Minor fixes to comments.
[AROS.git] / rom / exec / memory.c
blobac51282dc775dfce8d015ff867ada5830bcf3875
1 #include <aros/debug.h>
2 #include <exec/rawfmt.h>
3 #include <proto/kernel.h>
5 #include "exec_intern.h"
6 #include "exec_util.h"
7 #include "etask.h"
8 #include "memory.h"
9 #include "mungwall.h"
11 #define DMH(x)
14 * Find MemHeader to which address belongs.
15 * This function is legal to be called in supervisor mode (we use TypeOfMem()
16 * in order to validate addresses in tons of places). So, here are checks.
18 struct MemHeader *FindMem(APTR address, struct ExecBase *SysBase)
20 int usermode = (KernelBase != NULL) && (KrnIsSuper() == 0);
21 struct MemHeader *mh;
23 /* Nobody should change the memory list now. */
24 if (usermode) MEM_LOCK_SHARED;
26 /* Follow the list of MemHeaders */
27 mh = (struct MemHeader *)SysBase->MemList.lh_Head;
29 while(mh->mh_Node.ln_Succ != NULL)
31 /* Check if this MemHeader fits */
32 if(address >= mh->mh_Lower && address < mh->mh_Upper)
34 /* Yes. Return it. */
35 if (usermode) MEM_UNLOCK;
36 return mh;
39 /* Go to next MemHeader */
40 mh = (struct MemHeader *)mh->mh_Node.ln_Succ;
43 if (usermode) MEM_UNLOCK;
44 return NULL;
47 char *FormatMMContext(char *buffer, struct MMContext *ctx, struct ExecBase *SysBase)
49 if (ctx->addr)
50 buffer = NewRawDoFmt("In %s, block at 0x%p, size %lu", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->func, ctx->addr, ctx->size) - 1;
51 else
52 buffer = NewRawDoFmt("In %s, size %lu", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->func, ctx->size) - 1;
54 if (ctx->mc)
56 buffer = NewRawDoFmt("\nCorrupted MemChunk 0x%p (next 0x%p, size %lu)", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->mc, ctx->mc->mc_Next, ctx->mc->mc_Bytes) - 1;
58 if (ctx->mcPrev)
59 buffer = NewRawDoFmt("\nPrevious MemChunk 0x%p (next 0x%p, size %lu)", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->mcPrev, ctx->mcPrev->mc_Next, ctx->mcPrev->mc_Bytes) - 1;
62 /* Print MemHeader details */
63 buffer = NewRawDoFmt("\nMemHeader 0x%p (0x%p - 0x%p)", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->mh, ctx->mh->mh_Lower, ctx->mh->mh_Upper) - 1;
64 if ((IPTR)ctx->mh->mh_First & (MEMCHUNK_TOTAL - 1))
65 buffer = NewRawDoFmt("\n- Unaligned first chunk address (0x%p)", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->mh->mh_First) - 1;
67 if (ctx->mh->mh_Free & (MEMCHUNK_TOTAL - 1))
68 buffer = NewRawDoFmt("\n- Unaligned free space count (0x%p)", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->mh->mh_Free) - 1;
70 if (ctx->mh->mh_First)
72 if ((APTR)ctx->mh->mh_First < ctx->mh->mh_Lower)
73 buffer = NewRawDoFmt("\n- First chunk (0x%p) below lower address", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->mh->mh_First) - 1;
75 if (((APTR)ctx->mh->mh_First + ctx->mh->mh_Free > ctx->mh->mh_Upper))
76 buffer = NewRawDoFmt("\n- Free space count too large (%lu, first chunk 0x%xp)", (VOID_FUNC)RAWFMTFUNC_STRING, buffer, ctx->mh->mh_Free, ctx->mh->mh_First) - 1;
79 return buffer;
82 #ifdef NO_CONSISTENCY_CHECKS
84 #define validateHeader(mh, op, addr, size, SysBase) TRUE
85 #define validateChunk(mc, prev, mh, op, addr, size, SysBase) TRUE
87 #else
89 static ULONG memAlerts[] =
91 AT_DeadEnd|AN_MemoryInsane, /* MM_ALLOC */
92 AT_DeadEnd|AN_MemCorrupt, /* MM_FREE */
93 AN_FreeTwice /* MM_OVERLAP */
97 * MemHeader validation routine. Rules are:
99 * 1. Both mh_First and mh_Free must be MEMCHUNK_TOTAL-aligned.
