Partially revert r20233, exp2f is not available on some BSDs, DOS and AVR32.
[FFMpeg-mirror/lagarith.git] / libavcodec / atrac3.c
blob907304948ccadcfc18bb47ca9751fc0e80244029
1 /*
2 * Atrac 3 compatible decoder
3 * Copyright (c) 2006-2008 Maxim Poliakovski
4 * Copyright (c) 2006-2008 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/atrac3.c
25 * Atrac 3 compatible decoder.
26 * This decoder handles Sony's ATRAC3 data.
28 * Container formats used to store atrac 3 data:
29 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
31 * To use this decoder, a calling application must supply the extradata
32 * bytes provided in the containers above.
35 #include <math.h>
36 #include <stddef.h>
37 #include <stdio.h>
39 #include "avcodec.h"
40 #include "get_bits.h"
41 #include "dsputil.h"
42 #include "bytestream.h"
44 #include "atrac.h"
45 #include "atrac3data.h"
47 #define JOINT_STEREO 0x12
48 #define STEREO 0x2
51 /* These structures are needed to store the parsed gain control data. */
52 typedef struct {
53 int num_gain_data;
54 int levcode[8];
55 int loccode[8];
56 } gain_info;
58 typedef struct {
59 gain_info gBlock[4];
60 } gain_block;
62 typedef struct {
63 int pos;
64 int numCoefs;
65 float coef[8];
66 } tonal_component;
68 typedef struct {
69 int bandsCoded;
70 int numComponents;
71 tonal_component components[64];
72 float prevFrame[1024];
73 int gcBlkSwitch;
74 gain_block gainBlock[2];
76 DECLARE_ALIGNED_16(float, spectrum[1024]);
77 DECLARE_ALIGNED_16(float, IMDCT_buf[1024]);
79 float delayBuf1[46]; ///<qmf delay buffers
80 float delayBuf2[46];
81 float delayBuf3[46];
82 } channel_unit;
84 typedef struct {
85 GetBitContext gb;
86 //@{
87 /** stream data */
88 int channels;
89 int codingMode;
90 int bit_rate;
91 int sample_rate;
92 int samples_per_channel;
93 int samples_per_frame;
95 int bits_per_frame;
96 int bytes_per_frame;
97 int pBs;
98 channel_unit* pUnits;
99 //@}
100 //@{
101 /** joint-stereo related variables */
102 int matrix_coeff_index_prev[4];
103 int matrix_coeff_index_now[4];
104 int matrix_coeff_index_next[4];
105 int weighting_delay[6];
106 //@}
107 //@{
108 /** data buffers */
109 float outSamples[2048];
110 uint8_t* decoded_bytes_buffer;
111 float tempBuf[1070];
112 //@}
113 //@{
114 /** extradata */
115 int atrac3version;
116 int delay;
117 int scrambled_stream;
118 int frame_factor;
119 //@}
120 } ATRAC3Context;
122 static DECLARE_ALIGNED_16(float,mdct_window[512]);
123 static VLC spectral_coeff_tab[7];
124 static float gain_tab1[16];
125 static float gain_tab2[31];
126 static FFTContext mdct_ctx;
127 static DSPContext dsp;
131 * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
132 * caused by the reverse spectra of the QMF.
134 * @param pInput float input
135 * @param pOutput float output
136 * @param odd_band 1 if the band is an odd band
139 static void IMLT(float *pInput, float *pOutput, int odd_band)
141 int i;
143 if (odd_band) {
145 * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
146 * or it gives better compression to do it this way.
147 * FIXME: It should be possible to handle this in ff_imdct_calc
148 * for that to happen a modification of the prerotation step of
149 * all SIMD code and C code is needed.
150 * Or fix the functions before so they generate a pre reversed spectrum.
