Prepare to release sgt-puzzles (20170606.272beef-1).
[sgt-puzzles.git] / magnets.c
blob553ca0d0da13995048a3d91dde6a8c305e5046bc
1 /*
2 * magnets.c: implementation of janko.at 'magnets puzzle' game.
4 * http://64.233.179.104/translate_c?hl=en&u=http://www.janko.at/Raetsel/Magnete/Beispiel.htm
6 * Puzzle definition is just the size, and then the list of + (across then
7 * down) and - (across then down) present, then domino edges.
9 * An example:
11 * + 2 0 1
12 * +-----+
13 * 1|+ -| |1
14 * |-+-+ |
15 * 0|-|#| |1
16 * | +-+-|
17 * 2|+|- +|1
18 * +-----+
19 * 1 2 0 -
21 * 3x3:201,102,120,111,LRTT*BBLR
23 * 'Zotmeister' examples:
24 * 5x5:.2..1,3..1.,.2..2,2..2.,LRLRTTLRTBBT*BTTBLRBBLRLR
25 * 9x9:3.51...33,.2..23.13,..33.33.2,12...5.3.,**TLRTLR*,*TBLRBTLR,TBLRLRBTT,BLRTLRTBB,LRTB*TBLR,LRBLRBLRT,TTTLRLRTB,BBBTLRTB*,*LRBLRB**
27 * Janko 6x6 with solution:
28 * 6x6:322223,323132,232223,232223,LRTLRTTTBLRBBBTTLRLRBBLRTTLRTTBBLRBB
30 * janko 8x8:
31 * 8x8:34131323,23131334,43122323,21332243,LRTLRLRT,LRBTTTTB,LRTBBBBT,TTBTLRTB,BBTBTTBT,TTBTBBTB,BBTBLRBT,LRBLRLRB
34 #include <stdio.h>
35 #include <stdlib.h>
36 #include <string.h>
37 #include <assert.h>
38 #include <ctype.h>
39 #include <math.h>
41 #include "puzzles.h"
43 #ifdef STANDALONE_SOLVER
44 int verbose = 0;
45 #endif
47 enum {
48 COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
49 COL_TEXT, COL_ERROR, COL_CURSOR, COL_DONE,
50 COL_NEUTRAL, COL_NEGATIVE, COL_POSITIVE, COL_NOT,
51 NCOLOURS
54 /* Cell states. */
55 enum { EMPTY = 0, NEUTRAL = EMPTY, POSITIVE = 1, NEGATIVE = 2 };
57 #if defined DEBUGGING || defined STANDALONE_SOLVER
58 static const char *cellnames[3] = { "neutral", "positive", "negative" };
59 #define NAME(w) ( ((w) < 0 || (w) > 2) ? "(out of range)" : cellnames[(w)] )
60 #endif
62 #define GRID2CHAR(g) ( ((g) >= 0 && (g) <= 2) ? ".+-"[(g)] : '?' )
63 #define CHAR2GRID(c) ( (c) == '+' ? POSITIVE : (c) == '-' ? NEGATIVE : NEUTRAL )
65 #define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
67 #define OPPOSITE(x) ( ((x)*2) % 3 ) /* 0 --> 0,
68 1 --> 2,
69 2 --> 4 --> 1 */
71 #define FLASH_TIME 0.7F
73 /* Macro ickery copied from slant.c */
74 #define DIFFLIST(A) \
75 A(EASY,Easy,e) \
76 A(TRICKY,Tricky,t)
77 #define ENUM(upper,title,lower) DIFF_ ## upper,
78 #define TITLE(upper,title,lower) #title,
79 #define ENCODE(upper,title,lower) #lower
80 #define CONFIG(upper,title,lower) ":" #title
81 enum { DIFFLIST(ENUM) DIFFCOUNT };
82 static char const *const magnets_diffnames[] = { DIFFLIST(TITLE) "(count)" };
83 static char const magnets_diffchars[] = DIFFLIST(ENCODE);
84 #define DIFFCONFIG DIFFLIST(CONFIG)
87 /* --------------------------------------------------------------- */
88 /* Game parameter functions. */
90 struct game_params {
91 int w, h, diff, stripclues;
94 #define DEFAULT_PRESET 2
96 static const struct game_params magnets_presets[] = {
97 {6, 5, DIFF_EASY, 0},
98 {6, 5, DIFF_TRICKY, 0},
99 {6, 5, DIFF_TRICKY, 1},
100 {8, 7, DIFF_EASY, 0},
101 {8, 7, DIFF_TRICKY, 0},
102 {8, 7, DIFF_TRICKY, 1},
103 {10, 9, DIFF_TRICKY, 0},
104 {10, 9, DIFF_TRICKY, 1}
107 static game_params *default_params(void)
109 game_params *ret = snew(game_params);
111 *ret = magnets_presets[DEFAULT_PRESET];
113 return ret;
116 static int game_fetch_preset(int i, char **name, game_params **params)
118 game_params *ret;
119 char buf[64];
121 if (i < 0 || i >= lenof(magnets_presets)) return FALSE;
123 ret = default_params();
124 *ret = magnets_presets[i]; /* struct copy */
125 *params = ret;
127 sprintf(buf, "%dx%d %s%s",
128 magnets_presets[i].w, magnets_presets[i].h,
129 magnets_diffnames[magnets_presets[i].diff],
130 magnets_presets[i].stripclues ? ", strip clues" : "");
131 *name = dupstr(buf);
133 return TRUE;
136 static void free_params(game_params *params)
138 sfree(params);
141 static game_params *dup_params(const game_params *params)
143 game_params *ret = snew(game_params);
144 *ret = *params; /* structure copy */
145 return ret;
148 static void decode_params(game_params *ret, char const *string)
150 ret->w = ret->h = atoi(string);
151 while (*string && isdigit((unsigned char) *string)) ++string;
152 if (*string == 'x') {
153 string++;
154 ret->h = atoi(string);
155 while (*string && isdigit((unsigned char)*string)) string++;
158 ret->diff = DIFF_EASY;
159 if (*string == 'd') {
160 int i;
161 string++;
162 for (i = 0; i < DIFFCOUNT; i++)
163 if (*string == magnets_diffchars[i])
164 ret->diff = i;
165 if (*string) string++;
168 ret->stripclues = 0;
169 if (*string == 'S') {
170 string++;
171 ret->stripclues = 1;
175 static char *encode_params(const game_params *params, int full)
177 char buf[256];
178 sprintf(buf, "%dx%d", params->w, params->h);
179 if (full)
180 sprintf(buf + strlen(buf), "d%c%s",
181 magnets_diffchars[params->diff],
182 params->stripclues ? "S" : "");
183 return dupstr(buf);
186 static config_item *game_configure(const game_params *params)
188 config_item *ret;
189 char buf[64];
191 ret = snewn(5, config_item);
193 ret[0].name = "Width";
194 ret[0].type = C_STRING;
195 sprintf(buf, "%d", params->w);
196 ret[0].sval = dupstr(buf);
197 ret[0].ival = 0;
199 ret[1].name = "Height";
200 ret[1].type = C_STRING;
201 sprintf(buf, "%d", params->h);
202 ret[1].sval = dupstr(buf);
203 ret[1].ival = 0;
205 ret[2].name = "Difficulty";
206 ret[2].type = C_CHOICES;
207 ret[2].sval = DIFFCONFIG;
208 ret[2].ival = params->diff;
210 ret[3].name = "Strip clues";
211 ret[3].type = C_BOOLEAN;
212 ret[3].sval = NULL;
213 ret[3].ival = params->stripclues;
215 ret[4].name = NULL;
216 ret[4].type = C_END;
217 ret[4].sval = NULL;
218 ret[4].ival = 0;
220 return ret;
223 static game_params *custom_params(const config_item *cfg)
225 game_params *ret = snew(game_params);
227 ret->w = atoi(cfg[0].sval);
228 ret->h = atoi(cfg[1].sval);
229 ret->diff = cfg[2].ival;
230 ret->stripclues = cfg[3].ival;
232 return ret;
235 static char *validate_params(const game_params *params, int full)
237 if (params->w < 2) return "Width must be at least one";
238 if (params->h < 2) return "Height must be at least one";
239 if (params->diff < 0 || params->diff >= DIFFCOUNT)
240 return "Unknown difficulty level";
242 return NULL;
245 /* --------------------------------------------------------------- */
246 /* Game state allocation, deallocation. */
248 struct game_common {
249 int *dominoes; /* size w*h, dominoes[i] points to other end of domino. */
250 int *rowcount; /* size 3*h, array of [plus, minus, neutral] counts */
251 int *colcount; /* size 3*w, ditto */
252 int refcount;
255 #define GS_ERROR 1
256 #define GS_SET 2
257 #define GS_NOTPOSITIVE 4
258 #define GS_NOTNEGATIVE 8
259 #define GS_NOTNEUTRAL 16
260 #define GS_MARK 32
262 #define GS_NOTMASK (GS_NOTPOSITIVE|GS_NOTNEGATIVE|GS_NOTNEUTRAL)
264 #define NOTFLAG(w) ( (w) == NEUTRAL ? GS_NOTNEUTRAL : \
265 (w) == POSITIVE ? GS_NOTPOSITIVE : \
266 (w) == NEGATIVE ? GS_NOTNEGATIVE : \
269 #define POSSIBLE(f,w) (!(state->flags[(f)] & NOTFLAG(w)))
271 struct game_state {
272 int w, h, wh;
273 int *grid; /* size w*h, for cell state (pos/neg) */
274 unsigned int *flags; /* size w*h */
275 int solved, completed, numbered;
276 unsigned char *counts_done;
278 struct game_common *common; /* domino layout never changes. */
281 static void clear_state(game_state *ret)
283 int i;
285 ret->solved = ret->completed = ret->numbered = 0;
287 memset(ret->common->rowcount, 0, ret->h*3*sizeof(int));
288 memset(ret->common->colcount, 0, ret->w*3*sizeof(int));
289 memset(ret->counts_done, 0, (ret->h + ret->w) * 2 * sizeof(unsigned char));
291 for (i = 0; i < ret->wh; i++) {
292 ret->grid[i] = EMPTY;
293 ret->flags[i] = 0;
294 ret->common->dominoes[i] = i;
298 static game_state *new_state(int w, int h)
300 game_state *ret = snew(game_state);
302 memset(ret, 0, sizeof(game_state));
303 ret->w = w;
304 ret->h = h;
305 ret->wh = w*h;
307 ret->grid = snewn(ret->wh, int);
308 ret->flags = snewn(ret->wh, unsigned int);
309 ret->counts_done = snewn((ret->h + ret->w) * 2, unsigned char);
311 ret->common = snew(struct game_common);
312 ret->common->refcount = 1;
314 ret->common->dominoes = snewn(ret->wh, int);
315 ret->common->rowcount = snewn(ret->h*3, int);
316 ret->common->colcount = snewn(ret->w*3, int);
318 clear_state(ret);
320 return ret;
323 static game_state *dup_game(const game_state *src)
325 game_state *dest = snew(game_state);
327 dest->w = src->w;
328 dest->h = src->h;
329 dest->wh = src->wh;
331 dest->solved = src->solved;
332 dest->completed = src->completed;
333 dest->numbered = src->numbered;
335 dest->common = src->common;
336 dest->common->refcount++;
338 dest->grid = snewn(dest->wh, int);
339 memcpy(dest->grid, src->grid, dest->wh*sizeof(int));
341 dest->counts_done = snewn((dest->h + dest->w) * 2, unsigned char);
342 memcpy(dest->counts_done, src->counts_done,
343 (dest->h + dest->w) * 2 * sizeof(unsigned char));
345 dest->flags = snewn(dest->wh, unsigned int);
346 memcpy(dest->flags, src->flags, dest->wh*sizeof(unsigned int));
348 return dest;
351 static void free_game(game_state *state)
353 state->common->refcount--;
354 if (state->common->refcount == 0) {
355 sfree(state->common->dominoes);
356 sfree(state->common->rowcount);
357 sfree(state->common->colcount);
358 sfree(state->common);
360 sfree(state->counts_done);
361 sfree(state->flags);
362 sfree(state->grid);
363 sfree(state);
366 /* --------------------------------------------------------------- */
367 /* Game generation and reading. */
369 /* For a game of size w*h the game description is:
370 * w-sized string of column + numbers (L-R), or '.' for none
371 * semicolon
372 * h-sized string of row + numbers (T-B), or '.'
