factoring out the make-dataframe2 methods into relevant files. We don-t know about...
[CommonLispStat.git] / src / numerics / optimize.lisp
blob36e16458c89160c217f4264695779af15849e957
1 ;;; -*- mode: lisp -*-
2 ;;; Copyright (c) 2005--2007, by A.J. Rossini <blindglobe@gmail.com>
3 ;;; See COPYRIGHT file for any additional restrictions (BSD license).
4 ;;; Since 1991, ANSI was finally finished. Edited for ANSI Common Lisp.
7 ;; matrix is in statistics, but should that be a predecessor?
9 ;;; FIXME:AJR: There is a need to figure out the proper symbols to
10 ;;; export. more importantly should there be any specialty package
11 ;;; that are exported for maximization?
13 (in-package :lisp-stat-optimize)
15 #+openmcl
16 (defctype size-t :unsigned-long)
17 #+sbcl
18 (defctype size-t :unsigned-int)
20 (defvar *maximize-callback-function* nil
21 "Used in generic optimization to determine function name -- symbol or string?")
23 (defvar *maximize-callback-arg* nil
24 "args to function to maximize")
27 ;;;
28 ;;; CFFI support using library for optimization work.
29 ;;;
31 ;; There is a problem with this particular approach, in terms of
32 ;; circular dependencies. We can not have this out-of-object call
33 ;; into optimize, at least not from here.
34 (cffi:defcallback ccl-maximize-callback :void ((n :int)
35 (px :pointer)
36 (pfval :pointer)
37 (pgrad :pointer)
38 (phess :pointer)
39 (pderivs :pointer))
40 (lisp-stat-optimize::maximize-callback n px pfval pgrad phess pderivs))
42 (cffi:defcfun ("register_maximize_callback" register-maximize-callback)
43 :void (x :pointer))
44 (register-maximize-callback (cffi:callback ccl-maximize-callback))
46 (cffi:defcfun ("ccl_numgrad_front" ccl-numgrad-front)
47 :void (x size-t) (y :pointer) (z :pointer) (u :double) (v :pointer))
48 (defun numgrad-front (x y z u v)
49 (ccl-numgrad-front x y z (float u 1d0) v))
51 (cffi:defcfun ("ccl_numhess_front" ccl-numhess-front)
52 :void (x size-t) (y :pointer) (z :pointer) (u :pointer) (v :pointer) (w :double) (a :pointer))
53 (defun numhess-front (x y z u v w a)
54 (ccl-numhess-front x y z u v (float w 1d0) a))
56 (cffi:defcfun ("ccl_minfo_maximize" ccl-minfo-maximize)
57 :void (x :pointer) (y :pointer) (z :pointer) (u :pointer) (v :pointer) (w :int))
58 (defun base-minfo-maximize (x y z u v w)
59 (ccl-minfo-maximize x y z u v w))
63 ;;;;
64 ;;;; minfo basics (internal??)
65 ;;;;
67 (defun init-minfo-ipar-values (n ipars &key
68 (TRUE 1)
69 (FALSE 0)
70 (k 0)
71 (m 0)
72 (itnlimit -1)
73 (backtrack TRUE)
74 (verbose 0)
75 (vals_suppl FALSE)
76 (exptilt TRUE)
77 (count 0)
78 (termcode 0))
79 "Initialize ipars (iteration parameters) by destructive modification."
80 (setf (aref ipars 0) n)
81 (setf (aref ipars 1) m)
82 (setf (aref ipars 2) k)
83 (setf (aref ipars 3) itnlimit)
84 (setf (aref ipars 4) backtrack)
85 (setf (aref ipars 5) verbose)
86 (setf (aref ipars 6) vals_suppl)
87 (setf (aref ipars 7) exptilt)
88 (setf (aref ipars 8) count)
89 (setf (aref ipars 9) termcode))
91 (defun init-minfo-dpar-values (h dpars &key
92 (typf 1.0)
93 (gradtol -1.0)
94 (steptol -1.0)
95 (maxstep -1.0)
96 (dflt 0.0)
97 (tilt 0.0)
98 (newtilt 0.0)
99 (hessadd 0.0))
100 "Initialize dpars (derivative parameters) by destructive modification."
