Prepare to release sgt-puzzles (20170606.272beef-1).
[sgt-puzzles.git] / keen.c
blobfdaae32e5dd263fd54a5724618b267a04dad6254
1 /*
2 * keen.c: an implementation of the Times's 'KenKen' puzzle, and
3 * also of Nikoli's very similar 'Inshi No Heya' puzzle.
4 */
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <assert.h>
10 #include <ctype.h>
11 #include <math.h>
13 #include "puzzles.h"
14 #include "latin.h"
17 * Difficulty levels. I do some macro ickery here to ensure that my
18 * enum and the various forms of my name list always match up.
20 #define DIFFLIST(A) \
21 A(EASY,Easy,solver_easy,e) \
22 A(NORMAL,Normal,solver_normal,n) \
23 A(HARD,Hard,solver_hard,h) \
24 A(EXTREME,Extreme,NULL,x) \
25 A(UNREASONABLE,Unreasonable,NULL,u)
26 #define ENUM(upper,title,func,lower) DIFF_ ## upper,
27 #define TITLE(upper,title,func,lower) #title,
28 #define ENCODE(upper,title,func,lower) #lower
29 #define CONFIG(upper,title,func,lower) ":" #title
30 enum { DIFFLIST(ENUM) DIFFCOUNT };
31 static char const *const keen_diffnames[] = { DIFFLIST(TITLE) };
32 static char const keen_diffchars[] = DIFFLIST(ENCODE);
33 #define DIFFCONFIG DIFFLIST(CONFIG)
36 * Clue notation. Important here that ADD and MUL come before SUB
37 * and DIV, and that DIV comes last.
39 #define C_ADD 0x00000000L
40 #define C_MUL 0x20000000L
41 #define C_SUB 0x40000000L
42 #define C_DIV 0x60000000L
43 #define CMASK 0x60000000L
44 #define CUNIT 0x20000000L
47 * Maximum size of any clue block. Very large ones are annoying in UI
48 * terms (if they're multiplicative you end up with too many digits to
49 * fit in the square) and also in solver terms (too many possibilities
50 * to iterate over).
52 #define MAXBLK 6
54 enum {
55 COL_BACKGROUND,
56 COL_GRID,
57 COL_USER,
58 COL_HIGHLIGHT,
59 COL_ERROR,
60 COL_PENCIL,
61 NCOLOURS
64 struct game_params {
65 int w, diff, multiplication_only;
68 struct clues {
69 int refcount;
70 int w;
71 int *dsf;
72 long *clues;
75 struct game_state {
76 game_params par;
77 struct clues *clues;
78 digit *grid;
79 int *pencil; /* bitmaps using bits 1<<1..1<<n */
80 int completed, cheated;
83 static game_params *default_params(void)
85 game_params *ret = snew(game_params);
87 ret->w = 6;
88 ret->diff = DIFF_NORMAL;
89 ret->multiplication_only = FALSE;
91 return ret;
94 const static struct game_params keen_presets[] = {
95 { 4, DIFF_EASY, FALSE },
96 { 5, DIFF_EASY, FALSE },
97 { 5, DIFF_EASY, TRUE },
98 { 6, DIFF_EASY, FALSE },
99 { 6, DIFF_NORMAL, FALSE },
100 { 6, DIFF_NORMAL, TRUE },
101 { 6, DIFF_HARD, FALSE },
102 { 6, DIFF_EXTREME, FALSE },
103 { 6, DIFF_UNREASONABLE, FALSE },
104 { 9, DIFF_NORMAL, FALSE },
107 static int game_fetch_preset(int i, char **name, game_params **params)
109 game_params *ret;
110 char buf[80];
112 if (i < 0 || i >= lenof(keen_presets))
113 return FALSE;
115 ret = snew(game_params);
116 *ret = keen_presets[i]; /* structure copy */
118 sprintf(buf, "%dx%d %s%s", ret->w, ret->w, keen_diffnames[ret->diff],
119 ret->multiplication_only ? ", multiplication only" : "");
121 *name = dupstr(buf);
122 *params = ret;
123 return TRUE;
126 static void free_params(game_params *params)
128 sfree(params);
131 static game_params *dup_params(const game_params *params)
133 game_params *ret = snew(game_params);
134 *ret = *params; /* structure copy */
135 return ret;
138 static void decode_params(game_params *params, char const *string)
140 char const *p = string;
142 params->w = atoi(p);
143 while (*p && isdigit((unsigned char)*p)) p++;
145 if (*p == 'd') {
146 int i;
147 p++;
148 params->diff = DIFFCOUNT+1; /* ...which is invalid */
149 if (*p) {
150 for (i = 0; i < DIFFCOUNT; i++) {
151 if (*p == keen_diffchars[i])
152 params->diff = i;
154 p++;
158 if (*p == 'm') {
159 p++;
160 params->multiplication_only = TRUE;
164 static char *encode_params(const game_params *params, int full)
166 char ret[80];
168 sprintf(ret, "%d", params->w);
169 if (full)
170 sprintf(ret + strlen(ret), "d%c%s", keen_diffchars[params->diff],
171 params->multiplication_only ? "m" : "");
173 return dupstr(ret);
176 static config_item *game_configure(const game_params *params)
178 config_item *ret;
179 char buf[80];
181 ret = snewn(4, config_item);
183 ret[0].name = "Grid size";
184 ret[0].type = C_STRING;
185 sprintf(buf, "%d", params->w);
186 ret[0].sval = dupstr(buf);
187 ret[0].ival = 0;
189 ret[1].name = "Difficulty";
190 ret[1].type = C_CHOICES;
191 ret[1].sval = DIFFCONFIG;
192 ret[1].ival = params->diff;
194 ret[2].name = "Multiplication only";
195 ret[2].type = C_BOOLEAN;
196 ret[2].sval = NULL;
197 ret[2].ival = params->multiplication_only;
199 ret[3].name = NULL;
200 ret[3].type = C_END;
201 ret[3].sval = NULL;
202 ret[3].ival = 0;
204 return ret;
207 static game_params *custom_params(const config_item *cfg)
209 game_params *ret = snew(game_params);
211 ret->w = atoi(cfg[0].sval);
212 ret->diff = cfg[1].ival;
213 ret->multiplication_only = cfg[2].ival;
215 return ret;
218 static char *validate_params(const game_params *params, int full)
220 if (params->w < 3 || params->w > 9)
221 return "Grid size must be between 3 and 9";
222 if (params->diff >= DIFFCOUNT)
223 return "Unknown difficulty rating";
224 return NULL;
227 /* ----------------------------------------------------------------------
228 * Solver.
