add missing function spec, but needs real code.
[CommonLispStat.git] / optimize.lisp
blob98f21b2c181fa5a1c5dcb865f1807d4f3332ab15
1 ;;; -*- mode: lisp -*-
2 ;;; Copyright (c) 2005--2007, by A.J. Rossini <blindglobe@gmail.com>
3 ;;; See COPYRIGHT file for any additional restrictions (BSD license).
4 ;;; Since 1991, ANSI was finally finished. Edited for ANSI Common Lisp.
6 (in-package :cl-user)
8 (defpackage :lisp-stat-optimize
9 (:use :common-lisp
10 :lisp-stat-ffi-int
11 :lisp-stat-object-system
12 :lisp-stat-types
13 :lisp-stat-compound-data
14 :lisp-stat-math
15 :lisp-stat-basics
16 :lisp-stat-matrix
17 :lisp-stat-linalg-data
18 :lisp-stat-linalg)
19 (:shadowing-import-from :lisp-stat-object-system
20 slot-value call-method call-next-method)
21 (:export
22 ;; derivatives
23 numgrad numhess
25 ;; optimization
26 newtonmax nelmeadmax))
30 ;;; FIXME:AJR: There is a need to figure out the proper symbols to
31 ;;; export. more importantly should there be any specialty package
32 z;;; that are exported for maximization?
34 (in-package :lisp-stat-optimize)
36 (defvar *maximize-callback-function* nil
37 "Used in generic optimization to determine function name -- symbol or string?")
39 (defvar *maximize-callback-arg* nil
40 "args to function to maximize")
43 ;;;
44 ;;; CFFI support using library for optimization work.
45 ;;;
47 ;; There is a problem with this particular approach, in terms of
48 ;; circular dependencies. We can not have this out-of-object call
49 ;; into optimize, at least not from here.
50 (cffi:defcallback ccl-maximize-callback :void ((n :int)
51 (px :pointer)
52 (pfval :pointer)
53 (pgrad :pointer)
54 (phess :pointer)
55 (pderivs :pointer))
56 (lisp-stat-optimize::maximize-callback n px pfval pgrad phess pderivs))
58 (cffi:defcfun ("register_maximize_callback" register-maximize-callback)
59 :void (x :pointer))
60 (register-maximize-callback (cffi:callback ccl-maximize-callback))
62 (cffi:defcfun ("ccl_numgrad_front" ccl-numgrad-front)
63 :int (x :int) (y :pointer) (z :pointer) (u :double) (v :pointer))
64 (defun numgrad-front (x y z u v)
65 (ccl-numgrad-front x y z (float u 1d0) v))
67 (cffi:defcfun ("ccl_numhess_front" ccl-numhess-front)
68 :int (x :int) (y :pointer) (z :pointer) (u :pointer) (v :pointer) (w :double) (a :pointer))
69 (defun numhess-front (x y z u v w a)
70 (ccl-numhess-front x y z u v (float w 1d0) a))
72 (cffi:defcfun ("ccl_minfo_maximize" ccl-minfo-maximize)
73 :int (x :pointer) (y :pointer) (z :pointer) (u :pointer) (v :pointer) (w :int))
74 (defun base-minfo-maximize (x y z u v w)
75 (ccl-minfo-maximize x y z u v w))
79 ;;;;
80 ;;;; minfo basics (internal??)
81 ;;;;
83 (defun init-minfo-ipar-values (n ipars &key
84 (TRUE 1)
85 (FALSE 0)
86 (k 0)
87 (m 0)
88 (itnlimit -1)
89 (backtrack TRUE)
90 (verbose 0)
91 (vals_suppl FALSE)
92 (exptilt TRUE)
93 (count 0)
94 (termcode 0))
95 "Initialize ipars (iteration parameters) by destructive modification."
