Move/add COSTABLE/SINTABLE macros to dsputil to add extern definitions
[FFMpeg-mirror/lagarith.git] / libavcodec / aaccoder.c
blob0a51aa7759a91ceab97e8367f7ee40cb235b4689
1 /*
2 * AAC coefficients encoder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file libavcodec/aaccoder.c
24 * AAC coefficients encoder
27 /***********************************
28 * TODOs:
29 * speedup quantizer selection
30 * add sane pulse detection
31 ***********************************/
33 #include "avcodec.h"
34 #include "put_bits.h"
35 #include "aac.h"
36 #include "aacenc.h"
37 #include "aactab.h"
39 /** bits needed to code codebook run value for long windows */
40 static const uint8_t run_value_bits_long[64] = {
41 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
42 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
43 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
44 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
47 /** bits needed to code codebook run value for short windows */
48 static const uint8_t run_value_bits_short[16] = {
49 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
52 static const uint8_t *run_value_bits[2] = {
53 run_value_bits_long, run_value_bits_short
57 /**
58 * Quantize one coefficient.
59 * @return absolute value of the quantized coefficient
60 * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
62 static av_always_inline int quant(float coef, const float Q)
64 float a = coef * Q;
65 return sqrtf(a * sqrtf(a)) + 0.4054;
68 static void quantize_bands(int (*out)[2], const float *in, const float *scaled,
69 int size, float Q34, int is_signed, int maxval)
71 int i;
72 double qc;
73 for (i = 0; i < size; i++) {
74 qc = scaled[i] * Q34;
75 out[i][0] = (int)FFMIN(qc, (double)maxval);
76 out[i][1] = (int)FFMIN(qc + 0.4054, (double)maxval);
77 if (is_signed && in[i] < 0.0f) {
78 out[i][0] = -out[i][0];
79 out[i][1] = -out[i][1];
84 static void abs_pow34_v(float *out, const float *in, const int size)
86 #ifndef USE_REALLY_FULL_SEARCH
87 int i;
88 for (i = 0; i < size; i++) {
89 float a = fabsf(in[i]);
90 out[i] = sqrtf(a * sqrtf(a));
92 #endif /* USE_REALLY_FULL_SEARCH */
95 static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
96 static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
98 /**
99 * Calculate rate distortion cost for quantizing with given codebook
101 * @return quantization distortion
103 static float quantize_band_cost(struct AACEncContext *s, const float *in,
104 const float *scaled, int size, int scale_idx,
105 int cb, const float lambda, const float uplim,
106 int *bits)
108 const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
109 const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
110 const float CLIPPED_ESCAPE = 165140.0f*IQ;
111 int i, j, k;
112 float cost = 0;
113 const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
114 int resbits = 0;
115 #ifndef USE_REALLY_FULL_SEARCH
116 const float Q34 = sqrtf(Q * sqrtf(Q));
117 const int range = aac_cb_range[cb];
118 const int maxval = aac_cb_maxval[cb];
119 int offs[4];
120 #endif /* USE_REALLY_FULL_SEARCH */
122 if (!cb) {
123 for (i = 0; i < size; i++)
124 cost += in[i]*in[i];
125 if (bits)
126 *bits = 0;
127 return cost * lambda;
129 #ifndef USE_REALLY_FULL_SEARCH
130 offs[0] = 1;
131 for (i = 1; i < dim; i++)
132 offs[i] = offs[i-1]*range;
133 quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
134 #endif /* USE_REALLY_FULL_SEARCH */
135 for (i = 0; i < size; i += dim) {
136 float mincost;
137 int minidx = 0;
138 int minbits = 0;
139 const float *vec;
140 #ifndef USE_REALLY_FULL_SEARCH
141 int (*quants)[2] = &s->qcoefs[i];
