Prepare to release sgt-puzzles (20170606.272beef-1).
[sgt-puzzles.git] / netslide.c
blobc56e1abd6a822f88560a3bb1d817a7ef31e3d887
1 /*
2 * netslide.c: cross between Net and Sixteen, courtesy of Richard
3 * Boulton.
4 */
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
13 #include "puzzles.h"
14 #include "tree234.h"
16 #define MATMUL(xr,yr,m,x,y) do { \
17 float rx, ry, xx = (x), yy = (y), *mat = (m); \
18 rx = mat[0] * xx + mat[2] * yy; \
19 ry = mat[1] * xx + mat[3] * yy; \
20 (xr) = rx; (yr) = ry; \
21 } while (0)
23 /* Direction and other bitfields */
24 #define R 0x01
25 #define U 0x02
26 #define L 0x04
27 #define D 0x08
28 #define FLASHING 0x10
29 #define ACTIVE 0x20
30 /* Corner flags go in the barriers array */
31 #define RU 0x10
32 #define UL 0x20
33 #define LD 0x40
34 #define DR 0x80
36 /* Get tile at given coordinate */
37 #define T(state, x, y) ( (y) * (state)->width + (x) )
39 /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
40 #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
41 #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
42 #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
43 #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
44 ((n)&3) == 1 ? A(x) : \
45 ((n)&3) == 2 ? F(x) : C(x) )
47 /* X and Y displacements */
48 #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
49 #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
51 /* Bit count */
52 #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
53 (((x) & 0x02) >> 1) + ((x) & 0x01) )
55 #define PREFERRED_TILE_SIZE 48
56 #define TILE_SIZE (ds->tilesize)
57 #define BORDER TILE_SIZE
58 #define TILE_BORDER 1
59 #define WINDOW_OFFSET 0
61 #define ANIM_TIME 0.13F
62 #define FLASH_FRAME 0.07F
64 enum {
65 COL_BACKGROUND,
66 COL_FLASHING,
67 COL_BORDER,
68 COL_WIRE,
69 COL_ENDPOINT,
70 COL_POWERED,
71 COL_BARRIER,
72 COL_LOWLIGHT,
73 COL_TEXT,
74 NCOLOURS
77 struct game_params {
78 int width;
79 int height;
80 int wrapping;
81 float barrier_probability;
82 int movetarget;
85 struct game_state {
86 int width, height, cx, cy, wrapping, completed;
87 int used_solve;
88 int move_count, movetarget;
90 /* position (row or col number, starting at 0) of last move. */
91 int last_move_row, last_move_col;
93 /* direction of last move: +1 or -1 */
94 int last_move_dir;
96 unsigned char *tiles;
97 unsigned char *barriers;
100 #define OFFSET(x2,y2,x1,y1,dir,state) \
101 ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
102 (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
104 #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
105 #define tile(state, x, y) index(state, (state)->tiles, x, y)
106 #define barrier(state, x, y) index(state, (state)->barriers, x, y)
108 struct xyd {
109 int x, y, direction;
112 static int xyd_cmp(void *av, void *bv) {
113 struct xyd *a = (struct xyd *)av;
114 struct xyd *b = (struct xyd *)bv;
115 if (a->x < b->x)
116 return -1;
117 if (a->x > b->x)
118 return +1;
119 if (a->y < b->y)
120 return -1;
121 if (a->y > b->y)
122 return +1;
123 if (a->direction < b->direction)
124 return -1;
125 if (a->direction > b->direction)
126 return +1;
127 return 0;
130 static struct xyd *new_xyd(int x, int y, int direction)
132 struct xyd *xyd = snew(struct xyd);
133 xyd->x = x;
134 xyd->y = y;
135 xyd->direction = direction;
136 return xyd;
139 static void slide_col(game_state *state, int dir, int col);
140 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col);
141 static void slide_row(game_state *state, int dir, int row);
142 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row);
144 /* ----------------------------------------------------------------------
145 * Manage game parameters.
147 static game_params *default_params(void)
149 game_params *ret = snew(game_params);
151 ret->width = 3;
152 ret->height = 3;
153 ret->wrapping = FALSE;
154 ret->barrier_probability = 1.0;
155 ret->movetarget = 0;
157 return ret;
160 static const struct { int x, y, wrap, bprob; const char* desc; }
161 netslide_presets[] = {
162 {3, 3, FALSE, 1, " easy"},
163 {3, 3, FALSE, 0, " medium"},
164 {3, 3, TRUE, 0, " hard"},
165 {4, 4, FALSE, 1, " easy"},
166 {4, 4, FALSE, 0, " medium"},
167 {4, 4, TRUE, 0, " hard"},
168 {5, 5, FALSE, 1, " easy"},
169 {5, 5, FALSE, 0, " medium"},
170 {5, 5, TRUE, 0, " hard"},
173 static int game_fetch_preset(int i, char **name, game_params **params)
175 game_params *ret;
176 char str[80];
178 if (i < 0 || i >= lenof(netslide_presets))
179 return FALSE;
181 ret = snew(game_params);
182 ret->width = netslide_presets[i].x;
183 ret->height = netslide_presets[i].y;
184 ret->wrapping = netslide_presets[i].wrap;
185 ret->barrier_probability = (float)netslide_presets[i].bprob;
186 ret->movetarget = 0;
188 sprintf(str, "%dx%d%s", ret->width, ret->height, netslide_presets[i].desc);
190 *name = dupstr(str);
191 *params = ret;
192 return TRUE;
195 static void free_params(game_params *params)
197 sfree(params);
200 static game_params *dup_params(const game_params *params)
202 game_params *ret = snew(game_params);
203 *ret = *params; /* structure copy */
204 return ret;
207 static void decode_params(game_params *ret, char const *string)
209 char const *p = string;
211 ret->wrapping = FALSE;
212 ret->barrier_probability = 0.0;
213 ret->movetarget = 0;
215 ret->width = atoi(p);
216 while (*p && isdigit((unsigned char)*p)) p++;
217 if (*p == 'x') {
218 p++;
219 ret->height = atoi(p);
220 while (*p && isdigit((unsigned char)*p)) p++;
221 if ( (ret->wrapping = (*p == 'w')) != 0 )
222 p++;
223 if (*p == 'b') {
224 ret->barrier_probability = (float)atof(++p);
225 while (*p && (isdigit((unsigned char)*p) || *p == '.')) p++;
227 if (*p == 'm') {
228 ret->movetarget = atoi(++p);
230 } else {
231 ret->height = ret->width;
235 static char *encode_params(const game_params *params, int full)
237 char ret[400];
238 int len;
240 len = sprintf(ret, "%dx%d", params->width, params->height);
241 if (params->wrapping)
242 ret[len++] = 'w';
243 if (full && params->barrier_probability)
244 len += sprintf(ret+len, "b%g", params->barrier_probability);
245 /* Shuffle limit is part of the limited parameters, because we have to
246 * provide the target move count. */
247 if (params->movetarget)
248 len += sprintf(ret+len, "m%d", params->movetarget);
249 assert(len < lenof(ret));
250 ret[len] = '\0';
252 return dupstr(ret);
255 static config_item *game_configure(const game_params *params)
257 config_item *ret;
258 char buf[80];
