, NULL on error.
499 * Example:
500 * @code
501 * void *mem = talloc_size(NULL, 100);
502 * @endcode
504 void *talloc_size(const void *ctx, size_t size);
505 #else
506 #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
507 #endif
509 #ifdef DOXYGEN
511 * @brief Allocate into a typed pointer.
513 * The talloc_ptrtype() macro should be used when you have a pointer and want
514 * to allocate memory to point at with this pointer. When compiling with
515 * gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size() and
516 * talloc_get_name() will return the current location in the source file and
517 * not the type.
519 * @param[in] ctx The talloc context to hang the result off.
521 * @param[in] type The pointer you want to assign the result to.
523 * @return The properly casted allocated memory chunk, NULL on
524 * error.
526 * Example:
527 * @code
528 * unsigned int *a = talloc_ptrtype(NULL, a);
529 * @endcode
531 void *talloc_ptrtype(const void *ctx, #type);
532 #else
533 #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
534 #endif
536 #ifdef DOXYGEN
538 * @brief Allocate a new 0-sized talloc chunk.
540 * This is a utility macro that creates a new memory context hanging off an
541 * existing context, automatically naming it "talloc_new: __location__" where
542 * __location__ is the source line it is called from. It is particularly
543 * useful for creating a new temporary working context.
545 * @param[in] ctx The talloc parent context.
547 * @return A new talloc chunk, NULL on error.
549 void *talloc_new(const void *ctx);
550 #else
551 #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
552 #endif
554 #ifdef DOXYGEN
556 * @brief Allocate a 0-initizialized structure.
558 * The macro is equivalent to:
560 * @code
561 * ptr = talloc(ctx, type);
562 * if (ptr) memset(ptr, 0, sizeof(type));
563 * @endcode
565 * @param[in] ctx The talloc context to hang the result off.
567 * @param[in] type The type that we want to allocate.
569 * @return Pointer to a piece of memory, properly cast to 'type *',
570 * NULL on error.
572 * Example:
573 * @code
574 * unsigned int *a, *b;
575 * a = talloc_zero(NULL, unsigned int);
576 * b = talloc_zero(a, unsigned int);
577 * @endcode
579 * @see talloc()
580 * @see talloc_zero_size()
581 * @see talloc_zero_array()
583 void *talloc_zero(const void *ctx, #type);
586 * @brief Allocate untyped, 0-initialized memory.
588 * @param[in] ctx The talloc context to hang the result off.
590 * @param[in] size Number of char's that you want to allocate.
592 * @return The allocated memory chunk.
594 void *talloc_zero_size(const void *ctx, size_t size);
595 #else
596 #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
597 #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
598 void *_talloc_zero(const void *ctx, size_t size, const char *name);
599 #endif
602 * @brief Return the name of a talloc chunk.
604 * @param[in] ptr The talloc chunk.
606 * @return The current name for the given talloc pointer.
608 * @see talloc_set_name()
610 const char *talloc_get_name(const void *ptr);
613 * @brief Verify that a talloc chunk carries a specified name.
615 * This function checks if a pointer has the specified name. If it does
616 * then the pointer is returned.
618 * @param[in] ptr The talloc chunk to check.
620 * @param[in] name The name to check against.
622 * @return The pointer if the name matches, NULL if it doesn't.
624 void *talloc_check_name(const void *ptr, const char *name);
627 * @brief Get the parent chunk of a pointer.
629 * @param[in] ptr The talloc pointer to inspect.
631 * @return The talloc parent of ptr, NULL on error.
633 void *talloc_parent(const void *ptr);
636 * @brief Get a talloc chunk's parent name.
638 * @param[in] ptr The talloc pointer to inspect.
640 * @return The name of ptr's parent chunk.
642 const char *talloc_parent_name(const void *ptr);
645 * @brief Get the total size of a talloc chunk including its children.
647 * The function returns the total size in bytes used by this pointer and all
648 * child pointers. Mostly useful for debugging.
650 * Passing NULL is allowed, but it will only give a meaningful result if
651 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
652 * been called.
654 * @param[in] ptr The talloc chunk.
656 * @return The total size.
658 size_t talloc_total_size(const void *ptr);
661 * @brief Get the number of talloc chunks hanging off a chunk.
663 * The talloc_total_blocks() function returns the total memory block
664 * count used by this pointer and all child pointers. Mostly useful for
665 * debugging.
667 * Passing NULL is allowed, but it will only give a meaningful result if
668 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
669 * been called.
671 * @param[in] ptr The talloc chunk.
673 * @return The total size.
675 size_t talloc_total_blocks(const void *ptr);
677 #ifdef DOXYGEN
679 * @brief Duplicate a memory area into a talloc chunk.
681 * The function is equivalent to:
683 * @code
684 * ptr = talloc_size(ctx, size);
685 * if (ptr) memcpy(ptr, p, size);
686 * @endcode
688 * @param[in] t The talloc context to hang the result off.
690 * @param[in] p The memory chunk you want to duplicate.
692 * @param[in] size Number of char's that you want copy.
694 * @return The allocated memory chunk.
696 * @see talloc_size()
698 void *talloc_memdup(const void *t, const void *p, size_t size);
699 #else
700 #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
701 void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name);
702 #endif
704 #ifdef DOXYGEN
706 * @brief Assign a type to a talloc chunk.