142 mincost = 0.0f;
143 for (j = 0; j < dim; j++)
144 mincost += in[i+j]*in[i+j];
145 minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
146 minbits = ff_aac_spectral_bits[cb-1][minidx];
147 mincost = mincost * lambda + minbits;
148 for (j = 0; j < (1<<dim); j++) {
149 float rd = 0.0f;
150 int curbits;
151 int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
152 int same = 0;
153 for (k = 0; k < dim; k++) {
154 if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
155 same = 1;
156 break;
159 if (same)
160 continue;
161 for (k = 0; k < dim; k++)
162 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
163 curbits = ff_aac_spectral_bits[cb-1][curidx];
164 vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
165 #else
166 mincost = INFINITY;
167 vec = ff_aac_codebook_vectors[cb-1];
168 for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
169 float rd = 0.0f;
170 int curbits = ff_aac_spectral_bits[cb-1][j];
171 #endif /* USE_REALLY_FULL_SEARCH */
172 if (IS_CODEBOOK_UNSIGNED(cb)) {
173 for (k = 0; k < dim; k++) {
174 float t = fabsf(in[i+k]);
175 float di;
176 if (vec[k] == 64.0f) { //FIXME: slow
177 //do not code with escape sequence small values
178 if (t < 39.0f*IQ) {
179 rd = INFINITY;
180 break;
182 if (t >= CLIPPED_ESCAPE) {
183 di = t - CLIPPED_ESCAPE;
184 curbits += 21;
185 } else {
186 int c = av_clip(quant(t, Q), 0, 8191);
187 di = t - c*cbrtf(c)*IQ;
188 curbits += av_log2(c)*2 - 4 + 1;
190 } else {
191 di = t - vec[k]*IQ;
193 if (vec[k] != 0.0f)
194 curbits++;
195 rd += di*di;
197 } else {
198 for (k = 0; k < dim; k++) {
199 float di = in[i+k] - vec[k]*IQ;
200 rd += di*di;
203 rd = rd * lambda + curbits;
204 if (rd < mincost) {
205 mincost = rd;
206 minidx = j;
207 minbits = curbits;
210 cost += mincost;
211 resbits += minbits;
212 if (cost >= uplim)
213 return uplim;
216 if (bits)
217 *bits = resbits;
218 return cost;
221 static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
222 const float *in, int size, int scale_idx,
223 int cb, const float lambda)
225 const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
226 const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
227 const float CLIPPED_ESCAPE = 165140.0f*IQ;
228 const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2;
229 int i, j, k;
230 #ifndef USE_REALLY_FULL_SEARCH
231 const float Q34 = sqrtf(Q * sqrtf(Q));
232 const int range = aac_cb_range[cb];
233 const int maxval = aac_cb_maxval[cb];
234 int offs[4];
235 float *scaled = s->scoefs;
236 #endif /* USE_REALLY_FULL_SEARCH */
238 //START_TIMER
239 if (!cb)
240 return;
242 #ifndef USE_REALLY_FULL_SEARCH
243 offs[0] = 1;
244 for (i = 1; i < dim; i++)
245 offs[i] = offs[i-1]*range;
246 abs_pow34_v(scaled, in, size);
247 quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
248 #endif /* USE_REALLY_FULL_SEARCH */
249 for (i = 0; i < size; i += dim) {
250 float mincost;
251 int minidx = 0;
252 int minbits = 0;
253 const float *vec;
254 #ifndef USE_REALLY_FULL_SEARCH
255 int (*quants)[2] = &s->qcoefs[i];
256 mincost = 0.0f;
257 for (j = 0; j < dim; j++)
258 mincost += in[i+j]*in[i+j];
259 minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
260 minbits = ff_aac_spectral_bits[cb-1][minidx];
261 mincost = mincost * lambda + minbits;
262 for (j = 0; j < (1<<dim); j++) {
263 float rd = 0.0f;
264 int curbits;
265 int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40;
266 int same = 0;
267 for (k = 0; k < dim; k++) {
268 if ((j & (1 << k)) && quants[k][0] == quants[k][1]) {
269 same = 1;
270 break;
273 if (same)
274 continue;
275 for (k = 0; k < dim; k++)
276 curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k];