96 (setf (aref ipars 0) n)
97 (setf (aref ipars 1) m)
98 (setf (aref ipars 2) k)
99 (setf (aref ipars 3) itnlimit)
100 (setf (aref ipars 4) backtrack)
101 (setf (aref ipars 5) verbose)
102 (setf (aref ipars 6) vals_suppl)
103 (setf (aref ipars 7) exptilt)
104 (setf (aref ipars 8) count)
105 (setf (aref ipars 9) termcode))
107 (defun init-minfo-dpar-values (h dpars &key
108 (typf 1.0)
109 (gradtol -1.0)
110 (steptol -1.0)
111 (maxstep -1.0)
112 (dflt 0.0)
113 (tilt 0.0)
114 (newtilt 0.0)
115 (hessadd 0.0))
116 "Initialize dpars (derivative parameters) by destructive modification."
117 (setf (aref dpars 0) typf)
118 (setf (aref dpars 1) h)
119 (setf (aref dpars 2) gradtol)
120 (setf (aref dpars 3) steptol)
121 (setf (aref dpars 4) maxstep)
122 (setf (aref dpars 5) dflt)
123 (setf (aref dpars 6) tilt)
124 (setf (aref dpars 7) newtilt)
125 (setf (aref dpars 8) hessadd))
127 (defun init-minfo-internals (n h internals)
128 (let ((ipars (aref internals 8))
129 (dpars (aref internals 9)))
130 (init-minfo-ipar-values n ipars)
131 (init-minfo-dpar-values h dpars)))
133 (defun new-minfo-internals (f x &key scale ((:derivstep h) -1.0))
134 (check-sequence x)
135 (check-real x)
136 (check-one-real h)
137 (let ((n (length x)))
138 (when scale
139 (check-sequence scale)
140 (check-real scale)
141 (if (/= n (length scale)) (error "scale and x not the same length")))
142 (let ((internals (make-array 12)))
143 (setf (aref internals 0) f)
144 (setf (aref internals 3) (if (consp x) (copy-list x) (coerce x 'list)))
145 (setf (aref internals 4)
146 (if scale (copy-seq scale) (make-array n :initial-element 1.0)))
147 (setf (aref internals 5) (make-list (+ 1 n (* n n))))
148 (setf (aref internals 8) (make-array 10))
149 (setf (aref internals 9) (make-array 9))
150 (init-minfo-internals n h internals)
151 internals)))
153 (defun minfo-maximize (internals &optional verbose)
154 "This function does what?"
155 (let* ((f (aref internals 0))
156 (x (aref internals 3))
157 (fvals (aref internals 5))
158 (n (length x))
159 (v (if verbose (if (integerp verbose) verbose 1) -1)))
160 (setf (aref internals 3) (copy-list x))
161 (setf (aref internals 5) (copy-list fvals))
162 (let ((*maximize-callback-function* f)
163 (*maximize-callback-arg* (make-list n)))
164 (let* ((x (aref internals 3))
165 (scale (aref internals 4))
166 (fvals (aref internals 5))
167 (ip (aref internals 8))
168 (dp (aref internals 9))
169 (px (la-data-to-vector x mode-re))
170 (pscale (la-data-to-vector scale mode-re))
171 (pfvals (la-vector (length fvals) mode-re))
172 (pip (la-data-to-vector ip mode-in))
173 (pdp (la-data-to-vector dp mode-re)))
174 (unwind-protect
175 (progn
176 (base-minfo-maximize px pfvals pscale pip pdp v)) ;; access to C
177 (la-vector-to-data px n mode-re x)
178 (la-vector-to-data pfvals (+ 1 n (* n n)) mode-re fvals)
179 (la-vector-to-data pip (length ip) mode-in ip)
180 (la-vector-to-data pdp (length dp) mode-re dp))
181 (get-buf)))))
185 ;;;;
186 ;;;; Mode Info Prototype
187 ;;;;
189 (defproto minfo-proto '(internals))
191 #+xlisp (send minfo-proto :add-method :isnew #'|minfo-isnew|)
192 #+xlisp (send minfo-proto :add-method :maximize #'|minfo-maximize|)
193 #+xlisp (send minfo-proto :add-method :loglaplace #'|minfo-loglap|)