708 * This macro allows you to force the name of a pointer to be of a particular
709 * type. This can be used in conjunction with talloc_get_type() to do type
710 * checking on void* pointers.
712 * It is equivalent to this:
714 * @code
715 * talloc_set_name_const(ptr, #type)
716 * @endcode
718 * @param[in] ptr The talloc chunk to assign the type to.
720 * @param[in] type The type to assign.
722 void talloc_set_type(const char *ptr, #type);
725 * @brief Get a typed pointer out of a talloc pointer.
727 * This macro allows you to do type checking on talloc pointers. It is
728 * particularly useful for void* private pointers. It is equivalent to
729 * this:
731 * @code
732 * (type *)talloc_check_name(ptr, #type)
733 * @endcode
735 * @param[in] ptr The talloc pointer to check.
737 * @param[in] type The type to check against.
739 * @return The properly casted pointer given by ptr, NULL on error.
741 type *talloc_get_type(const void *ptr, #type);
742 #else
743 #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
744 #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
745 #endif
747 #ifdef DOXYGEN
749 * @brief Safely turn a void pointer into a typed pointer.
751 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
752 * assing the talloc chunk pointer to some void pointer variable,
753 * talloc_get_type_abort() is the recommended way to get the convert the void
754 * pointer back to a typed pointer.
756 * @param[in] ptr The void pointer to convert.
758 * @param[in] type The type that this chunk contains
760 * @return The same value as ptr, type-checked and properly cast.
762 void *talloc_get_type_abort(const void *ptr, #type);
763 #else
764 #ifdef TALLOC_GET_TYPE_ABORT_NOOP
765 #define talloc_get_type_abort(ptr, type) (type *)(ptr)
766 #else
767 #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
768 #endif
769 void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location);
770 #endif
773 * @brief Find a parent context by name.
775 * Find a parent memory context of the current context that has the given
776 * name. This can be very useful in complex programs where it may be
777 * difficult to pass all information down to the level you need, but you
778 * know the structure you want is a parent of another context.
780 * @param[in] ctx The talloc chunk to start from.
782 * @param[in] name The name of the parent we look for.
784 * @return The memory context we are looking for, NULL if not
785 * found.
787 void *talloc_find_parent_byname(const void *ctx, const char *name);
789 #ifdef DOXYGEN
791 * @brief Find a parent context by type.
793 * Find a parent memory context of the current context that has the given
794 * name. This can be very useful in complex programs where it may be
795 * difficult to pass all information down to the level you need, but you
796 * know the structure you want is a parent of another context.
798 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
800 * @param[in] ptr The talloc chunk to start from.
802 * @param[in] type The type of the parent to look for.
804 * @return The memory context we are looking for, NULL if not
805 * found.
807 void *talloc_find_parent_bytype(const void *ptr, #type);
808 #else
809 #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
810 #endif
813 * @brief Allocate a talloc pool.
815 * A talloc pool is a pure optimization for specific situations. In the
816 * release process for Samba 3.2 we found out that we had become considerably
817 * slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
818 * consumer in benchmarks. For Samba 3.2 we have internally converted many
819 * static buffers to dynamically allocated ones, so malloc(3) being beaten
820 * more was no surprise. But it made us slower.
822 * talloc_pool() is an optimization to call malloc(3) a lot less for the use
823 * pattern Samba has: The SMB protocol is mainly a request/response protocol
824 * where we have to allocate a certain amount of memory per request and free
825 * that after the SMB reply is sent to the client.
827 * talloc_pool() creates a talloc chunk that you can use as a talloc parent
828 * exactly as you would use any other ::TALLOC_CTX. The difference is that
829 * when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
830 * just increments a pointer inside the talloc_pool. This also works
831 * recursively. If you use the child of the talloc pool as a parent for
832 * grand-children, their memory is also taken from the talloc pool.
834 * If there is not enough memory in the pool to allocate the new child,
835 * it will create a new talloc chunk as if the parent was a normal talloc
836 * context.
838 * If you talloc_free() children of a talloc pool, the memory is not given
839 * back to the system. Instead, free(3) is only called if the talloc_pool()
840 * itself is released with talloc_free().
842 * The downside of a talloc pool is that if you talloc_move() a child of a
843 * talloc pool to a talloc parent outside the pool, the whole pool memory is
844 * not free(3)'ed until that moved chunk is also talloc_free()ed.
846 * @param[in] context The talloc context to hang the result off.
848 * @param[in] size Size of the talloc pool.
850 * @return The allocated talloc pool, NULL on error.
852 void *talloc_pool(const void *context, size_t size);
854 #ifdef DOXYGEN
856 * @brief Allocate a talloc object as/with an additional pool.
858 * This is like talloc_pool(), but's it's more flexible
859 * and allows an object to be a pool for its children.
861 * @param[in] ctx The talloc context to hang the result off.
863 * @param[in] type The type that we want to allocate.
865 * @param[in] num_subobjects The expected number of subobjects, which will
866 * be allocated within the pool. This allocates
867 * space for talloc_chunk headers.
869 * @param[in] total_subobjects_size The size that all subobjects can use in total.
872 * @return The allocated talloc object, NULL on error.