277 curbits = ff_aac_spectral_bits[cb-1][curidx];
278 vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
279 #else
280 vec = ff_aac_codebook_vectors[cb-1];
281 mincost = INFINITY;
282 for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) {
283 float rd = 0.0f;
284 int curbits = ff_aac_spectral_bits[cb-1][j];
285 int curidx = j;
286 #endif /* USE_REALLY_FULL_SEARCH */
287 if (IS_CODEBOOK_UNSIGNED(cb)) {
288 for (k = 0; k < dim; k++) {
289 float t = fabsf(in[i+k]);
290 float di;
291 if (vec[k] == 64.0f) { //FIXME: slow
292 //do not code with escape sequence small values
293 if (t < 39.0f*IQ) {
294 rd = INFINITY;
295 break;
297 if (t >= CLIPPED_ESCAPE) {
298 di = t - CLIPPED_ESCAPE;
299 curbits += 21;
300 } else {
301 int c = av_clip(quant(t, Q), 0, 8191);
302 di = t - c*cbrtf(c)*IQ;
303 curbits += av_log2(c)*2 - 4 + 1;
305 } else {
306 di = t - vec[k]*IQ;
308 if (vec[k] != 0.0f)
309 curbits++;
310 rd += di*di;
312 } else {
313 for (k = 0; k < dim; k++) {
314 float di = in[i+k] - vec[k]*IQ;
315 rd += di*di;
318 rd = rd * lambda + curbits;
319 if (rd < mincost) {
320 mincost = rd;
321 minidx = curidx;
322 minbits = curbits;
325 put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]);
326 if (IS_CODEBOOK_UNSIGNED(cb))
327 for (j = 0; j < dim; j++)
328 if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f)
329 put_bits(pb, 1, in[i+j] < 0.0f);
330 if (cb == ESC_BT) {
331 for (j = 0; j < 2; j++) {
332 if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) {
333 int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
334 int len = av_log2(coef);
336 put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
337 put_bits(pb, len, coef & ((1 << len) - 1));
342 //STOP_TIMER("quantize_and_encode")
346 * structure used in optimal codebook search
348 typedef struct BandCodingPath {
349 int prev_idx; ///< pointer to the previous path point
350 float cost; ///< path cost
351 int run;
352 } BandCodingPath;
355 * Encode band info for single window group bands.
357 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
358 int win, int group_len, const float lambda)
360 BandCodingPath path[120][12];
361 int w, swb, cb, start, start2, size;
362 int i, j;
363 const int max_sfb = sce->ics.max_sfb;
364 const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
365 const int run_esc = (1 << run_bits) - 1;
366 int idx, ppos, count;
367 int stackrun[120], stackcb[120], stack_len;
368 float next_minrd = INFINITY;
369 int next_mincb = 0;
371 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
372 start = win*128;
373 for (cb = 0; cb < 12; cb++) {
374 path[0][cb].cost = 0.0f;
375 path[0][cb].prev_idx = -1;
376 path[0][cb].run = 0;
378 for (swb = 0; swb < max_sfb; swb++) {
379 start2 = start;
380 size = sce->ics.swb_sizes[swb];
381 if (sce->zeroes[win*16 + swb]) {
382 for (cb = 0; cb < 12; cb++) {
383 path[swb+1][cb].prev_idx = cb;
384 path[swb+1][cb].cost = path[swb][cb].cost;
385 path[swb+1][cb].run = path[swb][cb].run + 1;
387 } else {
388 float minrd = next_minrd;
389 int mincb = next_mincb;
390 next_minrd = INFINITY;
391 next_mincb = 0;
392 for (cb = 0; cb < 12; cb++) {
393 float cost_stay_here, cost_get_here;
394 float rd = 0.0f;
395 for (w = 0; w < group_len; w++) {
396 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
397 rd += quantize_band_cost(s, sce->coeffs + start + w*128,
398 s->scoefs + start + w*128, size,
399 sce->sf_idx[(win+w)*16+swb], cb,
400 lambda / band->threshold, INFINITY, NULL);
402 cost_stay_here = path[swb][cb].cost + rd;
403 cost_get_here = minrd + rd + run_bits + 4;