231 struct solver_ctx {
232 int w, diff;
233 int nboxes;
234 int *boxes, *boxlist, *whichbox;
235 long *clues;
236 digit *soln;
237 digit *dscratch;
238 int *iscratch;
241 static void solver_clue_candidate(struct solver_ctx *ctx, int diff, int box)
243 int w = ctx->w;
244 int n = ctx->boxes[box+1] - ctx->boxes[box];
245 int j;
248 * This function is called from the main clue-based solver
249 * routine when we discover a candidate layout for a given clue
250 * box consistent with everything we currently know about the
251 * digit constraints in that box. We expect to find the digits
252 * of the candidate layout in ctx->dscratch, and we update
253 * ctx->iscratch as appropriate.
255 * The contents of ctx->iscratch are completely different
256 * depending on whether diff == DIFF_HARD or not. This function
257 * uses iscratch completely differently between the two cases, and
258 * the code in solver_common() which consumes the result must
259 * likewise have an if statement with completely different
260 * branches for the two cases.
262 * In DIFF_EASY and DIFF_NORMAL modes, the valid entries in
263 * ctx->iscratch are 0,...,n-1, and each of those entries
264 * ctx->iscratch[i] gives a bitmap of the possible digits in the
265 * ith square of the clue box currently under consideration. So
266 * each entry of iscratch starts off as an empty bitmap, and we
267 * set bits in it as possible layouts for the clue box are
268 * considered (and the difference between DIFF_EASY and
269 * DIFF_NORMAL is just that in DIFF_EASY mode we deliberately set
270 * more bits than absolutely necessary, hence restricting our own
271 * knowledge).
273 * But in DIFF_HARD mode, the valid entries are 0,...,2*w-1 (at
274 * least outside *this* function - inside this function, we also
275 * use 2*w,...,4*w-1 as scratch space in the loop below); the
276 * first w of those give the possible digits in the intersection
277 * of the current clue box with each column of the puzzle, and the
278 * next w do the same for each row. In this mode, each iscratch
279 * entry starts off as a _full_ bitmap, and in this function we
280 * _clear_ bits for digits that are absent from a given row or
281 * column in each candidate layout, so that the only bits which
282 * remain set are those for digits which have to appear in a given
283 * row/column no matter how the clue box is laid out.
285 if (diff == DIFF_EASY) {
286 unsigned mask = 0;
288 * Easy-mode clue deductions: we do not record information
289 * about which squares take which values, so we amalgamate
290 * all the values in dscratch and OR them all into
291 * everywhere.
293 for (j = 0; j < n; j++)
294 mask |= 1 << ctx->dscratch[j];
295 for (j = 0; j < n; j++)
296 ctx->iscratch[j] |= mask;
297 } else if (diff == DIFF_NORMAL) {
299 * Normal-mode deductions: we process the information in
300 * dscratch in the obvious way.
302 for (j = 0; j < n; j++)
303 ctx->iscratch[j] |= 1 << ctx->dscratch[j];
304 } else if (diff == DIFF_HARD) {
306 * Hard-mode deductions: instead of ruling things out
307 * _inside_ the clue box, we look for numbers which occur in
308 * a given row or column in all candidate layouts, and rule
309 * them out of all squares in that row or column that
310 * _aren't_ part of this clue box.
312 int *sq = ctx->boxlist + ctx->boxes[box];
314 for (j = 0; j < 2*w; j++)
315 ctx->iscratch[2*w+j] = 0;
316 for (j = 0; j < n; j++) {
317 int x = sq[j] / w, y = sq[j] % w;
318 ctx->iscratch[2*w+x] |= 1 << ctx->dscratch[j];
319 ctx->iscratch[3*w+y] |= 1 << ctx->dscratch[j];
321 for (j = 0; j < 2*w; j++)
322 ctx->iscratch[j] &= ctx->iscratch[2*w+j];
326 static int solver_common(struct latin_solver *solver, void *vctx, int diff)
328 struct solver_ctx *ctx = (struct solver_ctx *)vctx;
329 int w = ctx->w;
330 int box, i, j, k;
331 int ret = 0, total;
334 * Iterate over each clue box and deduce what we can.
336 for (box = 0; box < ctx->nboxes; box++) {
337 int *sq = ctx->boxlist + ctx->boxes[box];
338 int n = ctx->boxes[box+1] - ctx->boxes[box];
339 long value = ctx->clues[box] & ~CMASK;
340 long op = ctx->clues[box] & CMASK;
343 * Initialise ctx->iscratch for this clue box. At different
344 * difficulty levels we must initialise a different amount of
345 * it to different things; see the comments in
346 * solver_clue_candidate explaining what each version does.
348 if (diff == DIFF_HARD) {
349 for (i = 0; i < 2*w; i++)
350 ctx->iscratch[i] = (1 << (w+1)) - (1 << 1);
351 } else {
352 for (i = 0; i < n; i++)
353 ctx->iscratch[i] = 0;
356 switch (op) {
357 case C_SUB:
358 case C_DIV:
360 * These two clue types must always apply to a box of
361 * area 2. Also, the two digits in these boxes can never
362 * be the same (because any domino must have its two
363 * squares in either the same row or the same column).
364 * So we simply iterate over all possibilities for the
365 * two squares (both ways round), rule out any which are
366 * inconsistent with the digit constraints we already
367 * have, and update the digit constraints with any new
368 * information thus garnered.
370 assert(n == 2);
372 for (i = 1; i <= w; i++) {
373 j = (op == C_SUB ? i + value : i * value);
374 if (j > w) break;
376 /* (i,j) is a valid digit pair. Try it both ways round. */
378 if (solver->cube[sq[0]*w+i-1] &&
379 solver->cube[sq[1]*w+j-1]) {
380 ctx->dscratch[0] = i;
381 ctx->dscratch[1] = j;
382 solver_clue_candidate(ctx, diff, box);
385 if (solver->cube[sq[0]*w+j-1] &&
386 solver->cube[sq[1]*w+i-1]) {
387 ctx->dscratch[0] = j;
388 ctx->dscratch[1] = i;
389 solver_clue_candidate(ctx, diff, box);
393 break;
395 case C_ADD:
396 case C_MUL:
398 * For these clue types, I have no alternative but to go
399 * through all possible number combinations.