874 void *talloc_pooled_object(const void *ctx, #type,
875 unsigned num_subobjects,
876 size_t total_subobjects_size);
877 #else
878 #define talloc_pooled_object(_ctx, _type, \
879 _num_subobjects, \
880 _total_subobjects_size) \
881 (_type *)_talloc_pooled_object((_ctx), sizeof(_type), #_type, \
882 (_num_subobjects), \
883 (_total_subobjects_size))
884 void *_talloc_pooled_object(const void *ctx,
885 size_t type_size,
886 const char *type_name,
887 unsigned num_subobjects,
888 size_t total_subobjects_size);
889 #endif
892 * @brief Free a talloc chunk and NULL out the pointer.
894 * TALLOC_FREE() frees a pointer and sets it to NULL. Use this if you want
895 * immediate feedback (i.e. crash) if you use a pointer after having free'ed
896 * it.
898 * @param[in] ctx The chunk to be freed.
900 #define TALLOC_FREE(ctx) do { if (ctx != NULL) { talloc_free(ctx); ctx=NULL; } } while(0)
902 /* @} ******************************************************************/
905 * \defgroup talloc_ref The talloc reference function.
906 * @ingroup talloc
908 * This module contains the definitions around talloc references
910 * @{
914 * @brief Increase the reference count of a talloc chunk.
916 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
918 * @code
919 * talloc_reference(NULL, ptr);
920 * @endcode
922 * You can use either syntax, depending on which you think is clearer in
923 * your code.
925 * @param[in] ptr The pointer to increase the reference count.
927 * @return 0 on success, -1 on error.
929 int talloc_increase_ref_count(const void *ptr);
932 * @brief Get the number of references to a talloc chunk.
934 * @param[in] ptr The pointer to retrieve the reference count from.
936 * @return The number of references.
938 size_t talloc_reference_count(const void *ptr);
940 #ifdef DOXYGEN
942 * @brief Create an additional talloc parent to a pointer.
944 * The talloc_reference() function makes "context" an additional parent of
945 * ptr. Each additional reference consumes around 48 bytes of memory on intel
946 * x86 platforms.
948 * If ptr is NULL, then the function is a no-op, and simply returns NULL.
950 * After creating a reference you can free it in one of the following ways:
952 * - you can talloc_free() any parent of the original pointer. That
953 * will reduce the number of parents of this pointer by 1, and will
954 * cause this pointer to be freed if it runs out of parents.
956 * - you can talloc_free() the pointer itself if it has at maximum one
957 * parent. This behaviour has been changed since the release of version
958 * 2.0. Further informations in the description of "talloc_free".
960 * For more control on which parent to remove, see talloc_unlink()
961 * @param[in] ctx The additional parent.
963 * @param[in] ptr The pointer you want to create an additional parent for.
965 * @return The original pointer 'ptr', NULL if talloc ran out of
966 * memory in creating the reference.
968 * @warning You should try to avoid using this interface. It turns a beautiful
969 * talloc-tree into a graph. It is often really hard to debug if you
970 * screw something up by accident.
972 * Example:
973 * @code
974 * unsigned int *a, *b, *c;
975 * a = talloc(NULL, unsigned int);
976 * b = talloc(NULL, unsigned int);
977 * c = talloc(a, unsigned int);
978 * // b also serves as a parent of c.
979 * talloc_reference(b, c);
980 * @endcode
982 * @see talloc_unlink()
984 void *talloc_reference(const void *ctx, const void *ptr);
985 #else
986 #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference_loc((ctx),(ptr), __location__)
987 void *_talloc_reference_loc(const void *context, const void *ptr, const char *location);
988 #endif
991 * @brief Remove a specific parent from a talloc chunk.
993 * The function removes a specific parent from ptr. The context passed must
994 * either be a context used in talloc_reference() with this pointer, or must be
995 * a direct parent of ptr.
997 * You can just use talloc_free() instead of talloc_unlink() if there
998 * is at maximum one parent. This behaviour has been changed since the
999 * release of version 2.0. Further informations in the description of
1000 * "talloc_free".
1002 * @param[in] context The talloc parent to remove.
1004 * @param[in] ptr The talloc ptr you want to remove the parent from.
1006 * @return 0 on success, -1 on error.
1008 * @note If the parent has already been removed using talloc_free() then
1009 * this function will fail and will return -1. Likewise, if ptr is NULL,
1010 * then the function will make no modifications and return -1.
1012 * @warning You should try to avoid using this interface. It turns a beautiful
1013 * talloc-tree into a graph. It is often really hard to debug if you
1014 * screw something up by accident.
1016 * Example:
1017 * @code
1018 * unsigned int *a, *b, *c;
1019 * a = talloc(NULL, unsigned int);
1020 * b = talloc(NULL, unsigned int);
1021 * c = talloc(a, unsigned int);
1022 * // b also serves as a parent of c.
1023 * talloc_reference(b, c);
1024 * talloc_unlink(b, c);
1025 * @endcode
1027 int talloc_unlink(const void *context, void *ptr);
1030 * @brief Provide a talloc context that is freed at program exit.
1032 * This is a handy utility function that returns a talloc context
1033 * which will be automatically freed on program exit. This can be used
1034 * to reduce the noise in memory leak reports.