404 if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
405 != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
406 cost_stay_here += run_bits;
407 if (cost_get_here < cost_stay_here) {
408 path[swb+1][cb].prev_idx = mincb;
409 path[swb+1][cb].cost = cost_get_here;
410 path[swb+1][cb].run = 1;
411 } else {
412 path[swb+1][cb].prev_idx = cb;
413 path[swb+1][cb].cost = cost_stay_here;
414 path[swb+1][cb].run = path[swb][cb].run + 1;
416 if (path[swb+1][cb].cost < next_minrd) {
417 next_minrd = path[swb+1][cb].cost;
418 next_mincb = cb;
422 start += sce->ics.swb_sizes[swb];
425 //convert resulting path from backward-linked list
426 stack_len = 0;
427 idx = 0;
428 for (cb = 1; cb < 12; cb++)
429 if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
430 idx = cb;
431 ppos = max_sfb;
432 while (ppos > 0) {
433 cb = idx;
434 stackrun[stack_len] = path[ppos][cb].run;
435 stackcb [stack_len] = cb;
436 idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
437 ppos -= path[ppos][cb].run;
438 stack_len++;
440 //perform actual band info encoding
441 start = 0;
442 for (i = stack_len - 1; i >= 0; i--) {
443 put_bits(&s->pb, 4, stackcb[i]);
444 count = stackrun[i];
445 memset(sce->zeroes + win*16 + start, !stackcb[i], count);
446 //XXX: memset when band_type is also uint8_t
447 for (j = 0; j < count; j++) {
448 sce->band_type[win*16 + start] = stackcb[i];
449 start++;
451 while (count >= run_esc) {
452 put_bits(&s->pb, run_bits, run_esc);
453 count -= run_esc;
455 put_bits(&s->pb, run_bits, count);
459 typedef struct TrellisPath {
460 float cost;
461 int prev;
462 int min_val;
463 int max_val;
464 } TrellisPath;
466 #define TRELLIS_STAGES 121
467 #define TRELLIS_STATES 256
469 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
470 SingleChannelElement *sce,
471 const float lambda)
473 int q, w, w2, g, start = 0;
474 int i, j;
475 int idx;
476 TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
477 int bandaddr[TRELLIS_STAGES];
478 int minq;
479 float mincost;
481 for (i = 0; i < TRELLIS_STATES; i++) {
482 paths[0][i].cost = 0.0f;
483 paths[0][i].prev = -1;
484 paths[0][i].min_val = i;
485 paths[0][i].max_val = i;
487 for (j = 1; j < TRELLIS_STAGES; j++) {
488 for (i = 0; i < TRELLIS_STATES; i++) {
489 paths[j][i].cost = INFINITY;
490 paths[j][i].prev = -2;
491 paths[j][i].min_val = INT_MAX;
492 paths[j][i].max_val = 0;
495 idx = 1;
496 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
497 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
498 start = w*128;
499 for (g = 0; g < sce->ics.num_swb; g++) {
500 const float *coefs = sce->coeffs + start;
501 float qmin, qmax;
502 int nz = 0;
504 bandaddr[idx] = w * 16 + g;
505 qmin = INT_MAX;
506 qmax = 0.0f;
507 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
508 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
509 if (band->energy <= band->threshold || band->threshold == 0.0f) {
510 sce->zeroes[(w+w2)*16+g] = 1;
511 continue;
513 sce->zeroes[(w+w2)*16+g] = 0;
514 nz = 1;
515 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
516 float t = fabsf(coefs[w2*128+i]);
517 if (t > 0.0f)
518 qmin = FFMIN(qmin, t);
519 qmax = FFMAX(qmax, t);
522 if (nz) {
523 int minscale, maxscale;
524 float minrd = INFINITY;
525 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
526 minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
527 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
528 maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
529 for (q = minscale; q < maxscale; q++) {
530 float dists[12], dist;
531 memset(dists, 0, sizeof(dists));
532 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
