Move/add COSTABLE/SINTABLE macros to dsputil to add extern definitions
[FFMpeg-mirror/lagarith.git] / libavcodec / aacpsy.c
blob1200134baf21e8adb15c7743be0438b9b6d0cbc8
1 /*
2 * AAC encoder psychoacoustic model
3 * Copyright (C) 2008 Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file libavcodec/aacpsy.c
24 * AAC encoder psychoacoustic model
27 #include "avcodec.h"
28 #include "aactab.h"
29 #include "psymodel.h"
31 /***********************************
32 * TODOs:
33 * thresholds linearization after their modifications for attaining given bitrate
34 * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
35 * control quality for quality-based output
36 **********************************/
38 /**
39 * constants for 3GPP AAC psychoacoustic model
40 * @{
42 #define PSY_3GPP_SPREAD_LOW 1.5f // spreading factor for ascending threshold spreading (15 dB/Bark)
43 #define PSY_3GPP_SPREAD_HI 3.0f // spreading factor for descending threshold spreading (30 dB/Bark)
45 #define PSY_3GPP_RPEMIN 0.01f
46 #define PSY_3GPP_RPELEV 2.0f
47 /**
48 * @}
51 /**
52 * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
54 typedef struct Psy3gppBand{
55 float energy; ///< band energy
56 float ffac; ///< form factor
57 float thr; ///< energy threshold
58 float min_snr; ///< minimal SNR
59 float thr_quiet; ///< threshold in quiet
60 }Psy3gppBand;
62 /**
63 * single/pair channel context for psychoacoustic model
65 typedef struct Psy3gppChannel{
66 Psy3gppBand band[128]; ///< bands information
67 Psy3gppBand prev_band[128]; ///< bands information from the previous frame
69 float win_energy; ///< sliding average of channel energy
70 float iir_state[2]; ///< hi-pass IIR filter state
71 uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
72 enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
73 }Psy3gppChannel;
75 /**
76 * psychoacoustic model frame type-dependent coefficients
78 typedef struct Psy3gppCoeffs{
79 float ath [64]; ///< absolute threshold of hearing per bands
80 float barks [64]; ///< Bark value for each spectral band in long frame
81 float spread_low[64]; ///< spreading factor for low-to-high threshold spreading in long frame
82 float spread_hi [64]; ///< spreading factor for high-to-low threshold spreading in long frame
83 }Psy3gppCoeffs;
85 /**
86 * 3GPP TS26.403-inspired psychoacoustic model specific data
88 typedef struct Psy3gppContext{
89 Psy3gppCoeffs psy_coef[2];
90 Psy3gppChannel *ch;
91 }Psy3gppContext;
93 /**
94 * Calculate Bark value for given line.
96 static av_cold float calc_bark(float f)
98 return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
101 #define ATH_ADD 4
103 * Calculate ATH value for given frequency.
104 * Borrowed from Lame.
106 static av_cold float ath(float f, float add)
108 f /= 1000.0f;
109 return 3.64 * pow(f, -0.8)
110 - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
111 + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
112 + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
115 static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
116 Psy3gppContext *pctx;
117 float barks[1024];
118 int i, j, g, start;
119 float prev, minscale, minath;
121 ctx->model_priv_data = av_mallocz(sizeof(Psy3gppContext));
122 pctx = (Psy3gppContext*) ctx->model_priv_data;
124 for (i = 0; i < 1024; i++)
125 barks[i] = calc_bark(i * ctx->avctx->sample_rate / 2048.0);
126 minath = ath(3410, ATH_ADD);
127 for (j = 0; j < 2; j++) {
128 Psy3gppCoeffs *coeffs = &pctx->psy_coef[j];
129 i = 0;
130 prev = 0.0;
131 for (g = 0; g < ctx->num_bands[j]; g++) {
132 i += ctx->bands[j][g];
133 coeffs->barks[g] = (barks[i - 1] + prev) / 2.0;
134 prev = barks[i - 1];
136 for (g = 0; g < ctx->num_bands[j] - 1; g++) {
137 coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
138 coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
140 start = 0;
141 for (g = 0; g < ctx->num_bands[j]; g++) {
142 minscale = ath(ctx->avctx->sample_rate * start / 1024.0, ATH_ADD);
143 for (i = 1; i < ctx->bands[j][g]; i++)
144 minscale = FFMIN(minscale, ath(ctx->avctx->sample_rate * (start + i) / 1024.0 / 2.0, ATH_ADD));
145 coeffs->ath[g] = minscale - minath;
146 start += ctx->bands[j][g];
150 pctx->ch = av_mallocz(sizeof(Psy3gppChannel) * ctx->avctx->channels);
151 return 0;
155 * IIR filter used in block switching decision
157 static float iir_filter(int in, float state[2])
159 float ret;
161 ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
162 state[0] = in;
163 state[1] = ret;
164 return ret;
168 * window grouping information stored as bits (0 - new group, 1 - group continues)
170 static const uint8_t window_grouping[9] = {
171 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
175 * Tell encoder which window types to use.