1036 * Never use this in code that might be used in objects loaded with
1037 * dlopen and unloaded with dlclose. talloc_autofree_context()
1038 * internally uses atexit(3). Some platforms like modern Linux handles
1039 * this fine, but for example FreeBSD does not deal well with dlopen()
1040 * and atexit() used simultaneously: dlclose() does not clean up the
1041 * list of atexit-handlers, so when the program exits the code that
1042 * was registered from within talloc_autofree_context() is gone, the
1043 * program crashes at exit.
1045 * @return A talloc context, NULL on error.
1047 void *talloc_autofree_context(void);
1050 * @brief Get the size of a talloc chunk.
1052 * This function lets you know the amount of memory allocated so far by
1053 * this context. It does NOT account for subcontext memory.
1054 * This can be used to calculate the size of an array.
1056 * @param[in] ctx The talloc chunk.
1058 * @return The size of the talloc chunk.
1060 size_t talloc_get_size(const void *ctx);
1063 * @brief Show the parentage of a context.
1065 * @param[in] context The talloc context to look at.
1067 * @param[in] file The output to use, a file, stdout or stderr.
1069 void talloc_show_parents(const void *context, FILE *file);
1072 * @brief Check if a context is parent of a talloc chunk.
1074 * This checks if context is referenced in the talloc hierarchy above ptr.
1076 * @param[in] context The assumed talloc context.
1078 * @param[in] ptr The talloc chunk to check.
1080 * @return Return 1 if this is the case, 0 if not.
1082 int talloc_is_parent(const void *context, const void *ptr);
1085 * @brief Change the parent context of a talloc pointer.
1087 * The function changes the parent context of a talloc pointer. It is typically
1088 * used when the context that the pointer is currently a child of is going to be
1089 * freed and you wish to keep the memory for a longer time.
1091 * The difference between talloc_reparent() and talloc_steal() is that
1092 * talloc_reparent() can specify which parent you wish to change. This is
1093 * useful when a pointer has multiple parents via references.
1095 * @param[in] old_parent
1096 * @param[in] new_parent
1097 * @param[in] ptr
1099 * @return Return the pointer you passed. It does not have any
1100 * failure modes.
1102 void *talloc_reparent(const void *old_parent, const void *new_parent, const void *ptr);
1104 /* @} ******************************************************************/
1107 * @defgroup talloc_array The talloc array functions
1108 * @ingroup talloc
1110 * Talloc contains some handy helpers for handling Arrays conveniently
1112 * @{
1115 #ifdef DOXYGEN
1117 * @brief Allocate an array.
1119 * The macro is equivalent to:
1121 * @code
1122 * (type *)talloc_size(ctx, sizeof(type) * count);
1123 * @endcode
1125 * except that it provides integer overflow protection for the multiply,
1126 * returning NULL if the multiply overflows.
1128 * @param[in] ctx The talloc context to hang the result off.
1130 * @param[in] type The type that we want to allocate.
1132 * @param[in] count The number of 'type' elements you want to allocate.
1134 * @return The allocated result, properly cast to 'type *', NULL on
1135 * error.
1137 * Example:
1138 * @code
1139 * unsigned int *a, *b;
1140 * a = talloc_zero(NULL, unsigned int);
1141 * b = talloc_array(a, unsigned int, 100);
1142 * @endcode
1144 * @see talloc()
1145 * @see talloc_zero_array()
1147 void *talloc_array(const void *ctx, #type, unsigned count);
1148 #else
1149 #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
1150 void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1151 #endif
1153 #ifdef DOXYGEN
1155 * @brief Allocate an array.
1157 * @param[in] ctx The talloc context to hang the result off.
1159 * @param[in] size The size of an array element.
1161 * @param[in] count The number of elements you want to allocate.
1163 * @return The allocated result, NULL on error.
1165 void *talloc_array_size(const void *ctx, size_t size, unsigned count);
1166 #else
1167 #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
1168 #endif
1170 #ifdef DOXYGEN
1172 * @brief Allocate an array into a typed pointer.
1174 * The macro should be used when you have a pointer to an array and want to
1175 * allocate memory of an array to point at with this pointer. When compiling
1176 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_array_size()
1177 * and talloc_get_name() will return the current location in the source file
1178 * and not the type.
1180 * @param[in] ctx The talloc context to hang the result off.
1182 * @param[in] ptr The pointer you want to assign the result to.
1184 * @param[in] count The number of elements you want to allocate.
1186 * @return The allocated memory chunk, properly casted. NULL on
1187 * error.
1189 void *talloc_array_ptrtype(const void *ctx, const void *ptr, unsigned count);
1190 #else
1191 #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
1192 #endif
1194 #ifdef DOXYGEN
1196 * @brief Get the number of elements in a talloc'ed array.
1198 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
1199 * necessary to store the number of elements explicitly.
1201 * @param[in] ctx The allocated array.
1203 * @return The number of elements in ctx.
1205 size_t talloc_array_length(const void *ctx);
1206 #else
1207 #define talloc_array_length(ctx) (talloc_get_size(ctx)/sizeof(*ctx))
1208 #endif
1210 #ifdef DOXYGEN
1212 * @brief Allocate a zero-initialized array
1214 * @param[in] ctx The talloc context to hang the result off.
1216 * @param[in] type The type that we want to allocate.
1218 * @param[in] count The number of "type" elements you want to allocate.
1220 * @return The allocated result casted to "type *", NULL on error.