101 (setf (aref dpars 0) typf)
102 (setf (aref dpars 1) h)
103 (setf (aref dpars 2) gradtol)
104 (setf (aref dpars 3) steptol)
105 (setf (aref dpars 4) maxstep)
106 (setf (aref dpars 5) dflt)
107 (setf (aref dpars 6) tilt)
108 (setf (aref dpars 7) newtilt)
109 (setf (aref dpars 8) hessadd))
111 (defun init-minfo-internals (n h internals)
112 (let ((ipars (aref internals 8))
113 (dpars (aref internals 9)))
114 (init-minfo-ipar-values n ipars)
115 (init-minfo-dpar-values h dpars)))
117 (defun new-minfo-internals (f x &key scale ((:derivstep h) -1.0))
118 (check-sequence x)
119 (check-real x) ;; becomes:
120 ;; (assert (reduce #'and (map #'(lambda (x) (or (typep x 'real) (typep x 'double)) x))) "x not real seq")
121 (check-one-real h)
122 (let ((n (length x)))
123 (when scale
124 (check-sequence scale)
125 (check-real scale)
126 (if (/= n (length scale)) (error "scale and x not the same length")))
127 (let ((internals (make-array 12)))
128 (setf (aref internals 0) f)
129 (setf (aref internals 3) (if (consp x) (copy-list x) (coerce x 'list)))
130 (setf (aref internals 4)
131 (if scale (copy-seq scale) (make-array n :initial-element 1.0)))
132 (setf (aref internals 5) (make-list (+ 1 n (* n n))))
133 (setf (aref internals 8) (make-array 10))
134 (setf (aref internals 9) (make-array 9))
135 (init-minfo-internals n h internals)
136 internals)))
138 (defun minfo-maximize (internals &optional verbose)
139 "This function does what?"
140 (let* ((f (aref internals 0))
141 (x (aref internals 3))
142 (fvals (aref internals 5))
143 (n (length x))
144 (v (if verbose (if (integerp verbose) verbose 1) -1)))
145 (setf (aref internals 3) (copy-list x))
146 (setf (aref internals 5) (copy-list fvals))
147 (let ((*maximize-callback-function* f)
148 (*maximize-callback-arg* (make-list n)))
149 (let* ((x (aref internals 3))
150 (scale (aref internals 4))
151 (fvals (aref internals 5))
152 (ip (aref internals 8))
153 (dp (aref internals 9))
154 (px (la-data-to-vector x +mode-re+))
155 (pscale (la-data-to-vector scale +mode-re+))
156 (pfvals (la-vector (length fvals) +mode-re+))
157 (pip (la-data-to-vector ip +mode-in+))
158 (pdp (la-data-to-vector dp +mode-re+)))
159 (unwind-protect
160 (progn
161 (base-minfo-maximize px pfvals pscale pip pdp v)) ;; access to C
162 (la-vector-to-data px n +mode-re+ x)
163 (la-vector-to-data pfvals (+ 1 n (* n n)) +mode-re+ fvals)
164 (la-vector-to-data pip (length ip) +mode-in+ ip)
165 (la-vector-to-data pdp (length dp) +mode-re+ dp))
166 (get-buf)))))
170 ;;;;
171 ;;;; Mode Info Prototype
172 ;;;;
174 (defvar minfo-proto)
175 (defproto minfo-proto '(internals))
177 #+xlisp (send minfo-proto :add-method :isnew #'|minfo-isnew|)
178 #+xlisp (send minfo-proto :add-method :maximize #'|minfo-maximize|)
179 #+xlisp (send minfo-proto :add-method :loglaplace #'|minfo-loglap|)
180 #-xlisp
181 (defmeth minfo-proto :isnew (&rest args)
182 (setf (proto-slot-value 'internals) (apply #'new-minfo-internals args)))
183 #-xlisp