533 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
534 int cb;
535 for (cb = 0; cb <= ESC_BT; cb++)
536 dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
537 q, cb, lambda / band->threshold, INFINITY, NULL);
539 dist = dists[0];
540 for (i = 1; i <= ESC_BT; i++)
541 dist = FFMIN(dist, dists[i]);
542 minrd = FFMIN(minrd, dist);
544 for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, TRELLIS_STATES); i++) {
545 float cost;
546 int minv, maxv;
547 if (isinf(paths[idx - 1][i].cost))
548 continue;
549 cost = paths[idx - 1][i].cost + dist
550 + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
551 minv = FFMIN(paths[idx - 1][i].min_val, q);
552 maxv = FFMAX(paths[idx - 1][i].max_val, q);
553 if (cost < paths[idx][q].cost && maxv-minv < SCALE_MAX_DIFF) {
554 paths[idx][q].cost = cost;
555 paths[idx][q].prev = i;
556 paths[idx][q].min_val = minv;
557 paths[idx][q].max_val = maxv;
561 } else {
562 for (q = 0; q < TRELLIS_STATES; q++) {
563 if (!isinf(paths[idx - 1][q].cost)) {
564 paths[idx][q].cost = paths[idx - 1][q].cost + 1;
565 paths[idx][q].prev = q;
566 paths[idx][q].min_val = FFMIN(paths[idx - 1][q].min_val, q);
567 paths[idx][q].max_val = FFMAX(paths[idx - 1][q].max_val, q);
568 continue;
570 for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, TRELLIS_STATES); i++) {
571 float cost;
572 int minv, maxv;
573 if (isinf(paths[idx - 1][i].cost))
574 continue;
575 cost = paths[idx - 1][i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
576 minv = FFMIN(paths[idx - 1][i].min_val, q);
577 maxv = FFMAX(paths[idx - 1][i].max_val, q);
578 if (cost < paths[idx][q].cost && maxv-minv < SCALE_MAX_DIFF) {
579 paths[idx][q].cost = cost;
580 paths[idx][q].prev = i;
581 paths[idx][q].min_val = minv;
582 paths[idx][q].max_val = maxv;
587 sce->zeroes[w*16+g] = !nz;
588 start += sce->ics.swb_sizes[g];
589 idx++;
592 idx--;
593 mincost = paths[idx][0].cost;
594 minq = 0;
595 for (i = 1; i < TRELLIS_STATES; i++) {
596 if (paths[idx][i].cost < mincost) {
597 mincost = paths[idx][i].cost;
598 minq = i;
601 while (idx) {
602 sce->sf_idx[bandaddr[idx]] = minq;
603 minq = paths[idx][minq].prev;
604 idx--;
606 //set the same quantizers inside window groups
607 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
608 for (g = 0; g < sce->ics.num_swb; g++)
609 for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
610 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
614 * two-loop quantizers search taken from ISO 13818-7 Appendix C
616 static void search_for_quantizers_twoloop(AVCodecContext *avctx,
617 AACEncContext *s,
618 SingleChannelElement *sce,
619 const float lambda)
621 int start = 0, i, w, w2, g;
622 int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
623 float dists[128], uplims[128];
624 int fflag, minscaler;
625 int its = 0;
626 int allz = 0;
627 float minthr = INFINITY;
629 //XXX: some heuristic to determine initial quantizers will reduce search time
630 memset(dists, 0, sizeof(dists));
631 //determine zero bands and upper limits
632 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
633 for (g = 0; g < sce->ics.num_swb; g++) {
634 int nz = 0;
635 float uplim = 0.0f;
636 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
637 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
638 uplim += band->threshold;
639 if (band->energy <= band->threshold || band->threshold == 0.0f) {
640 sce->zeroes[(w+w2)*16+g] = 1;
641 continue;
643 nz = 1;
645 uplims[w*16+g] = uplim *512;
646 sce->zeroes[w*16+g] = !nz;
647 if (nz)
648 minthr = FFMIN(minthr, uplim);
649 allz = FFMAX(allz, nz);
652 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