194 #-xlisp
195 (defmeth minfo-proto :isnew (&rest args)
196 (setf (slot-value 'internals) (apply #'new-minfo-internals args)))
197 #-xlisp
198 (defmeth minfo-proto :maximize (&rest args)
199 (apply #'minfo-maximize (slot-value 'internals) args))
201 (defmeth minfo-proto :x () (aref (slot-value 'internals) 3))
202 (defmeth minfo-proto :scale () (aref (slot-value 'internals) 4))
203 (defmeth minfo-proto :derivstep () (aref (aref (slot-value 'internals) 9) 1))
204 (defmeth minfo-proto :tilt () (aref (aref (slot-value 'internals) 9) 6))
206 (defmeth minfo-proto :f (&optional (val nil set))
207 (when set
208 (send self :set-no-vals-supplied)
209 (setf (aref (slot-value 'internals) 0) val))
210 (aref (slot-value 'internals) 0))
212 (defmeth minfo-proto :set-no-vals-supplied ()
213 (setf (aref (aref (slot-value 'internals) 8) 6) 0))
215 (defmeth minfo-proto :exptilt (&optional (val nil set))
216 (if set
217 (let ((old (send self :exptilt)))
218 (setf (aref (aref (slot-value 'internals) 8) 7) (if val 1 0))
219 (if (and (not (or (and old val) (and (not old) (not val))))
220 (/= (send self :tilt) 0.0))
221 (send self :set-no-vals-supplied))))
222 (= 1 (aref (aref (slot-value 'internals) 8) 7)))
224 (defmeth minfo-proto :newtilt (&optional (val nil set))
225 (when set
226 (setf (aref (aref (slot-value 'internals) 9) 7) (float val))
227 (if (/= (send self :tilt) 0.0) (send self :set-no-vals-supplied)))
228 (aref (aref (slot-value 'internals) 9) 7))
230 (defmeth minfo-proto :gfuns (&optional (val nil set))
231 (when set
232 (if (or (not (consp val))
233 (not (every #'functionp val)))
234 (error "not all functions"))
235 (setf (aref (slot-value 'internals) 1) val)
236 (setf (aref (aref (slot-value 'internals) 8) 1) (length val))
237 (setf (aref (slot-value 'internals) 10) (repeat 1.0 (length val)))
238 (if (/= (send self :tilt) 0.0) (send self :set-no-vals-supplied)))
239 (aref (slot-value 'internals) 1))
241 (defmeth minfo-proto :cfuns (&optional (val nil set))
242 (when set
243 (if (or (not (consp val))
244 (not (every #'functionp val)))
245 (error "not all functions"))
246 (setf (aref (slot-value 'internals) 2) val)
247 (setf (aref (aref (slot-value 'internals) 8) 2) (length val))
248 (setf (aref (slot-value 'internals) 7) (repeat 0.0 (length val)))
249 (setf (aref (slot-value 'internals) 11) (repeat 0.0 (length val)))
250 (send self :set-no-vals-supplied))
251 (aref (slot-value 'internals) 2))
253 (defmeth minfo-proto :ctarget (&optional (val nil set))
254 (when set
255 (if (/= (length val) (length (send self :ctarget)))
256 (error "bad target length"))
257 (setf (aref (slot-value 'internals) 7) val))
258 (aref (slot-value 'internals) 7))
260 (defmeth minfo-proto :fvals ()
261 (let* ((fv (aref (slot-value 'internals) 5))
262 (n (length (send self :x)))
263 (val (select fv 0))
264 (grad (select fv (iseq 1 n)))
265 (hess (matrix (list n n) (select fv (iseq (+ 1 n) (+ n (* n n)))))))
266 (list val grad hess)))
268 (defmeth minfo-proto :copy ()
269 (let ((obj (make-object minfo-proto))
270 (internals (copy-seq (slot-value 'internals))))
271 (dotimes (i (length internals))
272 (let ((x (aref internals i)))
273 (if (sequencep x)
274 (setf (aref internals i) (copy-seq x)))))
275 (send obj :add-slot 'internals internals)