153 for (i=0; i<128; i++)
154 FFSWAP(float, pInput[i], pInput[255-i]);
157 ff_imdct_calc(&mdct_ctx,pOutput,pInput);
159 /* Perform windowing on the output. */
160 dsp.vector_fmul(pOutput,mdct_window,512);
166 * Atrac 3 indata descrambling, only used for data coming from the rm container
168 * @param in pointer to 8 bit array of indata
169 * @param bits amount of bits
170 * @param out pointer to 8 bit array of outdata
173 static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
174 int i, off;
175 uint32_t c;
176 const uint32_t* buf;
177 uint32_t* obuf = (uint32_t*) out;
179 off = (intptr_t)inbuffer & 3;
180 buf = (const uint32_t*) (inbuffer - off);
181 c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
182 bytes += 3 + off;
183 for (i = 0; i < bytes/4; i++)
184 obuf[i] = c ^ buf[i];
186 if (off)
187 av_log(NULL,AV_LOG_DEBUG,"Offset of %d not handled, post sample on ffmpeg-dev.\n",off);
189 return off;
193 static av_cold void init_atrac3_transforms(ATRAC3Context *q) {
194 float enc_window[256];
195 int i;
197 /* Generate the mdct window, for details see
198 * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
199 for (i=0 ; i<256; i++)
200 enc_window[i] = (sin(((i + 0.5) / 256.0 - 0.5) * M_PI) + 1.0) * 0.5;
202 if (!mdct_window[0])
203 for (i=0 ; i<256; i++) {
204 mdct_window[i] = enc_window[i]/(enc_window[i]*enc_window[i] + enc_window[255-i]*enc_window[255-i]);
205 mdct_window[511-i] = mdct_window[i];
208 /* Initialize the MDCT transform. */
209 ff_mdct_init(&mdct_ctx, 9, 1, 1.0);
213 * Atrac3 uninit, free all allocated memory
216 static av_cold int atrac3_decode_close(AVCodecContext *avctx)
218 ATRAC3Context *q = avctx->priv_data;
220 av_free(q->pUnits);
221 av_free(q->decoded_bytes_buffer);
223 return 0;
227 / * Mantissa decoding
229 * @param gb the GetBit context
230 * @param selector what table is the output values coded with
231 * @param codingFlag constant length coding or variable length coding
232 * @param mantissas mantissa output table
233 * @param numCodes amount of values to get
236 static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
238 int numBits, cnt, code, huffSymb;
240 if (selector == 1)
241 numCodes /= 2;
243 if (codingFlag != 0) {
244 /* constant length coding (CLC) */
245 numBits = CLCLengthTab[selector];
247 if (selector > 1) {
248 for (cnt = 0; cnt < numCodes; cnt++) {
249 if (numBits)
250 code = get_sbits(gb, numBits);
251 else
252 code = 0;
253 mantissas[cnt] = code;
255 } else {
256 for (cnt = 0; cnt < numCodes; cnt++) {
257 if (numBits)
258 code = get_bits(gb, numBits); //numBits is always 4 in this case
259 else
260 code = 0;
261 mantissas[cnt*2] = seTab_0[code >> 2];
262 mantissas[cnt*2+1] = seTab_0[code & 3];
265 } else {
266 /* variable length coding (VLC) */
267 if (selector != 1) {
268 for (cnt = 0; cnt < numCodes; cnt++) {
269 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
270 huffSymb += 1;
271 code = huffSymb >> 1;
272 if (huffSymb & 1)
273 code = -code;
274 mantissas[cnt] = code;
276 } else {
277 for (cnt = 0; cnt < numCodes; cnt++) {
278 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
279 mantissas[cnt*2] = decTable1[huffSymb*2];
280 mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
287 * Restore the quantized band spectrum coefficients
289 * @param gb the GetBit context
290 * @param pOut decoded band spectrum
291 * @return outSubbands subband counter, fix for broken specification/files
294 static int decodeSpectrum (GetBitContext *gb, float *pOut)
296 int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
297 int subband_vlc_index[32], SF_idxs[32];
298 int mantissas[128];
299 float SF;
301 numSubbands = get_bits(gb, 5); // number of coded subbands
302 codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
304 /* Get the VLC selector table for the subbands, 0 means not coded. */
305 for (cnt = 0; cnt <= numSubbands; cnt++)
306 subband_vlc_index[cnt] = get_bits(gb, 3);
