Ensure all lines that should be omitted from public includes are marked
[AROS.git] / arch / all-pc / boot / grub2-aros / grub-core / lib / libgcrypt-grub / cipher / elgamal.c
blob64ee17a306d73882f3aee91fa50c165a6764ae16
1 /* This file was automatically imported with
2 import_gcry.py. Please don't modify it */
3 /* Elgamal.c - Elgamal Public Key encryption
4 * Copyright (C) 1998, 2000, 2001, 2002, 2003,
5 * 2008 Free Software Foundation, Inc.
7 * This file is part of Libgcrypt.
9 * Libgcrypt is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU Lesser General Public License as
11 * published by the Free Software Foundation; either version 2.1 of
12 * the License, or (at your option) any later version.
14 * Libgcrypt is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
22 * For a description of the algorithm, see:
23 * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
24 * ISBN 0-471-11709-9. Pages 476 ff.
27 #include "g10lib.h"
28 #include "mpi.h"
29 #include "cipher.h"
31 typedef struct
33 gcry_mpi_t p; /* prime */
34 gcry_mpi_t g; /* group generator */
35 gcry_mpi_t y; /* g^x mod p */
36 } ELG_public_key;
39 typedef struct
41 gcry_mpi_t p; /* prime */
42 gcry_mpi_t g; /* group generator */
43 gcry_mpi_t y; /* g^x mod p */
44 gcry_mpi_t x; /* secret exponent */
45 } ELG_secret_key;
48 static int test_keys (ELG_secret_key *sk, unsigned int nbits, int nodie);
49 static gcry_mpi_t gen_k (gcry_mpi_t p, int small_k);
50 static void generate (ELG_secret_key *sk, unsigned nbits, gcry_mpi_t **factors);
51 static int check_secret_key (ELG_secret_key *sk);
52 static void do_encrypt (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
53 ELG_public_key *pkey);
54 static void decrypt (gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b,
55 ELG_secret_key *skey);
56 static void sign (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
57 ELG_secret_key *skey);
58 static int verify (gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input,
59 ELG_public_key *pkey);
62 static void (*progress_cb) (void *, const char *, int, int, int);
63 static void *progress_cb_data;
65 void
66 _gcry_register_pk_elg_progress (void (*cb) (void *, const char *,
67 int, int, int),
68 void *cb_data)
70 progress_cb = cb;
71 progress_cb_data = cb_data;
75 static void
76 progress (int c)
78 if (progress_cb)
79 progress_cb (progress_cb_data, "pk_elg", c, 0, 0);
83 /****************
84 * Michael Wiener's table on subgroup sizes to match field sizes.
85 * (floating around somewhere, probably based on the paper from
86 * Eurocrypt 96, page 332)
88 static unsigned int
89 wiener_map( unsigned int n )
91 static struct { unsigned int p_n, q_n; } t[] =
92 { /* p q attack cost */
93 { 512, 119 }, /* 9 x 10^17 */
94 { 768, 145 }, /* 6 x 10^21 */
95 { 1024, 165 }, /* 7 x 10^24 */
96 { 1280, 183 }, /* 3 x 10^27 */
97 { 1536, 198 }, /* 7 x 10^29 */
98 { 1792, 212 }, /* 9 x 10^31 */
99 { 2048, 225 }, /* 8 x 10^33 */
100 { 2304, 237 }, /* 5 x 10^35 */
101 { 2560, 249 }, /* 3 x 10^37 */
102 { 2816, 259 }, /* 1 x 10^39 */
103 { 3072, 269 }, /* 3 x 10^40 */
104 { 3328, 279 }, /* 8 x 10^41 */
105 { 3584, 288 }, /* 2 x 10^43 */
106 { 3840, 296 }, /* 4 x 10^44 */
107 { 4096, 305 }, /* 7 x 10^45 */
108 { 4352, 313 }, /* 1 x 10^47 */
109 { 4608, 320 }, /* 2 x 10^48 */
110 { 4864, 328 }, /* 2 x 10^49 */
111 { 5120, 335 }, /* 3 x 10^50 */
112 { 0, 0 }
114 int i;
116 for(i=0; t[i].p_n; i++ )
118 if( n <= t[i].p_n )
119 return t[i].q_n;
121 /* Not in table - use an arbitrary high number. */
122 return n / 8 + 200;
125 static int
126 test_keys ( ELG_secret_key *sk, unsigned int nbits, int nodie )
128 ELG_public_key pk;
129 gcry_mpi_t test = gcry_mpi_new ( 0 );
130 gcry_mpi_t out1_a = gcry_mpi_new ( nbits );
131 gcry_mpi_t out1_b = gcry_mpi_new ( nbits );
132 gcry_mpi_t out2 = gcry_mpi_new ( nbits );
133 int failed = 0;
135 pk.p = sk->p;
136 pk.g = sk->g;
137 pk.y = sk->y;