100 * 2. Free space (if present) must completely fit in between mh_Lower and mh_Upper.
101 * We intentionally don't check header's own location. We assume that in future we'll
102 * be able to put MEMF_CHIP headers inside MEMF_FAST memory, for speed up.
104 static BOOL validateHeader(struct MemHeader *mh, UBYTE op, APTR addr, IPTR size, struct TraceLocation *tp, struct ExecBase *SysBase)
106 if (((IPTR)mh->mh_First & (MEMCHUNK_TOTAL - 1)) || (mh->mh_Free & (MEMCHUNK_TOTAL - 1)) || /* 1 */
107 (mh->mh_First &&
108 (((APTR)mh->mh_First < mh->mh_Lower) || ((APTR)mh->mh_First + mh->mh_Free > mh->mh_Upper)))) /* 2 */
110 if (tp)
112 /* TraceLocation is not supplied by PrepareExecBase(). Fail silently. */
113 struct MMContext alertData;
115 alertData.mh = mh;
116 alertData.mc = NULL;
117 alertData.mcPrev = NULL;
118 alertData.func = tp->function;
119 alertData.addr = addr;
120 alertData.size = size;
121 alertData.op = op;
123 Exec_ExtAlert(memAlerts[op], tp->caller, tp->stack, AT_MEMORY, &alertData, SysBase);
127 * Theoretically during very early boot we can fail to post an alert (no KernelBase yet).
128 * In this case we return with fault indication.
130 return FALSE;
132 return TRUE;
136 * MemChunk consistency check. Rules are:
138 * 1. Both mc_Next and mc_Bytes must me MEMCHUNK_TOTAL-aligned, and mc_Bytes can not be zero.
139 * 2. End of this chunk must not be greater than mh->mh_Upper
140 * 3. mc_Next (if present) must point in between end of this chunk and mh->mh_Upper - MEMCHUNK_TOTAL.
141 * There must be at least MEMHCUNK_TOTAL allocated bytes between free chunks.
143 * This function is inlined for speed improvements.
145 static inline BOOL validateChunk(struct MemChunk *p2, struct MemChunk *p1, struct MemHeader *mh,
146 UBYTE op, APTR addr, IPTR size,
147 struct TraceLocation *tp, struct ExecBase *SysBase)
149 if (((IPTR)p2->mc_Next & (MEMCHUNK_TOTAL-1)) || (p2->mc_Bytes == 0) || (p2->mc_Bytes & (MEMCHUNK_TOTAL-1)) || /* 1 */
150 ((APTR)p2 + p2->mc_Bytes > mh->mh_Upper) || /* 2 */
151 (p2->mc_Next && (((APTR)p2->mc_Next < (APTR)p2 + p2->mc_Bytes + MEMCHUNK_TOTAL) || /* 3 */
152 ((APTR)p2->mc_Next > mh->mh_Upper - MEMCHUNK_TOTAL))))
154 if (tp)
156 struct MMContext alertData;
158 alertData.mh = mh;
159 alertData.mc = p2;
160 alertData.mcPrev = (p1 == (struct MemChunk *)&mh->mh_First) ? NULL : p1;
161 alertData.func = tp->function;
162 alertData.addr = addr;
163 alertData.size = size;
164 alertData.op = op;
166 Exec_ExtAlert(memAlerts[op], tp->caller, tp->stack, AT_MEMORY, &alertData, SysBase);
168 return FALSE;
171 return TRUE;
174 #endif
177 * Allocate block from the given MemHeader in a specific way.
178 * This routine can be called with SysBase = NULL.
180 APTR stdAlloc(struct MemHeader *mh, IPTR size, ULONG requirements, struct TraceLocation *tp, struct ExecBase *SysBase)
182 /* First round byteSize up to a multiple of MEMCHUNK_TOTAL */
183 IPTR byteSize = AROS_ROUNDUP2(size, MEMCHUNK_TOTAL);
184 struct MemChunk *mc=NULL, *p1, *p2;
186 /* Validate MemHeader before doing anything. */
187 if (!validateHeader(mh, MM_ALLOC, NULL, size, tp, SysBase))
188 return NULL;
191 * The free memory list is only single linked, i.e. to remove
192 * elements from the list I need node's predessor. For the
193 * first element I can use mh->mh_First instead of a real predessor.