401 * Instead of a tedious physical recursion, I iterate in
402 * the scratch array through all possibilities. At any
403 * given moment, i indexes the element of the box that
404 * will next be incremented.
406 i = 0;
407 ctx->dscratch[i] = 0;
408 total = value; /* start with the identity */
409 while (1) {
410 if (i < n) {
412 * Find the next valid value for cell i.
414 for (j = ctx->dscratch[i] + 1; j <= w; j++) {
415 if (op == C_ADD ? (total < j) : (total % j != 0))
416 continue; /* this one won't fit */
417 if (!solver->cube[sq[i]*w+j-1])
418 continue; /* this one is ruled out already */
419 for (k = 0; k < i; k++)
420 if (ctx->dscratch[k] == j &&
421 (sq[k] % w == sq[i] % w ||
422 sq[k] / w == sq[i] / w))
423 break; /* clashes with another row/col */
424 if (k < i)
425 continue;
427 /* Found one. */
428 break;
431 if (j > w) {
432 /* No valid values left; drop back. */
433 i--;
434 if (i < 0)
435 break; /* overall iteration is finished */
436 if (op == C_ADD)
437 total += ctx->dscratch[i];
438 else
439 total *= ctx->dscratch[i];
440 } else {
441 /* Got a valid value; store it and move on. */
442 ctx->dscratch[i++] = j;
443 if (op == C_ADD)
444 total -= j;
445 else
446 total /= j;
447 ctx->dscratch[i] = 0;
449 } else {
450 if (total == (op == C_ADD ? 0 : 1))
451 solver_clue_candidate(ctx, diff, box);
452 i--;
453 if (op == C_ADD)
454 total += ctx->dscratch[i];
455 else
456 total *= ctx->dscratch[i];
460 break;
464 * Do deductions based on the information we've now
465 * accumulated in ctx->iscratch. See the comments above in
466 * solver_clue_candidate explaining what data is left in here,
467 * and how it differs between DIFF_HARD and lower difficulty
468 * levels (hence the big if statement here).
470 if (diff < DIFF_HARD) {
471 #ifdef STANDALONE_SOLVER
472 char prefix[256];
474 if (solver_show_working)
475 sprintf(prefix, "%*susing clue at (%d,%d):\n",
476 solver_recurse_depth*4, "",
477 sq[0]/w+1, sq[0]%w+1);
478 else
479 prefix[0] = '\0'; /* placate optimiser */
480 #endif
482 for (i = 0; i < n; i++)
483 for (j = 1; j <= w; j++) {
484 if (solver->cube[sq[i]*w+j-1] &&
485 !(ctx->iscratch[i] & (1 << j))) {
486 #ifdef STANDALONE_SOLVER
487 if (solver_show_working) {
488 printf("%s%*s ruling out %d at (%d,%d)\n",
489 prefix, solver_recurse_depth*4, "",
490 j, sq[i]/w+1, sq[i]%w+1);
491 prefix[0] = '\0';
493 #endif
494 solver->cube[sq[i]*w+j-1] = 0;
495 ret = 1;
498 } else {
499 #ifdef STANDALONE_SOLVER
500 char prefix[256];
502 if (solver_show_working)
503 sprintf(prefix, "%*susing clue at (%d,%d):\n",
504 solver_recurse_depth*4, "",
505 sq[0]/w+1, sq[0]%w+1);
506 else
507 prefix[0] = '\0'; /* placate optimiser */
508 #endif
510 for (i = 0; i < 2*w; i++) {
511 int start = (i < w ? i*w : i-w);
512 int step = (i < w ? 1 : w);
513 for (j = 1; j <= w; j++) if (ctx->iscratch[i] & (1 << j)) {
514 #ifdef STANDALONE_SOLVER
515 char prefix2[256];
517 if (solver_show_working)
518 sprintf(prefix2, "%*s this clue requires %d in"
519 " %s %d:\n", solver_recurse_depth*4, "",
520 j, i < w ? "column" : "row", i%w+1);
521 else
522 prefix2[0] = '\0'; /* placate optimiser */
523 #endif
525 for (k = 0; k < w; k++) {
526 int pos = start + k*step;
527 if (ctx->whichbox[pos] != box &&
528 solver->cube[pos*w+j-1]) {
529 #ifdef STANDALONE_SOLVER
530 if (solver_show_working) {
531 printf("%s%s%*s ruling out %d at (%d,%d)\n",
532 prefix, prefix2,
533 solver_recurse_depth*4, "",
534 j, pos/w+1, pos%w+1);
535 prefix[0] = prefix2[0] = '\0';
537 #endif
538 solver->cube[pos*w+j-1] = 0;
539 ret = 1;
546 * Once we find one block we can do something with in
547 * this way, revert to trying easier deductions, so as
548 * not to generate solver diagnostics that make the
549 * problem look harder than it is. (We have to do this
550 * for the Hard deductions but not the Easy/Normal ones,
551 * because only the Hard deductions are cross-box.)
553 if (ret)
554 return ret;
558 return ret;
561 static int solver_easy(struct latin_solver *solver, void *vctx)
564 * Omit the EASY deductions when solving at NORMAL level, since
565 * the NORMAL deductions are a superset of them anyway and it
566 * saves on time and confusing solver diagnostics.
568 * Note that this breaks the natural semantics of the return
569 * value of latin_solver. Without this hack, you could determine
570 * a puzzle's difficulty in one go by trying to solve it at
571 * maximum difficulty and seeing what difficulty value was
572 * returned; but with this hack, solving an Easy puzzle on
573 * Normal difficulty will typically return Normal. Hence the
574 * uses of the solver to determine difficulty are all arranged
575 * so as to double-check by re-solving at the next difficulty
576 * level down and making sure it failed.
578 struct solver_ctx *ctx = (struct solver_ctx *)vctx;
579 if (ctx->diff > DIFF_EASY)
580 return 0;
581 return solver_common(solver, vctx, DIFF_EASY);
584 static int solver_normal(struct latin_solver *solver, void *vctx)
586 return solver_common(solver, vctx, DIFF_NORMAL);
589 static int solver_hard(struct latin_solver *solver, void *vctx)
591 return solver_common(solver, vctx, DIFF_HARD);
594 #define SOLVER(upper,title,func,lower) func,
595 static usersolver_t const keen_solvers[] = { DIFFLIST(SOLVER) };
597 static int solver(int w, int *dsf, long *clues, digit *soln, int maxdiff)
599 int a = w*w;
600 struct solver_ctx ctx;
601 int ret;
602 int i, j, n, m;
604 ctx.w = w;
605 ctx.soln = soln;
606 ctx.diff = maxdiff;
609 * Transform the dsf-formatted clue list into one over which we
610 * can iterate more easily.