139 gcry_mpi_randomize ( test, nbits, GCRY_WEAK_RANDOM );
141 do_encrypt ( out1_a, out1_b, test, &pk );
142 decrypt ( out2, out1_a, out1_b, sk );
143 if ( mpi_cmp( test, out2 ) )
144 failed |= 1;
146 sign ( out1_a, out1_b, test, sk );
147 if ( !verify( out1_a, out1_b, test, &pk ) )
148 failed |= 2;
150 gcry_mpi_release ( test );
151 gcry_mpi_release ( out1_a );
152 gcry_mpi_release ( out1_b );
153 gcry_mpi_release ( out2 );
155 if (failed && !nodie)
156 log_fatal ("Elgamal test key for %s %s failed\n",
157 (failed & 1)? "encrypt+decrypt":"",
158 (failed & 2)? "sign+verify":"");
159 if (failed && DBG_CIPHER)
160 log_debug ("Elgamal test key for %s %s failed\n",
161 (failed & 1)? "encrypt+decrypt":"",
162 (failed & 2)? "sign+verify":"");
164 return failed;
168 /****************
169 * Generate a random secret exponent k from prime p, so that k is
170 * relatively prime to p-1. With SMALL_K set, k will be selected for
171 * better encryption performance - this must never be used signing!
173 static gcry_mpi_t
174 gen_k( gcry_mpi_t p, int small_k )
176 gcry_mpi_t k = mpi_alloc_secure( 0 );
177 gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(p) );
178 gcry_mpi_t p_1 = mpi_copy(p);
179 unsigned int orig_nbits = mpi_get_nbits(p);
180 unsigned int nbits, nbytes;
181 char *rndbuf = NULL;
183 if (small_k)
185 /* Using a k much lesser than p is sufficient for encryption and
186 * it greatly improves the encryption performance. We use
187 * Wiener's table and add a large safety margin. */
188 nbits = wiener_map( orig_nbits ) * 3 / 2;
189 if( nbits >= orig_nbits )
190 BUG();
192 else
193 nbits = orig_nbits;
196 nbytes = (nbits+7)/8;
197 if( DBG_CIPHER )
198 log_debug("choosing a random k ");
199 mpi_sub_ui( p_1, p, 1);
200 for(;;)
202 if( !rndbuf || nbits < 32 )
204 gcry_free(rndbuf);
205 rndbuf = gcry_random_bytes_secure( nbytes, GCRY_STRONG_RANDOM );
207 else
209 /* Change only some of the higher bits. We could improve
210 this by directly requesting more memory at the first call
211 to get_random_bytes() and use this the here maybe it is
212 easier to do this directly in random.c Anyway, it is
213 highly inlikely that we will ever reach this code. */
214 char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
215 memcpy( rndbuf, pp, 4 );
216 gcry_free(pp);
218 _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
220 for(;;)
222 if( !(mpi_cmp( k, p_1 ) < 0) ) /* check: k < (p-1) */
224 if( DBG_CIPHER )
225 progress('+');
226 break; /* no */
228 if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */
230 if( DBG_CIPHER )
231 progress('-');
232 break; /* no */
234 if (gcry_mpi_gcd( temp, k, p_1 ))
235 goto found; /* okay, k is relative prime to (p-1) */
236 mpi_add_ui( k, k, 1 );
237 if( DBG_CIPHER )
238 progress('.');
241 found:
242 gcry_free(rndbuf);
243 if( DBG_CIPHER )
244 progress('\n');
245 mpi_free(p_1);
246 mpi_free(temp);
248 return k;
251 /****************
252 * Generate a key pair with a key of size NBITS
253 * Returns: 2 structures filled with all needed values
254 * and an array with n-1 factors of (p-1)
256 static void
257 generate ( ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t **ret_factors )
259 gcry_mpi_t p; /* the prime */
260 gcry_mpi_t p_min1;
261 gcry_mpi_t g;
262 gcry_mpi_t x; /* the secret exponent */
263 gcry_mpi_t y;
264 unsigned int qbits;
265 unsigned int xbits;
266 byte *rndbuf;
268 p_min1 = gcry_mpi_new ( nbits );
269 qbits = wiener_map( nbits );
270 if( qbits & 1 ) /* better have a even one */
271 qbits++;
272 g = mpi_alloc(1);
273 p = _gcry_generate_elg_prime( 0, nbits, qbits, g, ret_factors );
274 mpi_sub_ui(p_min1, p, 1);
277 /* Select a random number which has these properties:
278 * 0 < x < p-1
279 * This must be a very good random number because this is the
280 * secret part. The prime is public and may be shared anyway,
281 * so a random generator level of 1 is used for the prime.