653 for (g = 0; g < sce->ics.num_swb; g++) {
654 if (sce->zeroes[w*16+g]) {
655 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
656 continue;
658 sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59);
662 if (!allz)
663 return;
664 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
665 //perform two-loop search
666 //outer loop - improve quality
667 do {
668 int tbits, qstep;
669 minscaler = sce->sf_idx[0];
670 //inner loop - quantize spectrum to fit into given number of bits
671 qstep = its ? 1 : 32;
672 do {
673 int prev = -1;
674 tbits = 0;
675 fflag = 0;
676 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
677 start = w*128;
678 for (g = 0; g < sce->ics.num_swb; g++) {
679 const float *coefs = sce->coeffs + start;
680 const float *scaled = s->scoefs + start;
681 int bits = 0;
682 int cb;
683 float mindist = INFINITY;
684 int minbits = 0;
686 if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
687 start += sce->ics.swb_sizes[g];
688 continue;
690 minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
691 for (cb = 0; cb <= ESC_BT; cb++) {
692 float dist = 0.0f;
693 int bb = 0;
694 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
695 int b;
696 dist += quantize_band_cost(s, coefs + w2*128,
697 scaled + w2*128,
698 sce->ics.swb_sizes[g],
699 sce->sf_idx[w*16+g],
701 lambda,
702 INFINITY,
703 &b);
704 bb += b;
706 if (dist < mindist) {
707 mindist = dist;
708 minbits = bb;
711 dists[w*16+g] = (mindist - minbits) / lambda;
712 bits = minbits;
713 if (prev != -1) {
714 bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
716 tbits += bits;
717 start += sce->ics.swb_sizes[g];
718 prev = sce->sf_idx[w*16+g];
721 if (tbits > destbits) {
722 for (i = 0; i < 128; i++)
723 if (sce->sf_idx[i] < 218 - qstep)
724 sce->sf_idx[i] += qstep;
725 } else {
726 for (i = 0; i < 128; i++)
727 if (sce->sf_idx[i] > 60 - qstep)
728 sce->sf_idx[i] -= qstep;
730 qstep >>= 1;
731 if (!qstep && tbits > destbits*1.02)
732 qstep = 1;
733 if (sce->sf_idx[0] >= 217)
734 break;
735 } while (qstep);
737 fflag = 0;
738 minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
739 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
740 start = w*128;
741 for (g = 0; g < sce->ics.num_swb; g++) {
742 int prevsc = sce->sf_idx[w*16+g];
743 if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
744 sce->sf_idx[w*16+g]--;
745 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
746 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
747 if (sce->sf_idx[w*16+g] != prevsc)
748 fflag = 1;
751 its++;
752 } while (fflag && its < 10);
755 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
756 SingleChannelElement *sce,
757 const float lambda)
759 int start = 0, i, w, w2, g;
760 float uplim[128], maxq[128];
761 int minq, maxsf;
762 float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
763 int last = 0, lastband = 0, curband = 0;
764 float avg_energy = 0.0;
765 if (sce->ics.num_windows == 1) {
766 start = 0;
767 for (i = 0; i < 1024; i++) {
768 if (i - start >= sce->ics.swb_sizes[curband]) {
769 start += sce->ics.swb_sizes[curband];
770 curband++;
772 if (sce->coeffs[i]) {
773 avg_energy += sce->coeffs[i] * sce->coeffs[i];
774 last = i;
775 lastband = curband;
778 } else {
779 for (w = 0; w < 8; w++) {
780 const float *coeffs = sce->coeffs + w*128;
781 start = 0;
782 for (i = 0; i < 128; i++) {
783 if (i - start >= sce->ics.swb_sizes[curband]) {
784 start += sce->ics.swb_sizes[curband];
785 curband++;
787 if (coeffs[i]) {
788 avg_energy += coeffs[i] * coeffs[i];
789 last = FFMAX(last, i);
790 lastband = FFMAX(lastband, curband);
795 last++;