612 * Also transpose the x- and y-coordinates at this point,
613 * because the 'cube' array in the general Latin square solver
614 * puts x first (oops).
616 for (ctx.nboxes = i = 0; i < a; i++)
617 if (dsf_canonify(dsf, i) == i)
618 ctx.nboxes++;
619 ctx.boxlist = snewn(a, int);
620 ctx.boxes = snewn(ctx.nboxes+1, int);
621 ctx.clues = snewn(ctx.nboxes, long);
622 ctx.whichbox = snewn(a, int);
623 for (n = m = i = 0; i < a; i++)
624 if (dsf_canonify(dsf, i) == i) {
625 ctx.clues[n] = clues[i];
626 ctx.boxes[n] = m;
627 for (j = 0; j < a; j++)
628 if (dsf_canonify(dsf, j) == i) {
629 ctx.boxlist[m++] = (j % w) * w + (j / w); /* transpose */
630 ctx.whichbox[ctx.boxlist[m-1]] = n;
632 n++;
634 assert(n == ctx.nboxes);
635 assert(m == a);
636 ctx.boxes[n] = m;
638 ctx.dscratch = snewn(a+1, digit);
639 ctx.iscratch = snewn(max(a+1, 4*w), int);
641 ret = latin_solver(soln, w, maxdiff,
642 DIFF_EASY, DIFF_HARD, DIFF_EXTREME,
643 DIFF_EXTREME, DIFF_UNREASONABLE,
644 keen_solvers, &ctx, NULL, NULL);
646 sfree(ctx.dscratch);
647 sfree(ctx.iscratch);
648 sfree(ctx.whichbox);
649 sfree(ctx.boxlist);
650 sfree(ctx.boxes);
651 sfree(ctx.clues);
653 return ret;
656 /* ----------------------------------------------------------------------
657 * Grid generation.
660 static char *encode_block_structure(char *p, int w, int *dsf)
662 int i, currrun = 0;
663 char *orig, *q, *r, c;
665 orig = p;
668 * Encode the block structure. We do this by encoding the
669 * pattern of dividing lines: first we iterate over the w*(w-1)
670 * internal vertical grid lines in ordinary reading order, then
671 * over the w*(w-1) internal horizontal ones in transposed
672 * reading order.
674 * We encode the number of non-lines between the lines; _ means
675 * zero (two adjacent divisions), a means 1, ..., y means 25,
676 * and z means 25 non-lines _and no following line_ (so that za
677 * means 26, zb 27 etc).
679 for (i = 0; i <= 2*w*(w-1); i++) {
680 int x, y, p0, p1, edge;
682 if (i == 2*w*(w-1)) {
683 edge = TRUE; /* terminating virtual edge */
684 } else {
685 if (i < w*(w-1)) {
686 y = i/(w-1);
687 x = i%(w-1);
688 p0 = y*w+x;
689 p1 = y*w+x+1;
690 } else {
691 x = i/(w-1) - w;
692 y = i%(w-1);
693 p0 = y*w+x;
694 p1 = (y+1)*w+x;
696 edge = (dsf_canonify(dsf, p0) != dsf_canonify(dsf, p1));
699 if (edge) {
700 while (currrun > 25)
701 *p++ = 'z', currrun -= 25;
702 if (currrun)
703 *p++ = 'a'-1 + currrun;
704 else
705 *p++ = '_';
706 currrun = 0;
707 } else
708 currrun++;
712 * Now go through and compress the string by replacing runs of
713 * the same letter with a single copy of that letter followed by
714 * a repeat count, where that makes it shorter. (This puzzle
715 * seems to generate enough long strings of _ to make this a
716 * worthwhile step.)
718 for (q = r = orig; r < p ;) {
719 *q++ = c = *r;
721 for (i = 0; r+i < p && r[i] == c; i++);
722 r += i;
724 if (i == 2) {
725 *q++ = c;
726 } else if (i > 2) {
727 q += sprintf(q, "%d", i);
731 return q;
734 static char *parse_block_structure(const char **p, int w, int *dsf)
736 int a = w*w;
737 int pos = 0;
738 int repc = 0, repn = 0;
740 dsf_init(dsf, a);
742 while (**p && (repn > 0 || **p != ',')) {
743 int c, adv;
745 if (repn > 0) {
746 repn--;
747 c = repc;
748 } else if (**p == '_' || (**p >= 'a' && **p <= 'z')) {
749 c = (**p == '_' ? 0 : **p - 'a' + 1);
750 (*p)++;
751 if (**p && isdigit((unsigned char)**p)) {
752 repc = c;
753 repn = atoi(*p)-1;
754 while (**p && isdigit((unsigned char)**p)) (*p)++;
756 } else
757 return "Invalid character in game description";
759 adv = (c != 25); /* 'z' is a special case */
761 while (c-- > 0) {
762 int p0, p1;
765 * Non-edge; merge the two dsf classes on either
766 * side of it.
768 if (pos >= 2*w*(w-1))
769 return "Too much data in block structure specification";
770 if (pos < w*(w-1)) {
771 int y = pos/(w-1);
772 int x = pos%(w-1);
773 p0 = y*w+x;
774 p1 = y*w+x+1;
775 } else {
776 int x = pos/(w-1) - w;
777 int y = pos%(w-1);
778 p0 = y*w+x;
779 p1 = (y+1)*w+x;
781 dsf_merge(dsf, p0, p1);
783 pos++;
785 if (adv) {
786 pos++;
787 if (pos > 2*w*(w-1)+1)
788 return "Too much data in block structure specification";
793 * When desc is exhausted, we expect to have gone exactly
794 * one space _past_ the end of the grid, due to the dummy
795 * edge at the end.
797 if (pos != 2*w*(w-1)+1)
798 return "Not enough data in block structure specification";
800 return NULL;
803 static char *new_game_desc(const game_params *params, random_state *rs,
804 char **aux, int interactive)
806 int w = params->w, a = w*w;
807 digit *grid, *soln;
808 int *order, *revorder, *singletons, *dsf;
809 long *clues, *cluevals;
810 int i, j, k, n, x, y, ret;
811 int diff = params->diff;
812 char *desc, *p;
815 * Difficulty exceptions: 3x3 puzzles at difficulty Hard or
816 * higher are currently not generable - the generator will spin
817 * forever looking for puzzles of the appropriate difficulty. We
818 * dial each of these down to the next lower difficulty.