308 /* Read the scale factor indexes from the stream. */
309 for (cnt = 0; cnt <= numSubbands; cnt++) {
310 if (subband_vlc_index[cnt] != 0)
311 SF_idxs[cnt] = get_bits(gb, 6);
314 for (cnt = 0; cnt <= numSubbands; cnt++) {
315 first = subbandTab[cnt];
316 last = subbandTab[cnt+1];
318 subbWidth = last - first;
320 if (subband_vlc_index[cnt] != 0) {
321 /* Decode spectral coefficients for this subband. */
322 /* TODO: This can be done faster is several blocks share the
323 * same VLC selector (subband_vlc_index) */
324 readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
326 /* Decode the scale factor for this subband. */
327 SF = sf_table[SF_idxs[cnt]] * iMaxQuant[subband_vlc_index[cnt]];
329 /* Inverse quantize the coefficients. */
330 for (pIn=mantissas ; first<last; first++, pIn++)
331 pOut[first] = *pIn * SF;
332 } else {
333 /* This subband was not coded, so zero the entire subband. */
334 memset(pOut+first, 0, subbWidth*sizeof(float));
338 /* Clear the subbands that were not coded. */
339 first = subbandTab[cnt];
340 memset(pOut+first, 0, (1024 - first) * sizeof(float));
341 return numSubbands;
345 * Restore the quantized tonal components
347 * @param gb the GetBit context
348 * @param pComponent tone component
349 * @param numBands amount of coded bands
352 static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
354 int i,j,k,cnt;
355 int components, coding_mode_selector, coding_mode, coded_values_per_component;
356 int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
357 int band_flags[4], mantissa[8];
358 float *pCoef;
359 float scalefactor;
360 int component_count = 0;
362 components = get_bits(gb,5);
364 /* no tonal components */
365 if (components == 0)
366 return 0;
368 coding_mode_selector = get_bits(gb,2);
369 if (coding_mode_selector == 2)
370 return -1;
372 coding_mode = coding_mode_selector & 1;
374 for (i = 0; i < components; i++) {
375 for (cnt = 0; cnt <= numBands; cnt++)
376 band_flags[cnt] = get_bits1(gb);
378 coded_values_per_component = get_bits(gb,3);
380 quant_step_index = get_bits(gb,3);
381 if (quant_step_index <= 1)
382 return -1;
384 if (coding_mode_selector == 3)
385 coding_mode = get_bits1(gb);
387 for (j = 0; j < (numBands + 1) * 4; j++) {
388 if (band_flags[j >> 2] == 0)
389 continue;
391 coded_components = get_bits(gb,3);
393 for (k=0; k<coded_components; k++) {
394 sfIndx = get_bits(gb,6);
395 pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
396 max_coded_values = 1024 - pComponent[component_count].pos;
397 coded_values = coded_values_per_component + 1;
398 coded_values = FFMIN(max_coded_values,coded_values);
400 scalefactor = sf_table[sfIndx] * iMaxQuant[quant_step_index];
402 readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
404 pComponent[component_count].numCoefs = coded_values;
406 /* inverse quant */
407 pCoef = pComponent[component_count].coef;
408 for (cnt = 0; cnt < coded_values; cnt++)
409 pCoef[cnt] = mantissa[cnt] * scalefactor;
411 component_count++;
416 return component_count;
420 * Decode gain parameters for the coded bands
422 * @param gb the GetBit context
423 * @param pGb the gainblock for the current band
424 * @param numBands amount of coded bands
427 static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
429 int i, cf, numData;
430 int *pLevel, *pLoc;
432 gain_info *pGain = pGb->gBlock;
434 for (i=0 ; i<=numBands; i++)
436 numData = get_bits(gb,3);
437 pGain[i].num_gain_data = numData;
438 pLevel = pGain[i].levcode;
439 pLoc = pGain[i].loccode;
441 for (cf = 0; cf < numData; cf++){
442 pLevel[cf]= get_bits(gb,4);
443 pLoc [cf]= get_bits(gb,5);
444 if(cf && pLoc[cf] <= pLoc[cf-1])
445 return -1;
449 /* Clear the unused blocks. */
450 for (; i<4 ; i++)
451 pGain[i].num_gain_data = 0;
453 return 0;
457 * Apply gain parameters and perform the MDCT overlapping part
459 * @param pIn input float buffer
460 * @param pPrev previous float buffer to perform overlap against