1222 * The talloc_zero_array() macro is equivalent to:
1224 * @code
1225 * ptr = talloc_array(ctx, type, count);
1226 * if (ptr) memset(ptr, sizeof(type) * count);
1227 * @endcode
1229 void *talloc_zero_array(const void *ctx, #type, unsigned count);
1230 #else
1231 #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
1232 void *_talloc_zero_array(const void *ctx,
1233 size_t el_size,
1234 unsigned count,
1235 const char *name);
1236 #endif
1238 #ifdef DOXYGEN
1240 * @brief Change the size of a talloc array.
1242 * The macro changes the size of a talloc pointer. The 'count' argument is the
1243 * number of elements of type 'type' that you want the resulting pointer to
1244 * hold.
1246 * talloc_realloc() has the following equivalences:
1248 * @code
1249 * talloc_realloc(ctx, NULL, type, 1) ==> talloc(ctx, type);
1250 * talloc_realloc(ctx, NULL, type, N) ==> talloc_array(ctx, type, N);
1251 * talloc_realloc(ctx, ptr, type, 0) ==> talloc_free(ptr);
1252 * @endcode
1254 * The "context" argument is only used if "ptr" is NULL, otherwise it is
1255 * ignored.
1257 * @param[in] ctx The parent context used if ptr is NULL.
1259 * @param[in] ptr The chunk to be resized.
1261 * @param[in] type The type of the array element inside ptr.
1263 * @param[in] count The intended number of array elements.
1265 * @return The new array, NULL on error. The call will fail either
1266 * due to a lack of memory, or because the pointer has more
1267 * than one parent (see talloc_reference()).
1269 void *talloc_realloc(const void *ctx, void *ptr, #type, size_t count);
1270 #else
1271 #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
1272 void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name);
1273 #endif
1275 #ifdef DOXYGEN
1277 * @brief Untyped realloc to change the size of a talloc array.
1279 * The macro is useful when the type is not known so the typesafe
1280 * talloc_realloc() cannot be used.
1282 * @param[in] ctx The parent context used if 'ptr' is NULL.
1284 * @param[in] ptr The chunk to be resized.
1286 * @param[in] size The new chunk size.
1288 * @return The new array, NULL on error.
1290 void *talloc_realloc_size(const void *ctx, void *ptr, size_t size);
1291 #else
1292 #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
1293 void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name);
1294 #endif
1297 * @brief Provide a function version of talloc_realloc_size.
1299 * This is a non-macro version of talloc_realloc(), which is useful as
1300 * libraries sometimes want a ralloc function pointer. A realloc()
1301 * implementation encapsulates the functionality of malloc(), free() and
1302 * realloc() in one call, which is why it is useful to be able to pass around
1303 * a single function pointer.
1305 * @param[in] context The parent context used if ptr is NULL.
1307 * @param[in] ptr The chunk to be resized.
1309 * @param[in] size The new chunk size.
1311 * @return The new chunk, NULL on error.
1313 void *talloc_realloc_fn(const void *context, void *ptr, size_t size);
1315 /* @} ******************************************************************/
1318 * @defgroup talloc_string The talloc string functions.
1319 * @ingroup talloc
1321 * talloc string allocation and manipulation functions.
1322 * @{
1326 * @brief Duplicate a string into a talloc chunk.
1328 * This function is equivalent to:
1330 * @code
1331 * ptr = talloc_size(ctx, strlen(p)+1);
1332 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1333 * @endcode
1335 * This functions sets the name of the new pointer to the passed
1336 * string. This is equivalent to:
1338 * @code
1339 * talloc_set_name_const(ptr, ptr)
1340 * @endcode
1342 * @param[in] t The talloc context to hang the result off.
1344 * @param[in] p The string you want to duplicate.
1346 * @return The duplicated string, NULL on error.
1348 char *talloc_strdup(const void *t, const char *p);
1351 * @brief Append a string to given string.
1353 * The destination string is reallocated to take
1354 * <code>strlen(s) + strlen(a) + 1</code> characters.
1356 * This functions sets the name of the new pointer to the new
1357 * string. This is equivalent to:
1359 * @code
1360 * talloc_set_name_const(ptr, ptr)
1361 * @endcode
1363 * If <code>s == NULL</code> then new context is created.
1365 * @param[in] s The destination to append to.
1367 * @param[in] a The string you want to append.
1369 * @return The concatenated strings, NULL on error.
1371 * @see talloc_strdup()
1372 * @see talloc_strdup_append_buffer()
1374 char *talloc_strdup_append(char *s, const char *a);
1377 * @brief Append a string to a given buffer.
1379 * This is a more efficient version of talloc_strdup_append(). It determines the
1380 * length of the destination string by the size of the talloc context.
1382 * Use this very carefully as it produces a different result than
1383 * talloc_strdup_append() when a zero character is in the middle of the
1384 * destination string.
1386 * @code
1387 * char *str_a = talloc_strdup(NULL, "hello world");
1388 * char *str_b = talloc_strdup(NULL, "hello world");
1389 * str_a[5] = str_b[5] = '\0'
1391 * char *app = talloc_strdup_append(str_a, ", hello");
1392 * char *buf = talloc_strdup_append_buffer(str_b, ", hello");
1394 * printf("%s\n", app); // hello, hello (app = "hello, hello")
1395 * printf("%s\n", buf); // hello (buf = "hello\0world, hello")
1396 * @endcode
1398 * If <code>s == NULL</code> then new context is created.
