Move/add COSTABLE/SINTABLE macros to dsputil to add extern definitions
[FFMpeg-mirror/lagarith.git] / libavcodec / atrac1.c
blob2009bba753c55ba48754419f604b1a14dbbe9162
1 /*
2 * Atrac 1 compatible decoder
3 * Copyright (c) 2009 Maxim Poliakovski
4 * Copyright (c) 2009 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/atrac1.c
25 * Atrac 1 compatible decoder.
26 * This decoder handles raw ATRAC1 data and probably SDDS data.
29 /* Many thanks to Tim Craig for all the help! */
31 #include <math.h>
32 #include <stddef.h>
33 #include <stdio.h>
35 #include "avcodec.h"
36 #include "get_bits.h"
37 #include "dsputil.h"
39 #include "atrac.h"
40 #include "atrac1data.h"
42 #define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit
43 #define AT1_SU_SIZE 212 ///< number of bytes in a sound unit
44 #define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit
45 #define AT1_FRAME_SIZE AT1_SU_SIZE * 2
46 #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8
47 #define AT1_MAX_CHANNELS 2
49 #define AT1_QMF_BANDS 3
50 #define IDX_LOW_BAND 0
51 #define IDX_MID_BAND 1
52 #define IDX_HIGH_BAND 2
54 /**
55 * Sound unit struct, one unit is used per channel
57 typedef struct {
58 int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band
59 int num_bfus; ///< number of Block Floating Units
60 float* spectrum[2];
61 DECLARE_ALIGNED_16(float, spec1[AT1_SU_SAMPLES]); ///< mdct buffer
62 DECLARE_ALIGNED_16(float, spec2[AT1_SU_SAMPLES]); ///< mdct buffer
63 DECLARE_ALIGNED_16(float, fst_qmf_delay[46]); ///< delay line for the 1st stacked QMF filter
64 DECLARE_ALIGNED_16(float, snd_qmf_delay[46]); ///< delay line for the 2nd stacked QMF filter
65 DECLARE_ALIGNED_16(float, last_qmf_delay[256+23]); ///< delay line for the last stacked QMF filter
66 } AT1SUCtx;
68 /**
69 * The atrac1 context, holds all needed parameters for decoding
71 typedef struct {
72 AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit
73 DECLARE_ALIGNED_16(float, spec[AT1_SU_SAMPLES]); ///< the mdct spectrum buffer
75 DECLARE_ALIGNED_16(float, low[256]);
76 DECLARE_ALIGNED_16(float, mid[256]);
77 DECLARE_ALIGNED_16(float, high[512]);
78 float* bands[3];
79 DECLARE_ALIGNED_16(float, out_samples[AT1_MAX_CHANNELS][AT1_SU_SAMPLES]);
80 FFTContext mdct_ctx[3];
81 int channels;
82 DSPContext dsp;
83 } AT1Ctx;
85 /** size of the transform in samples in the long mode for each QMF band */
86 static const uint16_t samples_per_band[3] = {128, 128, 256};
87 static const uint8_t mdct_long_nbits[3] = {7, 7, 8};
90 static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
91 int rev_spec)
93 FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
94 int transf_size = 1 << nbits;
96 if (rev_spec) {
97 int i;
98 for (i = 0; i < transf_size / 2; i++)
99 FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
101 ff_imdct_half(mdct_context, out, spec);
105 static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
107 int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
108 unsigned int start_pos, ref_pos = 0, pos = 0;
110 for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
111 float *prev_buf;
112 int j;
114 band_samples = samples_per_band[band_num];
115 log2_block_count = su->log2_block_count[band_num];
117 /* number of mdct blocks in the current QMF band: 1 - for long mode */
118 /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
119 num_blocks = 1 << log2_block_count;
121 if (num_blocks == 1) {
122 /* mdct block size in samples: 128 (long mode, low & mid bands), */
123 /* 256 (long mode, high band) and 32 (short mode, all bands) */
124 block_size = band_samples >> log2_block_count;
126 /* calc transform size in bits according to the block_size_mode */
127 nbits = mdct_long_nbits[band_num] - log2_block_count;
129 if (nbits != 5 && nbits != 7 && nbits != 8)
130 return -1;
131 } else {
132 block_size = 32;
133 nbits = 5;
136 start_pos = 0;
137 prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
138 for (j=0; j < num_blocks; j++) {
139 at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
141 /* overlap and window */
142 q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
143 &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 0, 16);
145 prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
146 start_pos += block_size;
147 pos += block_size;
150 if (num_blocks == 1)
151 memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
153 ref_pos += band_samples;
156 /* Swap buffers so the mdct overlap works */
157 FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
159 return 0;
163 * Parse the block size mode byte
166 static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
168 int log2_block_count_tmp, i;
170 for (i = 0; i < 2; i++) {
171 /* low and mid band */
172 log2_block_count_tmp = get_bits(gb, 2);
173 if (log2_block_count_tmp & 1)
174 return -1;
175 log2_block_cnt[i] = 2 - log2_block_count_tmp;
178 /* high band */
179 log2_block_count_tmp = get_bits(gb, 2);
180 if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
181 return -1;
182 log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
184 skip_bits(gb, 2);
185 return 0;
189 static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
190 float spec[AT1_SU_SAMPLES])
192 int bits_used, band_num, bfu_num, i;