820 * Remember to re-test this whenever a change is made to the
821 * solver logic!
823 * I tested it using the following shell command:
825 for d in e n h x u; do
826 for i in {3..9}; do
827 echo ./keen --generate 1 ${i}d${d}
828 perl -e 'alarm 30; exec @ARGV' ./keen --generate 5 ${i}d${d} >/dev/null \
829 || echo broken
830 done
831 done
833 * Of course, it's better to do that after taking the exceptions
834 * _out_, so as to detect exceptions that should be removed as
835 * well as those which should be added.
837 if (w == 3 && diff > DIFF_NORMAL)
838 diff = DIFF_NORMAL;
840 grid = NULL;
842 order = snewn(a, int);
843 revorder = snewn(a, int);
844 singletons = snewn(a, int);
845 dsf = snew_dsf(a);
846 clues = snewn(a, long);
847 cluevals = snewn(a, long);
848 soln = snewn(a, digit);
850 while (1) {
852 * First construct a latin square to be the solution.
854 sfree(grid);
855 grid = latin_generate(w, rs);
858 * Divide the grid into arbitrarily sized blocks, but so as
859 * to arrange plenty of dominoes which can be SUB/DIV clues.
860 * We do this by first placing dominoes at random for a
861 * while, then tying the remaining singletons one by one
862 * into neighbouring blocks.
864 for (i = 0; i < a; i++)
865 order[i] = i;
866 shuffle(order, a, sizeof(*order), rs);
867 for (i = 0; i < a; i++)
868 revorder[order[i]] = i;
870 for (i = 0; i < a; i++)
871 singletons[i] = TRUE;
873 dsf_init(dsf, a);
875 /* Place dominoes. */
876 for (i = 0; i < a; i++) {
877 if (singletons[i]) {
878 int best = -1;
880 x = i % w;
881 y = i / w;
883 if (x > 0 && singletons[i-1] &&
884 (best == -1 || revorder[i-1] < revorder[best]))
885 best = i-1;
886 if (x+1 < w && singletons[i+1] &&
887 (best == -1 || revorder[i+1] < revorder[best]))
888 best = i+1;
889 if (y > 0 && singletons[i-w] &&
890 (best == -1 || revorder[i-w] < revorder[best]))
891 best = i-w;
892 if (y+1 < w && singletons[i+w] &&
893 (best == -1 || revorder[i+w] < revorder[best]))
894 best = i+w;
897 * When we find a potential domino, we place it with
898 * probability 3/4, which seems to strike a decent
899 * balance between plenty of dominoes and leaving
900 * enough singletons to make interesting larger
901 * shapes.
903 if (best >= 0 && random_upto(rs, 4)) {
904 singletons[i] = singletons[best] = FALSE;
905 dsf_merge(dsf, i, best);
910 /* Fold in singletons. */
911 for (i = 0; i < a; i++) {
912 if (singletons[i]) {
913 int best = -1;
915 x = i % w;
916 y = i / w;
918 if (x > 0 && dsf_size(dsf, i-1) < MAXBLK &&
919 (best == -1 || revorder[i-1] < revorder[best]))
920 best = i-1;
921 if (x+1 < w && dsf_size(dsf, i+1) < MAXBLK &&
922 (best == -1 || revorder[i+1] < revorder[best]))
923 best = i+1;
924 if (y > 0 && dsf_size(dsf, i-w) < MAXBLK &&
925 (best == -1 || revorder[i-w] < revorder[best]))
926 best = i-w;
927 if (y+1 < w && dsf_size(dsf, i+w) < MAXBLK &&
928 (best == -1 || revorder[i+w] < revorder[best]))
929 best = i+w;
931 if (best >= 0) {
932 singletons[i] = singletons[best] = FALSE;
933 dsf_merge(dsf, i, best);
938 /* Quit and start again if we have any singletons left over
939 * which we weren't able to do anything at all with. */
940 for (i = 0; i < a; i++)
941 if (singletons[i])
942 break;
943 if (i < a)
944 continue;
947 * Decide what would be acceptable clues for each block.
949 * Blocks larger than 2 have free choice of ADD or MUL;
950 * blocks of size 2 can be anything in principle (except
951 * that they can only be DIV if the two numbers have an
952 * integer quotient, of course), but we rule out (or try to
953 * avoid) some clues because they're of low quality.
955 * Hence, we iterate once over the grid, stopping at the
956 * canonical element of every >2 block and the _non_-
957 * canonical element of every 2-block; the latter means that
958 * we can make our decision about a 2-block in the knowledge
959 * of both numbers in it.
961 * We reuse the 'singletons' array (finished with in the
962 * above loop) to hold information about which blocks are
963 * suitable for what.
965 #define F_ADD 0x01
966 #define F_SUB 0x02
967 #define F_MUL 0x04
968 #define F_DIV 0x08
969 #define BAD_SHIFT 4
971 for (i = 0; i < a; i++) {
972 singletons[i] = 0;
973 j = dsf_canonify(dsf, i);
974 k = dsf_size(dsf, j);
975 if (params->multiplication_only)
976 singletons[j] = F_MUL;
977 else if (j == i && k > 2) {
978 singletons[j] |= F_ADD | F_MUL;
979 } else if (j != i && k == 2) {
980 /* Fetch the two numbers and sort them into order. */
981 int p = grid[j], q = grid[i], v;
982 if (p < q) {
983 int t = p; p = q; q = t;
987 * Addition clues are always allowed, but we try to
988 * avoid sums of 3, 4, (2w-1) and (2w-2) if we can,
989 * because they're too easy - they only leave one
990 * option for the pair of numbers involved.
992 v = p + q;
993 if (v > 4 && v < 2*w-2)
994 singletons[j] |= F_ADD;
995 else
996 singletons[j] |= F_ADD << BAD_SHIFT;
999 * Multiplication clues: above Normal difficulty, we
1000 * prefer (but don't absolutely insist on) clues of
1001 * this type which leave multiple options open.