1400 * @param[in] s The destination buffer to append to.
1402 * @param[in] a The string you want to append.
1404 * @return The concatenated strings, NULL on error.
1406 * @see talloc_strdup()
1407 * @see talloc_strdup_append()
1408 * @see talloc_array_length()
1410 char *talloc_strdup_append_buffer(char *s, const char *a);
1413 * @brief Duplicate a length-limited string into a talloc chunk.
1415 * This function is the talloc equivalent of the C library function strndup(3).
1417 * This functions sets the name of the new pointer to the passed string. This is
1418 * equivalent to:
1420 * @code
1421 * talloc_set_name_const(ptr, ptr)
1422 * @endcode
1424 * @param[in] t The talloc context to hang the result off.
1426 * @param[in] p The string you want to duplicate.
1428 * @param[in] n The maximum string length to duplicate.
1430 * @return The duplicated string, NULL on error.
1432 char *talloc_strndup(const void *t, const char *p, size_t n);
1435 * @brief Append at most n characters of a string to given string.
1437 * The destination string is reallocated to take
1438 * <code>strlen(s) + strnlen(a, n) + 1</code> characters.
1440 * This functions sets the name of the new pointer to the new
1441 * string. This is equivalent to:
1443 * @code
1444 * talloc_set_name_const(ptr, ptr)
1445 * @endcode
1447 * If <code>s == NULL</code> then new context is created.
1449 * @param[in] s The destination string to append to.
1451 * @param[in] a The source string you want to append.
1453 * @param[in] n The number of characters you want to append from the
1454 * string.
1456 * @return The concatenated strings, NULL on error.
1458 * @see talloc_strndup()
1459 * @see talloc_strndup_append_buffer()
1461 char *talloc_strndup_append(char *s, const char *a, size_t n);
1464 * @brief Append at most n characters of a string to given buffer
1466 * This is a more efficient version of talloc_strndup_append(). It determines
1467 * the length of the destination string by the size of the talloc context.
1469 * Use this very carefully as it produces a different result than
1470 * talloc_strndup_append() when a zero character is in the middle of the
1471 * destination string.
1473 * @code
1474 * char *str_a = talloc_strdup(NULL, "hello world");
1475 * char *str_b = talloc_strdup(NULL, "hello world");
1476 * str_a[5] = str_b[5] = '\0'
1478 * char *app = talloc_strndup_append(str_a, ", hello", 7);
1479 * char *buf = talloc_strndup_append_buffer(str_b, ", hello", 7);
1481 * printf("%s\n", app); // hello, hello (app = "hello, hello")
1482 * printf("%s\n", buf); // hello (buf = "hello\0world, hello")
1483 * @endcode
1485 * If <code>s == NULL</code> then new context is created.
1487 * @param[in] s The destination buffer to append to.
1489 * @param[in] a The source string you want to append.
1491 * @param[in] n The number of characters you want to append from the
1492 * string.
1494 * @return The concatenated strings, NULL on error.
1496 * @see talloc_strndup()
1497 * @see talloc_strndup_append()
1498 * @see talloc_array_length()
1500 char *talloc_strndup_append_buffer(char *s, const char *a, size_t n);
1503 * @brief Format a string given a va_list.
1505 * This function is the talloc equivalent of the C library function
1506 * vasprintf(3).
1508 * This functions sets the name of the new pointer to the new string. This is
1509 * equivalent to:
1511 * @code
1512 * talloc_set_name_const(ptr, ptr)
1513 * @endcode
1515 * @param[in] t The talloc context to hang the result off.
1517 * @param[in] fmt The format string.
1519 * @param[in] ap The parameters used to fill fmt.
1521 * @return The formatted string, NULL on error.
1523 char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1526 * @brief Format a string given a va_list and append it to the given destination
1527 * string.
1529 * @param[in] s The destination string to append to.
1531 * @param[in] fmt The format string.
1533 * @param[in] ap The parameters used to fill fmt.
1535 * @return The formatted string, NULL on error.
1537 * @see talloc_vasprintf()
1539 char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1542 * @brief Format a string given a va_list and append it to the given destination
1543 * buffer.
1545 * @param[in] s The destination buffer to append to.
1547 * @param[in] fmt The format string.
1549 * @param[in] ap The parameters used to fill fmt.
1551 * @return The formatted string, NULL on error.
1553 * @see talloc_vasprintf()
1555 char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1558 * @brief Format a string.
1560 * This function is the talloc equivalent of the C library function asprintf(3).
1562 * This functions sets the name of the new pointer to the new string. This is
1563 * equivalent to:
1565 * @code
1566 * talloc_set_name_const(ptr, ptr)
1567 * @endcode
1569 * @param[in] t The talloc context to hang the result off.
1571 * @param[in] fmt The format string.
1573 * @param[in] ... The parameters used to fill fmt.
1575 * @return The formatted string, NULL on error.
1577 char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1580 * @brief Append a formatted string to another string.
1582 * This function appends the given formatted string to the given string. Use
1583 * this variant when the string in the current talloc buffer may have been
1584 * truncated in length.
1586 * This functions sets the name of the new pointer to the new
1587 * string. This is equivalent to:
1589 * @code
1590 * talloc_set_name_const(ptr, ptr)
1591 * @endcode
1593 * If <code>s == NULL</code> then new context is created.