276 obj))
278 (defmeth minfo-proto :derivscale ()
279 (let* ((step (^ machine-epsilon (/ 1 6)))
280 (hess (numhess (send self :f) (send self :x) (send self :scale) step))
281 (scale (pmax (abs (send self :x)) (sqrt (abs (/ (diagonal hess)))))))
282 (setf hess (numhess (send self :f) (send self :x) scale step))
283 (setf scale (pmax (abs (send self :x)) (sqrt (abs (/ (diagonal hess))))))
284 (setf (aref (slot-value 'internals) 4) scale)
285 (setf (aref (aref (slot-value 'internals) 9) 1) step)))
287 (defmeth minfo-proto :verbose (&optional (val nil set))
288 (when set
289 (setf (aref (aref (slot-value 'internals) 8) 5)
290 (cond ((integerp val) val)
291 ((null val) 0)
292 (t 1))))
293 (aref (aref (slot-value 'internals) 8) 5))
295 (defmeth minfo-proto :backtrack (&optional (val nil set))
296 (if set (setf (aref (aref (slot-value 'internals) 8) 4) (if val 1 0)))
297 (aref (aref (slot-value 'internals) 8) 4))
299 (defmeth minfo-proto :maxiter (&optional (val nil set))
300 (if set (setf (aref (aref (slot-value 'internals) 8) 3)
301 (if (integerp val) val -1)))
302 (aref (aref (slot-value 'internals) 8) 3))
304 (defmeth minfo-proto :tiltscale (&optional (val nil set))
305 (when set
306 (if (/= (length val) (length (send self :gfuns)))
307 (error "wrong size tilt scale sequence"))
308 (setf (aref (slot-value 'internals) 10) val))
309 (aref (slot-value 'internals) 10))
311 ;;;;
312 ;;;;
313 ;;;; Newton's Method with Backtracking
314 ;;;;
315 ;;;;
317 (defun newtonmax (f start &key
318 scale
319 (derivstep -1.0)
320 (count-limit -1)
321 (verbose 1)
322 return-derivs)
323 "Args:(f start &key scale derivstep (verbose 1) return-derivs)
324 Maximizes F starting from START using Newton's method with backtracking.
325 If RETURN-DERIVS is NIL returns location of maximum; otherwise returns
326 list of location, unction value, gradient and hessian at maximum.
327 SCALE should be a list of the typical magnitudes of the parameters.
328 DERIVSTEP is used in numerical derivatives and VERBOSE controls printing
329 of iteration information. COUNT-LIMIT limits the number of iterations"
330 (let ((verbose (if verbose (if (integerp verbose) verbose 1) 0))
331 (minfo (send minfo-proto :new f start
332 :scale scale :derivstep derivstep)))
333 (send minfo :maxiter count-limit)
334 (send minfo :derivscale)
335 (send minfo :maximize verbose)
336 (if return-derivs
337 (cons (send minfo :x) (- (send minfo :fvals)))
338 (send minfo :x))))
340 ;;;;
341 ;;;;
342 ;;;; Nelder-Mead Simplex Method
343 ;;;;
344 ;;;;
346 (defun nelmeadmax (f start &key
347 (size 1)
348 (epsilon (sqrt machine-epsilon))
349 (count-limit 500)
350 (verbose t)
351 (alpha 1.0)
352 (beta 0.5)
353 (gamma 2.0)
354 (delta 0.5))
355 "Args: (f start &key (size 1) (epsilon (sqrt machine-epsilon))
356 (count-limit 500) (verbose t) alpha beta gamma delta)
357 Maximizes F using the Nelder-Mead simplex method. START can be a
358 starting simplex - a list of N+1 points, with N=dimension of problem,
359 or a single point. If start is a single point you should give the
360 size of the initial simplex as SIZE, a sequence of length N. Default is
361 all 1's. EPSILON is the convergence tolerance. ALPHA-DELTA can be used to
362 control the behavior of simplex algorithm."