373 * semicolon
374 * w-sized string of column - numbers (L-R), or '.'
375 * semicolon
376 * h-sized string of row - numbers (T-B), or '.'
377 * semicolon
378 * w*h-sized string of 'L', 'R', 'U', 'D' for domino associations,
379 * or '*' for a black singleton square.
381 * for a total length of 2w + 2h + wh + 4.
384 static char n2c(int num) { /* XXX cloned from singles.c */
385 if (num == -1)
386 return '.';
387 if (num < 10)
388 return '0' + num;
389 else if (num < 10+26)
390 return 'a' + num - 10;
391 else
392 return 'A' + num - 10 - 26;
393 return '?';
396 static int c2n(char c) { /* XXX cloned from singles.c */
397 if (isdigit((unsigned char)c))
398 return (int)(c - '0');
399 else if (c >= 'a' && c <= 'z')
400 return (int)(c - 'a' + 10);
401 else if (c >= 'A' && c <= 'Z')
402 return (int)(c - 'A' + 10 + 26);
403 return -1;
406 static const char *readrow(const char *desc, int n, int *array, int off,
407 const char **prob)
409 int i, num;
410 char c;
412 for (i = 0; i < n; i++) {
413 c = *desc++;
414 if (c == 0) goto badchar;
415 if (c == '.')
416 num = -1;
417 else {
418 num = c2n(c);
419 if (num < 0) goto badchar;
421 array[i*3+off] = num;
423 c = *desc++;
424 if (c != ',') goto badchar;
425 return desc;
427 badchar:
428 *prob = (c == 0) ?
429 "Game description too short" :
430 "Game description contained unexpected characters";
431 return NULL;
434 static game_state *new_game_int(const game_params *params, const char *desc,
435 const char **prob)
437 game_state *state = new_state(params->w, params->h);
438 int x, y, idx, *count;
439 char c;
441 *prob = NULL;
443 /* top row, left-to-right */
444 desc = readrow(desc, state->w, state->common->colcount, POSITIVE, prob);
445 if (*prob) goto done;
447 /* left column, top-to-bottom */
448 desc = readrow(desc, state->h, state->common->rowcount, POSITIVE, prob);
449 if (*prob) goto done;
451 /* bottom row, left-to-right */
452 desc = readrow(desc, state->w, state->common->colcount, NEGATIVE, prob);
453 if (*prob) goto done;
455 /* right column, top-to-bottom */
456 desc = readrow(desc, state->h, state->common->rowcount, NEGATIVE, prob);
457 if (*prob) goto done;
459 /* Add neutral counts (== size - pos - neg) to columns and rows.
460 * Any singleton cells will just be treated as permanently neutral. */
461 count = state->common->colcount;
462 for (x = 0; x < state->w; x++) {
463 if (count[x*3+POSITIVE] < 0 || count[x*3+NEGATIVE] < 0)
464 count[x*3+NEUTRAL] = -1;
465 else {
466 count[x*3+NEUTRAL] =
467 state->h - count[x*3+POSITIVE] - count[x*3+NEGATIVE];
468 if (count[x*3+NEUTRAL] < 0) {
469 *prob = "Column counts inconsistent";
470 goto done;
474 count = state->common->rowcount;
475 for (y = 0; y < state->h; y++) {
476 if (count[y*3+POSITIVE] < 0 || count[y*3+NEGATIVE] < 0)
477 count[y*3+NEUTRAL] = -1;
478 else {
479 count[y*3+NEUTRAL] =
480 state->w - count[y*3+POSITIVE] - count[y*3+NEGATIVE];
481 if (count[y*3+NEUTRAL] < 0) {
482 *prob = "Row counts inconsistent";
483 goto done;
489 for (y = 0; y < state->h; y++) {
490 for (x = 0; x < state->w; x++) {
491 idx = y*state->w + x;
492 nextchar:
493 c = *desc++;
495 if (c == 'L') /* this square is LHS of a domino */
496 state->common->dominoes[idx] = idx+1;
497 else if (c == 'R') /* ... RHS of a domino */
498 state->common->dominoes[idx] = idx-1;
499 else if (c == 'T') /* ... top of a domino */
500 state->common->dominoes[idx] = idx+state->w;
501 else if (c == 'B') /* ... bottom of a domino */
502 state->common->dominoes[idx] = idx-state->w;
503 else if (c == '*') /* singleton */
504 state->common->dominoes[idx] = idx;
505 else if (c == ',') /* spacer, ignore */
506 goto nextchar;
507 else goto badchar;
511 /* Check dominoes as input are sensibly consistent
512 * (i.e. each end points to the other) */
513 for (idx = 0; idx < state->wh; idx++) {
514 if (state->common->dominoes[idx] < 0 ||
515 state->common->dominoes[idx] > state->wh ||
516 state->common->dominoes[state->common->dominoes[idx]] != idx) {
517 *prob = "Domino descriptions inconsistent";
518 goto done;
520 if (state->common->dominoes[idx] == idx) {
521 state->grid[idx] = NEUTRAL;
522 state->flags[idx] |= GS_SET;
525 /* Success. */
526 state->numbered = 1;
527 goto done;
529 badchar:
530 *prob = (c == 0) ?
531 "Game description too short" :
532 "Game description contained unexpected characters";
534 done:
535 if (*prob) {
536 free_game(state);
537 return NULL;
539 return state;
542 static char *validate_desc(const game_params *params, const char *desc)
544 const char *prob;
545 game_state *st = new_game_int(params, desc, &prob);
546 if (!st) return (char*)prob;
547 free_game(st);
548 return NULL;
551 static game_state *new_game(midend *me, const game_params *params,
552 const char *desc)
554 const char *prob;
555 game_state *st = new_game_int(params, desc, &prob);
556 assert(st);
557 return st;
560 static char *generate_desc(game_state *new)
562 int x, y, idx, other, w = new->w, h = new->h;
563 char *desc = snewn(new->wh + 2*(w + h) + 5, char), *p = desc;
565 for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+POSITIVE]);
566 *p++ = ',';
567 for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+POSITIVE]);
568 *p++ = ',';
570 for (x = 0; x < w; x++) *p++ = n2c(new->common->colcount[x*3+NEGATIVE]);
571 *p++ = ',';
572 for (y = 0; y < h; y++) *p++ = n2c(new->common->rowcount[y*3+NEGATIVE]);
573 *p++ = ',';
575 for (y = 0; y < h; y++) {
576 for (x = 0; x < w; x++) {
577 idx = y*w + x;
578 other = new->common->dominoes[idx];
580 if (other == idx) *p++ = '*';
581 else if (other == idx+1) *p++ = 'L';
582 else if (other == idx-1) *p++ = 'R';
583 else if (other == idx+w) *p++ = 'T';
584 else if (other == idx-w) *p++ = 'B';
585 else assert(!"mad domino orientation");
588 *p = '\0';
590 return desc;
593 static void game_text_hborder(const game_state *state, char **p_r)
595 char *p = *p_r;
596 int x;
598 *p++ = ' ';
599 *p++ = '+';
600 for (x = 0; x < state->w*2-1; x++) *p++ = '-';
601 *p++ = '+';
602 *p++ = '\n';
604 *p_r = p;
607 static int game_can_format_as_text_now(const game_params *params)
609 return TRUE;
612 static char *game_text_format(const game_state *state)
614 int len, x, y, i;
615 char *ret, *p;
617 len = ((state->w*2)+4) * ((state->h*2)+4) + 2;
618 p = ret = snewn(len, char);
620 /* top row: '+' then column totals for plus. */
621 *p++ = '+';
622 for (x = 0; x < state->w; x++) {
623 *p++ = ' ';
624 *p++ = n2c(state->common->colcount[x*3+POSITIVE]);
626 *p++ = '\n';
628 /* top border. */
629 game_text_hborder(state, &p);
631 for (y = 0; y < state->h; y++) {
632 *p++ = n2c(state->common->rowcount[y*3+POSITIVE]);
633 *p++ = '|';
634 for (x = 0; x < state->w; x++) {
635 i = y*state->w+x;
636 *p++ = state->common->dominoes[i] == i ? '#' :
637 state->grid[i] == POSITIVE ? '+' :
638 state->grid[i] == NEGATIVE ? '-' :
639 state->flags[i] & GS_SET ? '*' : ' ';
640 if (x < (state->w-1))
641 *p++ = state->common->dominoes[i] == i+1 ? ' ' : '|';
643 *p++ = '|';
644 *p++ = n2c(state->common->rowcount[y*3+NEGATIVE]);
645 *p++ = '\n';
647 if (y < (state->h-1)) {
648 *p++ = ' ';
649 *p++ = '|';
650 for (x = 0; x < state->w; x++) {
651 i = y*state->w+x;
652 *p++ = state->common->dominoes[i] == i+state->w ? ' ' : '-';
653 if (x < (state->w-1))
654 *p++ = '+';
656 *p++ = '|';
657 *p++ = '\n';
661 /* bottom border. */
662 game_text_hborder(state, &p);
664 /* bottom row: column totals for minus then '-'. */
665 *p++ = ' ';
666 for (x = 0; x < state->w; x++) {
667 *p++ = ' ';
668 *p++ = n2c(state->common->colcount[x*3+NEGATIVE]);
670 *p++ = ' ';
671 *p++ = '-';
672 *p++ = '\n';
673 *p++ = '\0';
675 return ret;
678 static void game_debug(game_state *state, const char *desc)
680 char *fmt = game_text_format(state);
681 debug(("%s:\n%s\n", desc, fmt));
682 sfree(fmt);
685 enum { ROW, COLUMN };
687 typedef struct rowcol {
688 int i, di, n, roworcol, num;
689 int *targets;
690 const char *name;
691 } rowcol;
693 static rowcol mkrowcol(const game_state *state, int num, int roworcol)
695 rowcol rc;
697 rc.roworcol = roworcol;
698 rc.num = num;
700 if (roworcol == ROW) {
701 rc.i = num * state->w;
702 rc.di = 1;
703 rc.n = state->w;
704 rc.targets = &(state->common->rowcount[num*3]);
705 rc.name = "row";
706 } else if (roworcol == COLUMN) {
707 rc.i = num;
708 rc.di = state->w;
709 rc.n = state->h;
710 rc.targets = &(state->common->colcount[num*3]);
711 rc.name = "column";
712 } else {
713 assert(!"unknown roworcol");
715 return rc;
718 static int count_rowcol(const game_state *state, int num, int roworcol,
719 int which)
721 int i, count = 0;
722 rowcol rc = mkrowcol(state, num, roworcol);
724 for (i = 0; i < rc.n; i++, rc.i += rc.di) {
725 if (which < 0) {
726 if (state->grid[rc.i] == EMPTY &&
727 !(state->flags[rc.i] & GS_SET))
728 count++;
729 } else if (state->grid[rc.i] == which)
730 count++;
732 return count;
735 static void check_rowcol(game_state *state, int num, int roworcol, int which,
736 int *wrong, int *incomplete)
738 int count, target = mkrowcol(state, num, roworcol).targets[which];
740 if (target == -1) return; /* no number to check against. */
742 count = count_rowcol(state, num, roworcol, which);
743 if (count < target) *incomplete = 1;
744 if (count > target) *wrong = 1;
747 static int check_completion(game_state *state)
749 int i, j, x, y, idx, w = state->w, h = state->h;
750 int which = POSITIVE, wrong = 0, incomplete = 0;
752 /* Check row and column counts for magnets. */
753 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
754 for (i = 0; i < w; i++)
755 check_rowcol(state, i, COLUMN, which, &wrong, &incomplete);
757 for (i = 0; i < h; i++)