283 * I don't see a reason to have a x of about the same size
284 * as the p. It should be sufficient to have one about the size
285 * of q or the later used k plus a large safety margin. Decryption
286 * will be much faster with such an x.
288 xbits = qbits * 3 / 2;
289 if( xbits >= nbits )
290 BUG();
291 x = gcry_mpi_snew ( xbits );
292 if( DBG_CIPHER )
293 log_debug("choosing a random x of size %u", xbits );
294 rndbuf = NULL;
297 if( DBG_CIPHER )
298 progress('.');
299 if( rndbuf )
300 { /* Change only some of the higher bits */
301 if( xbits < 16 ) /* should never happen ... */
303 gcry_free(rndbuf);
304 rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
305 GCRY_VERY_STRONG_RANDOM );
307 else
309 char *r = gcry_random_bytes_secure( 2,
310 GCRY_VERY_STRONG_RANDOM );
311 memcpy(rndbuf, r, 2 );
312 gcry_free(r);
315 else
317 rndbuf = gcry_random_bytes_secure( (xbits+7)/8,
318 GCRY_VERY_STRONG_RANDOM );
320 _gcry_mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
321 mpi_clear_highbit( x, xbits+1 );
323 while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
324 gcry_free(rndbuf);
326 y = gcry_mpi_new (nbits);
327 gcry_mpi_powm( y, g, x, p );
329 if( DBG_CIPHER )
331 progress('\n');
332 log_mpidump("elg p= ", p );
333 log_mpidump("elg g= ", g );
334 log_mpidump("elg y= ", y );
335 log_mpidump("elg x= ", x );
338 /* Copy the stuff to the key structures */
339 sk->p = p;
340 sk->g = g;
341 sk->y = y;
342 sk->x = x;
344 gcry_mpi_release ( p_min1 );
346 /* Now we can test our keys (this should never fail!) */
347 test_keys ( sk, nbits - 64, 0 );
351 /* Generate a key pair with a key of size NBITS not using a random
352 value for the secret key but the one given as X. This is useful to
353 implement a passphrase based decryption for a public key based
354 encryption. It has appliactions in backup systems.
356 Returns: A structure filled with all needed values and an array
357 with n-1 factors of (p-1). */
358 static gcry_err_code_t
359 generate_using_x (ELG_secret_key *sk, unsigned int nbits, gcry_mpi_t x,
360 gcry_mpi_t **ret_factors )
362 gcry_mpi_t p; /* The prime. */
363 gcry_mpi_t p_min1; /* The prime minus 1. */
364 gcry_mpi_t g; /* The generator. */
365 gcry_mpi_t y; /* g^x mod p. */
366 unsigned int qbits;
367 unsigned int xbits;
369 sk->p = NULL;
370 sk->g = NULL;
371 sk->y = NULL;
372 sk->x = NULL;
374 /* Do a quick check to see whether X is suitable. */
375 xbits = mpi_get_nbits (x);
376 if ( xbits < 64 || xbits >= nbits )
377 return GPG_ERR_INV_VALUE;
379 p_min1 = gcry_mpi_new ( nbits );
380 qbits = wiener_map ( nbits );
381 if ( (qbits & 1) ) /* Better have an even one. */
382 qbits++;
383 g = mpi_alloc (1);
384 p = _gcry_generate_elg_prime ( 0, nbits, qbits, g, ret_factors );
385 mpi_sub_ui (p_min1, p, 1);
387 if (DBG_CIPHER)
388 log_debug ("using a supplied x of size %u", xbits );
389 if ( !(mpi_cmp_ui ( x, 0 ) > 0 && mpi_cmp ( x, p_min1 ) <0 ) )
391 gcry_mpi_release ( p_min1 );
392 gcry_mpi_release ( p );
393 gcry_mpi_release ( g );
394 return GPG_ERR_INV_VALUE;
397 y = gcry_mpi_new (nbits);
398 gcry_mpi_powm ( y, g, x, p );
400 if ( DBG_CIPHER )
402 progress ('\n');
403 log_mpidump ("elg p= ", p );
404 log_mpidump ("elg g= ", g );
405 log_mpidump ("elg y= ", y );
406 log_mpidump ("elg x= ", x );
409 /* Copy the stuff to the key structures */
410 sk->p = p;
411 sk->g = g;
412 sk->y = y;
413 sk->x = gcry_mpi_copy (x);
415 gcry_mpi_release ( p_min1 );
417 /* Now we can test our keys. */
418 if ( test_keys ( sk, nbits - 64, 1 ) )
420 gcry_mpi_release ( sk->p ); sk->p = NULL;
421 gcry_mpi_release ( sk->g ); sk->g = NULL;
422 gcry_mpi_release ( sk->y ); sk->y = NULL;
423 gcry_mpi_release ( sk->x ); sk->x = NULL;
424 return GPG_ERR_BAD_SECKEY;
427 return 0;
431 /****************
432 * Test whether the secret key is valid.