260 ret = snewn(6, config_item);
262 ret[0].name = "Width";
263 ret[0].type = C_STRING;
264 sprintf(buf, "%d", params->width);
265 ret[0].sval = dupstr(buf);
266 ret[0].ival = 0;
268 ret[1].name = "Height";
269 ret[1].type = C_STRING;
270 sprintf(buf, "%d", params->height);
271 ret[1].sval = dupstr(buf);
272 ret[1].ival = 0;
274 ret[2].name = "Walls wrap around";
275 ret[2].type = C_BOOLEAN;
276 ret[2].sval = NULL;
277 ret[2].ival = params->wrapping;
279 ret[3].name = "Barrier probability";
280 ret[3].type = C_STRING;
281 sprintf(buf, "%g", params->barrier_probability);
282 ret[3].sval = dupstr(buf);
283 ret[3].ival = 0;
285 ret[4].name = "Number of shuffling moves";
286 ret[4].type = C_STRING;
287 sprintf(buf, "%d", params->movetarget);
288 ret[4].sval = dupstr(buf);
289 ret[4].ival = 0;
291 ret[5].name = NULL;
292 ret[5].type = C_END;
293 ret[5].sval = NULL;
294 ret[5].ival = 0;
296 return ret;
299 static game_params *custom_params(const config_item *cfg)
301 game_params *ret = snew(game_params);
303 ret->width = atoi(cfg[0].sval);
304 ret->height = atoi(cfg[1].sval);
305 ret->wrapping = cfg[2].ival;
306 ret->barrier_probability = (float)atof(cfg[3].sval);
307 ret->movetarget = atoi(cfg[4].sval);
309 return ret;
312 static char *validate_params(const game_params *params, int full)
314 if (params->width <= 1 || params->height <= 1)
315 return "Width and height must both be greater than one";
316 if (params->barrier_probability < 0)
317 return "Barrier probability may not be negative";
318 if (params->barrier_probability > 1)
319 return "Barrier probability may not be greater than 1";
320 return NULL;
323 /* ----------------------------------------------------------------------
324 * Randomly select a new game description.
327 static char *new_game_desc(const game_params *params, random_state *rs,
328 char **aux, int interactive)
330 tree234 *possibilities, *barriertree;
331 int w, h, x, y, cx, cy, nbarriers;
332 unsigned char *tiles, *barriers;
333 char *desc, *p;
335 w = params->width;
336 h = params->height;
338 tiles = snewn(w * h, unsigned char);
339 memset(tiles, 0, w * h);
340 barriers = snewn(w * h, unsigned char);
341 memset(barriers, 0, w * h);
343 cx = w / 2;
344 cy = h / 2;
347 * Construct the unshuffled grid.
349 * To do this, we simply start at the centre point, repeatedly
350 * choose a random possibility out of the available ways to
351 * extend a used square into an unused one, and do it. After
352 * extending the third line out of a square, we remove the
353 * fourth from the possibilities list to avoid any full-cross
354 * squares (which would make the game too easy because they
355 * only have one orientation).
357 * The slightly worrying thing is the avoidance of full-cross
358 * squares. Can this cause our unsophisticated construction
359 * algorithm to paint itself into a corner, by getting into a
360 * situation where there are some unreached squares and the
361 * only way to reach any of them is to extend a T-piece into a
362 * full cross?
364 * Answer: no it can't, and here's a proof.
366 * Any contiguous group of such unreachable squares must be
367 * surrounded on _all_ sides by T-pieces pointing away from the
368 * group. (If not, then there is a square which can be extended
369 * into one of the `unreachable' ones, and so it wasn't
370 * unreachable after all.) In particular, this implies that
371 * each contiguous group of unreachable squares must be
372 * rectangular in shape (any deviation from that yields a
373 * non-T-piece next to an `unreachable' square).
375 * So we have a rectangle of unreachable squares, with T-pieces
376 * forming a solid border around the rectangle. The corners of
377 * that border must be connected (since every tile connects all
378 * the lines arriving in it), and therefore the border must
379 * form a closed loop around the rectangle.
381 * But this can't have happened in the first place, since we
382 * _know_ we've avoided creating closed loops! Hence, no such
383 * situation can ever arise, and the naive grid construction
384 * algorithm will guaranteeably result in a complete grid
385 * containing no unreached squares, no full crosses _and_ no
386 * closed loops. []
388 possibilities = newtree234(xyd_cmp);
390 if (cx+1 < w)
391 add234(possibilities, new_xyd(cx, cy, R));
392 if (cy-1 >= 0)
393 add234(possibilities, new_xyd(cx, cy, U));
394 if (cx-1 >= 0)
395 add234(possibilities, new_xyd(cx, cy, L));
396 if (cy+1 < h)
397 add234(possibilities, new_xyd(cx, cy, D));
399 while (count234(possibilities) > 0) {
400 int i;
401 struct xyd *xyd;
402 int x1, y1, d1, x2, y2, d2, d;
405 * Extract a randomly chosen possibility from the list.
407 i = random_upto(rs, count234(possibilities));
408 xyd = delpos234(possibilities, i);
409 x1 = xyd->x;
410 y1 = xyd->y;
411 d1 = xyd->direction;
412 sfree(xyd);
414 OFFSET(x2, y2, x1, y1, d1, params);
415 d2 = F(d1);
416 #ifdef GENERATION_DIAGNOSTICS
417 printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
418 x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
419 #endif
422 * Make the connection. (We should be moving to an as yet
423 * unused tile.)
425 index(params, tiles, x1, y1) |= d1;
426 assert(index(params, tiles, x2, y2) == 0);
427 index(params, tiles, x2, y2) |= d2;
430 * If we have created a T-piece, remove its last
431 * possibility.
433 if (COUNT(index(params, tiles, x1, y1)) == 3) {
434 struct xyd xyd1, *xydp;
436 xyd1.x = x1;
437 xyd1.y = y1;
438 xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
440 xydp = find234(possibilities, &xyd1, NULL);
442 if (xydp) {
443 #ifdef GENERATION_DIAGNOSTICS
444 printf("T-piece; removing (%d,%d,%c)\n",
445 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
446 #endif
447 del234(possibilities, xydp);
448 sfree(xydp);
453 * Remove all other possibilities that were pointing at the
454 * tile we've just moved into.
456 for (d = 1; d < 0x10; d <<= 1) {
457 int x3, y3, d3;
458 struct xyd xyd1, *xydp;
460 OFFSET(x3, y3, x2, y2, d, params);
461 d3 = F(d);
463 xyd1.x = x3;
464 xyd1.y = y3;
465 xyd1.direction = d3;
467 xydp = find234(possibilities, &xyd1, NULL);
469 if (xydp) {
470 #ifdef GENERATION_DIAGNOSTICS
471 printf("Loop avoidance; removing (%d,%d,%c)\n",
472 xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
473 #endif
474 del234(possibilities, xydp);
475 sfree(xydp);
480 * Add new possibilities to the list for moving _out_ of
481 * the tile we have just moved into.