758 check_rowcol(state, i, ROW, which, &wrong, &incomplete);
760 /* Check each domino has been filled, and that we don't have
761 * touching identical terminals. */
762 for (i = 0; i < state->wh; i++) state->flags[i] &= ~GS_ERROR;
763 for (x = 0; x < w; x++) {
764 for (y = 0; y < h; y++) {
765 idx = y*w + x;
766 if (state->common->dominoes[idx] == idx)
767 continue; /* no domino here */
769 if (!(state->flags[idx] & GS_SET))
770 incomplete = 1;
772 which = state->grid[idx];
773 if (which != NEUTRAL) {
774 #define CHECK(xx,yy) do { \
775 if (INGRID(state,xx,yy) && \
776 (state->grid[(yy)*w+(xx)] == which)) { \
777 wrong = 1; \
778 state->flags[(yy)*w+(xx)] |= GS_ERROR; \
779 state->flags[y*w+x] |= GS_ERROR; \
781 } while(0)
782 CHECK(x,y-1);
783 CHECK(x,y+1);
784 CHECK(x-1,y);
785 CHECK(x+1,y);
786 #undef CHECK
790 return wrong ? -1 : incomplete ? 0 : 1;
793 static const int dx[4] = {-1, 1, 0, 0};
794 static const int dy[4] = {0, 0, -1, 1};
796 static void solve_clearflags(game_state *state)
798 int i;
800 for (i = 0; i < state->wh; i++) {
801 state->flags[i] &= ~GS_NOTMASK;
802 if (state->common->dominoes[i] != i)
803 state->flags[i] &= ~GS_SET;
807 /* Knowing a given cell cannot be a certain colour also tells us
808 * something about the other cell in that domino. */
809 static int solve_unflag(game_state *state, int i, int which,
810 const char *why, rowcol *rc)
812 int ii, ret = 0;
813 #if defined DEBUGGING || defined STANDALONE_SOLVER
814 int w = state->w;
815 #endif
817 assert(i >= 0 && i < state->wh);
818 ii = state->common->dominoes[i];
819 if (ii == i) return 0;
821 if (rc)
822 debug(("solve_unflag: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
824 if ((state->flags[i] & GS_SET) && (state->grid[i] == which)) {
825 debug(("solve_unflag: (%d,%d) already %s, cannot unflag (for %s).",
826 i%w, i/w, NAME(which), why));
827 return -1;
829 if ((state->flags[ii] & GS_SET) && (state->grid[ii] == OPPOSITE(which))) {
830 debug(("solve_unflag: (%d,%d) opposite already %s, cannot unflag (for %s).",
831 ii%w, ii/w, NAME(OPPOSITE(which)), why));
832 return -1;
834 if (POSSIBLE(i, which)) {
835 state->flags[i] |= NOTFLAG(which);
836 ret++;
837 debug(("solve_unflag: (%d,%d) CANNOT be %s (%s)",
838 i%w, i/w, NAME(which), why));
840 if (POSSIBLE(ii, OPPOSITE(which))) {
841 state->flags[ii] |= NOTFLAG(OPPOSITE(which));
842 ret++;
843 debug(("solve_unflag: (%d,%d) CANNOT be %s (%s, other half)",
844 ii%w, ii/w, NAME(OPPOSITE(which)), why));
846 #ifdef STANDALONE_SOLVER
847 if (verbose && ret) {
848 printf("(%d,%d)", i%w, i/w);
849 if (rc) printf(" in %s %d", rc->name, rc->num);
850 printf(" cannot be %s (%s); opposite (%d,%d) not %s.\n",
851 NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
853 #endif
854 return ret;
857 static int solve_unflag_surrounds(game_state *state, int i, int which)
859 int x = i%state->w, y = i/state->w, xx, yy, j, ii;
861 assert(INGRID(state, x, y));
863 for (j = 0; j < 4; j++) {
864 xx = x+dx[j]; yy = y+dy[j];
865 if (!INGRID(state, xx, yy)) continue;
867 ii = yy*state->w+xx;
868 if (solve_unflag(state, ii, which, "adjacent to set cell", NULL) < 0)
869 return -1;
871 return 0;
874 /* Sets a cell to a particular colour, and also perform other
875 * housekeeping around that. */
876 static int solve_set(game_state *state, int i, int which,
877 const char *why, rowcol *rc)
879 int ii;
880 #if defined DEBUGGING || defined STANDALONE_SOLVER
881 int w = state->w;
882 #endif
884 ii = state->common->dominoes[i];
886 if (state->flags[i] & GS_SET) {
887 if (state->grid[i] == which) {
888 return 0; /* was already set and held, do nothing. */
889 } else {
890 debug(("solve_set: (%d,%d) is held and %s, cannot set to %s",
891 i%w, i/w, NAME(state->grid[i]), NAME(which)));
892 return -1;
895 if ((state->flags[ii] & GS_SET) && state->grid[ii] != OPPOSITE(which)) {
896 debug(("solve_set: (%d,%d) opposite is held and %s, cannot set to %s",
897 ii%w, ii/w, NAME(state->grid[ii]), NAME(OPPOSITE(which))));
898 return -1;
900 if (!POSSIBLE(i, which)) {
901 debug(("solve_set: (%d,%d) NOT %s, cannot set.", i%w, i/w, NAME(which)));
902 return -1;
904 if (!POSSIBLE(ii, OPPOSITE(which))) {
905 debug(("solve_set: (%d,%d) NOT %s, cannot set (%d,%d).",
906 ii%w, ii/w, NAME(OPPOSITE(which)), i%w, i/w));
907 return -1;
910 #ifdef STANDALONE_SOLVER
911 if (verbose) {
912 printf("(%d,%d)", i%w, i/w);
913 if (rc) printf(" in %s %d", rc->name, rc->num);
914 printf(" set to %s (%s), opposite (%d,%d) set to %s.\n",
915 NAME(which), why, ii%w, ii/w, NAME(OPPOSITE(which)));
917 #endif
918 if (rc)
919 debug(("solve_set: (%d,%d) for %s %d", i%w, i/w, rc->name, rc->num));
920 debug(("solve_set: (%d,%d) setting to %s (%s), surrounds first:",
921 i%w, i/w, NAME(which), why));
923 if (which != NEUTRAL) {
924 if (solve_unflag_surrounds(state, i, which) < 0)
925 return -1;
926 if (solve_unflag_surrounds(state, ii, OPPOSITE(which)) < 0)
927 return -1;
930 state->grid[i] = which;
931 state->grid[ii] = OPPOSITE(which);
933 state->flags[i] |= GS_SET;
934 state->flags[ii] |= GS_SET;
936 debug(("solve_set: (%d,%d) set to %s (%s)", i%w, i/w, NAME(which), why));
938 return 1;
941 /* counts should be int[4]. */
942 static void solve_counts(game_state *state, rowcol rc, int *counts, int *unset)
944 int i, j, which;
946 assert(counts);
947 for (i = 0; i < 4; i++) {
948 counts[i] = 0;
949 if (unset) unset[i] = 0;
952 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
953 if (state->flags[i] & GS_SET) {
954 assert(state->grid[i] < 3);
955 counts[state->grid[i]]++;
956 } else if (unset) {
957 for (which = 0; which <= 2; which++) {
958 if (POSSIBLE(i, which))
959 unset[which]++;
965 static int solve_checkfull(game_state *state, rowcol rc, int *counts)
967 int starti = rc.i, j, which, didsth = 0, target;
968 int unset[4];
970 assert(state->numbered); /* only useful (should only be called) if numbered. */
972 solve_counts(state, rc, counts, unset);
974 for (which = 0; which <= 2; which++) {
975 target = rc.targets[which];
976 if (target == -1) continue;
978 /*debug(("%s %d for %s: target %d, count %d, unset %d",
979 rc.name, rc.num, NAME(which),
980 target, counts[which], unset[which]));*/
982 if (target < counts[which]) {
983 debug(("%s %d has too many (%d) %s squares (target %d), impossible!",
984 rc.name, rc.num, counts[which], NAME(which), target));
985 return -1;
987 if (target == counts[which]) {
988 /* We have the correct no. of the colour in this row/column
989 * already; unflag all the rest. */
990 for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
991 if (state->flags[rc.i] & GS_SET) continue;
992 if (!POSSIBLE(rc.i, which)) continue;
994 if (solve_unflag(state, rc.i, which, "row/col full", &rc) < 0)
995 return -1;
996 didsth = 1;
998 } else if ((target - counts[which]) == unset[which]) {
999 /* We need all the remaining unset squares for this colour;
1000 * set them all. */
1001 for (rc.i = starti, j = 0; j < rc.n; rc.i += rc.di, j++) {
1002 if (state->flags[rc.i] & GS_SET) continue;
1003 if (!POSSIBLE(rc.i, which)) continue;
1005 if (solve_set(state, rc.i, which, "row/col needs all unset", &rc) < 0)
1006 return -1;
1007 didsth = 1;
1011 return didsth;
1014 static int solve_startflags(game_state *state)
1016 int x, y, i;
1018 for (x = 0; x < state->w; x++) {
1019 for (y = 0; y < state->h; y++) {
1020 i = y*state->w+x;
1021 if (state->common->dominoes[i] == i) continue;
1022 if (state->grid[i] != NEUTRAL ||
1023 state->flags[i] & GS_SET) {
1024 if (solve_set(state, i, state->grid[i], "initial set-and-hold", NULL) < 0)
1025 return -1;
1029 return 0;
1032 typedef int (*rowcolfn)(game_state *state, rowcol rc, int *counts);
1034 static int solve_rowcols(game_state *state, rowcolfn fn)
1036 int x, y, didsth = 0, ret;
1037 rowcol rc;
1038 int counts[4];
1040 for (x = 0; x < state->w; x++) {
1041 rc = mkrowcol(state, x, COLUMN);
1042 solve_counts(state, rc, counts, NULL);
1044 ret = fn(state, rc, counts);
1045 if (ret < 0) return ret;
1046 didsth += ret;
1048 for (y = 0; y < state->h; y++) {
1049 rc = mkrowcol(state, y, ROW);
1050 solve_counts(state, rc, counts, NULL);
1052 ret = fn(state, rc, counts);
1053 if (ret < 0) return ret;
1054 didsth += ret;
1056 return didsth;
1059 static int solve_force(game_state *state)
1061 int i, which, didsth = 0;
1062 unsigned long f;
1064 for (i = 0; i < state->wh; i++) {
1065 if (state->flags[i] & GS_SET) continue;
1066 if (state->common->dominoes[i] == i) continue;
1068 f = state->flags[i] & GS_NOTMASK;
1069 which = -1;
1070 if (f == (GS_NOTPOSITIVE|GS_NOTNEGATIVE))
1071 which = NEUTRAL;
1072 if (f == (GS_NOTPOSITIVE|GS_NOTNEUTRAL))
1073 which = NEGATIVE;
1074 if (f == (GS_NOTNEGATIVE|GS_NOTNEUTRAL))
1075 which = POSITIVE;
1076 if (which != -1) {
1077 if (solve_set(state, i, which, "forced by flags", NULL) < 0)
1078 return -1;
1079 didsth = 1;
1082 return didsth;
1085 static int solve_neither(game_state *state)
1087 int i, j, didsth = 0;
1089 for (i = 0; i < state->wh; i++) {
1090 if (state->flags[i] & GS_SET) continue;
1091 j = state->common->dominoes[i];
1092 if (i == j) continue;
1094 if (((state->flags[i] & GS_NOTPOSITIVE) &&
1095 (state->flags[j] & GS_NOTPOSITIVE)) ||
1096 ((state->flags[i] & GS_NOTNEGATIVE) &&
1097 (state->flags[j] & GS_NOTNEGATIVE))) {
1098 if (solve_set(state, i, NEUTRAL, "neither tile magnet", NULL) < 0)
1099 return -1;
1100 didsth = 1;
1103 return didsth;
1106 static int solve_advancedfull(game_state *state, rowcol rc, int *counts)
1108 int i, j, nfound = 0, clearpos = 0, clearneg = 0, ret = 0;
1110 /* For this row/col, look for a domino entirely within the row where
1111 * both ends can only be + or - (but isn't held).