1003 v = p * q;
1004 n = 0;
1005 for (k = 1; k <= w; k++)
1006 if (v % k == 0 && v / k <= w && v / k != k)
1007 n++;
1008 if (n <= 2 && diff > DIFF_NORMAL)
1009 singletons[j] |= F_MUL << BAD_SHIFT;
1010 else
1011 singletons[j] |= F_MUL;
1014 * Subtraction: we completely avoid a difference of
1015 * w-1.
1017 v = p - q;
1018 if (v < w-1)
1019 singletons[j] |= F_SUB;
1022 * Division: for a start, the quotient must be an
1023 * integer or the clue type is impossible. Also, we
1024 * never use quotients strictly greater than w/2,
1025 * because they're not only too easy but also
1026 * inelegant.
1028 if (p % q == 0 && 2 * (p / q) <= w)
1029 singletons[j] |= F_DIV;
1034 * Actually choose a clue for each block, trying to keep the
1035 * numbers of each type even, and starting with the
1036 * preferred candidates for each type where possible.
1038 * I'm sure there should be a faster algorithm for doing
1039 * this, but I can't be bothered: O(N^2) is good enough when
1040 * N is at most the number of dominoes that fits into a 9x9
1041 * square.
1043 shuffle(order, a, sizeof(*order), rs);
1044 for (i = 0; i < a; i++)
1045 clues[i] = 0;
1046 while (1) {
1047 int done_something = FALSE;
1049 for (k = 0; k < 4; k++) {
1050 long clue;
1051 int good, bad;
1052 switch (k) {
1053 case 0: clue = C_DIV; good = F_DIV; break;
1054 case 1: clue = C_SUB; good = F_SUB; break;
1055 case 2: clue = C_MUL; good = F_MUL; break;
1056 default /* case 3 */ : clue = C_ADD; good = F_ADD; break;
1059 for (i = 0; i < a; i++) {
1060 j = order[i];
1061 if (singletons[j] & good) {
1062 clues[j] = clue;
1063 singletons[j] = 0;
1064 break;
1067 if (i == a) {
1068 /* didn't find a nice one, use a nasty one */
1069 bad = good << BAD_SHIFT;
1070 for (i = 0; i < a; i++) {
1071 j = order[i];
1072 if (singletons[j] & bad) {
1073 clues[j] = clue;
1074 singletons[j] = 0;
1075 break;
1079 if (i < a)
1080 done_something = TRUE;
1083 if (!done_something)
1084 break;
1086 #undef F_ADD
1087 #undef F_SUB
1088 #undef F_MUL
1089 #undef F_DIV
1090 #undef BAD_SHIFT
1093 * Having chosen the clue types, calculate the clue values.
1095 for (i = 0; i < a; i++) {
1096 j = dsf_canonify(dsf, i);
1097 if (j == i) {
1098 cluevals[j] = grid[i];
1099 } else {
1100 switch (clues[j]) {
1101 case C_ADD:
1102 cluevals[j] += grid[i];
1103 break;
1104 case C_MUL:
1105 cluevals[j] *= grid[i];
1106 break;
1107 case C_SUB:
1108 cluevals[j] = abs(cluevals[j] - grid[i]);
1109 break;
1110 case C_DIV:
1112 int d1 = cluevals[j], d2 = grid[i];
1113 if (d1 == 0 || d2 == 0)
1114 cluevals[j] = 0;
1115 else
1116 cluevals[j] = d2/d1 + d1/d2;/* one is 0 :-) */
1118 break;
1123 for (i = 0; i < a; i++) {
1124 j = dsf_canonify(dsf, i);
1125 if (j == i) {
1126 clues[j] |= cluevals[j];
1131 * See if the game can be solved at the specified difficulty
1132 * level, but not at the one below.
1134 if (diff > 0) {
1135 memset(soln, 0, a);
1136 ret = solver(w, dsf, clues, soln, diff-1);
1137 if (ret <= diff-1)
1138 continue;
1140 memset(soln, 0, a);
1141 ret = solver(w, dsf, clues, soln, diff);
1142 if (ret != diff)
1143 continue; /* go round again */
1146 * I wondered if at this point it would be worth trying to
1147 * merge adjacent blocks together, to make the puzzle
1148 * gradually more difficult if it's currently easier than
1149 * specced, increasing the chance of a given generation run
1150 * being successful.
1152 * It doesn't seem to be critical for the generation speed,
1153 * though, so for the moment I'm leaving it out.
1157 * We've got a usable puzzle!
1159 break;
1163 * Encode the puzzle description.
1165 desc = snewn(40*a, char);
1166 p = desc;
1167 p = encode_block_structure(p, w, dsf);
1168 *p++ = ',';
1169 for (i = 0; i < a; i++) {
1170 j = dsf_canonify(dsf, i);
1171 if (j == i) {
1172 switch (clues[j] & CMASK) {
1173 case C_ADD: *p++ = 'a'; break;
1174 case C_SUB: *p++ = 's'; break;
1175 case C_MUL: *p++ = 'm'; break;
1176 case C_DIV: *p++ = 'd'; break;
1178 p += sprintf(p, "%ld", clues[j] & ~CMASK);
1181 *p++ = '\0';
1182 desc = sresize(desc, p - desc, char);
1185 * Encode the solution.
1187 assert(memcmp(soln, grid, a) == 0);
1188 *aux = snewn(a+2, char);
1189 (*aux)[0] = 'S';
1190 for (i = 0; i < a; i++)
1191 (*aux)[i+1] = '0' + soln[i];
1192 (*aux)[a+1] = '\0';
1194 sfree(grid);
1195 sfree(order);
1196 sfree(revorder);
1197 sfree(singletons);
1198 sfree(dsf);
1199 sfree(clues);
1200 sfree(cluevals);
1201 sfree(soln);
1203 return desc;
1206 /* ----------------------------------------------------------------------
1207 * Gameplay.
1210 static char *validate_desc(const game_params *params, const char *desc)
1212 int w = params->w, a = w*w;
1213 int *dsf;
1214 char *ret;
1215 const char *p = desc;
1216 int i;
1219 * Verify that the block structure makes sense.
1221 dsf = snew_dsf(a);
1222 ret = parse_block_structure(&p, w, dsf);
1223 if (ret) {
1224 sfree(dsf);
1225 return ret;
1228 if (*p != ',')
1229 return "Expected ',' after block structure description";
1230 p++;
1233 * Verify that the right number of clues are given, and that SUB
1234 * and DIV clues don't apply to blocks of the wrong size.