195 p1 = (struct MemChunk *)&mh->mh_First;
196 p2 = p1->mc_Next;
199 * Follow the memory list. p1 is the previous MemChunk, p2 is the current one.
200 * On 1st pass p1 points to mh->mh_First, so that changing p1->mc_Next actually
201 * changes mh->mh_First.
203 while (p2 != NULL)
205 /* Validate the current chunk */
206 if (!validateChunk(p2, p1, mh, MM_ALLOC, NULL, size, tp, SysBase))
207 return NULL;
209 /* Check if the current block is large enough */
210 if (p2->mc_Bytes>=byteSize)
212 /* It is. */
213 mc = p1;
215 /* Use this one if MEMF_REVERSE is not set.*/
216 if (!(requirements & MEMF_REVERSE))
217 break;
218 /* Else continue - there may be more to come. */
221 /* Go to next block */
222 p1 = p2;
223 p2 = p1->mc_Next;
226 /* Something found? */
227 if (mc != NULL)
229 /* Remember: if MEMF_REVERSE is set p1 and p2 are now invalid. */
230 p1 = mc;
231 p2 = p1->mc_Next;
233 /* Remove the block from the list and return it. */
234 if (p2->mc_Bytes == byteSize)
236 /* Fits exactly. Just relink the list. */
237 p1->mc_Next = p2->mc_Next;
238 mc = p2;
240 else
242 if (requirements & MEMF_REVERSE)
244 /* Return the last bytes. */
245 p1->mc_Next=p2;
246 mc = (struct MemChunk *)((UBYTE *)p2+p2->mc_Bytes-byteSize);
248 else
250 /* Return the first bytes. */
251 p1->mc_Next=(struct MemChunk *)((UBYTE *)p2+byteSize);
252 mc=p2;
255 p1 = p1->mc_Next;
256 p1->mc_Next = p2->mc_Next;
257 p1->mc_Bytes = p2->mc_Bytes-byteSize;
260 mh->mh_Free -= byteSize;
262 /* Clear the block if requested */
263 if (requirements & MEMF_CLEAR)
264 memset(mc, 0, byteSize);
267 return mc;
270 /* Free 'byteSize' bytes starting at 'memoryBlock' belonging to MemHeader 'freeList' */
271 void stdDealloc(struct MemHeader *freeList, APTR addr, IPTR size, struct TraceLocation *tp, struct ExecBase *SysBase)
273 APTR memoryBlock;
274 IPTR byteSize;
275 struct MemChunk *p1, *p2, *p3;
276 UBYTE *p4;
278 /* Make sure the MemHeader is OK */
279 if (!validateHeader(freeList, MM_FREE, addr, size, tp, SysBase))
280 return;
282 /* Align size to the requirements */
283 byteSize = size + ((IPTR)addr & (MEMCHUNK_TOTAL-1));
284 byteSize = (byteSize + MEMCHUNK_TOTAL-1) & ~(MEMCHUNK_TOTAL-1);
286 /* Align the block as well */
287 memoryBlock = (APTR)((IPTR)addr & ~(MEMCHUNK_TOTAL-1));
290 The free memory list is only single linked, i.e. to insert
291 elements into the list I need the node as well as it's
292 predessor. For the first element I can use freeList->mh_First
293 instead of a real predessor.
295 p1=(struct MemChunk *)&freeList->mh_First;
296 p2=freeList->mh_First;
298 /* Start and end(+1) of the block */
299 p3=(struct MemChunk *)memoryBlock;
300 p4=(UBYTE *)p3+byteSize;
302 /* No chunk in list? Just insert the current one and return. */
303 if(p2==NULL)
305 p3->mc_Bytes=byteSize;
306 p3->mc_Next=NULL;
307 p1->mc_Next=p3;
308 freeList->mh_Free+=byteSize;
309 return;
312 /* Follow the list to find a place where to insert our memory. */
315 if (!validateChunk(p2, p1, freeList, MM_FREE, addr, size, tp, SysBase))
316 return;
318 /* Found a block with a higher address? */
319 if (p2 >= p3)
321 #if !defined(NO_CONSISTENCY_CHECKS)
323 If the memory to be freed overlaps with the current
324 block something must be wrong.