1112 * The +/- counts can thus be decremented by 1 each, and the 'unset'
1113 * count by 2.
1115 * Once that's done for all such dominoes (and they're marked), try
1116 * and made usual deductions about rest of the row based on new totals. */
1118 if (rc.targets[POSITIVE] == -1 && rc.targets[NEGATIVE] == -1)
1119 return 0; /* don't have a target for either colour, nothing to do. */
1120 if ((rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) &&
1121 (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]))
1122 return 0; /* both colours are full up already, nothing to do. */
1124 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++)
1125 state->flags[i] &= ~GS_MARK;
1127 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1128 if (state->flags[i] & GS_SET) continue;
1130 /* We're looking for a domino in our row/col, thus if
1131 * dominoes[i] -> i+di we've found one. */
1132 if (state->common->dominoes[i] != i+rc.di) continue;
1134 /* We need both squares of this domino to be either + or -
1135 * (i.e. both NOTNEUTRAL only). */
1136 if (((state->flags[i] & GS_NOTMASK) != GS_NOTNEUTRAL) ||
1137 ((state->flags[i+rc.di] & GS_NOTMASK) != GS_NOTNEUTRAL))
1138 continue;
1140 debug(("Domino in %s %d at (%d,%d) must be polarised.",
1141 rc.name, rc.num, i%state->w, i/state->w));
1142 state->flags[i] |= GS_MARK;
1143 state->flags[i+rc.di] |= GS_MARK;
1144 nfound++;
1146 if (nfound == 0) return 0;
1148 /* nfound is #dominoes we matched, which will all be marked. */
1149 counts[POSITIVE] += nfound;
1150 counts[NEGATIVE] += nfound;
1152 if (rc.targets[POSITIVE] >= 0 && counts[POSITIVE] == rc.targets[POSITIVE]) {
1153 debug(("%s %d has now filled POSITIVE:", rc.name, rc.num));
1154 clearpos = 1;
1156 if (rc.targets[NEGATIVE] >= 0 && counts[NEGATIVE] == rc.targets[NEGATIVE]) {
1157 debug(("%s %d has now filled NEGATIVE:", rc.name, rc.num));
1158 clearneg = 1;
1161 if (!clearpos && !clearneg) return 0;
1163 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1164 if (state->flags[i] & GS_SET) continue;
1165 if (state->flags[i] & GS_MARK) continue;
1167 if (clearpos && !(state->flags[i] & GS_NOTPOSITIVE)) {
1168 if (solve_unflag(state, i, POSITIVE, "row/col full (+ve) [tricky]", &rc) < 0)
1169 return -1;
1170 ret++;
1172 if (clearneg && !(state->flags[i] & GS_NOTNEGATIVE)) {
1173 if (solve_unflag(state, i, NEGATIVE, "row/col full (-ve) [tricky]", &rc) < 0)
1174 return -1;
1175 ret++;
1179 return ret;
1182 /* If we only have one neutral still to place on a row/column then no
1183 dominoes entirely in that row/column can be neutral. */
1184 static int solve_nonneutral(game_state *state, rowcol rc, int *counts)
1186 int i, j, ret = 0;
1188 if (rc.targets[NEUTRAL] != counts[NEUTRAL]+1)
1189 return 0;
1191 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1192 if (state->flags[i] & GS_SET) continue;
1193 if (state->common->dominoes[i] != i+rc.di) continue;
1195 if (!(state->flags[i] & GS_NOTNEUTRAL)) {
1196 if (solve_unflag(state, i, NEUTRAL, "single neutral in row/col [tricky]", &rc) < 0)
1197 return -1;
1198 ret++;
1201 return ret;
1204 /* If we need to fill all unfilled cells with +-, and we need 1 more of
1205 * one than the other, and we have a single odd-numbered region of unfilled
1206 * cells, that odd-numbered region must start and end with the extra number. */
1207 static int solve_oddlength(game_state *state, rowcol rc, int *counts)
1209 int i, j, ret = 0, extra, tpos, tneg;
1210 int start = -1, length = 0, inempty = 0, startodd = -1;
1212 /* need zero neutral cells still to find... */
1213 if (rc.targets[NEUTRAL] != counts[NEUTRAL])
1214 return 0;
1216 /* ...and #positive and #negative to differ by one. */
1217 tpos = rc.targets[POSITIVE] - counts[POSITIVE];
1218 tneg = rc.targets[NEGATIVE] - counts[NEGATIVE];
1219 if (tpos == tneg+1)
1220 extra = POSITIVE;
1221 else if (tneg == tpos+1)
1222 extra = NEGATIVE;
1223 else return 0;
1225 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1226 if (state->flags[i] & GS_SET) {
1227 if (inempty) {
1228 if (length % 2) {
1229 /* we've just finished an odd-length section. */
1230 if (startodd != -1) goto twoodd;
1231 startodd = start;
1233 inempty = 0;
1235 } else {
1236 if (inempty)
1237 length++;
1238 else {
1239 start = i;
1240 length = 1;
1241 inempty = 1;
1245 if (inempty && (length % 2)) {
1246 if (startodd != -1) goto twoodd;
1247 startodd = start;
1249 if (startodd != -1)
1250 ret = solve_set(state, startodd, extra, "odd-length section start", &rc);
1252 return ret;
1254 twoodd:
1255 debug(("%s %d has >1 odd-length sections, starting at %d,%d and %d,%d.",
1256 rc.name, rc.num,
1257 startodd%state->w, startodd/state->w,
1258 start%state->w, start/state->w));
1259 return 0;
1262 /* Count the number of remaining empty dominoes in any row/col.
1263 * If that number is equal to the #remaining positive,
1264 * or to the #remaining negative, no empty cells can be neutral. */
1265 static int solve_countdominoes_neutral(game_state *state, rowcol rc, int *counts)
1267 int i, j, ndom = 0, nonn = 0, ret = 0;
1269 if ((rc.targets[POSITIVE] == -1) && (rc.targets[NEGATIVE] == -1))
1270 return 0; /* need at least one target to compare. */
1272 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1273 if (state->flags[i] & GS_SET) continue;
1274 assert(state->grid[i] == EMPTY);
1276 /* Skip solo cells, or second cell in domino. */
1277 if ((state->common->dominoes[i] == i) ||
1278 (state->common->dominoes[i] == i-rc.di))
1279 continue;
1281 ndom++;
1284 if ((rc.targets[POSITIVE] != -1) &&
1285 (rc.targets[POSITIVE]-counts[POSITIVE] == ndom))
1286 nonn = 1;
1287 if ((rc.targets[NEGATIVE] != -1) &&
1288 (rc.targets[NEGATIVE]-counts[NEGATIVE] == ndom))
1289 nonn = 1;
1291 if (!nonn) return 0;
1293 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1294 if (state->flags[i] & GS_SET) continue;
1296 if (!(state->flags[i] & GS_NOTNEUTRAL)) {
1297 if (solve_unflag(state, i, NEUTRAL, "all dominoes +/- [tricky]", &rc) < 0)
1298 return -1;
1299 ret++;
1302 return ret;
1305 static int solve_domino_count(game_state *state, rowcol rc, int i, int which)
1307 int nposs = 0;
1309 /* Skip solo cells or 2nd in domino. */
1310 if ((state->common->dominoes[i] == i) ||
1311 (state->common->dominoes[i] == i-rc.di))
1312 return 0;
1314 if (state->flags[i] & GS_SET)
1315 return 0;
1317 if (POSSIBLE(i, which))
1318 nposs++;
1320 if (state->common->dominoes[i] == i+rc.di) {
1321 /* second cell of domino is on our row: test that too. */
1322 if (POSSIBLE(i+rc.di, which))
1323 nposs++;
1325 return nposs;
1328 /* Count number of dominoes we could put each of + and - into. If it is equal
1329 * to the #left, any domino we can only put + or - in one cell of must have it. */
1330 static int solve_countdominoes_nonneutral(game_state *state, rowcol rc, int *counts)
1332 int which, w, i, j, ndom = 0, didsth = 0, toset;
1334 for (which = POSITIVE, w = 0; w < 2; which = OPPOSITE(which), w++) {
1335 if (rc.targets[which] == -1) continue;
1337 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1338 if (solve_domino_count(state, rc, i, which) > 0)
1339 ndom++;
1342 if ((rc.targets[which] - counts[which]) != ndom)
1343 continue;
1345 for (i = rc.i, j = 0; j < rc.n; i += rc.di, j++) {
1346 if (solve_domino_count(state, rc, i, which) == 1) {
1347 if (POSSIBLE(i, which))
1348 toset = i;
1349 else {
1350 /* paranoia, should have been checked by solve_domino_count. */
1351 assert(state->common->dominoes[i] == i+rc.di);
1352 assert(POSSIBLE(i+rc.di, which));
1353 toset = i+rc.di;
1355 if (solve_set(state, toset, which, "all empty dominoes need +/- [tricky]", &rc) < 0)
1356 return -1;
1357 didsth++;
1361 return didsth;
1364 /* danger, evil macro. can't use the do { ... } while(0) trick because
1365 * the continue breaks. */
1366 #define SOLVE_FOR_ROWCOLS(fn) \
1367 ret = solve_rowcols(state, fn); \
1368 if (ret < 0) { debug(("%s said impossible, cannot solve", #fn)); return -1; } \
1369 if (ret > 0) continue
1371 static int solve_state(game_state *state, int diff)
1373 int ret;
1375 debug(("solve_state, difficulty %s", magnets_diffnames[diff]));
1377 solve_clearflags(state);
1378 if (solve_startflags(state) < 0) return -1;
1380 while (1) {
1381 ret = solve_force(state);
1382 if (ret > 0) continue;
1383 if (ret < 0) return -1;
1385 ret = solve_neither(state);
1386 if (ret > 0) continue;
1387 if (ret < 0) return -1;