796 avg_energy /= last;
797 if (avg_energy == 0.0f) {
798 for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
799 sce->sf_idx[i] = SCALE_ONE_POS;
800 return;
802 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
803 start = w*128;
804 for (g = 0; g < sce->ics.num_swb; g++) {
805 float *coefs = sce->coeffs + start;
806 const int size = sce->ics.swb_sizes[g];
807 int start2 = start, end2 = start + size, peakpos = start;
808 float maxval = -1, thr = 0.0f, t;
809 maxq[w*16+g] = 0.0f;
810 if (g > lastband) {
811 maxq[w*16+g] = 0.0f;
812 start += size;
813 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
814 memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
815 continue;
817 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
818 for (i = 0; i < size; i++) {
819 float t = coefs[w2*128+i]*coefs[w2*128+i];
820 maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
821 thr += t;
822 if (sce->ics.num_windows == 1 && maxval < t) {
823 maxval = t;
824 peakpos = start+i;
828 if (sce->ics.num_windows == 1) {
829 start2 = FFMAX(peakpos - 2, start2);
830 end2 = FFMIN(peakpos + 3, end2);
831 } else {
832 start2 -= start;
833 end2 -= start;
835 start += size;
836 thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
837 t = 1.0 - (1.0 * start2 / last);
838 uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
841 memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
842 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
843 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
844 start = w*128;
845 for (g = 0; g < sce->ics.num_swb; g++) {
846 const float *coefs = sce->coeffs + start;
847 const float *scaled = s->scoefs + start;
848 const int size = sce->ics.swb_sizes[g];
849 int scf, prev_scf, step;
850 int min_scf = 0, max_scf = 255;
851 float curdiff;
852 if (maxq[w*16+g] < 21.544) {
853 sce->zeroes[w*16+g] = 1;
854 start += size;
855 continue;
857 sce->zeroes[w*16+g] = 0;
858 scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
859 step = 16;
860 for (;;) {
861 float dist = 0.0f;
862 int quant_max;
864 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
865 int b;
866 dist += quantize_band_cost(s, coefs + w2*128,
867 scaled + w2*128,
868 sce->ics.swb_sizes[g],
869 scf,
870 ESC_BT,
871 lambda,
872 INFINITY,
873 &b);
874 dist -= b;
876 dist *= 1.0f / 512.0f / lambda;
877 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
878 if (quant_max >= 8191) { // too much, return to the previous quantizer
879 sce->sf_idx[w*16+g] = prev_scf;
880 break;
882 prev_scf = scf;
883 curdiff = fabsf(dist - uplim[w*16+g]);
884 if (curdiff == 0.0f)
885 step = 0;
886 else
887 step = fabsf(log2(curdiff));
888 if (dist > uplim[w*16+g])
889 step = -step;
890 if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
891 sce->sf_idx[w*16+g] = scf;
892 break;
894 scf += step;
895 if (step > 0)
896 min_scf = scf;
897 else
898 max_scf = scf;
900 start += size;
903 minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
904 for (i = 1; i < 128; i++) {
905 if (!sce->sf_idx[i])
906 sce->sf_idx[i] = sce->sf_idx[i-1];
907 else
908 minq = FFMIN(minq, sce->sf_idx[i]);
910 if (minq == INT_MAX)
911 minq = 0;
912 minq = FFMIN(minq, SCALE_MAX_POS);
913 maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
914 for (i = 126; i >= 0; i--) {
915 if (!sce->sf_idx[i])
916 sce->sf_idx[i] = sce->sf_idx[i+1];
917 sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
921 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
922 SingleChannelElement *sce,
923 const float lambda)
925 int start = 0, i, w, w2, g;
926 int minq = 255;
928 memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