483 for (d = 1; d < 0x10; d <<= 1) {
484 int x3, y3;
486 if (d == d2)
487 continue; /* we've got this one already */
489 if (!params->wrapping) {
490 if (d == U && y2 == 0)
491 continue;
492 if (d == D && y2 == h-1)
493 continue;
494 if (d == L && x2 == 0)
495 continue;
496 if (d == R && x2 == w-1)
497 continue;
500 OFFSET(x3, y3, x2, y2, d, params);
502 if (index(params, tiles, x3, y3))
503 continue; /* this would create a loop */
505 #ifdef GENERATION_DIAGNOSTICS
506 printf("New frontier; adding (%d,%d,%c)\n",
507 x2, y2, "0RU3L567D9abcdef"[d]);
508 #endif
509 add234(possibilities, new_xyd(x2, y2, d));
512 /* Having done that, we should have no possibilities remaining. */
513 assert(count234(possibilities) == 0);
514 freetree234(possibilities);
517 * Now compute a list of the possible barrier locations.
519 barriertree = newtree234(xyd_cmp);
520 for (y = 0; y < h; y++) {
521 for (x = 0; x < w; x++) {
523 if (!(index(params, tiles, x, y) & R) &&
524 (params->wrapping || x < w-1))
525 add234(barriertree, new_xyd(x, y, R));
526 if (!(index(params, tiles, x, y) & D) &&
527 (params->wrapping || y < h-1))
528 add234(barriertree, new_xyd(x, y, D));
533 * Save the unshuffled grid in aux.
536 char *solution;
537 int i;
540 * String format is exactly the same as a solve move, so we
541 * can just dupstr this in solve_game().
544 solution = snewn(w * h + 2, char);
545 solution[0] = 'S';
546 for (i = 0; i < w * h; i++)
547 solution[i+1] = "0123456789abcdef"[tiles[i] & 0xF];
548 solution[w*h+1] = '\0';
550 *aux = solution;
554 * Now shuffle the grid.
555 * FIXME - this simply does a set of random moves to shuffle the pieces,
556 * although we make a token effort to avoid boring cases by avoiding moves
557 * that directly undo the previous one, or that repeat so often as to
558 * turn into fewer moves.
560 * A better way would be to number all the pieces, generate a placement
561 * for all the numbers as for "sixteen", observing parity constraints if
562 * neccessary, and then place the pieces according to their numbering.
563 * BUT - I'm not sure if this will work, since we disallow movement of
564 * the middle row and column.
567 int i;
568 int cols = w - 1;
569 int rows = h - 1;
570 int moves = params->movetarget;
571 int prevdir = -1, prevrowcol = -1, nrepeats = 0;
572 if (!moves) moves = cols * rows * 2;
573 for (i = 0; i < moves; /* incremented conditionally */) {
574 /* Choose a direction: 0,1,2,3 = up, right, down, left. */
575 int dir = random_upto(rs, 4);
576 int rowcol;
577 if (dir % 2 == 0) {
578 int col = random_upto(rs, cols);
579 if (col >= cx) col += 1; /* avoid centre */
580 if (col == prevrowcol) {
581 if (dir == 2-prevdir)
582 continue; /* undoes last move */
583 else if (dir == prevdir && (nrepeats+1)*2 > h)
584 continue; /* makes fewer moves */
586 slide_col_int(w, h, tiles, 1 - dir, col);
587 rowcol = col;
588 } else {
589 int row = random_upto(rs, rows);
590 if (row >= cy) row += 1; /* avoid centre */
591 if (row == prevrowcol) {
592 if (dir == 4-prevdir)
593 continue; /* undoes last move */
594 else if (dir == prevdir && (nrepeats+1)*2 > w)
595 continue; /* makes fewer moves */
597 slide_row_int(w, h, tiles, 2 - dir, row);
598 rowcol = row;
600 if (dir == prevdir && rowcol == prevrowcol)
601 nrepeats++;
602 else
603 nrepeats = 1;
604 prevdir = dir;
605 prevrowcol = rowcol;
606 i++; /* if we got here, the move was accepted */
611 * And now choose barrier locations. (We carefully do this
612 * _after_ shuffling, so that changing the barrier rate in the
613 * params while keeping the random seed the same will give the
614 * same shuffled grid and _only_ change the barrier locations.
615 * Also the way we choose barrier locations, by repeatedly
616 * choosing one possibility from the list until we have enough,
617 * is designed to ensure that raising the barrier rate while
618 * keeping the seed the same will provide a superset of the
619 * previous barrier set - i.e. if you ask for 10 barriers, and
620 * then decide that's still too hard and ask for 20, you'll get
621 * the original 10 plus 10 more, rather than getting 20 new
622 * ones and the chance of remembering your first 10.)
624 nbarriers = (int)(params->barrier_probability * count234(barriertree));
625 assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
627 while (nbarriers > 0) {
628 int i;
629 struct xyd *xyd;
630 int x1, y1, d1, x2, y2, d2;
633 * Extract a randomly chosen barrier from the list.
635 i = random_upto(rs, count234(barriertree));
636 xyd = delpos234(barriertree, i);
638 assert(xyd != NULL);
640 x1 = xyd->x;
641 y1 = xyd->y;
642 d1 = xyd->direction;
643 sfree(xyd);
645 OFFSET(x2, y2, x1, y1, d1, params);
646 d2 = F(d1);
648 index(params, barriers, x1, y1) |= d1;
649 index(params, barriers, x2, y2) |= d2;
651 nbarriers--;
655 * Clean up the rest of the barrier list.
658 struct xyd *xyd;
660 while ( (xyd = delpos234(barriertree, 0)) != NULL)
661 sfree(xyd);
663 freetree234(barriertree);
667 * Finally, encode the grid into a string game description.
669 * My syntax is extremely simple: each square is encoded as a
670 * hex digit in which bit 0 means a connection on the right,
671 * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
672 * encoding as used internally). Each digit is followed by
673 * optional barrier indicators: `v' means a vertical barrier to
674 * the right of it, and `h' means a horizontal barrier below
675 * it.
677 desc = snewn(w * h * 3 + 1, char);
678 p = desc;
679 for (y = 0; y < h; y++) {
680 for (x = 0; x < w; x++) {
681 *p++ = "0123456789abcdef"[index(params, tiles, x, y)];
682 if ((params->wrapping || x < w-1) &&
683 (index(params, barriers, x, y) & R))
684 *p++ = 'v';
685 if ((params->wrapping || y < h-1) &&
686 (index(params, barriers, x, y) & D))
687 *p++ = 'h';
690 assert(p - desc <= w*h*3);
691 *p = '\0';
693 sfree(tiles);
694 sfree(barriers);
696 return desc;
699 static char *validate_desc(const game_params *params, const char *desc)
701 int w = params->width, h = params->height;
702 int i;
704 for (i = 0; i < w*h; i++) {
705 if (*desc >= '0' && *desc <= '9')
706 /* OK */;
707 else if (*desc >= 'a' && *desc <= 'f')
708 /* OK */;
709 else if (*desc >= 'A' && *desc <= 'F')
710 /* OK */;
711 else if (!*desc)
712 return "Game description shorter than expected";
713 else
714 return "Game description contained unexpected character";
715 desc++;
716 while (*desc == 'h' || *desc == 'v')
717 desc++;
719 if (*desc)
720 return "Game description longer than expected";
722 return NULL;
725 /* ----------------------------------------------------------------------
726 * Construct an initial game state, given a description and parameters.