193 uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU
194 uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU
196 /* parse the info byte (2nd byte) telling how much BFUs were coded */
197 su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
199 /* calc number of consumed bits:
200 num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
201 + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
202 bits_used = su->num_bfus * 10 + 32 +
203 bfu_amount_tab2[get_bits(gb, 2)] +
204 (bfu_amount_tab3[get_bits(gb, 3)] << 1);
206 /* get word length index (idwl) for each BFU */
207 for (i = 0; i < su->num_bfus; i++)
208 idwls[i] = get_bits(gb, 4);
210 /* get scalefactor index (idsf) for each BFU */
211 for (i = 0; i < su->num_bfus; i++)
212 idsfs[i] = get_bits(gb, 6);
214 /* zero idwl/idsf for empty BFUs */
215 for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
216 idwls[i] = idsfs[i] = 0;
218 /* read in the spectral data and reconstruct MDCT spectrum of this channel */
219 for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
220 for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
221 int pos;
223 int num_specs = specs_per_bfu[bfu_num];
224 int word_len = !!idwls[bfu_num] + idwls[bfu_num];
225 float scale_factor = sf_table[idsfs[bfu_num]];
226 bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
228 /* check for bitstream overflow */
229 if (bits_used > AT1_SU_MAX_BITS)
230 return -1;
232 /* get the position of the 1st spec according to the block size mode */
233 pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
235 if (word_len) {
236 float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
238 for (i = 0; i < num_specs; i++) {
239 /* read in a quantized spec and convert it to
240 * signed int and then inverse quantization
242 spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
244 } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
245 memset(&spec[pos], 0, num_specs * sizeof(float));
250 return 0;
254 void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
256 float temp[256];
257 float iqmf_temp[512 + 46];
259 /* combine low and middle bands */
260 atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
262 /* delay the signal of the high band by 23 samples */
263 memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23);
264 memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256);
266 /* combine (low + middle) and high bands */
267 atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
271 static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
272 int *data_size, AVPacket *avpkt)
274 const uint8_t *buf = avpkt->data;
275 int buf_size = avpkt->size;
276 AT1Ctx *q = avctx->priv_data;
277 int ch, ret, i;
278 GetBitContext gb;
279 float* samples = data;
282 if (buf_size < 212 * q->channels) {
283 av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
284 return -1;
287 for (ch = 0; ch < q->channels; ch++) {
288 AT1SUCtx* su = &q->SUs[ch];
290 init_get_bits(&gb, &buf[212 * ch], 212 * 8);
292 /* parse block_size_mode, 1st byte */
293 ret = at1_parse_bsm(&gb, su->log2_block_count);
294 if (ret < 0)
295 return ret;
297 ret = at1_unpack_dequant(&gb, su, q->spec);
298 if (ret < 0)
299 return ret;
301 ret = at1_imdct_block(su, q);
302 if (ret < 0)
303 return ret;
304 at1_subband_synthesis(q, su, q->out_samples[ch]);
307 /* round, convert to 16bit and interleave */
308 if (q->channels == 1) {
309 /* mono */
310 q->dsp.vector_clipf(samples, q->out_samples[0], -32700.0 / (1 << 15),
311 32700.0 / (1 << 15), AT1_SU_SAMPLES);
312 } else {
313 /* stereo */
314 for (i = 0; i < AT1_SU_SAMPLES; i++) {
315 samples[i * 2] = av_clipf(q->out_samples[0][i],
316 -32700.0 / (1 << 15),
317 32700.0 / (1 << 15));
318 samples[i * 2 + 1] = av_clipf(q->out_samples[1][i],
319 -32700.0 / (1 << 15),
320 32700.0 / (1 << 15));
324 *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
325 return avctx->block_align;
329 static av_cold int atrac1_decode_init(AVCodecContext *avctx)
331 AT1Ctx *q = avctx->priv_data;
333 avctx->sample_fmt = SAMPLE_FMT_FLT;
335 q->channels = avctx->channels;
337 /* Init the mdct transforms */
338 ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
339 ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
340 ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));
342 ff_sine_window_init(ff_sine_32, 32);
344 atrac_generate_tables();
346 dsputil_init(&q->dsp, avctx);
348 q->bands[0] = q->low;
349 q->bands[1] = q->mid;
350 q->bands[2] = q->high;
352 /* Prepare the mdct overlap buffers */
353 q->SUs[0].spectrum[0] = q->SUs[0].spec1;
354 q->SUs[0].spectrum[1] = q->SUs[0].spec2;
355 q->SUs[1].spectrum[0] = q->SUs[1].spec1;
356 q->SUs[1].spectrum[1] = q->SUs[1].spec2;
358 return 0;
362 static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
363 AT1Ctx *q = avctx->priv_data;
365 ff_mdct_end(&q->mdct_ctx[0]);
366 ff_mdct_end(&q->mdct_ctx[1]);
367 ff_mdct_end(&q->mdct_ctx[2]);
368 return 0;
372 AVCodec atrac1_decoder = {
373 .name = "atrac1",
374 .type = CODEC_TYPE_AUDIO,
375 .id = CODEC_ID_ATRAC1,
376 .priv_data_size = sizeof(AT1Ctx),
377 .init = atrac1_decode_init,
378 .close = atrac1_decode_end,
379 .decode = atrac1_decode_frame,
380 .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),