326 if (p4>(UBYTE *)p2)
328 bug("[MM] Chunk allocator error\n");
329 bug("[MM] Attempt to free %u bytes at 0x%p from MemHeader 0x%p\n", byteSize, memoryBlock, freeList);
330 bug("[MM] Block overlaps with chunk 0x%p (%u bytes)\n", p2, p2->mc_Bytes);
332 Alert(AN_FreeTwice);
333 return;
335 #endif
336 /* End the loop with p2 non-zero */
337 break;
339 /* goto next block */
340 p1=p2;
341 p2=p2->mc_Next;
343 /* If the loop ends with p2 zero add it at the end. */
344 }while(p2!=NULL);
346 /* If there was a previous block merge with it. */
347 if(p1!=(struct MemChunk *)&freeList->mh_First)
349 #if !defined(NO_CONSISTENCY_CHECKS)
350 /* Check if they overlap. */
351 if ((UBYTE *)p1+p1->mc_Bytes>(UBYTE *)p3)
353 bug("[MM] Chunk allocator error\n");
354 bug("[MM] Attempt to free %u bytes at 0x%p from MemHeader 0x%p\n", byteSize, memoryBlock, freeList);
355 bug("[MM] Block overlaps with chunk 0x%p (%u bytes)\n", p1, p1->mc_Bytes);
357 Alert(AN_FreeTwice);
358 return;
360 #endif
361 /* Merge if possible */
362 if((UBYTE *)p1+p1->mc_Bytes==(UBYTE *)p3)
363 p3=p1;
364 else
365 /* Not possible to merge */
366 p1->mc_Next=p3;
367 }else
369 There was no previous block. Just insert the memory at
370 the start of the list.
372 p1->mc_Next=p3;
374 /* Try to merge with next block (if there is one ;-) ). */
375 if(p4==(UBYTE *)p2&&p2!=NULL)
378 Overlap checking already done. Doing it here after
379 the list potentially changed would be a bad idea.
381 p4+=p2->mc_Bytes;
382 p2=p2->mc_Next;
384 /* relink the list and return. */
385 p3->mc_Next=p2;
386 p3->mc_Bytes=p4-(UBYTE *)p3;
387 freeList->mh_Free+=byteSize;
391 * TODO:
392 * During transition period four routines below use nommu allocator.
393 * When transition is complete they should use them only if MMU
394 * is inactive. Otherwise they should use KrnAllocPages()/KrnFreePages().
397 /* Non-mungwalled AllocAbs(). Does not destroy sideways regions. */
398 APTR InternalAllocAbs(APTR location, IPTR byteSize, struct ExecBase *SysBase)
400 return nommu_AllocAbs(location, byteSize, SysBase);
404 * Use this if you want to free region allocated by InternalAllocAbs().
405 * Otherwise you hit mungwall problem (FreeMem() expects header).
407 void InternalFreeMem(APTR location, IPTR byteSize, struct TraceLocation *loc, struct ExecBase *SysBase)
409 nommu_FreeMem(location, byteSize, loc, SysBase);
412 /* Allocate a region managed by own header */
413 APTR AllocMemHeader(IPTR size, ULONG flags, struct TraceLocation *loc, struct ExecBase *SysBase)
415 struct MemHeader *mh;
417 mh = nommu_AllocMem(size, flags, loc, SysBase);
418 DMH(bug("[AllocMemHeader] Allocated %u bytes at 0x%p\n", size, mh));
420 if (mh)
422 struct MemHeader *orig = FindMem(mh, SysBase);
424 size -= MEMHEADER_TOTAL;
427 * Initialize new MemHeader.
428 * Inherit attributes from system MemHeader from which
429 * our chunk was allocated.