176 * @see 3GPP TS26.403 5.4.1 "Blockswitching"
178 static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
179 const int16_t *audio, const int16_t *la,
180 int channel, int prev_type)
182 int i, j;
183 int br = ctx->avctx->bit_rate / ctx->avctx->channels;
184 int attack_ratio = br <= 16000 ? 18 : 10;
185 Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
186 Psy3gppChannel *pch = &pctx->ch[channel];
187 uint8_t grouping = 0;
188 FFPsyWindowInfo wi;
190 memset(&wi, 0, sizeof(wi));
191 if (la) {
192 float s[8], v;
193 int switch_to_eight = 0;
194 float sum = 0.0, sum2 = 0.0;
195 int attack_n = 0;
196 for (i = 0; i < 8; i++) {
197 for (j = 0; j < 128; j++) {
198 v = iir_filter(audio[(i*128+j)*ctx->avctx->channels], pch->iir_state);
199 sum += v*v;
201 s[i] = sum;
202 sum2 += sum;
204 for (i = 0; i < 8; i++) {
205 if (s[i] > pch->win_energy * attack_ratio) {
206 attack_n = i + 1;
207 switch_to_eight = 1;
208 break;
211 pch->win_energy = pch->win_energy*7/8 + sum2/64;
213 wi.window_type[1] = prev_type;
214 switch (prev_type) {
215 case ONLY_LONG_SEQUENCE:
216 wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
217 break;
218 case LONG_START_SEQUENCE:
219 wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
220 grouping = pch->next_grouping;
221 break;
222 case LONG_STOP_SEQUENCE:
223 wi.window_type[0] = ONLY_LONG_SEQUENCE;
224 break;
225 case EIGHT_SHORT_SEQUENCE:
226 wi.window_type[0] = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
227 grouping = switch_to_eight ? pch->next_grouping : 0;
228 break;
230 pch->next_grouping = window_grouping[attack_n];
231 } else {
232 for (i = 0; i < 3; i++)
233 wi.window_type[i] = prev_type;
234 grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
237 wi.window_shape = 1;
238 if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
239 wi.num_windows = 1;
240 wi.grouping[0] = 1;
241 } else {
242 int lastgrp = 0;
243 wi.num_windows = 8;
244 for (i = 0; i < 8; i++) {
245 if (!((grouping >> i) & 1))
246 lastgrp = i;
247 wi.grouping[lastgrp]++;
251 return wi;
255 * Calculate band thresholds as suggested in 3GPP TS26.403
257 static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
258 const float *coefs, FFPsyWindowInfo *wi)
260 Psy3gppContext *pctx = (Psy3gppContext*) ctx->model_priv_data;
261 Psy3gppChannel *pch = &pctx->ch[channel];
262 int start = 0;
263 int i, w, g;
264 const int num_bands = ctx->num_bands[wi->num_windows == 8];
265 const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
266 Psy3gppCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
268 //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
269 for (w = 0; w < wi->num_windows*16; w += 16) {
270 for (g = 0; g < num_bands; g++) {
271 Psy3gppBand *band = &pch->band[w+g];
272 band->energy = 0.0f;
273 for (i = 0; i < band_sizes[g]; i++)
274 band->energy += coefs[start+i] * coefs[start+i];
275 band->energy *= 1.0f / (512*512);
276 band->thr = band->energy * 0.001258925f;
277 start += band_sizes[g];
279 ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
282 //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
283 for (w = 0; w < wi->num_windows*16; w += 16) {
284 Psy3gppBand *band = &pch->band[w];
285 for (g = 1; g < num_bands; g++)
286 band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
287 for (g = num_bands - 2; g >= 0; g--)
288 band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
289 for (g = 0; g < num_bands; g++) {
290 band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
291 if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE)
292 band[g].thr_quiet = FFMAX(PSY_3GPP_RPEMIN*band[g].thr_quiet,
293 FFMIN(band[g].thr_quiet,
294 PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
295 band[g].thr = FFMAX(band[g].thr, band[g].thr_quiet * 0.25);
297 ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr;
300 memcpy(pch->prev_band, pch->band, sizeof(pch->band));
303 static av_cold void psy_3gpp_end(FFPsyContext *apc)
305 Psy3gppContext *pctx = (Psy3gppContext*) apc->model_priv_data;
306 av_freep(&pctx->ch);
307 av_freep(&apc->model_priv_data);
311 const FFPsyModel ff_aac_psy_model =
313 .name = "3GPP TS 26.403-inspired model",
314 .init = psy_3gpp_init,
315 .window = psy_3gpp_window,
316 .analyze = psy_3gpp_analyze,
317 .end = psy_3gpp_end,