433 * Returns: if this is a valid key.
435 static int
436 check_secret_key( ELG_secret_key *sk )
438 int rc;
439 gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
441 gcry_mpi_powm( y, sk->g, sk->x, sk->p );
442 rc = !mpi_cmp( y, sk->y );
443 mpi_free( y );
444 return rc;
448 static void
449 do_encrypt(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
451 gcry_mpi_t k;
453 /* Note: maybe we should change the interface, so that it
454 * is possible to check that input is < p and return an
455 * error code.
458 k = gen_k( pkey->p, 1 );
459 gcry_mpi_powm( a, pkey->g, k, pkey->p );
460 /* b = (y^k * input) mod p
461 * = ((y^k mod p) * (input mod p)) mod p
462 * and because input is < p
463 * = ((y^k mod p) * input) mod p
465 gcry_mpi_powm( b, pkey->y, k, pkey->p );
466 gcry_mpi_mulm( b, b, input, pkey->p );
467 #if 0
468 if( DBG_CIPHER )
470 log_mpidump("elg encrypted y= ", pkey->y);
471 log_mpidump("elg encrypted p= ", pkey->p);
472 log_mpidump("elg encrypted k= ", k);
473 log_mpidump("elg encrypted M= ", input);
474 log_mpidump("elg encrypted a= ", a);
475 log_mpidump("elg encrypted b= ", b);
477 #endif
478 mpi_free(k);
484 static void
485 decrypt(gcry_mpi_t output, gcry_mpi_t a, gcry_mpi_t b, ELG_secret_key *skey )
487 gcry_mpi_t t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
489 /* output = b/(a^x) mod p */
490 gcry_mpi_powm( t1, a, skey->x, skey->p );
491 mpi_invm( t1, t1, skey->p );
492 mpi_mulm( output, b, t1, skey->p );
493 #if 0
494 if( DBG_CIPHER )
496 log_mpidump("elg decrypted x= ", skey->x);
497 log_mpidump("elg decrypted p= ", skey->p);
498 log_mpidump("elg decrypted a= ", a);
499 log_mpidump("elg decrypted b= ", b);
500 log_mpidump("elg decrypted M= ", output);
502 #endif
503 mpi_free(t1);
507 /****************
508 * Make an Elgamal signature out of INPUT
511 static void
512 sign(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_secret_key *skey )
514 gcry_mpi_t k;
515 gcry_mpi_t t = mpi_alloc( mpi_get_nlimbs(a) );
516 gcry_mpi_t inv = mpi_alloc( mpi_get_nlimbs(a) );
517 gcry_mpi_t p_1 = mpi_copy(skey->p);
520 * b = (t * inv) mod (p-1)
521 * b = (t * inv(k,(p-1),(p-1)) mod (p-1)
522 * b = (((M-x*a) mod (p-1)) * inv(k,(p-1),(p-1))) mod (p-1)
525 mpi_sub_ui(p_1, p_1, 1);
526 k = gen_k( skey->p, 0 /* no small K ! */ );
527 gcry_mpi_powm( a, skey->g, k, skey->p );
528 mpi_mul(t, skey->x, a );
529 mpi_subm(t, input, t, p_1 );
530 mpi_invm(inv, k, p_1 );
531 mpi_mulm(b, t, inv, p_1 );
533 #if 0
534 if( DBG_CIPHER )
536 log_mpidump("elg sign p= ", skey->p);
537 log_mpidump("elg sign g= ", skey->g);
538 log_mpidump("elg sign y= ", skey->y);
539 log_mpidump("elg sign x= ", skey->x);
540 log_mpidump("elg sign k= ", k);
541 log_mpidump("elg sign M= ", input);
542 log_mpidump("elg sign a= ", a);
543 log_mpidump("elg sign b= ", b);
545 #endif
546 mpi_free(k);
547 mpi_free(t);
548 mpi_free(inv);
549 mpi_free(p_1);
553 /****************
554 * Returns true if the signature composed of A and B is valid.