184 (defmeth minfo-proto :maximize (&rest args)
185 (apply #'minfo-maximize (proto-slot-value 'internals) args))
187 (defmeth minfo-proto :x () (aref (proto-slot-value 'internals) 3))
188 (defmeth minfo-proto :scale () (aref (proto-slot-value 'internals) 4))
189 (defmeth minfo-proto :derivstep () (aref (aref (proto-slot-value 'internals) 9) 1))
190 (defmeth minfo-proto :tilt () (aref (aref (proto-slot-value 'internals) 9) 6))
192 (defmeth minfo-proto :f (&optional (val nil set))
193 (when set
194 (send self :set-no-vals-supplied)
195 (setf (aref (proto-slot-value 'internals) 0) val))
196 (aref (proto-slot-value 'internals) 0))
198 (defmeth minfo-proto :set-no-vals-supplied ()
199 (setf (aref (aref (proto-slot-value 'internals) 8) 6) 0))
201 (defmeth minfo-proto :exptilt (&optional (val nil set))
202 (if set
203 (let ((old (send self :exptilt)))
204 (setf (aref (aref (proto-slot-value 'internals) 8) 7) (if val 1 0))
205 (if (and (not (or (and old val) (and (not old) (not val))))
206 (/= (send self :tilt) 0.0))
207 (send self :set-no-vals-supplied))))
208 (= 1 (aref (aref (proto-slot-value 'internals) 8) 7)))
210 (defmeth minfo-proto :newtilt (&optional (val nil set))
211 (when set
212 (setf (aref (aref (proto-slot-value 'internals) 9) 7) (float val))
213 (if (/= (send self :tilt) 0.0) (send self :set-no-vals-supplied)))
214 (aref (aref (proto-slot-value 'internals) 9) 7))
216 (defmeth minfo-proto :gfuns (&optional (val nil set))
217 (when set
218 (if (or (not (consp val))
219 (not (every #'functionp val)))
220 (error "not all functions"))
221 (setf (aref (proto-slot-value 'internals) 1) val)
222 (setf (aref (aref (proto-slot-value 'internals) 8) 1) (length val))
223 (setf (aref (proto-slot-value 'internals) 10) (repeat 1.0 (length val)))
224 (if (/= (send self :tilt) 0.0) (send self :set-no-vals-supplied)))
225 (aref (proto-slot-value 'internals) 1))
227 (defmeth minfo-proto :cfuns (&optional (val nil set))
228 (when set
229 (if (or (not (consp val))
230 (not (every #'functionp val)))
231 (error "not all functions"))
232 (setf (aref (proto-slot-value 'internals) 2) val)
233 (setf (aref (aref (proto-slot-value 'internals) 8) 2) (length val))
234 (setf (aref (proto-slot-value 'internals) 7) (repeat 0.0 (length val)))
235 (setf (aref (proto-slot-value 'internals) 11) (repeat 0.0 (length val)))
236 (send self :set-no-vals-supplied))
237 (aref (proto-slot-value 'internals) 2))
239 (defmeth minfo-proto :ctarget (&optional (val nil set))
240 (when set
241 (if (/= (length val) (length (send self :ctarget)))
242 (error "bad target length"))
243 (setf (aref (proto-slot-value 'internals) 7) val))
244 (aref (proto-slot-value 'internals) 7))
246 (defmeth minfo-proto :fvals ()
247 (let* ((fv (aref (proto-slot-value 'internals) 5))
248 (n (length (send self :x)))
249 (val (select fv 0))
250 (grad (select fv (iseq 1 n)))
251 (hess (matrix (list n n) (select fv (iseq (+ 1 n) (+ n (* n n)))))))
252 (list val grad hess)))
254 (defmeth minfo-proto :copy ()
255 "Method: ()