431 mh->mh_Node.ln_Type = NT_MEMORY;
432 mh->mh_Node.ln_Pri = orig->mh_Node.ln_Pri;
433 mh->mh_Attributes = orig->mh_Attributes;
434 mh->mh_Lower = (APTR)mh + MEMHEADER_TOTAL;
435 mh->mh_Upper = mh->mh_Lower + size;
436 mh->mh_First = mh->mh_Lower;
437 mh->mh_Free = size;
439 /* Create the first (and the only) MemChunk */
440 mh->mh_First->mc_Next = NULL;
441 mh->mh_First->mc_Bytes = size;
443 return mh;
446 /* Free a region allocated by AllocMemHeader() */
447 void FreeMemHeader(APTR addr, struct TraceLocation *loc, struct ExecBase *SysBase)
449 ULONG size = ((struct MemHeader *)addr)->mh_Upper - addr;
451 DMH(bug("[FreeMemHeader] Freeing %u bytes at 0x%p\n", size, addr));
452 nommu_FreeMem(addr, size, loc, SysBase);
456 * This is our own Enqueue() version. Currently the only differece is that
457 * we insert our node before the first node with LOWER OR EQUAL priority,
458 * so that for nodes with equal priority it will be LIFO, not FIFO queue.
459 * This speeds up the allocator.
460 * TODO: implement secondary sorting by mh_Free. This will allow to
461 * implement best-match algorithm (so that puddles with smaller free space
462 * will be picked up first). This way the smallest allocations will reuse
463 * smallest chunks instead of fragmenting large ones.
465 static void EnqueueMemHeader(struct MinList *list, struct MemHeader *mh)
467 struct MemHeader *next;
469 /* Look through the list */
470 ForeachNode (list, next)
473 Look for the first MemHeader with a lower or equal pri as the node
474 we have to insert into the list.
476 if (mh->mh_Node.ln_Pri >= next->mh_Node.ln_Pri)
477 break;
480 /* Insert the node before next */
481 mh->mh_Node.ln_Pred = next->mh_Node.ln_Pred;
482 mh->mh_Node.ln_Succ = &next->mh_Node;
483 next->mh_Node.ln_Pred->ln_Succ = &mh->mh_Node;
484 next->mh_Node.ln_Pred = &mh->mh_Node;
488 * Allocate memory with given physical properties from the given pool.
489 * Our pools can be mixed. This means that different puddles from the
490 * pool can have different physical flags. For example the same pool
491 * can contain puddles from both CHIP and FAST memory. This is done in
492 * order to provide a single system default pool for all types of memory.
494 APTR InternalAllocPooled(APTR poolHeader, IPTR memSize, ULONG flags, struct TraceLocation *loc, struct ExecBase *SysBase)
496 struct ProtectedPool *pool = poolHeader + MEMHEADER_TOTAL;
497 APTR ret = NULL;
498 IPTR origSize;
499 struct MemHeader *mh;
501 D(bug("[exec] InternalAllocPooled(0x%p, %u, 0x%08X), header 0x%p\n", poolHeader, memSize, flags, pool));
504 * Memory blocks allocated from the pool store pointers to the MemHeader they were
505 * allocated from. This is done in order to avoid slow lookups in InternalFreePooled().
506 * This is done in AllocVec()-alike manner, the pointer is placed right before the block.
508 memSize += sizeof(struct MemHeader *);
509 origSize = memSize;
511 /* If mungwall is enabled, count also size of walls */
512 if (PrivExecBase(SysBase)->IntFlags & EXECF_MungWall)
513 memSize += MUNGWALL_TOTAL_SIZE;
515 if (pool->pool.Requirements & MEMF_SEM_PROTECTED)
517 ObtainSemaphore(&pool->sem);
520 /* Follow the list of MemHeaders */
521 mh = (struct MemHeader *)pool->pool.PuddleList.mlh_Head;
522 for(;;)
524 ULONG physFlags = flags & MEMF_PHYSICAL_MASK;
526 /* Are there no more MemHeaders? */
527 if (mh->mh_Node.ln_Succ==NULL)
530 * Get a new one.
531 * Usually we allocate puddles of default size, specified during
532 * pool creation. However we can be asked to allocate block whose
533 * size will be larger than default puddle size.
534 * Previously this was handled by threshSize parameter. In our new
535 * implementation we just allocate enlarged puddle. This is done
536 * in order not to waste page tails beyond the allocated large block.