461 * @param pOut output float buffer
462 * @param pGain1 current band gain info
463 * @param pGain2 next band gain info
466 static void gainCompensateAndOverlap (float *pIn, float *pPrev, float *pOut, gain_info *pGain1, gain_info *pGain2)
468 /* gain compensation function */
469 float gain1, gain2, gain_inc;
470 int cnt, numdata, nsample, startLoc, endLoc;
473 if (pGain2->num_gain_data == 0)
474 gain1 = 1.0;
475 else
476 gain1 = gain_tab1[pGain2->levcode[0]];
478 if (pGain1->num_gain_data == 0) {
479 for (cnt = 0; cnt < 256; cnt++)
480 pOut[cnt] = pIn[cnt] * gain1 + pPrev[cnt];
481 } else {
482 numdata = pGain1->num_gain_data;
483 pGain1->loccode[numdata] = 32;
484 pGain1->levcode[numdata] = 4;
486 nsample = 0; // current sample = 0
488 for (cnt = 0; cnt < numdata; cnt++) {
489 startLoc = pGain1->loccode[cnt] * 8;
490 endLoc = startLoc + 8;
492 gain2 = gain_tab1[pGain1->levcode[cnt]];
493 gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
495 /* interpolate */
496 for (; nsample < startLoc; nsample++)
497 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
499 /* interpolation is done over eight samples */
500 for (; nsample < endLoc; nsample++) {
501 pOut[nsample] = (pIn[nsample] * gain1 + pPrev[nsample]) * gain2;
502 gain2 *= gain_inc;
506 for (; nsample < 256; nsample++)
507 pOut[nsample] = (pIn[nsample] * gain1) + pPrev[nsample];
510 /* Delay for the overlapping part. */
511 memcpy(pPrev, &pIn[256], 256*sizeof(float));
515 * Combine the tonal band spectrum and regular band spectrum
516 * Return position of the last tonal coefficient
518 * @param pSpectrum output spectrum buffer
519 * @param numComponents amount of tonal components
520 * @param pComponent tonal components for this band
523 static int addTonalComponents (float *pSpectrum, int numComponents, tonal_component *pComponent)
525 int cnt, i, lastPos = -1;
526 float *pIn, *pOut;
528 for (cnt = 0; cnt < numComponents; cnt++){
529 lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
530 pIn = pComponent[cnt].coef;
531 pOut = &(pSpectrum[pComponent[cnt].pos]);
533 for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
534 pOut[i] += pIn[i];
537 return lastPos;
541 #define INTERPOLATE(old,new,nsample) ((old) + (nsample)*0.125*((new)-(old)))
543 static void reverseMatrixing(float *su1, float *su2, int *pPrevCode, int *pCurrCode)
545 int i, band, nsample, s1, s2;
546 float c1, c2;
547 float mc1_l, mc1_r, mc2_l, mc2_r;
549 for (i=0,band = 0; band < 4*256; band+=256,i++) {
550 s1 = pPrevCode[i];
551 s2 = pCurrCode[i];
552 nsample = 0;
554 if (s1 != s2) {
555 /* Selector value changed, interpolation needed. */
556 mc1_l = matrixCoeffs[s1*2];
557 mc1_r = matrixCoeffs[s1*2+1];
558 mc2_l = matrixCoeffs[s2*2];
559 mc2_r = matrixCoeffs[s2*2+1];
561 /* Interpolation is done over the first eight samples. */
562 for(; nsample < 8; nsample++) {
563 c1 = su1[band+nsample];
564 c2 = su2[band+nsample];
565 c2 = c1 * INTERPOLATE(mc1_l,mc2_l,nsample) + c2 * INTERPOLATE(mc1_r,mc2_r,nsample);
566 su1[band+nsample] = c2;
567 su2[band+nsample] = c1 * 2.0 - c2;
571 /* Apply the matrix without interpolation. */
572 switch (s2) {
573 case 0: /* M/S decoding */
574 for (; nsample < 256; nsample++) {
575 c1 = su1[band+nsample];
576 c2 = su2[band+nsample];
577 su1[band+nsample] = c2 * 2.0;
578 su2[band+nsample] = (c1 - c2) * 2.0;
580 break;
582 case 1:
583 for (; nsample < 256; nsample++) {
584 c1 = su1[band+nsample];
585 c2 = su2[band+nsample];
586 su1[band+nsample] = (c1 + c2) * 2.0;
587 su2[band+nsample] = c2 * -2.0;
589 break;
590 case 2:
591 case 3:
592 for (; nsample < 256; nsample++) {
593 c1 = su1[band+nsample];
594 c2 = su2[band+nsample];
595 su1[band+nsample] = c1 + c2;
596 su2[band+nsample] = c1 - c2;
598 break;
599 default:
600 assert(0);
605 static void getChannelWeights (int indx, int flag, float ch[2]){
607 if (indx == 7) {
608 ch[0] = 1.0;
609 ch[1] = 1.0;
610 } else {
611 ch[0] = (float)(indx & 7) / 7.0;