1389 SOLVE_FOR_ROWCOLS(solve_checkfull);
1390 SOLVE_FOR_ROWCOLS(solve_oddlength);
1392 if (diff < DIFF_TRICKY) break;
1394 SOLVE_FOR_ROWCOLS(solve_advancedfull);
1395 SOLVE_FOR_ROWCOLS(solve_nonneutral);
1396 SOLVE_FOR_ROWCOLS(solve_countdominoes_neutral);
1397 SOLVE_FOR_ROWCOLS(solve_countdominoes_nonneutral);
1399 /* more ... */
1401 break;
1403 return check_completion(state);
1407 static char *game_state_diff(const game_state *src, const game_state *dst,
1408 int issolve)
1410 char *ret = NULL, buf[80], c;
1411 int retlen = 0, x, y, i, k;
1413 assert(src->w == dst->w && src->h == dst->h);
1415 if (issolve) {
1416 ret = sresize(ret, 3, char);
1417 ret[0] = 'S'; ret[1] = ';'; ret[2] = '\0';
1418 retlen += 2;
1420 for (x = 0; x < dst->w; x++) {
1421 for (y = 0; y < dst->h; y++) {
1422 i = y*dst->w+x;
1424 if (src->common->dominoes[i] == i) continue;
1426 #define APPEND do { \
1427 ret = sresize(ret, retlen + k + 1, char); \
1428 strcpy(ret + retlen, buf); \
1429 retlen += k; \
1430 } while(0)
1432 if ((src->grid[i] != dst->grid[i]) ||
1433 ((src->flags[i] & GS_SET) != (dst->flags[i] & GS_SET))) {
1434 if (dst->grid[i] == EMPTY && !(dst->flags[i] & GS_SET))
1435 c = ' ';
1436 else
1437 c = GRID2CHAR(dst->grid[i]);
1438 k = sprintf(buf, "%c%d,%d;", (int)c, x, y);
1439 APPEND;
1443 debug(("game_state_diff returns %s", ret));
1444 return ret;
1447 static void solve_from_aux(const game_state *state, const char *aux)
1449 int i;
1450 assert(strlen(aux) == state->wh);
1451 for (i = 0; i < state->wh; i++) {
1452 state->grid[i] = CHAR2GRID(aux[i]);
1453 state->flags[i] |= GS_SET;
1457 static char *solve_game(const game_state *state, const game_state *currstate,
1458 const char *aux, char **error)
1460 game_state *solved = dup_game(currstate);
1461 char *move = NULL;
1462 int ret;
1464 if (aux && strlen(aux) == state->wh) {
1465 solve_from_aux(solved, aux);
1466 goto solved;
1469 if (solve_state(solved, DIFFCOUNT) > 0) goto solved;
1470 free_game(solved);
1472 solved = dup_game(state);
1473 ret = solve_state(solved, DIFFCOUNT);
1474 if (ret > 0) goto solved;
1475 free_game(solved);
1477 *error = (ret < 0) ? "Puzzle is impossible." : "Unable to solve puzzle.";
1478 return NULL;
1480 solved:
1481 move = game_state_diff(currstate, solved, 1);
1482 free_game(solved);
1483 return move;
1486 static int solve_unnumbered(game_state *state)
1488 int i, ret;
1489 while (1) {
1490 ret = solve_force(state);
1491 if (ret > 0) continue;
1492 if (ret < 0) return -1;
1494 ret = solve_neither(state);
1495 if (ret > 0) continue;
1496 if (ret < 0) return -1;
1498 break;
1500 for (i = 0; i < state->wh; i++) {
1501 if (!(state->flags[i] & GS_SET)) return 0;
1503 return 1;
1506 static int lay_dominoes(game_state *state, random_state *rs, int *scratch)
1508 int n, i, ret = 0, nlaid = 0, n_initial_neutral;
1510 for (i = 0; i < state->wh; i++) {
1511 scratch[i] = i;
1512 state->grid[i] = EMPTY;
1513 state->flags[i] = (state->common->dominoes[i] == i) ? GS_SET : 0;
1515 shuffle(scratch, state->wh, sizeof(int), rs);
1517 n_initial_neutral = (state->wh > 100) ? 5 : (state->wh / 10);
1519 for (n = 0; n < state->wh; n++) {
1520 /* Find a space ... */
1522 i = scratch[n];
1523 if (state->flags[i] & GS_SET) continue; /* already laid here. */
1525 /* ...and lay a domino if we can. */
1527 debug(("Laying domino at i:%d, (%d,%d)\n", i, i%state->w, i/state->w));
1529 /* The choice of which type of domino to lay here leads to subtle differences
1530 * in the sorts of boards that get produced. Too much bias towards magnets
1531 * leads to games that are too easy.
1533 * Currently, it lays a small set of dominoes at random as neutral, and
1534 * then lays the rest preferring to be magnets -- however, if the
1535 * current layout is such that a magnet won't go there, then it lays
1536 * another neutral.
1538 * The number of initially neutral dominoes is limited as grids get bigger:
1539 * too many neutral dominoes invariably ends up with insoluble puzzle at
1540 * this size, and the positioning process means it'll always end up laying
1541 * more than the initial 5 anyway.
1544 /* We should always be able to lay a neutral anywhere. */
1545 assert(!(state->flags[i] & GS_NOTNEUTRAL));
1547 if (n < n_initial_neutral) {
1548 debug((" ...laying neutral\n"));
1549 ret = solve_set(state, i, NEUTRAL, "layout initial neutral", NULL);
1550 } else {
1551 debug((" ... preferring magnet\n"));
1552 if (!(state->flags[i] & GS_NOTPOSITIVE))
1553 ret = solve_set(state, i, POSITIVE, "layout", NULL);
1554 else if (!(state->flags[i] & GS_NOTNEGATIVE))
1555 ret = solve_set(state, i, NEGATIVE, "layout", NULL);
1556 else
1557 ret = solve_set(state, i, NEUTRAL, "layout", NULL);
1559 if (!ret) {
1560 debug(("Unable to lay anything at (%d,%d), giving up.",
1561 i%state->w, i/state->w));
1562 ret = -1;
1563 break;
1566 nlaid++;
1567 ret = solve_unnumbered(state);
1568 if (ret == -1)
1569 debug(("solve_unnumbered decided impossible.\n"));
1570 if (ret != 0)
1571 break;
1574 debug(("Laid %d dominoes, total %d dominoes.\n", nlaid, state->wh/2));
1575 game_debug(state, "Final layout");
1576 return ret;
1579 static void gen_game(game_state *new, random_state *rs)
1581 int ret, x, y, val;
1582 int *scratch = snewn(new->wh, int);
1584 #ifdef STANDALONE_SOLVER
1585 if (verbose) printf("Generating new game...\n");
1586 #endif
1588 clear_state(new);
1589 sfree(new->common->dominoes); /* bit grotty. */
1590 new->common->dominoes = domino_layout(new->w, new->h, rs);
1592 do {
1593 ret = lay_dominoes(new, rs, scratch);
1594 } while(ret == -1);
1596 /* for each cell, update colcount/rowcount as appropriate. */
1597 memset(new->common->colcount, 0, new->w*3*sizeof(int));
1598 memset(new->common->rowcount, 0, new->h*3*sizeof(int));
1599 for (x = 0; x < new->w; x++) {
1600 for (y = 0; y < new->h; y++) {
1601 val = new->grid[y*new->w+x];
1602 new->common->colcount[x*3+val]++;
1603 new->common->rowcount[y*3+val]++;
1606 new->numbered = 1;
1608 sfree(scratch);
1611 static void generate_aux(game_state *new, char *aux)
1613 int i;
1614 for (i = 0; i < new->wh; i++)
1615 aux[i] = GRID2CHAR(new->grid[i]);
1616 aux[new->wh] = '\0';
1619 static int check_difficulty(const game_params *params, game_state *new,
1620 random_state *rs)
1622 int *scratch, *grid_correct, slen, i;
1624 memset(new->grid, EMPTY, new->wh*sizeof(int));
1626 if (params->diff > DIFF_EASY) {
1627 /* If this is too easy, return. */
1628 if (solve_state(new, params->diff-1) > 0) {
1629 debug(("Puzzle is too easy."));
1630 return -1;
1633 if (solve_state(new, params->diff) <= 0) {
1634 debug(("Puzzle is not soluble at requested difficulty."));
1635 return -1;
1637 if (!params->stripclues) return 0;
1639 /* Copy the correct grid away. */
1640 grid_correct = snewn(new->wh, int);
1641 memcpy(grid_correct, new->grid, new->wh*sizeof(int));
1643 /* Create shuffled array of side-clue locations. */
1644 slen = new->w*2 + new->h*2;
1645 scratch = snewn(slen, int);
1646 for (i = 0; i < slen; i++) scratch[i] = i;
1647 shuffle(scratch, slen, sizeof(int), rs);
1649 /* For each clue, check whether removing it makes the puzzle unsoluble;
1650 * put it back if so. */
1651 for (i = 0; i < slen; i++) {
1652 int num = scratch[i], which, roworcol, target, targetn, ret;
1653 rowcol rc;
1655 /* work out which clue we meant. */
1656 if (num < new->w+new->h) { which = POSITIVE; }
1657 else { which = NEGATIVE; num -= new->w+new->h; }
1659 if (num < new->w) { roworcol = COLUMN; }
1660 else { roworcol = ROW; num -= new->w; }
1662 /* num is now the row/column index in question. */
1663 rc = mkrowcol(new, num, roworcol);
1665 /* Remove clue, storing original... */
1666 target = rc.targets[which];
1667 targetn = rc.targets[NEUTRAL];
1668 rc.targets[which] = -1;
1669 rc.targets[NEUTRAL] = -1;
1671 /* ...and see if we can still solve it. */
1672 game_debug(new, "removed clue, new board:");
1673 memset(new->grid, EMPTY, new->wh * sizeof(int));
1674 ret = solve_state(new, params->diff);
1675 assert(ret != -1);
1677 if (ret == 0 ||
1678 memcmp(new->grid, grid_correct, new->wh*sizeof(int)) != 0) {
1679 /* We made it ambiguous: put clue back. */
1680 debug(("...now impossible/different, put clue back."));
1681 rc.targets[which] = target;
1682 rc.targets[NEUTRAL] = targetn;
1685 sfree(scratch);
1686 sfree(grid_correct);
1688 return 0;