556 static int
557 verify(gcry_mpi_t a, gcry_mpi_t b, gcry_mpi_t input, ELG_public_key *pkey )
559 int rc;
560 gcry_mpi_t t1;
561 gcry_mpi_t t2;
562 gcry_mpi_t base[4];
563 gcry_mpi_t ex[4];
565 if( !(mpi_cmp_ui( a, 0 ) > 0 && mpi_cmp( a, pkey->p ) < 0) )
566 return 0; /* assertion 0 < a < p failed */
568 t1 = mpi_alloc( mpi_get_nlimbs(a) );
569 t2 = mpi_alloc( mpi_get_nlimbs(a) );
571 #if 0
572 /* t1 = (y^a mod p) * (a^b mod p) mod p */
573 gcry_mpi_powm( t1, pkey->y, a, pkey->p );
574 gcry_mpi_powm( t2, a, b, pkey->p );
575 mpi_mulm( t1, t1, t2, pkey->p );
577 /* t2 = g ^ input mod p */
578 gcry_mpi_powm( t2, pkey->g, input, pkey->p );
580 rc = !mpi_cmp( t1, t2 );
581 #elif 0
582 /* t1 = (y^a mod p) * (a^b mod p) mod p */
583 base[0] = pkey->y; ex[0] = a;
584 base[1] = a; ex[1] = b;
585 base[2] = NULL; ex[2] = NULL;
586 mpi_mulpowm( t1, base, ex, pkey->p );
588 /* t2 = g ^ input mod p */
589 gcry_mpi_powm( t2, pkey->g, input, pkey->p );
591 rc = !mpi_cmp( t1, t2 );
592 #else
593 /* t1 = g ^ - input * y ^ a * a ^ b mod p */
594 mpi_invm(t2, pkey->g, pkey->p );
595 base[0] = t2 ; ex[0] = input;
596 base[1] = pkey->y; ex[1] = a;
597 base[2] = a; ex[2] = b;
598 base[3] = NULL; ex[3] = NULL;
599 mpi_mulpowm( t1, base, ex, pkey->p );
600 rc = !mpi_cmp_ui( t1, 1 );
602 #endif
604 mpi_free(t1);
605 mpi_free(t2);
606 return rc;
609 /*********************************************
610 ************** interface ******************
611 *********************************************/
613 static gpg_err_code_t
614 elg_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
615 const gcry_sexp_t genparms,
616 gcry_mpi_t *skey, gcry_mpi_t **retfactors,
617 gcry_sexp_t *r_extrainfo)
619 gpg_err_code_t ec;
620 ELG_secret_key sk;
621 gcry_mpi_t xvalue = NULL;
622 gcry_sexp_t l1;
624 (void)algo;
625 (void)evalue;
626 (void)r_extrainfo;
628 if (genparms)
630 /* Parse the optional xvalue element. */
631 l1 = gcry_sexp_find_token (genparms, "xvalue", 0);
632 if (l1)
634 xvalue = gcry_sexp_nth_mpi (l1, 1, 0);
635 gcry_sexp_release (l1);
636 if (!xvalue)
637 return GPG_ERR_BAD_MPI;
641 if (xvalue)
642 ec = generate_using_x (&sk, nbits, xvalue, retfactors);
643 else
645 generate (&sk, nbits, retfactors);
646 ec = 0;
649 skey[0] = sk.p;
650 skey[1] = sk.g;
651 skey[2] = sk.y;
652 skey[3] = sk.x;
654 return ec;
658 static gcry_err_code_t
659 elg_generate (int algo, unsigned int nbits, unsigned long evalue,
660 gcry_mpi_t *skey, gcry_mpi_t **retfactors)
662 ELG_secret_key sk;
664 (void)algo;
665 (void)evalue;
667 generate (&sk, nbits, retfactors);
668 skey[0] = sk.p;
669 skey[1] = sk.g;
670 skey[2] = sk.y;
671 skey[3] = sk.x;
673 return GPG_ERR_NO_ERROR;
677 static gcry_err_code_t
678 elg_check_secret_key (int algo, gcry_mpi_t *skey)
680 gcry_err_code_t err = GPG_ERR_NO_ERROR;
681 ELG_secret_key sk;
683 (void)algo;
685 if ((! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
686 err = GPG_ERR_BAD_MPI;
687 else
689 sk.p = skey[0];