363 (let ((s (send simplex-proto :new f start size)))
364 (do ((best (send s :best-point) (send s :best-point))
365 (count 0 (+ count 1))
366 next)
367 ((or (< (send s :relative-range) epsilon) (>= count count-limit))
368 (if (and verbose (>= count count-limit))
369 (format t "Iteration limit exceeded.~%"))
370 (send s :point-location (send s :best-point)))
371 (setf next (send s :extrapolate-from-worst (- alpha)))
372 (if (send s :is-worse best next)
373 (setf next (send s :extrapolate-from-worst gamma))
374 (when (send s :is-worse next (send s :second-worst-point))
375 (setf next (send s :extrapolate-from-worst beta))
376 (if (send s :is-worse next (send s :worst-point))
377 (send s :shrink-to-best delta))))
378 (if verbose
379 (format t "Value = ~10g~%"
380 (send s :point-value (send s :best-point)))))))
384 ;;; Simplex Prototype
387 (defproto simplex-proto '(f simplex))
390 ;;; Simplex Points
393 (defmeth simplex-proto :make-point (x)
394 (let ((f (send self :f)))
395 (if f
396 (let ((val (funcall f x)))
397 (cons (if (consp val) (car val) val) x))
398 (cons nil x))))
400 (defmeth simplex-proto :point-value (x) (car x))
402 (defmeth simplex-proto :point-location (x) (cdr x))
404 (defmeth simplex-proto :is-worse (x y)
405 (< (send self :point-value x) (send self :point-value y)))
408 ;;; Making New Simplices
411 (defmeth simplex-proto :isnew (f start &optional size)
412 (send self :simplex start size)
413 (send self :f f))
416 ;;; Slot Accessors and Mutators
419 (defmeth simplex-proto :simplex (&optional new size)
420 (if new
421 (let ((simplex
422 (if (and (consp new) (sequencep (car new)))
423 (if (/= (length new) (+ 1 (length (car new))))
424 (error "bad simplex data")
425 (copy-list new))
426 (let* ((n (length new))
427 (size (if size size (repeat 1 n)))
428 ; (pts (- (* 2 (uniform-rand (repeat n (+ n 1)))) 1)))
429 (diag (* 2 size (- (random (repeat 2 n)) .5)))
430 (pts (cons (repeat 0 n)
431 (mapcar #'(lambda (x) (coerce x 'list))
432 (column-list (diagonal diag))))))
433 (mapcar #'(lambda (x) (reduce #'+ (list (* size x) new))) pts)))))
434 (setf (slot-value 'simplex)
435 (mapcar #'(lambda (x) (send self :make-point x)) simplex))
436 (send self :sort-simplex)))
437 (slot-value 'simplex))
439 (defmeth simplex-proto :f (&optional f)
440 (when f
441 (setf (slot-value 'f) f)
442 (let ((simplex
443 (mapcar #'(lambda (x) (send self :point-location x))
444 (send self :simplex))))
445 (send self :simplex simplex)))
446 (slot-value 'f))
448 (defmeth simplex-proto :sort-simplex ()
449 (if (send self :f)
450 (setf (slot-value 'simplex)
451 (sort (slot-value 'simplex)
452 #'(lambda (x y) (send self :is-worse x y))))))
455 ;;; Other Methods Using List Representation of SImplex
458 (defmeth simplex-proto :best-point () (car (last (send self :simplex))))
459 (defmeth simplex-proto :worst-point () (first (send self :simplex)))
460 (defmeth simplex-proto :second-worst-point () (second (send self :simplex)))
461 (defmeth simplex-proto :replace-point (new old)
462 (let* ((simplex (send self :simplex))
463 (n (position old simplex)))
464 (when n
465 (setf (nth n simplex) new)
466 (send self :sort-simplex))))
467 (defmeth simplex-proto :mean-opposite-face (x)
468 (let ((face (mapcar #'(lambda (x) (send self :point-location x))
469 (remove x (send self :simplex)))))
470 (/ (reduce #'+ face) (length face))))
473 ;;; Iteration Step Methods
476 (defmeth simplex-proto :extrapolate-from-worst (fac)
477 (let* ((worst (send self :worst-point))
478 (wloc (send self :point-location worst))
479 (delta (- (send self :mean-opposite-face worst) wloc))
480 (new (send self :make-point (+ wloc (* (- 1 fac) delta)))))