1236 for (i = 0; i < a; i++) {
1237 if (dsf_canonify(dsf, i) == i) {
1238 if (*p == 'a' || *p == 'm') {
1239 /* these clues need no validation */
1240 } else if (*p == 'd' || *p == 's') {
1241 if (dsf_size(dsf, i) != 2)
1242 return "Subtraction and division blocks must have area 2";
1243 } else if (!*p) {
1244 return "Too few clues for block structure";
1245 } else {
1246 return "Unrecognised clue type";
1248 p++;
1249 while (*p && isdigit((unsigned char)*p)) p++;
1252 if (*p)
1253 return "Too many clues for block structure";
1255 return NULL;
1258 static game_state *new_game(midend *me, const game_params *params,
1259 const char *desc)
1261 int w = params->w, a = w*w;
1262 game_state *state = snew(game_state);
1263 const char *p = desc;
1264 int i;
1266 state->par = *params; /* structure copy */
1267 state->clues = snew(struct clues);
1268 state->clues->refcount = 1;
1269 state->clues->w = w;
1270 state->clues->dsf = snew_dsf(a);
1271 parse_block_structure(&p, w, state->clues->dsf);
1273 assert(*p == ',');
1274 p++;
1276 state->clues->clues = snewn(a, long);
1277 for (i = 0; i < a; i++) {
1278 if (dsf_canonify(state->clues->dsf, i) == i) {
1279 long clue = 0;
1280 switch (*p) {
1281 case 'a':
1282 clue = C_ADD;
1283 break;
1284 case 'm':
1285 clue = C_MUL;
1286 break;
1287 case 's':
1288 clue = C_SUB;
1289 assert(dsf_size(state->clues->dsf, i) == 2);
1290 break;
1291 case 'd':
1292 clue = C_DIV;
1293 assert(dsf_size(state->clues->dsf, i) == 2);
1294 break;
1295 default:
1296 assert(!"Bad description in new_game");
1298 p++;
1299 clue |= atol(p);
1300 while (*p && isdigit((unsigned char)*p)) p++;
1301 state->clues->clues[i] = clue;
1302 } else
1303 state->clues->clues[i] = 0;
1306 state->grid = snewn(a, digit);
1307 state->pencil = snewn(a, int);
1308 for (i = 0; i < a; i++) {
1309 state->grid[i] = 0;
1310 state->pencil[i] = 0;
1313 state->completed = state->cheated = FALSE;
1315 return state;
1318 static game_state *dup_game(const game_state *state)
1320 int w = state->par.w, a = w*w;
1321 game_state *ret = snew(game_state);
1323 ret->par = state->par; /* structure copy */
1325 ret->clues = state->clues;
1326 ret->clues->refcount++;
1328 ret->grid = snewn(a, digit);
1329 ret->pencil = snewn(a, int);
1330 memcpy(ret->grid, state->grid, a*sizeof(digit));
1331 memcpy(ret->pencil, state->pencil, a*sizeof(int));
1333 ret->completed = state->completed;
1334 ret->cheated = state->cheated;
1336 return ret;
1339 static void free_game(game_state *state)
1341 sfree(state->grid);
1342 sfree(state->pencil);
1343 if (--state->clues->refcount <= 0) {
1344 sfree(state->clues->dsf);
1345 sfree(state->clues->clues);
1346 sfree(state->clues);
1348 sfree(state);
1351 static char *solve_game(const game_state *state, const game_state *currstate,
1352 const char *aux, char **error)
1354 int w = state->par.w, a = w*w;
1355 int i, ret;
1356 digit *soln;
1357 char *out;
1359 if (aux)
1360 return dupstr(aux);
1362 soln = snewn(a, digit);
1363 memset(soln, 0, a);
1365 ret = solver(w, state->clues->dsf, state->clues->clues,
1366 soln, DIFFCOUNT-1);
1368 if (ret == diff_impossible) {
1369 *error = "No solution exists for this puzzle";
1370 out = NULL;
1371 } else if (ret == diff_ambiguous) {
1372 *error = "Multiple solutions exist for this puzzle";
1373 out = NULL;
1374 } else {
1375 out = snewn(a+2, char);
1376 out[0] = 'S';
1377 for (i = 0; i < a; i++)
1378 out[i+1] = '0' + soln[i];
1379 out[a+1] = '\0';
1382 sfree(soln);
1383 return out;
1386 static int game_can_format_as_text_now(const game_params *params)
1388 return TRUE;
1391 static char *game_text_format(const game_state *state)
1393 return NULL;
1396 struct game_ui {
1398 * These are the coordinates of the currently highlighted
1399 * square on the grid, if hshow = 1.
1401 int hx, hy;
1403 * This indicates whether the current highlight is a
1404 * pencil-mark one or a real one.
1406 int hpencil;
1408 * This indicates whether or not we're showing the highlight
1409 * (used to be hx = hy = -1); important so that when we're
1410 * using the cursor keys it doesn't keep coming back at a
1411 * fixed position. When hshow = 1, pressing a valid number
1412 * or letter key or Space will enter that number or letter in the grid.
1414 int hshow;
1416 * This indicates whether we're using the highlight as a cursor;
1417 * it means that it doesn't vanish on a keypress, and that it is
1418 * allowed on immutable squares.
1420 int hcursor;
1423 static game_ui *new_ui(const game_state *state)
1425 game_ui *ui = snew(game_ui);
1427 ui->hx = ui->hy = 0;
1428 ui->hpencil = ui->hshow = ui->hcursor = 0;
1430 return ui;
1433 static void free_ui(game_ui *ui)
1435 sfree(ui);
1438 static char *encode_ui(const game_ui *ui)
1440 return NULL;
1443 static void decode_ui(game_ui *ui, const char *encoding)
1447 static void game_changed_state(game_ui *ui, const game_state *oldstate,
1448 const game_state *newstate)
1450 int w = newstate->par.w;
1452 * We prevent pencil-mode highlighting of a filled square, unless
1453 * we're using the cursor keys. So if the user has just filled in
1454 * a square which we had a pencil-mode highlight in (by Undo, or
1455 * by Redo, or by Solve), then we cancel the highlight.