729 static game_state *new_game(midend *me, const game_params *params,
730 const char *desc)
732 game_state *state;
733 int w, h, x, y;
735 assert(params->width > 0 && params->height > 0);
736 assert(params->width > 1 || params->height > 1);
739 * Create a blank game state.
741 state = snew(game_state);
742 w = state->width = params->width;
743 h = state->height = params->height;
744 state->cx = state->width / 2;
745 state->cy = state->height / 2;
746 state->wrapping = params->wrapping;
747 state->movetarget = params->movetarget;
748 state->completed = 0;
749 state->used_solve = FALSE;
750 state->move_count = 0;
751 state->last_move_row = -1;
752 state->last_move_col = -1;
753 state->last_move_dir = 0;
754 state->tiles = snewn(state->width * state->height, unsigned char);
755 memset(state->tiles, 0, state->width * state->height);
756 state->barriers = snewn(state->width * state->height, unsigned char);
757 memset(state->barriers, 0, state->width * state->height);
761 * Parse the game description into the grid.
763 for (y = 0; y < h; y++) {
764 for (x = 0; x < w; x++) {
765 if (*desc >= '0' && *desc <= '9')
766 tile(state, x, y) = *desc - '0';
767 else if (*desc >= 'a' && *desc <= 'f')
768 tile(state, x, y) = *desc - 'a' + 10;
769 else if (*desc >= 'A' && *desc <= 'F')
770 tile(state, x, y) = *desc - 'A' + 10;
771 if (*desc)
772 desc++;
773 while (*desc == 'h' || *desc == 'v') {
774 int x2, y2, d1, d2;
775 if (*desc == 'v')
776 d1 = R;
777 else
778 d1 = D;
780 OFFSET(x2, y2, x, y, d1, state);
781 d2 = F(d1);
783 barrier(state, x, y) |= d1;
784 barrier(state, x2, y2) |= d2;
786 desc++;
792 * Set up border barriers if this is a non-wrapping game.
794 if (!state->wrapping) {
795 for (x = 0; x < state->width; x++) {
796 barrier(state, x, 0) |= U;
797 barrier(state, x, state->height-1) |= D;
799 for (y = 0; y < state->height; y++) {
800 barrier(state, 0, y) |= L;
801 barrier(state, state->width-1, y) |= R;
806 * Set up the barrier corner flags, for drawing barriers
807 * prettily when they meet.
809 for (y = 0; y < state->height; y++) {
810 for (x = 0; x < state->width; x++) {
811 int dir;
813 for (dir = 1; dir < 0x10; dir <<= 1) {
814 int dir2 = A(dir);
815 int x1, y1, x2, y2, x3, y3;
816 int corner = FALSE;
818 if (!(barrier(state, x, y) & dir))
819 continue;
821 if (barrier(state, x, y) & dir2)
822 corner = TRUE;
824 x1 = x + X(dir), y1 = y + Y(dir);
825 if (x1 >= 0 && x1 < state->width &&
826 y1 >= 0 && y1 < state->height &&
827 (barrier(state, x1, y1) & dir2))
828 corner = TRUE;
830 x2 = x + X(dir2), y2 = y + Y(dir2);
831 if (x2 >= 0 && x2 < state->width &&
832 y2 >= 0 && y2 < state->height &&
833 (barrier(state, x2, y2) & dir))
834 corner = TRUE;
836 if (corner) {
837 barrier(state, x, y) |= (dir << 4);
838 if (x1 >= 0 && x1 < state->width &&
839 y1 >= 0 && y1 < state->height)
840 barrier(state, x1, y1) |= (A(dir) << 4);
841 if (x2 >= 0 && x2 < state->width &&
842 y2 >= 0 && y2 < state->height)
843 barrier(state, x2, y2) |= (C(dir) << 4);
844 x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
845 if (x3 >= 0 && x3 < state->width &&
846 y3 >= 0 && y3 < state->height)
847 barrier(state, x3, y3) |= (F(dir) << 4);
853 return state;
856 static game_state *dup_game(const game_state *state)
858 game_state *ret;
860 ret = snew(game_state);
861 ret->width = state->width;
862 ret->height = state->height;
863 ret->cx = state->cx;
864 ret->cy = state->cy;
865 ret->wrapping = state->wrapping;
866 ret->movetarget = state->movetarget;
867 ret->completed = state->completed;
868 ret->used_solve = state->used_solve;
869 ret->move_count = state->move_count;
870 ret->last_move_row = state->last_move_row;
871 ret->last_move_col = state->last_move_col;
872 ret->last_move_dir = state->last_move_dir;
873 ret->tiles = snewn(state->width * state->height, unsigned char);
874 memcpy(ret->tiles, state->tiles, state->width * state->height);
875 ret->barriers = snewn(state->width * state->height, unsigned char);
876 memcpy(ret->barriers, state->barriers, state->width * state->height);
878 return ret;
881 static void free_game(game_state *state)
883 sfree(state->tiles);
884 sfree(state->barriers);
885 sfree(state);
888 static char *solve_game(const game_state *state, const game_state *currstate,
889 const char *aux, char **error)
891 if (!aux) {
892 *error = "Solution not known for this puzzle";
893 return NULL;
896 return dupstr(aux);
899 static int game_can_format_as_text_now(const game_params *params)
901 return TRUE;
904 static char *game_text_format(const game_state *state)
906 return NULL;
909 /* ----------------------------------------------------------------------
910 * Utility routine.
914 * Compute which squares are reachable from the centre square, as a
915 * quick visual aid to determining how close the game is to
916 * completion. This is also a simple way to tell if the game _is_
917 * completed - just call this function and see whether every square
918 * is marked active.
920 * squares in the moving_row and moving_col are always inactive - this
921 * is so that "current" doesn't appear to jump across moving lines.
923 static unsigned char *compute_active(const game_state *state,
924 int moving_row, int moving_col)
926 unsigned char *active;
927 tree234 *todo;
928 struct xyd *xyd;
930 active = snewn(state->width * state->height, unsigned char);
931 memset(active, 0, state->width * state->height);
934 * We only store (x,y) pairs in todo, but it's easier to reuse
935 * xyd_cmp and just store direction 0 every time.
937 todo = newtree234(xyd_cmp);
938 index(state, active, state->cx, state->cy) = ACTIVE;
939 add234(todo, new_xyd(state->cx, state->cy, 0));
941 while ( (xyd = delpos234(todo, 0)) != NULL) {
942 int x1, y1, d1, x2, y2, d2;
944 x1 = xyd->x;
945 y1 = xyd->y;
946 sfree(xyd);
948 for (d1 = 1; d1 < 0x10; d1 <<= 1) {
949 OFFSET(x2, y2, x1, y1, d1, state);
950 d2 = F(d1);
953 * If the next tile in this direction is connected to
954 * us, and there isn't a barrier in the way, and it
955 * isn't already marked active, then mark it active and
956 * add it to the to-examine list.