612 ch[1] = sqrt(2 - ch[0]*ch[0]);
613 if(flag)
614 FFSWAP(float, ch[0], ch[1]);
618 static void channelWeighting (float *su1, float *su2, int *p3)
620 int band, nsample;
621 /* w[x][y] y=0 is left y=1 is right */
622 float w[2][2];
624 if (p3[1] != 7 || p3[3] != 7){
625 getChannelWeights(p3[1], p3[0], w[0]);
626 getChannelWeights(p3[3], p3[2], w[1]);
628 for(band = 1; band < 4; band++) {
629 /* scale the channels by the weights */
630 for(nsample = 0; nsample < 8; nsample++) {
631 su1[band*256+nsample] *= INTERPOLATE(w[0][0], w[0][1], nsample);
632 su2[band*256+nsample] *= INTERPOLATE(w[1][0], w[1][1], nsample);
635 for(; nsample < 256; nsample++) {
636 su1[band*256+nsample] *= w[1][0];
637 su2[band*256+nsample] *= w[1][1];
645 * Decode a Sound Unit
647 * @param gb the GetBit context
648 * @param pSnd the channel unit to be used
649 * @param pOut the decoded samples before IQMF in float representation
650 * @param channelNum channel number
651 * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
655 static int decodeChannelSoundUnit (ATRAC3Context *q, GetBitContext *gb, channel_unit *pSnd, float *pOut, int channelNum, int codingMode)
657 int band, result=0, numSubbands, lastTonal, numBands;
659 if (codingMode == JOINT_STEREO && channelNum == 1) {
660 if (get_bits(gb,2) != 3) {
661 av_log(NULL,AV_LOG_ERROR,"JS mono Sound Unit id != 3.\n");
662 return -1;
664 } else {
665 if (get_bits(gb,6) != 0x28) {
666 av_log(NULL,AV_LOG_ERROR,"Sound Unit id != 0x28.\n");
667 return -1;
671 /* number of coded QMF bands */
672 pSnd->bandsCoded = get_bits(gb,2);
674 result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
675 if (result) return result;
677 pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
678 if (pSnd->numComponents == -1) return -1;
680 numSubbands = decodeSpectrum (gb, pSnd->spectrum);
682 /* Merge the decoded spectrum and tonal components. */
683 lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
686 /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
687 numBands = (subbandTab[numSubbands] - 1) >> 8;
688 if (lastTonal >= 0)
689 numBands = FFMAX((lastTonal + 256) >> 8, numBands);
692 /* Reconstruct time domain samples. */
693 for (band=0; band<4; band++) {
694 /* Perform the IMDCT step without overlapping. */
695 if (band <= numBands) {
696 IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
697 } else
698 memset(pSnd->IMDCT_buf, 0, 512 * sizeof(float));
700 /* gain compensation and overlapping */
701 gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
702 &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
703 &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
706 /* Swap the gain control buffers for the next frame. */
707 pSnd->gcBlkSwitch ^= 1;
709 return 0;
713 * Frame handling
715 * @param q Atrac3 private context
716 * @param databuf the input data
719 static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf)
721 int result, i;
722 float *p1, *p2, *p3, *p4;
723 uint8_t *ptr1;
725 if (q->codingMode == JOINT_STEREO) {
727 /* channel coupling mode */
728 /* decode Sound Unit 1 */
729 init_get_bits(&q->gb,databuf,q->bits_per_frame);
731 result = decodeChannelSoundUnit(q,&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
732 if (result != 0)
733 return (result);
735 /* Framedata of the su2 in the joint-stereo mode is encoded in
736 * reverse byte order so we need to swap it first. */
737 if (databuf == q->decoded_bytes_buffer) {
738 uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
739 ptr1 = q->decoded_bytes_buffer;
740 for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
741 FFSWAP(uint8_t,*ptr1,*ptr2);
743 } else {
744 const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
745 for (i = 0; i < q->bytes_per_frame; i++)
746 q->decoded_bytes_buffer[i] = *ptr2--;
749 /* Skip the sync codes (0xF8). */
750 ptr1 = q->decoded_bytes_buffer;
751 for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