537 * These tails will be used for our pool too. Their size is smaller
538 * than page size but they still perfectly fit for small allocations
539 * (the primary use for pools).
540 * Since our large block is also a puddle, it will be reused for our
541 * pool when the block is freed. It can also be reused for another
542 * large allocation, if it fits in.
543 * Our final puddle size still includes MEMHEADER_TOTAL in any case.
545 IPTR puddleSize = pool->pool.PuddleSize;
547 if (memSize > puddleSize - MEMHEADER_TOTAL)
549 IPTR align = PrivExecBase(SysBase)->PageSize - 1;
551 puddleSize = memSize + MEMHEADER_TOTAL;
552 /* Align the size up to page boundary */
553 puddleSize = (puddleSize + align) & ~align;
556 mh = AllocMemHeader(puddleSize, flags, loc, SysBase);
557 D(bug("[InternalAllocPooled] Allocated new puddle 0x%p, size %u\n", mh, puddleSize));
559 /* No memory left? */
560 if(mh == NULL)
561 break;
563 /* Add the new puddle to our pool */
564 mh->mh_Node.ln_Name = (STRPTR)pool;
565 Enqueue((struct List *)&pool->pool.PuddleList, &mh->mh_Node);
567 /* Fall through to get the memory */
569 else
571 /* Ignore existing MemHeaders with memory type that differ from the requested ones */
572 if (physFlags & ~mh->mh_Attributes)
574 D(bug("[InternalAllocPooled] Wrong flags for puddle 0x%p (wanted 0x%08X, have 0x%08X\n", flags, mh->mh_Attributes));
576 mh = (struct MemHeader *)mh->mh_Node.ln_Succ;
577 continue;
581 /* Try to get the memory */
582 ret = stdAlloc(mh, memSize, flags, loc, SysBase);
583 D(bug("[InternalAllocPooled] Allocated memory at 0x%p from puddle 0x%p\n", ret, mh));
585 /* Got it? */
586 if (ret != NULL)
589 * If this is not the first MemHeader and it has some free space,
590 * move it forward (so that the next allocation will attempt to use it first).
591 * IMPORTANT: We use modification of Enqueue() because we still sort MemHeaders
592 * according to their priority (which they inherit from system MemHeaders).
593 * This allows us to have mixed pools (e. g. with both CHIP and FAST regions). This
594 * will be needed in future for memory protection.
596 if (mh->mh_Node.ln_Pred != NULL && mh->mh_Free > 32)
598 D(bug("[InternalAllocPooled] Re-sorting puddle list\n"));
599 Remove(&mh->mh_Node);
600 EnqueueMemHeader(&pool->pool.PuddleList, mh);
603 break;
606 /* No. Try next MemHeader */
607 mh = (struct MemHeader *)mh->mh_Node.ln_Succ;
610 if (pool->pool.Requirements & MEMF_SEM_PROTECTED)
612 ReleaseSemaphore(&pool->sem);
615 if (ret)
617 /* Build munge walls if requested */
618 ret = MungWall_Build(ret, pool, origSize, flags, loc, SysBase);
620 /* Remember where we were allocated from */
621 *((struct MemHeader **)ret) = mh;
622 ret += sizeof(struct MemHeader *);
625 /* Everything fine */
626 return ret;
630 * This is a pair to InternalAllocPooled()
631 * This code separated from FreePooled() in order to provide compatibility with various
632 * memory tracking patches. If some exec code calls InternalAllocPooled() directly
633 * (AllocMem() will do it), it has to call also InternalFreePooled() directly.
634 * Our chunks remember from which pool they came, so we don't need a pointer to pool
635 * header here. This will save us from headaches in future FreeMem() implementation.