481 (if (send self :is-worse worst new) (send self :replace-point new worst))
482 new))
484 (defmeth simplex-proto :shrink-to-best (fac)
485 (let* ((best (send self :best-point))
486 (bloc (send self :point-location best)))
487 (dolist (x (copy-list (send self :simplex)))
488 (if (not (eq x best))
489 (send self :replace-point
490 (send self :make-point
491 (+ bloc
492 (* fac
493 (- (send self :point-location x) bloc))))
494 x)))))
496 (defmeth simplex-proto :relative-range ()
497 (let ((best (send self :point-value (send self :best-point)))
498 (worst (send self :point-value (send self :worst-point))))
499 (* 2 (/ (abs (- best worst)) (+ 1 (abs best) (abs worst))))))
504 ;;;;
505 ;;;; Maximization and Numerical Derivatives
506 ;;;;
509 (defun data2double (n data ptr)
510 (declare (fixnum n))
511 (let* ((seq (compound-data-seq data))
512 (elem (make-next-element seq)))
513 (if (/= (length seq) n) (error "bad data size"))
514 (dotimes (i n)
515 (declare (fixnum i))
516 (la-put-double ptr i (get-next-element elem i)))))
518 (defun maximize-callback (n px pfval pgrad phess pderivs)
519 (la-vector-to-data px n mode-re *maximize-callback-arg*)
520 (let* ((val (funcall *maximize-callback-function* *maximize-callback-arg*))
521 (derivs (if (consp val) (- (length val) 1) 0)))
522 (la-put-integer pderivs 0 derivs)
523 (la-put-double pfval 0 (if (consp val) (first val) val))
524 (if (<= 1 derivs) (data2double n (second val) pgrad))
525 (if (<= 2 derivs) (data2double (* n n) (third val) phess))))
527 (defun numgrad (f x &optional scale (h -1.0))
528 "Args: (f x &optional scale derivstep)
529 Computes the numerical gradient of F at X."
530 (check-sequence x)
531 (check-real x)
532 (when scale
533 (check-sequence scale)
534 (check-real scale))
535 (check-one-real h)
536 (let* ((n (length x))
537 (result (make-list n)))
538 (if (and scale (/= n (length scale)))
539 (error "scale not the same length as x"))
540 (let ((*maximize-callback-function* f)
541 (*maximize-callback-arg* (make-list n)))
542 (let ((px (la-data-to-vector x mode-re))
543 (pgrad (la-vector n mode-re))
544 (pscale (la-data-to-vector
545 (if scale scale (make-list n :initial-element 1.0))
546 mode-re)))
547 (unwind-protect
548 (progn
549 (numgrad-front n px pgrad h pscale)
550 (la-vector-to-data pgrad n mode-re result))
551 (la-free-vector px)
552 (la-free-vector pgrad)
553 (la-free-vector pscale))))
554 result))
556 (defun numhess (f x &optional scale (h -1.0) all)
557 "Args: (f x &optional scale derivstep)
558 Computes the numerical Hessian matrix of F at X."
559 (check-sequence x)
560 (check-real x)
561 (when scale
562 (check-sequence scale)
563 (check-real scale))
564 (check-one-real h)
565 (let* ((n (length x))
566 (result (if all
567 (list nil (make-list n) (make-array (list n n)))
568 (make-array (list n n)))))
569 (if (and scale (/= n (length scale)))
570 (error "scale not the same length as x"))
571 (let ((*maximize-callback-function* f)
572 (*maximize-callback-arg* (make-list n)))
573 (let ((hess-data (compound-data-seq (if all (third result) result)))
574 (px (la-data-to-vector x mode-re))
575 (pf (la-vector 1 mode-re))
576 (pgrad (la-vector n mode-re))
577 (phess (la-vector (* n n) mode-re))
578 (pscale (la-data-to-vector
579 (if scale scale (make-list n :initial-element 1.0))
580 mode-re)))
581 (unwind-protect
582 (progn
583 (numhess-front n px pf pgrad phess h pscale)
584 (when all
585 (setf (first result) (la-get-double pf 0))
586 (la-vector-to-data pgrad n mode-re (second result)))
587 (la-vector-to-data phess (* n n) mode-re hess-data))
588 (la-free-vector pf)
589 (la-free-vector px)
590 (la-free-vector pgrad)
591 (la-free-vector phess)
592 (la-free-vector pscale))))
593 result))