257 Make a copy of an minfo instance."
258 (let ((obj (make-object minfo-proto))
259 (internals (copy-seq (proto-slot-value 'internals))))
260 (dotimes (i (length internals))
261 (let ((x (aref internals i)))
262 (if (typep x 'sequence)
263 (setf (aref internals i) (copy-seq x)))))
264 (send obj :add-slot 'internals internals)
265 obj))
267 (defmeth minfo-proto :derivscale ()
268 (let* ((step (^ machine-epsilon (/ 1 6)))
269 (hess (numhess (send self :f) (send self :x) (send self :scale) step))
270 (scale (pmax (abs (send self :x)) (sqrt (abs (/ (diagonal hess)))))))
271 (setf hess (numhess (send self :f) (send self :x) scale step))
272 (setf scale (pmax (abs (send self :x)) (sqrt (abs (/ (diagonal hess))))))
273 (setf (aref (proto-slot-value 'internals) 4) scale)
274 (setf (aref (aref (proto-slot-value 'internals) 9) 1) step)))
276 (defmeth minfo-proto :verbose (&optional (val nil set))
277 (when set
278 (setf (aref (aref (proto-slot-value 'internals) 8) 5)
279 (cond ((integerp val) val)
280 ((null val) 0)
281 (t 1))))
282 (aref (aref (proto-slot-value 'internals) 8) 5))
284 (defmeth minfo-proto :backtrack (&optional (val nil set))
285 (if set (setf (aref (aref (proto-slot-value 'internals) 8) 4) (if val 1 0)))
286 (aref (aref (proto-slot-value 'internals) 8) 4))
288 (defmeth minfo-proto :maxiter (&optional (val nil set))
289 (if set (setf (aref (aref (proto-slot-value 'internals) 8) 3)
290 (if (integerp val) val -1)))
291 (aref (aref (proto-slot-value 'internals) 8) 3))
293 (defmeth minfo-proto :tiltscale (&optional (val nil set))
294 (when set
295 (if (/= (length val) (length (send self :gfuns)))
296 (error "wrong size tilt scale sequence"))
297 (setf (aref (proto-slot-value 'internals) 10) val))
298 (aref (proto-slot-value 'internals) 10))
300 ;;;;
301 ;;;;
302 ;;;; Newton's Method with Backtracking
303 ;;;;
304 ;;;;
306 (defun newtonmax (f start &key
307 scale
308 (derivstep -1.0)
309 (count-limit -1)
310 (verbose 1)
311 return-derivs)
312 "Args:(f start &key scale derivstep (verbose 1) return-derivs)
313 Maximizes F starting from START using Newton's method with backtracking.
314 If RETURN-DERIVS is NIL returns location of maximum; otherwise returns
315 list of location, unction value, gradient and hessian at maximum.
316 SCALE should be a list of the typical magnitudes of the parameters.
317 DERIVSTEP is used in numerical derivatives and VERBOSE controls printing
318 of iteration information. COUNT-LIMIT limits the number of iterations"
319 (let ((verbose (if verbose (if (integerp verbose) verbose 1) 0))
320 (minfo (send minfo-proto :new f start
321 :scale scale :derivstep derivstep)))
322 (send minfo :maxiter count-limit)
323 (send minfo :derivscale)
324 (send minfo :maximize verbose)
325 (if return-derivs
326 (cons (send minfo :x) (- (send minfo :fvals)))
327 (send minfo :x))))
330 ;;; Nelder-Mead Simplex Method
333 ;;; Simplex Prototype
335 (defvar simplex-proto)
336 (defproto simplex-proto '(f simplex))
338 (defun nelmeadmax (f start &key
339 (size 1)
340 (epsilon (sqrt machine-epsilon))
341 (count-limit 500)
342 (verbose t)
343 (alpha 1.0)
344 (beta 0.5)
345 (gamma 2.0)
346 (delta 0.5))
347 "Args: (f start &key (size 1) (epsilon (sqrt machine-epsilon))
348 (count-limit 500) (verbose t) alpha beta gamma delta)
349 Maximizes F using the Nelder-Mead simplex method. START can be a
350 starting simplex - a list of N+1 points, with N=dimension of problem,
351 or a single point. If start is a single point you should give the
352 size of the initial simplex as SIZE, a sequence of length N. Default is
353 all 1's. EPSILON is the convergence tolerance. ALPHA-DELTA can be used to
354 control the behavior of simplex algorithm."