958 if ((x2 != moving_col && y2 != moving_row) &&
959 (tile(state, x1, y1) & d1) &&
960 (tile(state, x2, y2) & d2) &&
961 !(barrier(state, x1, y1) & d1) &&
962 !index(state, active, x2, y2)) {
963 index(state, active, x2, y2) = ACTIVE;
964 add234(todo, new_xyd(x2, y2, 0));
968 /* Now we expect the todo list to have shrunk to zero size. */
969 assert(count234(todo) == 0);
970 freetree234(todo);
972 return active;
975 struct game_ui {
976 int cur_x, cur_y;
977 int cur_visible;
980 static game_ui *new_ui(const game_state *state)
982 game_ui *ui = snew(game_ui);
983 ui->cur_x = 0;
984 ui->cur_y = -1;
985 ui->cur_visible = FALSE;
987 return ui;
990 static void free_ui(game_ui *ui)
992 sfree(ui);
995 static char *encode_ui(const game_ui *ui)
997 return NULL;
1000 static void decode_ui(game_ui *ui, const char *encoding)
1004 /* ----------------------------------------------------------------------
1005 * Process a move.
1008 static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row)
1010 int x = dir > 0 ? -1 : w;
1011 int tx = x + dir;
1012 int n = w - 1;
1013 unsigned char endtile = tiles[row * w + tx];
1014 do {
1015 x = tx;
1016 tx = (x + dir + w) % w;
1017 tiles[row * w + x] = tiles[row * w + tx];
1018 } while (--n > 0);
1019 tiles[row * w + tx] = endtile;
1022 static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col)
1024 int y = dir > 0 ? -1 : h;
1025 int ty = y + dir;
1026 int n = h - 1;
1027 unsigned char endtile = tiles[ty * w + col];
1028 do {
1029 y = ty;
1030 ty = (y + dir + h) % h;
1031 tiles[y * w + col] = tiles[ty * w + col];
1032 } while (--n > 0);
1033 tiles[ty * w + col] = endtile;
1036 static void slide_row(game_state *state, int dir, int row)
1038 slide_row_int(state->width, state->height, state->tiles, dir, row);
1041 static void slide_col(game_state *state, int dir, int col)
1043 slide_col_int(state->width, state->height, state->tiles, dir, col);
1046 static void game_changed_state(game_ui *ui, const game_state *oldstate,
1047 const game_state *newstate)
1051 struct game_drawstate {
1052 int started;
1053 int width, height;
1054 int tilesize;
1055 unsigned char *visible;
1056 int cur_x, cur_y;
1059 static char *interpret_move(const game_state *state, game_ui *ui,
1060 const game_drawstate *ds,
1061 int x, int y, int button)
1063 int cx, cy;
1064 int dx, dy;
1065 char buf[80];
1067 button &= ~MOD_MASK;
1069 if (IS_CURSOR_MOVE(button)) {
1070 int cpos, diff = 0;
1071 cpos = c2pos(state->width, state->height, ui->cur_x, ui->cur_y);
1072 diff = c2diff(state->width, state->height, ui->cur_x, ui->cur_y, button);
1074 if (diff != 0) {
1075 do { /* we might have to do this more than once to skip missing arrows */
1076 cpos += diff;
1077 pos2c(state->width, state->height, cpos, &ui->cur_x, &ui->cur_y);
1078 } while (ui->cur_x == state->cx || ui->cur_y == state->cy);
1081 ui->cur_visible = 1;
1082 return "";
1085 if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
1086 cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1087 cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
1088 ui->cur_visible = 0;
1089 } else if (IS_CURSOR_SELECT(button)) {
1090 if (ui->cur_visible) {
1091 cx = ui->cur_x;
1092 cy = ui->cur_y;
1093 } else {
1094 /* 'click' when cursor is invisible just makes cursor visible. */
1095 ui->cur_visible = 1;
1096 return "";
1098 } else
1099 return NULL;
1101 if (cy >= 0 && cy < state->height && cy != state->cy)
1103 if (cx == -1) dx = +1;
1104 else if (cx == state->width) dx = -1;
1105 else return NULL;
1106 dy = 0;
1108 else if (cx >= 0 && cx < state->width && cx != state->cx)
1110 if (cy == -1) dy = +1;
1111 else if (cy == state->height) dy = -1;
1112 else return NULL;
1113 dx = 0;
1115 else
1116 return NULL;
1118 /* reverse direction if right hand button is pressed */
1119 if (button == RIGHT_BUTTON)
1121 dx = -dx;
1122 dy = -dy;
1125 if (dx == 0)
1126 sprintf(buf, "C%d,%d", cx, dy);
1127 else
1128 sprintf(buf, "R%d,%d", cy, dx);
1129 return dupstr(buf);
1132 static game_state *execute_move(const game_state *from, const char *move)
1134 game_state *ret;
1135 int c, d, col;
1137 if ((move[0] == 'C' || move[0] == 'R') &&
1138 sscanf(move+1, "%d,%d", &c, &d) == 2 &&
1139 c >= 0 && c < (move[0] == 'C' ? from->width : from->height)) {
1140 col = (move[0] == 'C');
1141 } else if (move[0] == 'S' &&
1142 strlen(move) == from->width * from->height + 1) {
1143 int i;
1144 ret = dup_game(from);
1145 ret->used_solve = TRUE;
1146 ret->completed = ret->move_count = 1;
1148 for (i = 0; i < from->width * from->height; i++) {
1149 c = move[i+1];
1150 if (c >= '0' && c <= '9')
1151 c -= '0';
1152 else if (c >= 'A' && c <= 'F')
1153 c -= 'A' - 10;
1154 else if (c >= 'a' && c <= 'f')
1155 c -= 'a' - 10;
1156 else {
1157 free_game(ret);
1158 return NULL;
1160 ret->tiles[i] = c;
1162 return ret;
1163 } else
1164 return NULL; /* can't parse move string */
1166 ret = dup_game(from);
1168 if (col)
1169 slide_col(ret, d, c);
1170 else
1171 slide_row(ret, d, c);
1173 ret->move_count++;
1174 ret->last_move_row = col ? -1 : c;
1175 ret->last_move_col = col ? c : -1;
1176 ret->last_move_dir = d;
1179 * See if the game has been completed.
1181 if (!ret->completed) {
1182 unsigned char *active = compute_active(ret, -1, -1);
1183 int x1, y1;
1184 int complete = TRUE;
1186 for (x1 = 0; x1 < ret->width; x1++)
1187 for (y1 = 0; y1 < ret->height; y1++)
1188 if (!index(ret, active, x1, y1)) {
1189 complete = FALSE;
1190 goto break_label; /* break out of two loops at once */
1192 break_label:
1194 sfree(active);
1196 if (complete)
1197 ret->completed = ret->move_count;
1200 return ret;
1203 /* ----------------------------------------------------------------------
1204 * Routines for drawing the game position on the screen.