1691 static char *new_game_desc(const game_params *params, random_state *rs,
1692 char **aux_r, int interactive)
1694 game_state *new = new_state(params->w, params->h);
1695 char *desc, *aux = snewn(new->wh+1, char);
1697 do {
1698 gen_game(new, rs);
1699 generate_aux(new, aux);
1700 } while (check_difficulty(params, new, rs) < 0);
1702 /* now we're complete, generate the description string
1703 * and an aux_info for the completed game. */
1704 desc = generate_desc(new);
1706 free_game(new);
1708 *aux_r = aux;
1709 return desc;
1712 struct game_ui {
1713 int cur_x, cur_y, cur_visible;
1716 static game_ui *new_ui(const game_state *state)
1718 game_ui *ui = snew(game_ui);
1719 ui->cur_x = ui->cur_y = 0;
1720 ui->cur_visible = 0;
1721 return ui;
1724 static void free_ui(game_ui *ui)
1726 sfree(ui);
1729 static char *encode_ui(const game_ui *ui)
1731 return NULL;
1734 static void decode_ui(game_ui *ui, const char *encoding)
1738 static void game_changed_state(game_ui *ui, const game_state *oldstate,
1739 const game_state *newstate)
1741 if (!oldstate->completed && newstate->completed)
1742 ui->cur_visible = 0;
1745 struct game_drawstate {
1746 int tilesize, started, solved;
1747 int w, h;
1748 unsigned long *what; /* size w*h */
1749 unsigned long *colwhat, *rowwhat; /* size 3*w, 3*h */
1752 #define DS_WHICH_MASK 0xf
1754 #define DS_ERROR 0x10
1755 #define DS_CURSOR 0x20
1756 #define DS_SET 0x40
1757 #define DS_NOTPOS 0x80
1758 #define DS_NOTNEG 0x100
1759 #define DS_NOTNEU 0x200
1760 #define DS_FLASH 0x400
1762 #define PREFERRED_TILE_SIZE 32
1763 #define TILE_SIZE (ds->tilesize)
1764 #define BORDER (TILE_SIZE / 8)
1766 #define COORD(x) ( (x+1) * TILE_SIZE + BORDER )
1767 #define FROMCOORD(x) ( (x - BORDER) / TILE_SIZE - 1 )
1769 static int is_clue(const game_state *state, int x, int y)
1771 int h = state->h, w = state->w;
1773 if (((x == -1 || x == w) && y >= 0 && y < h) ||
1774 ((y == -1 || y == h) && x >= 0 && x < w))
1775 return TRUE;
1777 return FALSE;
1780 static int clue_index(const game_state *state, int x, int y)
1782 int h = state->h, w = state->w;
1784 if (y == -1)
1785 return x;
1786 else if (x == w)
1787 return w + y;
1788 else if (y == h)
1789 return 2 * w + h - x - 1;
1790 else if (x == -1)
1791 return 2 * (w + h) - y - 1;
1793 return -1;
1796 static char *interpret_move(const game_state *state, game_ui *ui,
1797 const game_drawstate *ds,
1798 int x, int y, int button)
1800 int gx = FROMCOORD(x), gy = FROMCOORD(y), idx, curr;
1801 char *nullret = NULL, buf[80], movech;
1802 enum { CYCLE_MAGNET, CYCLE_NEUTRAL } action;
1804 if (IS_CURSOR_MOVE(button)) {
1805 move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0);
1806 ui->cur_visible = 1;
1807 return "";
1808 } else if (IS_CURSOR_SELECT(button)) {
1809 if (!ui->cur_visible) {
1810 ui->cur_visible = 1;
1811 return "";
1813 action = (button == CURSOR_SELECT) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
1814 gx = ui->cur_x;
1815 gy = ui->cur_y;
1816 } else if (INGRID(state, gx, gy) &&
1817 (button == LEFT_BUTTON || button == RIGHT_BUTTON)) {
1818 if (ui->cur_visible) {
1819 ui->cur_visible = 0;
1820 nullret = "";
1822 action = (button == LEFT_BUTTON) ? CYCLE_MAGNET : CYCLE_NEUTRAL;
1823 } else if (button == LEFT_BUTTON && is_clue(state, gx, gy)) {
1824 sprintf(buf, "D%d,%d", gx, gy);
1825 return dupstr(buf);
1826 } else
1827 return NULL;
1829 idx = gy * state->w + gx;
1830 if (state->common->dominoes[idx] == idx) return nullret;
1831 curr = state->grid[idx];
1833 if (action == CYCLE_MAGNET) {
1834 /* ... empty --> positive --> negative --> empty ... */
1836 if (state->grid[idx] == NEUTRAL && state->flags[idx] & GS_SET)
1837 return nullret; /* can't cycle a magnet from a neutral. */
1838 movech = (curr == EMPTY) ? '+' : (curr == POSITIVE) ? '-' : ' ';
1839 } else if (action == CYCLE_NEUTRAL) {
1840 /* ... empty -> neutral -> !neutral --> empty ... */
1842 if (state->grid[idx] != NEUTRAL)
1843 return nullret; /* can't cycle through neutral from a magnet. */
1845 /* All of these are grid == EMPTY == NEUTRAL; it twiddles
1846 * combinations of flags. */
1847 if (state->flags[idx] & GS_SET) /* neutral */
1848 movech = '?';
1849 else if (state->flags[idx] & GS_NOTNEUTRAL) /* !neutral */
1850 movech = ' ';
1851 else
1852 movech = '.';
1853 } else {
1854 assert(!"unknown action");
1855 movech = 0; /* placate optimiser */
1858 sprintf(buf, "%c%d,%d", movech, gx, gy);
1860 return dupstr(buf);
1863 static game_state *execute_move(const game_state *state, const char *move)
1865 game_state *ret = dup_game(state);
1866 int x, y, n, idx, idx2;
1867 char c;
1869 if (!*move) goto badmove;
1870 while (*move) {
1871 c = *move++;
1872 if (c == 'S') {
1873 ret->solved = TRUE;
1874 n = 0;
1875 } else if (c == '+' || c == '-' ||
1876 c == '.' || c == ' ' || c == '?') {
1877 if ((sscanf(move, "%d,%d%n", &x, &y, &n) != 2) ||
1878 !INGRID(state, x, y)) goto badmove;
1880 idx = y*state->w + x;
1881 idx2 = state->common->dominoes[idx];
1882 if (idx == idx2) goto badmove;
1884 ret->flags[idx] &= ~GS_NOTMASK;
1885 ret->flags[idx2] &= ~GS_NOTMASK;
1887 if (c == ' ' || c == '?') {
1888 ret->grid[idx] = EMPTY;
1889 ret->grid[idx2] = EMPTY;
1890 ret->flags[idx] &= ~GS_SET;
1891 ret->flags[idx2] &= ~GS_SET;
1892 if (c == '?') {
1893 ret->flags[idx] |= GS_NOTNEUTRAL;
1894 ret->flags[idx2] |= GS_NOTNEUTRAL;
1896 } else {
1897 ret->grid[idx] = CHAR2GRID(c);
1898 ret->grid[idx2] = OPPOSITE(CHAR2GRID(c));
1899 ret->flags[idx] |= GS_SET;
1900 ret->flags[idx2] |= GS_SET;
1902 } else if (c == 'D' && sscanf(move, "%d,%d%n", &x, &y, &n) == 2 &&
1903 is_clue(ret, x, y)) {
1904 ret->counts_done[clue_index(ret, x, y)] ^= 1;
1905 } else
1906 goto badmove;
1908 move += n;
1909 if (*move == ';') move++;
1910 else if (*move) goto badmove;
1912 if (check_completion(ret) == 1)
1913 ret->completed = 1;
1915 return ret;
1917 badmove:
1918 free_game(ret);
1919 return NULL;
1922 /* ----------------------------------------------------------------------
1923 * Drawing routines.
1926 static void game_compute_size(const game_params *params, int tilesize,
1927 int *x, int *y)
1929 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1930 struct { int tilesize; } ads, *ds = &ads;
1931 ads.tilesize = tilesize;
1933 *x = TILE_SIZE * (params->w+2) + 2 * BORDER;
1934 *y = TILE_SIZE * (params->h+2) + 2 * BORDER;
1937 static void game_set_size(drawing *dr, game_drawstate *ds,
1938 const game_params *params, int tilesize)
1940 ds->tilesize = tilesize;
1943 static float *game_colours(frontend *fe, int *ncolours)
1945 float *ret = snewn(3 * NCOLOURS, float);
1946 int i;
1948 game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
1950 for (i = 0; i < 3; i++) {
1951 ret[COL_TEXT * 3 + i] = 0.0F;
1952 ret[COL_NEGATIVE * 3 + i] = 0.0F;
1953 ret[COL_CURSOR * 3 + i] = 0.9F;
1954 ret[COL_DONE * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 1.5F;
1957 ret[COL_POSITIVE * 3 + 0] = 0.8F;
1958 ret[COL_POSITIVE * 3 + 1] = 0.0F;
1959 ret[COL_POSITIVE * 3 + 2] = 0.0F;
1961 ret[COL_NEUTRAL * 3 + 0] = 0.10F;
1962 ret[COL_NEUTRAL * 3 + 1] = 0.60F;
1963 ret[COL_NEUTRAL * 3 + 2] = 0.10F;
1965 ret[COL_ERROR * 3 + 0] = 1.0F;
1966 ret[COL_ERROR * 3 + 1] = 0.0F;
1967 ret[COL_ERROR * 3 + 2] = 0.0F;
1969 ret[COL_NOT * 3 + 0] = 0.2F;
1970 ret[COL_NOT * 3 + 1] = 0.2F;
1971 ret[COL_NOT * 3 + 2] = 1.0F;
1973 *ncolours = NCOLOURS;
1974 return ret;
1977 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1979 struct game_drawstate *ds = snew(struct game_drawstate);
1981 ds->tilesize = ds->started = ds->solved = 0;
1982 ds->w = state->w;
1983 ds->h = state->h;
1985 ds->what = snewn(state->wh, unsigned long);
1986 memset(ds->what, 0, state->wh*sizeof(unsigned long));
1988 ds->colwhat = snewn(state->w*3, unsigned long);
1989 memset(ds->colwhat, 0, state->w*3*sizeof(unsigned long));
1990 ds->rowwhat = snewn(state->h*3, unsigned long);
1991 memset(ds->rowwhat, 0, state->h*3*sizeof(unsigned long));
1993 return ds;
1996 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1998 sfree(ds->colwhat);
1999 sfree(ds->rowwhat);
2000 sfree(ds->what);
2001 sfree(ds);
2004 static void draw_num(drawing *dr, game_drawstate *ds, int rowcol, int which,
2005 int idx, int colbg, int col, int num)
2007 char buf[32];
2008 int cx, cy, tsz;
2010 if (num < 0) return;
2012 sprintf(buf, "%d", num);
2013 tsz = (strlen(buf) == 1) ? (7*TILE_SIZE/10) : (9*TILE_SIZE/10)/strlen(buf);