637 void InternalFreePooled(APTR memory, IPTR memSize, struct TraceLocation *loc, struct ExecBase *SysBase)
639 struct MemHeader *mh;
640 APTR freeStart;
641 IPTR freeSize;
643 D(bug("[exec] InternalFreePooled(0x%p, %u)\n", memory, memSize));
645 if (!memory || !memSize) return;
647 /* Get MemHeader pointer. It is stored right before our block. */
648 freeStart = memory - sizeof(struct MemHeader *);
649 freeSize = memSize + sizeof(struct MemHeader *);
650 mh = *((struct MemHeader **)freeStart);
652 /* Check walls first */
653 freeStart = MungWall_Check(freeStart, freeSize, loc, SysBase);
654 if (PrivExecBase(SysBase)->IntFlags & EXECF_MungWall)
655 freeSize += MUNGWALL_TOTAL_SIZE;
657 /* Verify that MemHeader pointer is correct */
658 if ((mh->mh_Node.ln_Type != NT_MEMORY) ||
659 (freeStart < mh->mh_Lower) || (freeStart + freeSize > mh->mh_Upper))
662 * Something is wrong.
663 * TODO: the following should actually be printed as part of the alert.
664 * In future there should be some kind of "alert context". CPU alerts
665 * (like illegal access) should remember CPU context there. Memory manager
666 * alerts (like this one) should remember some own information.
668 bug("[MM] Pool manager error\n");
669 bug("[MM] Attempt to free %u bytes at 0x%p\n", memSize, memory);
670 bug("[MM] The chunk does not belong to a pool\n");
672 Alert(AN_BadFreeAddr);
674 else
676 struct ProtectedPool *pool = (struct ProtectedPool *)mh->mh_Node.ln_Name;
677 IPTR size;
679 if (pool->pool.Requirements & MEMF_SEM_PROTECTED)
681 ObtainSemaphore(&pool->sem);
684 size = mh->mh_Upper - mh->mh_Lower;
685 D(bug("[FreePooled] Allocated from puddle 0x%p, size %u\n", mh, size));
687 /* Free the memory. */
688 stdDealloc(mh, freeStart, freeSize, loc, SysBase);
689 D(bug("[FreePooled] Deallocated chunk, %u free bytes in the puddle\n", mh->mh_Free));
691 /* Is this MemHeader completely free now? */
692 if (mh->mh_Free == size)
694 D(bug("[FreePooled] Puddle is empty, giving back to the system\n"));
696 /* Yes. Remove it from the list. */
697 Remove(&mh->mh_Node);
698 /* And free it. */
699 FreeMemHeader(mh, loc, SysBase);
701 /* All done. */
703 if (pool->pool.Requirements & MEMF_SEM_PROTECTED)
705 ReleaseSemaphore(&pool->sem);
710 ULONG checkMemHandlers(struct checkMemHandlersState *cmhs, struct ExecBase *SysBase)
712 struct Node *tmp;
713 struct Interrupt *lmh;
715 if (cmhs->cmhs_Data.memh_RequestFlags & MEMF_NO_EXPUNGE)
716 return MEM_DID_NOTHING;
718 /* In order to keep things clean, we must run in a single thread */
719 ObtainSemaphore(&PrivExecBase(SysBase)->LowMemSem);
722 * Loop over low memory handlers. Handlers can remove
723 * themselves from the list while being invoked, thus
724 * we need to be careful!
726 for (lmh = (struct Interrupt *)cmhs->cmhs_CurNode;
727 (tmp = lmh->is_Node.ln_Succ);
728 lmh = (struct Interrupt *)(cmhs->cmhs_CurNode = tmp))
730 ULONG ret;
732 ret = AROS_UFC3 (LONG, lmh->is_Code,
733 AROS_UFCA(struct MemHandlerData *, &cmhs->cmhs_Data, A0),
734 AROS_UFCA(APTR, lmh->is_Data, A1),
735 AROS_UFCA(struct ExecBase *, SysBase, A6)
738 if (ret == MEM_TRY_AGAIN)
740 /* MemHandler said he did something. Try again. */
741 /* Is there any program that depends on this flag??? */
742 cmhs->cmhs_Data.memh_Flags |= MEMHF_RECYCLE;
744 ReleaseSemaphore(&PrivExecBase(SysBase)->LowMemSem);
745 return MEM_TRY_AGAIN;
747 else
748 /* Nothing more to expect from this handler. */
749 cmhs->cmhs_Data.memh_Flags &= ~MEMHF_RECYCLE;
752 ReleaseSemaphore(&PrivExecBase(SysBase)->LowMemSem);
753 return MEM_DID_NOTHING;