1207 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1209 game_drawstate *ds = snew(game_drawstate);
1211 ds->started = FALSE;
1212 ds->width = state->width;
1213 ds->height = state->height;
1214 ds->visible = snewn(state->width * state->height, unsigned char);
1215 ds->tilesize = 0; /* not decided yet */
1216 memset(ds->visible, 0xFF, state->width * state->height);
1217 ds->cur_x = ds->cur_y = -1;
1219 return ds;
1222 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1224 sfree(ds->visible);
1225 sfree(ds);
1228 static void game_compute_size(const game_params *params, int tilesize,
1229 int *x, int *y)
1231 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1232 struct { int tilesize; } ads, *ds = &ads;
1233 ads.tilesize = tilesize;
1235 *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
1236 *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
1239 static void game_set_size(drawing *dr, game_drawstate *ds,
1240 const game_params *params, int tilesize)
1242 ds->tilesize = tilesize;
1245 static float *game_colours(frontend *fe, int *ncolours)
1247 float *ret;
1249 ret = snewn(NCOLOURS * 3, float);
1250 *ncolours = NCOLOURS;
1253 * Basic background colour is whatever the front end thinks is
1254 * a sensible default.
1256 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1259 * Wires are black.
1261 ret[COL_WIRE * 3 + 0] = 0.0F;
1262 ret[COL_WIRE * 3 + 1] = 0.0F;
1263 ret[COL_WIRE * 3 + 2] = 0.0F;
1266 * Powered wires and powered endpoints are cyan.
1268 ret[COL_POWERED * 3 + 0] = 0.0F;
1269 ret[COL_POWERED * 3 + 1] = 1.0F;
1270 ret[COL_POWERED * 3 + 2] = 1.0F;
1273 * Barriers are red.
1275 ret[COL_BARRIER * 3 + 0] = 1.0F;
1276 ret[COL_BARRIER * 3 + 1] = 0.0F;
1277 ret[COL_BARRIER * 3 + 2] = 0.0F;
1280 * Unpowered endpoints are blue.
1282 ret[COL_ENDPOINT * 3 + 0] = 0.0F;
1283 ret[COL_ENDPOINT * 3 + 1] = 0.0F;
1284 ret[COL_ENDPOINT * 3 + 2] = 1.0F;
1287 * Tile borders are a darker grey than the background.
1289 ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1290 ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1291 ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
1294 * Flashing tiles are a grey in between those two.
1296 ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
1297 ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
1298 ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
1300 ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
1301 ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
1302 ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
1303 ret[COL_TEXT * 3 + 0] = 0.0;
1304 ret[COL_TEXT * 3 + 1] = 0.0;
1305 ret[COL_TEXT * 3 + 2] = 0.0;
1307 return ret;
1310 static void draw_filled_line(drawing *dr, int x1, int y1, int x2, int y2,
1311 int colour)
1313 draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
1314 draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
1315 draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
1316 draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
1317 draw_line(dr, x1, y1, x2, y2, colour);
1320 static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
1321 int colour)
1323 int mx = (x1 < x2 ? x1 : x2);
1324 int my = (y1 < y2 ? y1 : y2);
1325 int dx = (x2 + x1 - 2*mx + 1);
1326 int dy = (y2 + y1 - 2*my + 1);
1328 draw_rect(dr, mx, my, dx, dy, colour);
1331 static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
1332 int x, int y, int dir, int phase)
1334 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1335 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1336 int x1, y1, dx, dy, dir2;
1338 dir >>= 4;
1340 dir2 = A(dir);
1341 dx = X(dir) + X(dir2);
1342 dy = Y(dir) + Y(dir2);
1343 x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1344 y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
1346 if (phase == 0) {
1347 draw_rect_coords(dr, bx+x1, by+y1,
1348 bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
1349 COL_WIRE);
1350 draw_rect_coords(dr, bx+x1, by+y1,
1351 bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
1352 COL_WIRE);
1353 } else {
1354 draw_rect_coords(dr, bx+x1, by+y1,
1355 bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
1356 COL_BARRIER);
1360 static void draw_barrier(drawing *dr, game_drawstate *ds,
1361 int x, int y, int dir, int phase)
1363 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1364 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1365 int x1, y1, w, h;
1367 x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
1368 y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
1369 w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1370 h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
1372 if (phase == 0) {
1373 draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
1374 } else {
1375 draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
1379 static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
1380 int x, int y, int tile, float xshift, float yshift)
1382 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (int)(xshift * TILE_SIZE);
1383 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (int)(yshift * TILE_SIZE);
1384 float cx, cy, ex, ey;
1385 int dir, col;
1388 * When we draw a single tile, we must draw everything up to
1389 * and including the borders around the tile. This means that
1390 * if the neighbouring tiles have connections to those borders,
1391 * we must draw those connections on the borders themselves.
1393 * This would be terribly fiddly if we ever had to draw a tile
1394 * while its neighbour was in mid-rotate, because we'd have to
1395 * arrange to _know_ that the neighbour was being rotated and
1396 * hence had an anomalous effect on the redraw of this tile.
1397 * Fortunately, the drawing algorithm avoids ever calling us in
1398 * this circumstance: we're either drawing lots of straight
1399 * tiles at game start or after a move is complete, or we're
1400 * repeatedly drawing only the rotating tile. So no problem.
1404 * So. First blank the tile out completely: draw a big
1405 * rectangle in border colour, and a smaller rectangle in
1406 * background colour to fill it in.
1408 draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
1409 COL_BORDER);
1410 draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
1411 TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
1412 tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
1415 * Draw the wires.
1417 cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
1418 col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
1419 for (dir = 1; dir < 0x10; dir <<= 1) {
1420 if (tile & dir) {
1421 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1422 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1423 draw_filled_line(dr, bx+(int)cx, by+(int)cy,
1424 bx+(int)(cx+ex), by+(int)(cy+ey),
1425 COL_WIRE);
1428 for (dir = 1; dir < 0x10; dir <<= 1) {
1429 if (tile & dir) {
1430 ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
1431 ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
1432 draw_line(dr, bx+(int)cx, by+(int)cy,
1433 bx+(int)(cx+ex), by+(int)(cy+ey), col);
1438 * Draw the box in the middle. We do this in blue if the tile
1439 * is an unpowered endpoint, in cyan if the tile is a powered
1440 * endpoint, in black if the tile is the centrepiece, and
1441 * otherwise not at all.
1443 col = -1;
1444 if (x == state->cx && y == state->cy)
1445 col = COL_WIRE;
1446 else if (COUNT(tile) == 1) {
1447 col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
1449 if (col >= 0) {
1450 int i, points[8];
1452 points[0] = +1; points[1] = +1;
1453 points[2] = +1; points[3] = -1;
1454 points[4] = -1; points[5] = -1;
1455 points[6] = -1; points[7] = +1;
1457 for (i = 0; i < 8; i += 2) {
1458 ex = (TILE_SIZE * 0.24F) * points[i];
1459 ey = (TILE_SIZE * 0.24F) * points[i+1];
1460 points[i] = bx+(int)(cx+ex);
1461 points[i+1] = by+(int)(cy+ey);
1464 draw_polygon(dr, points, 4, col, COL_WIRE);
1468 * Draw the points on the border if other tiles are connected
1469 * to us.