355 (let ((s (send simplex-proto :new f start size)))
356 (do ((best (send s :best-point) (send s :best-point))
357 (count 0 (+ count 1))
358 next)
359 ((or (< (send s :relative-range) epsilon) (>= count count-limit))
360 (if (and verbose (>= count count-limit))
361 (format t "Iteration limit exceeded.~%"))
362 (send s :point-location (send s :best-point)))
363 (setf next (send s :extrapolate-from-worst (- alpha)))
364 (if (send s :is-worse best next)
365 (setf next (send s :extrapolate-from-worst gamma))
366 (when (send s :is-worse next (send s :second-worst-point))
367 (setf next (send s :extrapolate-from-worst beta))
368 (if (send s :is-worse next (send s :worst-point))
369 (send s :shrink-to-best delta))))
370 (if verbose
371 (format t "Value = ~10g~%"
372 (send s :point-value (send s :best-point)))))))
377 ;;; Simplex Points
380 (defmeth simplex-proto :make-point (x)
381 (let ((f (send self :f)))
382 (if f
383 (let ((val (funcall f x)))
384 (cons (if (consp val) (car val) val) x))
385 (cons nil x))))
387 (defmeth simplex-proto :point-value (x) (car x))
389 (defmeth simplex-proto :point-location (x) (cdr x))
391 (defmeth simplex-proto :is-worse (x y)
392 (< (send self :point-value x) (send self :point-value y)))
395 ;;; Making New Simplices
398 (defmeth simplex-proto :isnew (f start &optional size)
399 (send self :simplex start size)
400 (send self :f f))
403 ;;; Slot Accessors and Mutators
406 (defmeth simplex-proto :simplex (&optional new size)
407 (if new
408 (let ((simplex
409 (if (and (consp new) (typep (car new) 'sequence))
410 (if (/= (length new) (+ 1 (length (car new))))
411 (error "bad simplex data")
412 (copy-list new))
413 (let* ((n (length new))
414 (size (if size size (repeat 1 n)))
415 ; (pts (- (* 2 (uniform-rand (repeat n (+ n 1)))) 1)))
416 (diag (* 2 size (- (random (repeat 2 n)) .5)))
417 (pts (cons (repeat 0 n)
418 (mapcar #'(lambda (x) (coerce x 'list))
419 (column-list (diagonal diag))))))
420 (mapcar #'(lambda (x) (reduce #'+ (list (* size x) new))) pts)))))
421 (setf (proto-slot-value 'simplex)
422 (mapcar #'(lambda (x) (send self :make-point x)) simplex))
423 (send self :sort-simplex)))
424 (proto-slot-value 'simplex))
426 (defmeth simplex-proto :f (&optional f)
427 (when f
428 (setf (proto-slot-value 'f) f)
429 (let ((simplex
430 (mapcar #'(lambda (x) (send self :point-location x))
431 (send self :simplex))))
432 (send self :simplex simplex)))
433 (proto-slot-value 'f))
435 (defmeth simplex-proto :sort-simplex ()
436 (if (send self :f)
437 (setf (proto-slot-value 'simplex)
438 (sort (proto-slot-value 'simplex)
439 #'(lambda (x y) (send self :is-worse x y))))))
442 ;;; Other Methods Using List Representation of SImplex
445 (defmeth simplex-proto :best-point () (car (last (send self :simplex))))
446 (defmeth simplex-proto :worst-point () (first (send self :simplex)))
447 (defmeth simplex-proto :second-worst-point () (second (send self :simplex)))
448 (defmeth simplex-proto :replace-point (new old)
449 (let* ((simplex (send self :simplex))
450 (n (position old simplex)))
451 (when n
452 (setf (nth n simplex) new)
453 (send self :sort-simplex))))
454 (defmeth simplex-proto :mean-opposite-face (x)
455 (let ((face (mapcar #'(lambda (x) (send self :point-location x))
456 (remove x (send self :simplex)))))
457 (/ (reduce #'+ face) (length face))))
460 ;;; Iteration Step Methods
463 (defmeth simplex-proto :extrapolate-from-worst (fac)
464 (let* ((worst (send self :worst-point))
465 (wloc (send self :point-location worst))
466 (delta (- (send self :mean-opposite-face worst) wloc))
467 (new (send self :make-point (+ wloc (* (- 1 fac) delta)))))
468 (if (send self :is-worse worst new) (send self :replace-point new worst))