929 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
930 start = w*128;
931 for (g = 0; g < sce->ics.num_swb; g++) {
932 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
933 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
934 if (band->energy <= band->threshold) {
935 sce->sf_idx[(w+w2)*16+g] = 218;
936 sce->zeroes[(w+w2)*16+g] = 1;
937 } else {
938 sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
939 sce->zeroes[(w+w2)*16+g] = 0;
941 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
945 for (i = 0; i < 128; i++) {
946 sce->sf_idx[i] = 140;
947 //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
949 //set the same quantizers inside window groups
950 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
951 for (g = 0; g < sce->ics.num_swb; g++)
952 for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
953 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
956 static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
957 const float lambda)
959 int start = 0, i, w, w2, g;
960 float M[128], S[128];
961 float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
962 SingleChannelElement *sce0 = &cpe->ch[0];
963 SingleChannelElement *sce1 = &cpe->ch[1];
964 if (!cpe->common_window)
965 return;
966 for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
967 for (g = 0; g < sce0->ics.num_swb; g++) {
968 if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
969 float dist1 = 0.0f, dist2 = 0.0f;
970 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
971 FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
972 FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
973 float minthr = FFMIN(band0->threshold, band1->threshold);
974 float maxthr = FFMAX(band0->threshold, band1->threshold);
975 for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
976 M[i] = (sce0->coeffs[start+w2*128+i]
977 + sce1->coeffs[start+w2*128+i]) * 0.5;
978 S[i] = sce0->coeffs[start+w2*128+i]
979 - sce1->coeffs[start+w2*128+i];
981 abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
982 abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
983 abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
984 abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
985 dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
986 L34,
987 sce0->ics.swb_sizes[g],
988 sce0->sf_idx[(w+w2)*16+g],
989 sce0->band_type[(w+w2)*16+g],
990 lambda / band0->threshold, INFINITY, NULL);
991 dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
992 R34,
993 sce1->ics.swb_sizes[g],
994 sce1->sf_idx[(w+w2)*16+g],
995 sce1->band_type[(w+w2)*16+g],
996 lambda / band1->threshold, INFINITY, NULL);
997 dist2 += quantize_band_cost(s, M,
998 M34,
999 sce0->ics.swb_sizes[g],
1000 sce0->sf_idx[(w+w2)*16+g],
1001 sce0->band_type[(w+w2)*16+g],
1002 lambda / maxthr, INFINITY, NULL);
1003 dist2 += quantize_band_cost(s, S,
1004 S34,
1005 sce1->ics.swb_sizes[g],
1006 sce1->sf_idx[(w+w2)*16+g],
1007 sce1->band_type[(w+w2)*16+g],
1008 lambda / minthr, INFINITY, NULL);
1010 cpe->ms_mask[w*16+g] = dist2 < dist1;
1012 start += sce0->ics.swb_sizes[g];
1017 AACCoefficientsEncoder ff_aac_coders[] = {
1019 search_for_quantizers_faac,
1020 encode_window_bands_info,
1021 quantize_and_encode_band,
1022 search_for_ms,
1025 search_for_quantizers_anmr,
1026 encode_window_bands_info,
1027 quantize_and_encode_band,
1028 search_for_ms,
1031 search_for_quantizers_twoloop,
1032 encode_window_bands_info,
1033 quantize_and_encode_band,
1034 search_for_ms,
1037 search_for_quantizers_fast,
1038 encode_window_bands_info,
1039 quantize_and_encode_band,
1040 search_for_ms,