1471 for (dir = 1; dir < 0x10; dir <<= 1) {
1472 int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
1474 dx = X(dir);
1475 dy = Y(dir);
1477 ox = x + dx;
1478 oy = y + dy;
1480 if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
1481 continue;
1483 if (!(tile(state, ox, oy) & F(dir)))
1484 continue;
1486 px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
1487 py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
1488 lx = dx * (TILE_BORDER-1);
1489 ly = dy * (TILE_BORDER-1);
1490 vx = (dy ? 1 : 0);
1491 vy = (dx ? 1 : 0);
1493 if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
1495 * If we are fully connected to the other tile, we must
1496 * draw right across the tile border. (We can use our
1497 * own ACTIVE state to determine what colour to do this
1498 * in: if we are fully connected to the other tile then
1499 * the two ACTIVE states will be the same.)
1501 draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
1502 draw_rect_coords(dr, px, py, px+lx, py+ly,
1503 (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
1504 } else {
1506 * The other tile extends into our border, but isn't
1507 * actually connected to us. Just draw a single black
1508 * dot.
1510 draw_rect_coords(dr, px, py, px, py, COL_WIRE);
1514 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1517 static void draw_tile_barriers(drawing *dr, game_drawstate *ds,
1518 const game_state *state, int x, int y)
1520 int phase;
1521 int dir;
1522 int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
1523 int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
1525 * Draw barrier corners, and then barriers.
1527 for (phase = 0; phase < 2; phase++) {
1528 for (dir = 1; dir < 0x10; dir <<= 1)
1529 if (barrier(state, x, y) & (dir << 4))
1530 draw_barrier_corner(dr, ds, x, y, dir << 4, phase);
1531 for (dir = 1; dir < 0x10; dir <<= 1)
1532 if (barrier(state, x, y) & dir)
1533 draw_barrier(dr, ds, x, y, dir, phase);
1536 draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
1539 static void draw_arrow(drawing *dr, game_drawstate *ds,
1540 int x, int y, int xdx, int xdy, int cur)
1542 int coords[14];
1543 int ydy = -xdx, ydx = xdy;
1545 x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
1546 y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
1548 #define POINT(n, xx, yy) ( \
1549 coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
1550 coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
1552 POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
1553 POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
1554 POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
1555 POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
1556 POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
1557 POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
1558 POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
1560 draw_polygon(dr, coords, 7, cur ? COL_POWERED : COL_LOWLIGHT, COL_TEXT);
1563 static void draw_arrow_for_cursor(drawing *dr, game_drawstate *ds,
1564 int cur_x, int cur_y, int cur)
1566 if (cur_x == -1 && cur_y == -1)
1567 return; /* 'no cursur here */
1568 else if (cur_x == -1) /* LH column. */
1569 draw_arrow(dr, ds, 0, cur_y+1, 0, -1, cur);
1570 else if (cur_x == ds->width) /* RH column */
1571 draw_arrow(dr, ds, ds->width, cur_y, 0, +1, cur);
1572 else if (cur_y == -1) /* Top row */
1573 draw_arrow(dr, ds, cur_x, 0, +1, 0, cur);
1574 else if (cur_y == ds->height) /* Bottom row */
1575 draw_arrow(dr, ds, cur_x+1, ds->height, -1, 0, cur);
1576 else
1577 assert(!"Invalid cursor position");
1579 draw_update(dr,
1580 cur_x * TILE_SIZE + BORDER + WINDOW_OFFSET,
1581 cur_y * TILE_SIZE + BORDER + WINDOW_OFFSET,
1582 TILE_SIZE, TILE_SIZE);
1585 static void game_redraw(drawing *dr, game_drawstate *ds,
1586 const game_state *oldstate, const game_state *state,
1587 int dir, const game_ui *ui,
1588 float t, float ft)
1590 int x, y, frame;
1591 unsigned char *active;
1592 float xshift = 0.0;
1593 float yshift = 0.0;
1594 int cur_x = -1, cur_y = -1;
1597 * Clear the screen and draw the exterior barrier lines if this
1598 * is our first call.
1600 if (!ds->started) {
1601 int phase;
1603 ds->started = TRUE;
1605 draw_rect(dr, 0, 0,
1606 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
1607 BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
1608 COL_BACKGROUND);
1609 draw_update(dr, 0, 0,
1610 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
1611 BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
1613 for (phase = 0; phase < 2; phase++) {
1615 for (x = 0; x < ds->width; x++) {
1616 if (barrier(state, x, 0) & UL)
1617 draw_barrier_corner(dr, ds, x, -1, LD, phase);
1618 if (barrier(state, x, 0) & RU)
1619 draw_barrier_corner(dr, ds, x, -1, DR, phase);
1620 if (barrier(state, x, 0) & U)
1621 draw_barrier(dr, ds, x, -1, D, phase);
1622 if (barrier(state, x, ds->height-1) & DR)
1623 draw_barrier_corner(dr, ds, x, ds->height, RU, phase);
1624 if (barrier(state, x, ds->height-1) & LD)
1625 draw_barrier_corner(dr, ds, x, ds->height, UL, phase);
1626 if (barrier(state, x, ds->height-1) & D)
1627 draw_barrier(dr, ds, x, ds->height, U, phase);
1630 for (y = 0; y < ds->height; y++) {
1631 if (barrier(state, 0, y) & UL)
1632 draw_barrier_corner(dr, ds, -1, y, RU, phase);
1633 if (barrier(state, 0, y) & LD)
1634 draw_barrier_corner(dr, ds, -1, y, DR, phase);
1635 if (barrier(state, 0, y) & L)
1636 draw_barrier(dr, ds, -1, y, R, phase);
1637 if (barrier(state, ds->width-1, y) & RU)
1638 draw_barrier_corner(dr, ds, ds->width, y, UL, phase);
1639 if (barrier(state, ds->width-1, y) & DR)
1640 draw_barrier_corner(dr, ds, ds->width, y, LD, phase);
1641 if (barrier(state, ds->width-1, y) & R)
1642 draw_barrier(dr, ds, ds->width, y, L, phase);
1647 * Arrows for making moves.
1649 for (x = 0; x < ds->width; x++) {
1650 if (x == state->cx) continue;
1651 draw_arrow(dr, ds, x, 0, +1, 0, 0);
1652 draw_arrow(dr, ds, x+1, ds->height, -1, 0, 0);
1654 for (y = 0; y < ds->height; y++) {
1655 if (y == state->cy) continue;
1656 draw_arrow(dr, ds, ds->width, y, 0, +1, 0);
1657 draw_arrow(dr, ds, 0, y+1, 0, -1, 0);
1660 if (ui->cur_visible) {
1661 cur_x = ui->cur_x; cur_y = ui->cur_y;
1663 if (cur_x != ds->cur_x || cur_y != ds->cur_y) {
1664 /* Cursor has changed; redraw two (prev and curr) arrows. */
1665 assert(cur_x != state->cx && cur_y != state->cy);
1667 draw_arrow_for_cursor(dr, ds, cur_x, cur_y, 1);
1668 draw_arrow_for_cursor(dr, ds, ds->cur_x, ds->cur_y, 0);
1669 ds->cur_x = cur_x; ds->cur_y = cur_y;
1672 /* Check if this is an undo. If so, we will need to run any animation
1673 * backwards.