2015 if (rowcol == ROW) {
2016 cx = BORDER;
2017 if (which == NEGATIVE) cx += TILE_SIZE * (ds->w+1);
2018 cy = BORDER + TILE_SIZE * (idx+1);
2019 } else {
2020 cx = BORDER + TILE_SIZE * (idx+1);
2021 cy = BORDER;
2022 if (which == NEGATIVE) cy += TILE_SIZE * (ds->h+1);
2025 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, colbg);
2026 draw_text(dr, cx + TILE_SIZE/2, cy + TILE_SIZE/2, FONT_VARIABLE, tsz,
2027 ALIGN_VCENTRE | ALIGN_HCENTRE, col, buf);
2029 draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
2032 static void draw_sym(drawing *dr, game_drawstate *ds, int x, int y, int which, int col)
2034 int cx = COORD(x), cy = COORD(y);
2035 int ccx = cx + TILE_SIZE/2, ccy = cy + TILE_SIZE/2;
2036 int roff = TILE_SIZE/4, rsz = 2*roff+1;
2037 int soff = TILE_SIZE/16, ssz = 2*soff+1;
2039 if (which == POSITIVE || which == NEGATIVE) {
2040 draw_rect(dr, ccx - roff, ccy - soff, rsz, ssz, col);
2041 if (which == POSITIVE)
2042 draw_rect(dr, ccx - soff, ccy - roff, ssz, rsz, col);
2043 } else if (col == COL_NOT) {
2044 /* not-a-neutral is a blue question mark. */
2045 char qu[2] = { '?', 0 };
2046 draw_text(dr, ccx, ccy, FONT_VARIABLE, 7*TILE_SIZE/10,
2047 ALIGN_VCENTRE | ALIGN_HCENTRE, col, qu);
2048 } else {
2049 draw_line(dr, ccx - roff, ccy - roff, ccx + roff, ccy + roff, col);
2050 draw_line(dr, ccx + roff, ccy - roff, ccx - roff, ccy + roff, col);
2054 enum {
2055 TYPE_L,
2056 TYPE_R,
2057 TYPE_T,
2058 TYPE_B,
2059 TYPE_BLANK
2062 /* NOT responsible for redrawing background or updating. */
2063 static void draw_tile_col(drawing *dr, game_drawstate *ds, int *dominoes,
2064 int x, int y, int which, int bg, int fg, int perc)
2066 int cx = COORD(x), cy = COORD(y), i, other, type = TYPE_BLANK;
2067 int gutter, radius, coffset;
2069 /* gutter is TSZ/16 for 100%, 8*TSZ/16 (TSZ/2) for 0% */
2070 gutter = (TILE_SIZE / 16) + ((100 - perc) * (7*TILE_SIZE / 16))/100;
2071 radius = (perc * (TILE_SIZE / 8)) / 100;
2072 coffset = gutter + radius;
2074 i = y*ds->w + x;
2075 other = dominoes[i];
2077 if (other == i) return;
2078 else if (other == i+1) type = TYPE_L;
2079 else if (other == i-1) type = TYPE_R;
2080 else if (other == i+ds->w) type = TYPE_T;
2081 else if (other == i-ds->w) type = TYPE_B;
2082 else assert(!"mad domino orientation");
2084 /* domino drawing shamelessly stolen from dominosa.c. */
2085 if (type == TYPE_L || type == TYPE_T)
2086 draw_circle(dr, cx+coffset, cy+coffset,
2087 radius, bg, bg);
2088 if (type == TYPE_R || type == TYPE_T)
2089 draw_circle(dr, cx+TILE_SIZE-1-coffset, cy+coffset,
2090 radius, bg, bg);
2091 if (type == TYPE_L || type == TYPE_B)
2092 draw_circle(dr, cx+coffset, cy+TILE_SIZE-1-coffset,
2093 radius, bg, bg);
2094 if (type == TYPE_R || type == TYPE_B)
2095 draw_circle(dr, cx+TILE_SIZE-1-coffset,
2096 cy+TILE_SIZE-1-coffset,
2097 radius, bg, bg);
2099 for (i = 0; i < 2; i++) {
2100 int x1, y1, x2, y2;
2102 x1 = cx + (i ? gutter : coffset);
2103 y1 = cy + (i ? coffset : gutter);
2104 x2 = cx + TILE_SIZE-1 - (i ? gutter : coffset);
2105 y2 = cy + TILE_SIZE-1 - (i ? coffset : gutter);
2106 if (type == TYPE_L)
2107 x2 = cx + TILE_SIZE;
2108 else if (type == TYPE_R)
2109 x1 = cx;
2110 else if (type == TYPE_T)
2111 y2 = cy + TILE_SIZE ;
2112 else if (type == TYPE_B)
2113 y1 = cy;
2115 draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg);
2118 if (fg != -1) draw_sym(dr, ds, x, y, which, fg);
2121 static void draw_tile(drawing *dr, game_drawstate *ds, int *dominoes,
2122 int x, int y, unsigned long flags)
2124 int cx = COORD(x), cy = COORD(y), bg, fg, perc = 100;
2125 int which = flags & DS_WHICH_MASK;
2127 flags &= ~DS_WHICH_MASK;
2129 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2131 if (flags & DS_CURSOR)
2132 bg = COL_CURSOR; /* off-white white for cursor */
2133 else if (which == POSITIVE)
2134 bg = COL_POSITIVE;
2135 else if (which == NEGATIVE)
2136 bg = COL_NEGATIVE;
2137 else if (flags & DS_SET)
2138 bg = COL_NEUTRAL; /* green inner for neutral cells */
2139 else
2140 bg = COL_LOWLIGHT; /* light grey for empty cells. */
2142 if (which == EMPTY && !(flags & DS_SET)) {
2143 int notwhich = -1;
2144 fg = -1; /* don't draw cross unless actually set as neutral. */
2146 if (flags & DS_NOTPOS) notwhich = POSITIVE;
2147 if (flags & DS_NOTNEG) notwhich = NEGATIVE;
2148 if (flags & DS_NOTNEU) notwhich = NEUTRAL;
2149 if (notwhich != -1) {
2150 which = notwhich;
2151 fg = COL_NOT;
2153 } else
2154 fg = (flags & DS_ERROR) ? COL_ERROR :
2155 (flags & DS_CURSOR) ? COL_TEXT : COL_BACKGROUND;
2157 draw_rect(dr, cx, cy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
2159 if (flags & DS_FLASH) {
2160 int bordercol = COL_HIGHLIGHT;
2161 draw_tile_col(dr, ds, dominoes, x, y, which, bordercol, -1, perc);
2162 perc = 3*perc/4;
2164 draw_tile_col(dr, ds, dominoes, x, y, which, bg, fg, perc);
2166 draw_update(dr, cx, cy, TILE_SIZE, TILE_SIZE);
2169 static int get_count_color(const game_state *state, int rowcol, int which,
2170 int index, int target)
2172 int idx;
2173 int count = count_rowcol(state, index, rowcol, which);
2175 if ((count > target) ||
2176 (count < target && !count_rowcol(state, index, rowcol, -1))) {
2177 return COL_ERROR;
2178 } else if (rowcol == COLUMN) {
2179 idx = clue_index(state, index, which == POSITIVE ? -1 : state->h);
2180 } else {
2181 idx = clue_index(state, which == POSITIVE ? -1 : state->w, index);
2184 if (state->counts_done[idx]) {
2185 return COL_DONE;
2188 return COL_TEXT;
2191 static void game_redraw(drawing *dr, game_drawstate *ds,
2192 const game_state *oldstate, const game_state *state,
2193 int dir, const game_ui *ui,
2194 float animtime, float flashtime)
2196 int x, y, w = state->w, h = state->h, which, i, j, flash;
2198 flash = (int)(flashtime * 5 / FLASH_TIME) % 2;
2200 if (!ds->started) {
2201 /* draw background, corner +-. */
2202 draw_rect(dr, 0, 0,
2203 TILE_SIZE * (w+2) + 2 * BORDER,
2204 TILE_SIZE * (h+2) + 2 * BORDER,
2205 COL_BACKGROUND);
2207 draw_sym(dr, ds, -1, -1, POSITIVE, COL_TEXT);
2208 draw_sym(dr, ds, state->w, state->h, NEGATIVE, COL_TEXT);
2210 draw_update(dr, 0, 0,
2211 TILE_SIZE * (ds->w+2) + 2 * BORDER,
2212 TILE_SIZE * (ds->h+2) + 2 * BORDER);
2215 /* Draw grid */
2216 for (y = 0; y < h; y++) {
2217 for (x = 0; x < w; x++) {
2218 int idx = y*w+x;
2219 unsigned long c = state->grid[idx];
2221 if (state->flags[idx] & GS_ERROR)
2222 c |= DS_ERROR;
2223 if (state->flags[idx] & GS_SET)
2224 c |= DS_SET;
2226 if (x == ui->cur_x && y == ui->cur_y && ui->cur_visible)
2227 c |= DS_CURSOR;
2229 if (flash)
2230 c |= DS_FLASH;
2232 if (state->flags[idx] & GS_NOTPOSITIVE)
2233 c |= DS_NOTPOS;
2234 if (state->flags[idx] & GS_NOTNEGATIVE)
2235 c |= DS_NOTNEG;
2236 if (state->flags[idx] & GS_NOTNEUTRAL)
2237 c |= DS_NOTNEU;
2239 if (ds->what[idx] != c || !ds->started) {
2240 draw_tile(dr, ds, state->common->dominoes, x, y, c);
2241 ds->what[idx] = c;
2245 /* Draw counts around side */
2246 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
2247 for (i = 0; i < w; i++) {
2248 int index = i * 3 + which;
2249 int target = state->common->colcount[index];
2250 int color = get_count_color(state, COLUMN, which, i, target);
2252 if (color != ds->colwhat[index] || !ds->started) {
2253 draw_num(dr, ds, COLUMN, which, i, COL_BACKGROUND, color, target);
2254 ds->colwhat[index] = color;
2257 for (i = 0; i < h; i++) {
2258 int index = i * 3 + which;
2259 int target = state->common->rowcount[index];
2260 int color = get_count_color(state, ROW, which, i, target);
2262 if (color != ds->rowwhat[index] || !ds->started) {
2263 draw_num(dr, ds, ROW, which, i, COL_BACKGROUND, color, target);
2264 ds->rowwhat[index] = color;
2269 ds->started = 1;
2272 static float game_anim_length(const game_state *oldstate,
2273 const game_state *newstate, int dir, game_ui *ui)
2275 return 0.0F;
2278 static float game_flash_length(const game_state *oldstate,
2279 const game_state *newstate, int dir, game_ui *ui)
2281 if (!oldstate->completed && newstate->completed &&
2282 !oldstate->solved && !newstate->solved)
2283 return FLASH_TIME;
2284 return 0.0F;
2287 static int game_status(const game_state *state)
2289 return state->completed ? +1 : 0;
2292 static int game_timing_state(const game_state *state, game_ui *ui)
2294 return TRUE;
2297 static void game_print_size(const game_params *params, float *x, float *y)
2299 int pw, ph;
2302 * I'll use 6mm squares by default.