1595 * @param[in] s The string to append to.
1597 * @param[in] fmt The format string.
1599 * @param[in] ... The parameters used to fill fmt.
1601 * @return The formatted string, NULL on error.
1603 char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1606 * @brief Append a formatted string to another string.
1608 * This is a more efficient version of talloc_asprintf_append(). It determines
1609 * the length of the destination string by the size of the talloc context.
1611 * Use this very carefully as it produces a different result than
1612 * talloc_asprintf_append() when a zero character is in the middle of the
1613 * destination string.
1615 * @code
1616 * char *str_a = talloc_strdup(NULL, "hello world");
1617 * char *str_b = talloc_strdup(NULL, "hello world");
1618 * str_a[5] = str_b[5] = '\0'
1620 * char *app = talloc_asprintf_append(str_a, "%s", ", hello");
1621 * char *buf = talloc_strdup_append_buffer(str_b, "%s", ", hello");
1623 * printf("%s\n", app); // hello, hello (app = "hello, hello")
1624 * printf("%s\n", buf); // hello (buf = "hello\0world, hello")
1625 * @endcode
1627 * If <code>s == NULL</code> then new context is created.
1629 * @param[in] s The string to append to
1631 * @param[in] fmt The format string.
1633 * @param[in] ... The parameters used to fill fmt.
1635 * @return The formatted string, NULL on error.
1637 * @see talloc_asprintf()
1638 * @see talloc_asprintf_append()
1640 char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1642 /* @} ******************************************************************/
1645 * @defgroup talloc_debug The talloc debugging support functions
1646 * @ingroup talloc
1648 * To aid memory debugging, talloc contains routines to inspect the currently
1649 * allocated memory hierarchy.
1651 * @{
1655 * @brief Walk a complete talloc hierarchy.
1657 * This provides a more flexible reports than talloc_report(). It
1658 * will recursively call the callback for the entire tree of memory
1659 * referenced by the pointer. References in the tree are passed with
1660 * is_ref = 1 and the pointer that is referenced.
1662 * You can pass NULL for the pointer, in which case a report is
1663 * printed for the top level memory context, but only if
1664 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
1665 * has been called.
1667 * The recursion is stopped when depth >= max_depth.
1668 * max_depth = -1 means only stop at leaf nodes.
1670 * @param[in] ptr The talloc chunk.
1672 * @param[in] depth Internal parameter to control recursion. Call with 0.
1674 * @param[in] max_depth Maximum recursion level.
1676 * @param[in] callback Function to be called on every chunk.
1678 * @param[in] private_data Private pointer passed to callback.
1680 void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
1681 void (*callback)(const void *ptr,
1682 int depth, int max_depth,
1683 int is_ref,
1684 void *private_data),
1685 void *private_data);
1688 * @brief Print a talloc hierarchy.
1690 * This provides a more flexible reports than talloc_report(). It
1691 * will let you specify the depth and max_depth.
1693 * @param[in] ptr The talloc chunk.
1695 * @param[in] depth Internal parameter to control recursion. Call with 0.
1697 * @param[in] max_depth Maximum recursion level.
1699 * @param[in] f The file handle to print to.
1701 void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
1704 * @brief Print a summary report of all memory used by ptr.
1706 * This provides a more detailed report than talloc_report(). It will
1707 * recursively print the entire tree of memory referenced by the
1708 * pointer. References in the tree are shown by giving the name of the
1709 * pointer that is referenced.
1711 * You can pass NULL for the pointer, in which case a report is printed
1712 * for the top level memory context, but only if
1713 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1714 * been called.
1716 * @param[in] ptr The talloc chunk.
1718 * @param[in] f The file handle to print to.
1720 * Example:
1721 * @code
1722 * unsigned int *a, *b;
1723 * a = talloc(NULL, unsigned int);
1724 * b = talloc(a, unsigned int);
1725 * fprintf(stderr, "Dumping memory tree for a:\n");
1726 * talloc_report_full(a, stderr);
1727 * @endcode
1729 * @see talloc_report()
1731 void talloc_report_full(const void *ptr, FILE *f);
1734 * @brief Print a summary report of all memory used by ptr.
1736 * This function prints a summary report of all memory used by ptr. One line of
1737 * report is printed for each immediate child of ptr, showing the total memory
1738 * and number of blocks used by that child.
1740 * You can pass NULL for the pointer, in which case a report is printed
1741 * for the top level memory context, but only if talloc_enable_leak_report()
1742 * or talloc_enable_leak_report_full() has been called.
1744 * @param[in] ptr The talloc chunk.
1746 * @param[in] f The file handle to print to.
1748 * Example:
1749 * @code
1750 * unsigned int *a, *b;
1751 * a = talloc(NULL, unsigned int);
1752 * b = talloc(a, unsigned int);
1753 * fprintf(stderr, "Summary of memory tree for a:\n");
1754 * talloc_report(a, stderr);
1755 * @endcode
1757 * @see talloc_report_full()
1759 void talloc_report(const void *ptr, FILE *f);
1762 * @brief Enable tracking the use of NULL memory contexts.
1764 * This enables tracking of the NULL memory context without enabling leak
1765 * reporting on exit. Useful for when you want to do your own leak
1766 * reporting call via talloc_report_null_full();
1768 void talloc_enable_null_tracking(void);
1771 * @brief Enable tracking the use of NULL memory contexts.