1675 if (oldstate && oldstate->move_count > state->move_count) {
1676 const game_state * tmpstate = state;
1677 state = oldstate;
1678 oldstate = tmpstate;
1679 t = ANIM_TIME - t;
1682 if (oldstate && (t < ANIM_TIME)) {
1684 * We're animating a slide, of row/column number
1685 * state->last_move_pos, in direction
1686 * state->last_move_dir
1688 xshift = state->last_move_row == -1 ? 0.0F :
1689 (1 - t / ANIM_TIME) * state->last_move_dir;
1690 yshift = state->last_move_col == -1 ? 0.0F :
1691 (1 - t / ANIM_TIME) * state->last_move_dir;
1694 frame = -1;
1695 if (ft > 0) {
1697 * We're animating a completion flash. Find which frame
1698 * we're at.
1700 frame = (int)(ft / FLASH_FRAME);
1704 * Draw any tile which differs from the way it was last drawn.
1706 if (xshift != 0.0 || yshift != 0.0) {
1707 active = compute_active(state,
1708 state->last_move_row, state->last_move_col);
1709 } else {
1710 active = compute_active(state, -1, -1);
1713 clip(dr,
1714 BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
1715 TILE_SIZE * state->width + TILE_BORDER,
1716 TILE_SIZE * state->height + TILE_BORDER);
1718 for (x = 0; x < ds->width; x++)
1719 for (y = 0; y < ds->height; y++) {
1720 unsigned char c = tile(state, x, y) | index(state, active, x, y);
1723 * In a completion flash, we adjust the FLASHING bit
1724 * depending on our distance from the centre point and
1725 * the frame number.
1727 if (frame >= 0) {
1728 int xdist, ydist, dist;
1729 xdist = (x < state->cx ? state->cx - x : x - state->cx);
1730 ydist = (y < state->cy ? state->cy - y : y - state->cy);
1731 dist = (xdist > ydist ? xdist : ydist);
1733 if (frame >= dist && frame < dist+4) {
1734 int flash = (frame - dist) & 1;
1735 flash = flash ? FLASHING : 0;
1736 c = (c &~ FLASHING) | flash;
1740 if (index(state, ds->visible, x, y) != c ||
1741 index(state, ds->visible, x, y) == 0xFF ||
1742 (x == state->last_move_col || y == state->last_move_row))
1744 float xs = (y == state->last_move_row ? xshift : (float)0.0);
1745 float ys = (x == state->last_move_col ? yshift : (float)0.0);
1747 draw_tile(dr, ds, state, x, y, c, xs, ys);
1748 if (xs < 0 && x == 0)
1749 draw_tile(dr, ds, state, state->width, y, c, xs, ys);
1750 else if (xs > 0 && x == state->width - 1)
1751 draw_tile(dr, ds, state, -1, y, c, xs, ys);
1752 else if (ys < 0 && y == 0)
1753 draw_tile(dr, ds, state, x, state->height, c, xs, ys);
1754 else if (ys > 0 && y == state->height - 1)
1755 draw_tile(dr, ds, state, x, -1, c, xs, ys);
1757 if (x == state->last_move_col || y == state->last_move_row)
1758 index(state, ds->visible, x, y) = 0xFF;
1759 else
1760 index(state, ds->visible, x, y) = c;
1764 for (x = 0; x < ds->width; x++)
1765 for (y = 0; y < ds->height; y++)
1766 draw_tile_barriers(dr, ds, state, x, y);
1768 unclip(dr);
1771 * Update the status bar.
1774 char statusbuf[256];
1775 int i, n, a;
1777 n = state->width * state->height;
1778 for (i = a = 0; i < n; i++)
1779 if (active[i])
1780 a++;
1782 if (state->used_solve)
1783 sprintf(statusbuf, "Moves since auto-solve: %d",
1784 state->move_count - state->completed);
1785 else
1786 sprintf(statusbuf, "%sMoves: %d",
1787 (state->completed ? "COMPLETED! " : ""),
1788 (state->completed ? state->completed : state->move_count));
1790 if (state->movetarget)
1791 sprintf(statusbuf + strlen(statusbuf), " (target %d)",
1792 state->movetarget);
1794 sprintf(statusbuf + strlen(statusbuf), " Active: %d/%d", a, n);
1796 status_bar(dr, statusbuf);
1799 sfree(active);
1802 static float game_anim_length(const game_state *oldstate,
1803 const game_state *newstate, int dir, game_ui *ui)
1805 return ANIM_TIME;
1808 static float game_flash_length(const game_state *oldstate,
1809 const game_state *newstate, int dir, game_ui *ui)
1812 * If the game has just been completed, we display a completion
1813 * flash.
1815 if (!oldstate->completed && newstate->completed &&
1816 !oldstate->used_solve && !newstate->used_solve) {
1817 int size;
1818 size = 0;
1819 if (size < newstate->cx+1)
1820 size = newstate->cx+1;
1821 if (size < newstate->cy+1)
1822 size = newstate->cy+1;
1823 if (size < newstate->width - newstate->cx)
1824 size = newstate->width - newstate->cx;
1825 if (size < newstate->height - newstate->cy)
1826 size = newstate->height - newstate->cy;
1827 return FLASH_FRAME * (size+4);
1830 return 0.0F;
1833 static int game_status(const game_state *state)
1835 return state->completed ? +1 : 0;
1838 static int game_timing_state(const game_state *state, game_ui *ui)
1840 return FALSE;
1843 static void game_print_size(const game_params *params, float *x, float *y)
1847 static void game_print(drawing *dr, const game_state *state, int tilesize)
1851 #ifdef COMBINED
1852 #define thegame netslide
1853 #endif
1855 const struct game thegame = {
1856 "Netslide", "games.netslide", "netslide",
1857 default_params,
1858 game_fetch_preset, NULL,
1859 decode_params,
1860 encode_params,
1861 free_params,
1862 dup_params,
1863 TRUE, game_configure, custom_params,
1864 validate_params,
1865 new_game_desc,
1866 validate_desc,
1867 new_game,
1868 dup_game,
1869 free_game,
1870 TRUE, solve_game,
1871 FALSE, game_can_format_as_text_now, game_text_format,
1872 new_ui,
1873 free_ui,
1874 encode_ui,
1875 decode_ui,
1876 game_changed_state,
1877 interpret_move,
1878 execute_move,
1879 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
1880 game_colours,
1881 game_new_drawstate,
1882 game_free_drawstate,
1883 game_redraw,
1884 game_anim_length,
1885 game_flash_length,
1886 game_status,
1887 FALSE, FALSE, game_print_size, game_print,
1888 TRUE, /* wants_statusbar */
1889 FALSE, game_timing_state,
1890 0, /* flags */
1893 /* vim: set shiftwidth=4 tabstop=8: */