690 sk.g = skey[1];
691 sk.y = skey[2];
692 sk.x = skey[3];
694 if (! check_secret_key (&sk))
695 err = GPG_ERR_BAD_SECKEY;
698 return err;
702 static gcry_err_code_t
703 elg_encrypt (int algo, gcry_mpi_t *resarr,
704 gcry_mpi_t data, gcry_mpi_t *pkey, int flags)
706 gcry_err_code_t err = GPG_ERR_NO_ERROR;
707 ELG_public_key pk;
709 (void)algo;
710 (void)flags;
712 if ((! data) || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
713 err = GPG_ERR_BAD_MPI;
714 else
716 pk.p = pkey[0];
717 pk.g = pkey[1];
718 pk.y = pkey[2];
719 resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.p));
720 resarr[1] = mpi_alloc (mpi_get_nlimbs (pk.p));
721 do_encrypt (resarr[0], resarr[1], data, &pk);
723 return err;
727 static gcry_err_code_t
728 elg_decrypt (int algo, gcry_mpi_t *result,
729 gcry_mpi_t *data, gcry_mpi_t *skey, int flags)
731 gcry_err_code_t err = GPG_ERR_NO_ERROR;
732 ELG_secret_key sk;
734 (void)algo;
735 (void)flags;
737 if ((! data[0]) || (! data[1])
738 || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
739 err = GPG_ERR_BAD_MPI;
740 else
742 sk.p = skey[0];
743 sk.g = skey[1];
744 sk.y = skey[2];
745 sk.x = skey[3];
746 *result = mpi_alloc_secure (mpi_get_nlimbs (sk.p));
747 decrypt (*result, data[0], data[1], &sk);
749 return err;
753 static gcry_err_code_t
754 elg_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
756 gcry_err_code_t err = GPG_ERR_NO_ERROR;
757 ELG_secret_key sk;
759 (void)algo;
761 if ((! data)
762 || (! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]))
763 err = GPG_ERR_BAD_MPI;
764 else
766 sk.p = skey[0];
767 sk.g = skey[1];
768 sk.y = skey[2];
769 sk.x = skey[3];
770 resarr[0] = mpi_alloc (mpi_get_nlimbs (sk.p));
771 resarr[1] = mpi_alloc (mpi_get_nlimbs (sk.p));
772 sign (resarr[0], resarr[1], data, &sk);
775 return err;
779 static gcry_err_code_t
780 elg_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
781 int (*cmp) (void *, gcry_mpi_t), void *opaquev)
783 gcry_err_code_t err = GPG_ERR_NO_ERROR;
784 ELG_public_key pk;
786 (void)algo;
787 (void)cmp;
788 (void)opaquev;
790 if ((! data[0]) || (! data[1]) || (! hash)
791 || (! pkey[0]) || (! pkey[1]) || (! pkey[2]))
792 err = GPG_ERR_BAD_MPI;
793 else
795 pk.p = pkey[0];
796 pk.g = pkey[1];
797 pk.y = pkey[2];
798 if (! verify (data[0], data[1], hash, &pk))
799 err = GPG_ERR_BAD_SIGNATURE;
802 return err;
806 static unsigned int
807 elg_get_nbits (int algo, gcry_mpi_t *pkey)
809 (void)algo;
811 return mpi_get_nbits (pkey[0]);
815 static const char *elg_names[] =
817 "elg",
818 "openpgp-elg",
819 "openpgp-elg-sig",
820 NULL,
824 gcry_pk_spec_t _gcry_pubkey_spec_elg =
826 "ELG", elg_names,
827 "pgy", "pgyx", "ab", "rs", "pgy",
828 GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
829 elg_generate,
830 elg_check_secret_key,
831 elg_encrypt,
832 elg_decrypt,
833 elg_sign,
834 elg_verify,
835 elg_get_nbits
838 pk_extra_spec_t _gcry_pubkey_extraspec_elg =
840 NULL,
841 elg_generate_ext,
842 NULL