1773 * This enables tracking of the NULL memory context without enabling leak
1774 * reporting on exit. Useful for when you want to do your own leak
1775 * reporting call via talloc_report_null_full();
1777 void talloc_enable_null_tracking_no_autofree(void);
1780 * @brief Disable tracking of the NULL memory context.
1782 * This disables tracking of the NULL memory context.
1784 void talloc_disable_null_tracking(void);
1787 * @brief Enable leak report when a program exits.
1789 * This enables calling of talloc_report(NULL, stderr) when the program
1790 * exits. In Samba4 this is enabled by using the --leak-report command
1791 * line option.
1793 * For it to be useful, this function must be called before any other
1794 * talloc function as it establishes a "null context" that acts as the
1795 * top of the tree. If you don't call this function first then passing
1796 * NULL to talloc_report() or talloc_report_full() won't give you the
1797 * full tree printout.
1799 * Here is a typical talloc report:
1801 * @code
1802 * talloc report on 'null_context' (total 267 bytes in 15 blocks)
1803 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1804 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1805 * iconv(UTF8,CP850) contains 42 bytes in 2 blocks
1806 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1807 * iconv(CP850,UTF8) contains 42 bytes in 2 blocks
1808 * iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
1809 * iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
1810 * @endcode
1812 void talloc_enable_leak_report(void);
1815 * @brief Enable full leak report when a program exits.
1817 * This enables calling of talloc_report_full(NULL, stderr) when the
1818 * program exits. In Samba4 this is enabled by using the
1819 * --leak-report-full command line option.
1821 * For it to be useful, this function must be called before any other
1822 * talloc function as it establishes a "null context" that acts as the
1823 * top of the tree. If you don't call this function first then passing
1824 * NULL to talloc_report() or talloc_report_full() won't give you the
1825 * full tree printout.
1827 * Here is a typical full report:
1829 * @code
1830 * full talloc report on 'root' (total 18 bytes in 8 blocks)
1831 * p1 contains 18 bytes in 7 blocks (ref 0)
1832 * r1 contains 13 bytes in 2 blocks (ref 0)
1833 * reference to: p2
1834 * p2 contains 1 bytes in 1 blocks (ref 1)
1835 * x3 contains 1 bytes in 1 blocks (ref 0)
1836 * x2 contains 1 bytes in 1 blocks (ref 0)
1837 * x1 contains 1 bytes in 1 blocks (ref 0)
1838 * @endcode
1840 void talloc_enable_leak_report_full(void);
1843 * @brief Set a custom "abort" function that is called on serious error.
1845 * The default "abort" function is <code>abort()</code>.
1847 * The "abort" function is called when:
1849 * <ul>
1850 * <li>talloc_get_type_abort() fails</li>
1851 * <li>the provided pointer is not a valid talloc context</li>
1852 * <li>when the context meta data are invalid</li>
1853 * <li>when access after free is detected</li>
1854 * </ul>
1856 * Example:
1858 * @code
1859 * void my_abort(const char *reason)
1861 * fprintf(stderr, "talloc abort: %s\n", reason);
1862 * abort();
1865 * talloc_set_abort_fn(my_abort);
1866 * @endcode
1868 * @param[in] abort_fn The new "abort" function.
1870 * @see talloc_set_log_fn()
1871 * @see talloc_get_type()
1873 void talloc_set_abort_fn(void (*abort_fn)(const char *reason));
1876 * @brief Set a logging function.
1878 * @param[in] log_fn The logging function.
1880 * @see talloc_set_log_stderr()
1881 * @see talloc_set_abort_fn()
1883 void talloc_set_log_fn(void (*log_fn)(const char *message));
1886 * @brief Set stderr as the output for logs.
1888 * @see talloc_set_log_fn()
1889 * @see talloc_set_abort_fn()
1891 void talloc_set_log_stderr(void);
1894 * @brief Set a max memory limit for the current context hierarchy
1895 * This affects all children of this context and constrain any
1896 * allocation in the hierarchy to never exceed the limit set.
1897 * The limit can be removed by setting 0 (unlimited) as the
1898 * max_size by calling the funciton again on the sam context.
1899 * Memory limits can also be nested, meaning a hild can have
1900 * a stricter memory limit than a parent.
1901 * Memory limits are enforced only at memory allocation time.
1902 * Stealing a context into a 'limited' hierarchy properly
1903 * updates memory usage but does *not* cause failure if the
1904 * move causes the new parent to exceed its limits. However
1905 * any further allocation on that hierarchy will then fail.
1907 * @param[in] ctx The talloc context to set the limit on
1908 * @param[in] max_size The (new) max_size
1910 int talloc_set_memlimit(const void *ctx, size_t max_size);
1912 /* @} ******************************************************************/
1914 #if TALLOC_DEPRECATED
1915 #define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
1916 #define talloc_p(ctx, type) talloc(ctx, type)
1917 #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
1918 #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
1919 #define talloc_destroy(ctx) talloc_free(ctx)
1920 #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
1921 #endif
1923 #ifndef TALLOC_MAX_DEPTH
1924 #define TALLOC_MAX_DEPTH 10000
1925 #endif
1927 #ifdef __cplusplus
1928 } /* end of extern "C" */
1929 #endif
1931 #endif