469 new))
471 (defmeth simplex-proto :shrink-to-best (fac)
472 (let* ((best (send self :best-point))
473 (bloc (send self :point-location best)))
474 (dolist (x (copy-list (send self :simplex)))
475 (if (not (eq x best))
476 (send self :replace-point
477 (send self :make-point
478 (+ bloc
479 (* fac
480 (- (send self :point-location x) bloc))))
481 x)))))
483 (defmeth simplex-proto :relative-range ()
484 (let ((best (send self :point-value (send self :best-point)))
485 (worst (send self :point-value (send self :worst-point))))
486 (* 2 (/ (abs (- best worst)) (+ 1 (abs best) (abs worst))))))
491 ;;;;
492 ;;;; Maximization and Numerical Derivatives
493 ;;;;
496 (defun data2double (n data ptr)
497 (declare (fixnum n))
498 (let* ((seq (compound-data-seq data))
499 (elem (make-next-element seq)))
500 (if (/= (length seq) n) (error "bad data size"))
501 (dotimes (i n)
502 (declare (fixnum i))
503 (la-put-double ptr i (get-next-element elem i)))))
505 (defun maximize-callback (n px pfval pgrad phess pderivs)
506 (la-vector-to-data px n +mode-re+ *maximize-callback-arg*)
507 (let* ((val (funcall *maximize-callback-function* *maximize-callback-arg*))
508 (derivs (if (consp val) (- (length val) 1) 0)))
509 (la-put-integer pderivs 0 derivs)
510 (la-put-double pfval 0 (if (consp val) (first val) val))
511 (if (<= 1 derivs) (data2double n (second val) pgrad))
512 (if (<= 2 derivs) (data2double (* n n) (third val) phess))))
514 (defun numgrad (f x &optional scale (h -1.0))
515 "Args: (f x &optional scale derivstep)
516 Computes the numerical gradient of F at X."
517 (check-sequence x)
518 (check-real x)
519 (when scale
520 (check-sequence scale)
521 (check-real scale))
522 (check-one-real h)
523 (let* ((n (length x))
524 (result (make-list n)))
525 (if (and scale (/= n (length scale)))
526 (error "scale not the same length as x"))
527 (let ((*maximize-callback-function* f)
528 (*maximize-callback-arg* (make-list n)))
529 (let ((px (la-data-to-vector x +mode-re+))
530 (pgrad (la-vector n +mode-re+))
531 (pscale (la-data-to-vector
532 (if scale scale (make-list n :initial-element 1.0))
533 +mode-re+)))
534 (unwind-protect
535 (progn
536 (numgrad-front n px pgrad h pscale)
537 (la-vector-to-data pgrad n +mode-re+ result))
538 (la-free-vector px)
539 (la-free-vector pgrad)
540 (la-free-vector pscale))))
541 result))
543 (defun numhess (f x &optional scale (h -1.0) all)
544 "Args: (f x &optional scale derivstep)
545 Computes the numerical Hessian matrix of F at X."
546 (check-sequence x)
547 (check-real x)
548 (when scale
549 (check-sequence scale)
550 (check-real scale))
551 (check-one-real h)
552 (let* ((n (length x))
553 (result (if all
554 (list nil (make-list n) (make-array (list n n)))
555 (make-array (list n n)))))
556 (if (and scale (/= n (length scale)))
557 (error "scale not the same length as x"))
558 (let ((*maximize-callback-function* f)
559 (*maximize-callback-arg* (make-list n)))
560 (let ((hess-data (compound-data-seq (if all (third result) result)))
561 (px (la-data-to-vector x +mode-re+))
562 (pf (la-vector 1 +mode-re+))
563 (pgrad (la-vector n +mode-re+))
564 (phess (la-vector (* n n) +mode-re+))
565 (pscale (la-data-to-vector
566 (if scale scale (make-list n :initial-element 1.0))
567 +mode-re+)))
568 (unwind-protect
569 (progn
570 (numhess-front n px pf pgrad phess h pscale)
571 (when all
572 (setf (first result) (la-get-double pf 0))
573 (la-vector-to-data pgrad n +mode-re+ (second result)))
574 (la-vector-to-data phess (* n n) +mode-re+ hess-data))
575 (la-free-vector pf)
576 (la-free-vector px)
577 (la-free-vector pgrad)
578 (la-free-vector phess)
579 (la-free-vector pscale))))
580 result))