752 if (i >= q->bytes_per_frame)
753 return -1;
757 /* set the bitstream reader at the start of the second Sound Unit*/
758 init_get_bits(&q->gb,ptr1,q->bits_per_frame);
760 /* Fill the Weighting coeffs delay buffer */
761 memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
762 q->weighting_delay[4] = get_bits1(&q->gb);
763 q->weighting_delay[5] = get_bits(&q->gb,3);
765 for (i = 0; i < 4; i++) {
766 q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
767 q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
768 q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
771 /* Decode Sound Unit 2. */
772 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
773 if (result != 0)
774 return (result);
776 /* Reconstruct the channel coefficients. */
777 reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
779 channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
781 } else {
782 /* normal stereo mode or mono */
783 /* Decode the channel sound units. */
784 for (i=0 ; i<q->channels ; i++) {
786 /* Set the bitstream reader at the start of a channel sound unit. */
787 init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels), (q->bits_per_frame)/q->channels);
789 result = decodeChannelSoundUnit(q,&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
790 if (result != 0)
791 return (result);
795 /* Apply the iQMF synthesis filter. */
796 p1= q->outSamples;
797 for (i=0 ; i<q->channels ; i++) {
798 p2= p1+256;
799 p3= p2+256;
800 p4= p3+256;
801 atrac_iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
802 atrac_iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
803 atrac_iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
804 p1 +=1024;
807 return 0;
812 * Atrac frame decoding
814 * @param avctx pointer to the AVCodecContext
817 static int atrac3_decode_frame(AVCodecContext *avctx,
818 void *data, int *data_size,
819 AVPacket *avpkt) {
820 const uint8_t *buf = avpkt->data;
821 int buf_size = avpkt->size;
822 ATRAC3Context *q = avctx->priv_data;
823 int result = 0, i;
824 const uint8_t* databuf;
825 int16_t* samples = data;
827 if (buf_size < avctx->block_align)
828 return buf_size;
830 /* Check if we need to descramble and what buffer to pass on. */
831 if (q->scrambled_stream) {
832 decode_bytes(buf, q->decoded_bytes_buffer, avctx->block_align);
833 databuf = q->decoded_bytes_buffer;
834 } else {
835 databuf = buf;
838 result = decodeFrame(q, databuf);
840 if (result != 0) {
841 av_log(NULL,AV_LOG_ERROR,"Frame decoding error!\n");
842 return -1;
845 if (q->channels == 1) {
846 /* mono */
847 for (i = 0; i<1024; i++)
848 samples[i] = av_clip_int16(round(q->outSamples[i]));
849 *data_size = 1024 * sizeof(int16_t);
850 } else {
851 /* stereo */
852 for (i = 0; i < 1024; i++) {
853 samples[i*2] = av_clip_int16(round(q->outSamples[i]));
854 samples[i*2+1] = av_clip_int16(round(q->outSamples[1024+i]));
856 *data_size = 2048 * sizeof(int16_t);
859 return avctx->block_align;
864 * Atrac3 initialization
866 * @param avctx pointer to the AVCodecContext
869 static av_cold int atrac3_decode_init(AVCodecContext *avctx)
871 int i;
872 const uint8_t *edata_ptr = avctx->extradata;
873 ATRAC3Context *q = avctx->priv_data;
874 static VLC_TYPE atrac3_vlc_table[4096][2];
875 static int vlcs_initialized = 0;
877 /* Take data from the AVCodecContext (RM container). */
878 q->sample_rate = avctx->sample_rate;
879 q->channels = avctx->channels;
880 q->bit_rate = avctx->bit_rate;
881 q->bits_per_frame = avctx->block_align * 8;
882 q->bytes_per_frame = avctx->block_align;
884 /* Take care of the codec-specific extradata. */
885 if (avctx->extradata_size == 14) {
886 /* Parse the extradata, WAV format */
887 av_log(avctx,AV_LOG_DEBUG,"[0-1] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown value always 1
888 q->samples_per_channel = bytestream_get_le32(&edata_ptr);
889 q->codingMode = bytestream_get_le16(&edata_ptr);