2304 game_compute_size(params, 600, &pw, &ph);
2305 *x = pw / 100.0F;
2306 *y = ph / 100.0F;
2309 static void game_print(drawing *dr, const game_state *state, int tilesize)
2311 int w = state->w, h = state->h;
2312 int ink = print_mono_colour(dr, 0);
2313 int paper = print_mono_colour(dr, 1);
2314 int x, y, which, i, j;
2316 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2317 game_drawstate ads, *ds = &ads;
2318 game_set_size(dr, ds, NULL, tilesize);
2319 ds->w = w; ds->h = h;
2321 /* Border. */
2322 print_line_width(dr, TILE_SIZE/12);
2324 /* Numbers and +/- for corners. */
2325 draw_sym(dr, ds, -1, -1, POSITIVE, ink);
2326 draw_sym(dr, ds, state->w, state->h, NEGATIVE, ink);
2327 for (which = POSITIVE, j = 0; j < 2; which = OPPOSITE(which), j++) {
2328 for (i = 0; i < w; i++) {
2329 draw_num(dr, ds, COLUMN, which, i, paper, ink,
2330 state->common->colcount[i*3+which]);
2332 for (i = 0; i < h; i++) {
2333 draw_num(dr, ds, ROW, which, i, paper, ink,
2334 state->common->rowcount[i*3+which]);
2338 /* Dominoes. */
2339 for (x = 0; x < w; x++) {
2340 for (y = 0; y < h; y++) {
2341 i = y*state->w + x;
2342 if (state->common->dominoes[i] == i+1 ||
2343 state->common->dominoes[i] == i+w) {
2344 int dx = state->common->dominoes[i] == i+1 ? 2 : 1;
2345 int dy = 3 - dx;
2346 int xx, yy;
2347 int cx = COORD(x), cy = COORD(y);
2349 print_line_width(dr, 0);
2351 /* Ink the domino */
2352 for (yy = 0; yy < 2; yy++)
2353 for (xx = 0; xx < 2; xx++)
2354 draw_circle(dr,
2355 cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
2356 cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
2357 TILE_SIZE/8, ink, ink);
2358 draw_rect(dr, cx + TILE_SIZE/16, cy + 3*TILE_SIZE/16,
2359 dx*TILE_SIZE - 2*(TILE_SIZE/16),
2360 dy*TILE_SIZE - 6*(TILE_SIZE/16), ink);
2361 draw_rect(dr, cx + 3*TILE_SIZE/16, cy + TILE_SIZE/16,
2362 dx*TILE_SIZE - 6*(TILE_SIZE/16),
2363 dy*TILE_SIZE - 2*(TILE_SIZE/16), ink);
2365 /* Un-ink the domino interior */
2366 for (yy = 0; yy < 2; yy++)
2367 for (xx = 0; xx < 2; xx++)
2368 draw_circle(dr,
2369 cx+xx*dx*TILE_SIZE+(1-2*xx)*3*TILE_SIZE/16,
2370 cy+yy*dy*TILE_SIZE+(1-2*yy)*3*TILE_SIZE/16,
2371 3*TILE_SIZE/32, paper, paper);
2372 draw_rect(dr, cx + 3*TILE_SIZE/32, cy + 3*TILE_SIZE/16,
2373 dx*TILE_SIZE - 2*(3*TILE_SIZE/32),
2374 dy*TILE_SIZE - 6*(TILE_SIZE/16), paper);
2375 draw_rect(dr, cx + 3*TILE_SIZE/16, cy + 3*TILE_SIZE/32,
2376 dx*TILE_SIZE - 6*(TILE_SIZE/16),
2377 dy*TILE_SIZE - 2*(3*TILE_SIZE/32), paper);
2382 /* Grid symbols (solution). */
2383 for (x = 0; x < w; x++) {
2384 for (y = 0; y < h; y++) {
2385 i = y*state->w + x;
2386 if ((state->grid[i] != NEUTRAL) || (state->flags[i] & GS_SET))
2387 draw_sym(dr, ds, x, y, state->grid[i], ink);
2392 #ifdef COMBINED
2393 #define thegame magnets
2394 #endif
2396 const struct game thegame = {
2397 "Magnets", "games.magnets", "magnets",
2398 default_params,
2399 game_fetch_preset, NULL,
2400 decode_params,
2401 encode_params,
2402 free_params,
2403 dup_params,
2404 TRUE, game_configure, custom_params,
2405 validate_params,
2406 new_game_desc,
2407 validate_desc,
2408 new_game,
2409 dup_game,
2410 free_game,
2411 TRUE, solve_game,
2412 TRUE, game_can_format_as_text_now, game_text_format,
2413 new_ui,
2414 free_ui,
2415 encode_ui,
2416 decode_ui,
2417 game_changed_state,
2418 interpret_move,
2419 execute_move,
2420 PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
2421 game_colours,
2422 game_new_drawstate,
2423 game_free_drawstate,
2424 game_redraw,
2425 game_anim_length,
2426 game_flash_length,
2427 game_status,
2428 TRUE, FALSE, game_print_size, game_print,
2429 FALSE, /* wants_statusbar */
2430 FALSE, game_timing_state,
2431 REQUIRE_RBUTTON, /* flags */
2434 #ifdef STANDALONE_SOLVER
2436 #include <time.h>
2437 #include <stdarg.h>
2439 const char *quis = NULL;
2440 int csv = 0;
2442 void usage(FILE *out) {
2443 fprintf(out, "usage: %s [-v] [--print] <params>|<game id>\n", quis);
2446 void doprint(game_state *state)
2448 char *fmt = game_text_format(state);
2449 printf("%s", fmt);
2450 sfree(fmt);
2453 static void pnum(int n, int ntot, const char *desc)
2455 printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc);
2458 static void start_soak(game_params *p, random_state *rs)
2460 time_t tt_start, tt_now, tt_last;
2461 char *aux;
2462 game_state *s, *s2;
2463 int n = 0, nsolved = 0, nimpossible = 0, ntricky = 0, ret, i;
2464 long nn, nn_total = 0, nn_solved = 0, nn_tricky = 0;
2466 tt_start = tt_now = time(NULL);
2468 if (csv)
2469 printf("time, w, h, #generated, #solved, #tricky, #impossible, "
2470 "#neutral, #neutral/solved, #neutral/tricky\n");
2471 else
2472 printf("Soak-testing a %dx%d grid.\n", p->w, p->h);
2474 s = new_state(p->w, p->h);
2475 aux = snewn(s->wh+1, char);
2477 while (1) {
2478 gen_game(s, rs);
2480 nn = 0;
2481 for (i = 0; i < s->wh; i++) {
2482 if (s->grid[i] == NEUTRAL) nn++;
2485 generate_aux(s, aux);
2486 memset(s->grid, EMPTY, s->wh * sizeof(int));
2487 s2 = dup_game(s);
2489 ret = solve_state(s, DIFFCOUNT);
2491 n++;
2492 nn_total += nn;
2493 if (ret > 0) {
2494 nsolved++;
2495 nn_solved += nn;
2496 if (solve_state(s2, DIFF_EASY) <= 0) {
2497 ntricky++;
2498 nn_tricky += nn;
2500 } else if (ret < 0) {
2501 char *desc = generate_desc(s);
2502 solve_from_aux(s, aux);
2503 printf("Game considered impossible:\n %dx%d:%s\n",
2504 p->w, p->h, desc);
2505 sfree(desc);
2506 doprint(s);
2507 nimpossible++;
2510 free_game(s2);
2512 tt_last = time(NULL);
2513 if (tt_last > tt_now) {
2514 tt_now = tt_last;
2515 if (csv) {
2516 printf("%d,%d,%d, %d,%d,%d,%d, %ld,%ld,%ld\n",
2517 (int)(tt_now - tt_start), p->w, p->h,
2518 n, nsolved, ntricky, nimpossible,
2519 nn_total, nn_solved, nn_tricky);
2520 } else {
2521 printf("%d total, %3.1f/s, ",
2522 n, (double)n / ((double)tt_now - tt_start));
2523 pnum(nsolved, n, "solved"); printf(", ");
2524 pnum(ntricky, n, "tricky");
2525 if (nimpossible > 0)
2526 pnum(nimpossible, n, "impossible");
2527 printf("\n");
2529 printf(" overall %3.1f%% neutral (%3.1f%% for solved, %3.1f%% for tricky)\n",
2530 (double)(nn_total * 100) / (double)(p->w * p->h * n),
2531 (double)(nn_solved * 100) / (double)(p->w * p->h * nsolved),
2532 (double)(nn_tricky * 100) / (double)(p->w * p->h * ntricky));
2536 free_game(s);
2537 sfree(aux);
2540 int main(int argc, const char *argv[])
2542 int print = 0, soak = 0, solved = 0, ret;
2543 char *id = NULL, *desc, *desc_gen = NULL, *err, *aux = NULL;
2544 game_state *s = NULL;
2545 game_params *p = NULL;
2546 random_state *rs = NULL;
2547 time_t seed = time(NULL);
2549 setvbuf(stdout, NULL, _IONBF, 0);
2551 quis = argv[0];
2552 while (--argc > 0) {
2553 char *p = (char*)(*++argv);
2554 if (!strcmp(p, "-v") || !strcmp(p, "--verbose")) {
2555 verbose = 1;
2556 } else if (!strcmp(p, "--csv")) {
2557 csv = 1;
2558 } else if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
2559 seed = atoi(*++argv);
2560 argc--;
2561 } else if (!strcmp(p, "-p") || !strcmp(p, "--print")) {
2562 print = 1;
2563 } else if (!strcmp(p, "-s") || !strcmp(p, "--soak")) {
2564 soak = 1;
2565 } else if (*p == '-') {
2566 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2567 usage(stderr);
2568 exit(1);
2569 } else {
2570 id = p;
2574 rs = random_new((void*)&seed, sizeof(time_t));
2576 if (!id) {
2577 fprintf(stderr, "usage: %s [-v] [--soak] <params> | <game_id>\n", argv[0]);
2578 goto done;
2580 desc = strchr(id, ':');
2581 if (desc) *desc++ = '\0';
2583 p = default_params();
2584 decode_params(p, id);
2585 err = validate_params(p, 1);
2586 if (err) {
2587 fprintf(stderr, "%s: %s", argv[0], err);
2588 goto done;
2591 if (soak) {
2592 if (desc) {
2593 fprintf(stderr, "%s: --soak needs parameters, not description.\n", quis);
2594 goto done;
2596 start_soak(p, rs);
2597 goto done;
2600 if (!desc)
2601 desc = desc_gen = new_game_desc(p, rs, &aux, 0);
2603 err = validate_desc(p, desc);
2604 if (err) {
2605 fprintf(stderr, "%s: %s\nDescription: %s\n", quis, err, desc);
2606 goto done;
2608 s = new_game(NULL, p, desc);
2609 printf("%s:%s (seed %ld)\n", id, desc, (long)seed);
2610 if (aux) {
2611 /* We just generated this ourself. */
2612 if (verbose || print) {
2613 doprint(s);
2614 solve_from_aux(s, aux);
2615 solved = 1;
2617 } else {
2618 doprint(s);
2619 verbose = 1;
2620 ret = solve_state(s, DIFFCOUNT);
2621 if (ret < 0) printf("Puzzle is impossible.\n");
2622 else if (ret == 0) printf("Puzzle is ambiguous.\n");
2623 else printf("Puzzle was solved.\n");
2624 verbose = 0;
2625 solved = 1;
2627 if (solved) doprint(s);
2629 done:
2630 if (desc_gen) sfree(desc_gen);
2631 if (p) free_params(p);
2632 if (s) free_game(s);
2633 if (rs) random_free(rs);
2634 if (aux) sfree(aux);
2636 return 0;
2639 #endif
2641 /* vim: set shiftwidth=4 tabstop=8: */