890 av_log(avctx,AV_LOG_DEBUG,"[8-9] %d\n",bytestream_get_le16(&edata_ptr)); //Dupe of coding mode
891 q->frame_factor = bytestream_get_le16(&edata_ptr); //Unknown always 1
892 av_log(avctx,AV_LOG_DEBUG,"[12-13] %d\n",bytestream_get_le16(&edata_ptr)); //Unknown always 0
894 /* setup */
895 q->samples_per_frame = 1024 * q->channels;
896 q->atrac3version = 4;
897 q->delay = 0x88E;
898 if (q->codingMode)
899 q->codingMode = JOINT_STEREO;
900 else
901 q->codingMode = STEREO;
903 q->scrambled_stream = 0;
905 if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
906 } else {
907 av_log(avctx,AV_LOG_ERROR,"Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
908 return -1;
911 } else if (avctx->extradata_size == 10) {
912 /* Parse the extradata, RM format. */
913 q->atrac3version = bytestream_get_be32(&edata_ptr);
914 q->samples_per_frame = bytestream_get_be16(&edata_ptr);
915 q->delay = bytestream_get_be16(&edata_ptr);
916 q->codingMode = bytestream_get_be16(&edata_ptr);
918 q->samples_per_channel = q->samples_per_frame / q->channels;
919 q->scrambled_stream = 1;
921 } else {
922 av_log(NULL,AV_LOG_ERROR,"Unknown extradata size %d.\n",avctx->extradata_size);
924 /* Check the extradata. */
926 if (q->atrac3version != 4) {
927 av_log(avctx,AV_LOG_ERROR,"Version %d != 4.\n",q->atrac3version);
928 return -1;
931 if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
932 av_log(avctx,AV_LOG_ERROR,"Unknown amount of samples per frame %d.\n",q->samples_per_frame);
933 return -1;
936 if (q->delay != 0x88E) {
937 av_log(avctx,AV_LOG_ERROR,"Unknown amount of delay %x != 0x88E.\n",q->delay);
938 return -1;
941 if (q->codingMode == STEREO) {
942 av_log(avctx,AV_LOG_DEBUG,"Normal stereo detected.\n");
943 } else if (q->codingMode == JOINT_STEREO) {
944 av_log(avctx,AV_LOG_DEBUG,"Joint stereo detected.\n");
945 } else {
946 av_log(avctx,AV_LOG_ERROR,"Unknown channel coding mode %x!\n",q->codingMode);
947 return -1;
950 if (avctx->channels <= 0 || avctx->channels > 2 /*|| ((avctx->channels * 1024) != q->samples_per_frame)*/) {
951 av_log(avctx,AV_LOG_ERROR,"Channel configuration error!\n");
952 return -1;
956 if(avctx->block_align >= UINT_MAX/2)
957 return -1;
959 /* Pad the data buffer with FF_INPUT_BUFFER_PADDING_SIZE,
960 * this is for the bitstream reader. */
961 if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE))) == NULL)
962 return AVERROR(ENOMEM);
965 /* Initialize the VLC tables. */
966 if (!vlcs_initialized) {
967 for (i=0 ; i<7 ; i++) {
968 spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
969 spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
970 init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
971 huff_bits[i], 1, 1,
972 huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
974 vlcs_initialized = 1;
977 init_atrac3_transforms(q);
979 atrac_generate_tables();
981 /* Generate gain tables. */
982 for (i=0 ; i<16 ; i++)
983 gain_tab1[i] = powf (2.0, (4 - i));
985 for (i=-15 ; i<16 ; i++)
986 gain_tab2[i+15] = powf (2.0, i * -0.125);
988 /* init the joint-stereo decoding data */
989 q->weighting_delay[0] = 0;
990 q->weighting_delay[1] = 7;
991 q->weighting_delay[2] = 0;
992 q->weighting_delay[3] = 7;
993 q->weighting_delay[4] = 0;
994 q->weighting_delay[5] = 7;
996 for (i=0; i<4; i++) {
997 q->matrix_coeff_index_prev[i] = 3;
998 q->matrix_coeff_index_now[i] = 3;
999 q->matrix_coeff_index_next[i] = 3;
1002 dsputil_init(&dsp, avctx);
1004 q->pUnits = av_mallocz(sizeof(channel_unit)*q->channels);
1005 if (!q->pUnits) {
1006 av_free(q->decoded_bytes_buffer);
1007 return AVERROR(ENOMEM);
1010 avctx->sample_fmt = SAMPLE_FMT_S16;
1011 return 0;
1015 AVCodec atrac3_decoder =
1017 .name = "atrac3",
1018 .type = CODEC_TYPE_AUDIO,
1019 .id = CODEC_ID_ATRAC3,
1020 .priv_data_size = sizeof(ATRAC3Context),
1021 .init = atrac3_decode_init,
1022 .close = atrac3_decode_close,
1023 .decode = atrac3_decode_frame,
1024 .long_name = NULL_IF_CONFIG_SMALL("Atrac 3 (Adaptive TRansform Acoustic Coding 3)"),