1457 if (ui->hshow && ui->hpencil && !ui->hcursor &&
1458 newstate->grid[ui->hy * w + ui->hx] != 0) {
1459 ui->hshow = 0;
1463 #define PREFERRED_TILESIZE 48
1464 #define TILESIZE (ds->tilesize)
1465 #define BORDER (TILESIZE / 2)
1466 #define GRIDEXTRA max((TILESIZE / 32),1)
1467 #define COORD(x) ((x)*TILESIZE + BORDER)
1468 #define FROMCOORD(x) (((x)+(TILESIZE-BORDER)) / TILESIZE - 1)
1470 #define FLASH_TIME 0.4F
1472 #define DF_PENCIL_SHIFT 16
1473 #define DF_ERR_LATIN 0x8000
1474 #define DF_ERR_CLUE 0x4000
1475 #define DF_HIGHLIGHT 0x2000
1476 #define DF_HIGHLIGHT_PENCIL 0x1000
1477 #define DF_DIGIT_MASK 0x000F
1479 struct game_drawstate {
1480 int tilesize;
1481 int started;
1482 long *tiles;
1483 long *errors;
1484 char *minus_sign, *times_sign, *divide_sign;
1487 static int check_errors(const game_state *state, long *errors)
1489 int w = state->par.w, a = w*w;
1490 int i, j, x, y, errs = FALSE;
1491 long *cluevals;
1492 int *full;
1494 cluevals = snewn(a, long);
1495 full = snewn(a, int);
1497 if (errors)
1498 for (i = 0; i < a; i++) {
1499 errors[i] = 0;
1500 full[i] = TRUE;
1503 for (i = 0; i < a; i++) {
1504 long clue;
1506 j = dsf_canonify(state->clues->dsf, i);
1507 if (j == i) {
1508 cluevals[i] = state->grid[i];
1509 } else {
1510 clue = state->clues->clues[j] & CMASK;
1512 switch (clue) {
1513 case C_ADD:
1514 cluevals[j] += state->grid[i];
1515 break;
1516 case C_MUL:
1517 cluevals[j] *= state->grid[i];
1518 break;
1519 case C_SUB:
1520 cluevals[j] = abs(cluevals[j] - state->grid[i]);
1521 break;
1522 case C_DIV:
1524 int d1 = min(cluevals[j], state->grid[i]);
1525 int d2 = max(cluevals[j], state->grid[i]);
1526 if (d1 == 0 || d2 % d1 != 0)
1527 cluevals[j] = 0;
1528 else
1529 cluevals[j] = d2 / d1;
1531 break;
1535 if (!state->grid[i])
1536 full[j] = FALSE;
1539 for (i = 0; i < a; i++) {
1540 j = dsf_canonify(state->clues->dsf, i);
1541 if (j == i) {
1542 if ((state->clues->clues[j] & ~CMASK) != cluevals[i]) {
1543 errs = TRUE;
1544 if (errors && full[j])
1545 errors[j] |= DF_ERR_CLUE;
1550 sfree(cluevals);
1551 sfree(full);
1553 for (y = 0; y < w; y++) {
1554 int mask = 0, errmask = 0;
1555 for (x = 0; x < w; x++) {
1556 int bit = 1 << state->grid[y*w+x];
1557 errmask |= (mask & bit);
1558 mask |= bit;
1561 if (mask != (1 << (w+1)) - (1 << 1)) {
1562 errs = TRUE;
1563 errmask &= ~1;
1564 if (errors) {
1565 for (x = 0; x < w; x++)
1566 if (errmask & (1 << state->grid[y*w+x]))
1567 errors[y*w+x] |= DF_ERR_LATIN;
1572 for (x = 0; x < w; x++) {
1573 int mask = 0, errmask = 0;
1574 for (y = 0; y < w; y++) {
1575 int bit = 1 << state->grid[y*w+x];
1576 errmask |= (mask & bit);
1577 mask |= bit;
1580 if (mask != (1 << (w+1)) - (1 << 1)) {
1581 errs = TRUE;
1582 errmask &= ~1;
1583 if (errors) {
1584 for (y = 0; y < w; y++)
1585 if (errmask & (1 << state->grid[y*w+x]))
1586 errors[y*w+x] |= DF_ERR_LATIN;
1591 return errs;
1594 static char *interpret_move(const game_state *state, game_ui *ui,
1595 const game_drawstate *ds,
1596 int x, int y, int button)
1598 int w = state->par.w;
1599 int tx, ty;
1600 char buf[80];
1602 button &= ~MOD_MASK;
1604 tx = FROMCOORD(x);
1605 ty = FROMCOORD(y);
1607 if (tx >= 0 && tx < w && ty >= 0 && ty < w) {
1608 if (button == LEFT_BUTTON) {
1609 if (tx == ui->hx && ty == ui->hy &&
1610 ui->hshow && ui->hpencil == 0) {
1611 ui->hshow = 0;
1612 } else {
1613 ui->hx = tx;
1614 ui->hy = ty;
1615 ui->hshow = 1;
1616 ui->hpencil = 0;
1618 ui->hcursor = 0;
1619 return ""; /* UI activity occurred */
1621 if (button == RIGHT_BUTTON) {
1623 * Pencil-mode highlighting for non filled squares.
1625 if (state->grid[ty*w+tx] == 0) {
1626 if (tx == ui->hx && ty == ui->hy &&
1627 ui->hshow && ui->hpencil) {
1628 ui->hshow = 0;
1629 } else {
1630 ui->hpencil = 1;
1631 ui->hx = tx;
1632 ui->hy = ty;
1633 ui->hshow = 1;
1635 } else {
1636 ui->hshow = 0;
1638 ui->hcursor = 0;
1639 return ""; /* UI activity occurred */
1642 if (IS_CURSOR_MOVE(button)) {
1643 move_cursor(button, &ui->hx, &ui->hy, w, w, 0);
1644 ui->hshow = ui->hcursor = 1;
1645 return "";
1647 if (ui->hshow &&
1648 (button == CURSOR_SELECT)) {
1649 ui->hpencil = 1 - ui->hpencil;
1650 ui->hcursor = 1;
1651 return "";
1654 if (ui->hshow &&
1655 ((button >= '0' && button <= '9' && button - '0' <= w) ||
1656 button == CURSOR_SELECT2 || button == '\b')) {
1657 int n = button - '0';
1658 if (button == CURSOR_SELECT2 || button == '\b')
1659 n = 0;
1662 * Can't make pencil marks in a filled square. This can only
1663 * become highlighted if we're using cursor keys.
1665 if (ui->hpencil && state->grid[ui->hy*w+ui->hx])
1666 return NULL;
1668 sprintf(buf, "%c%d,%d,%d",
1669 (char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
1671 if (!ui->hcursor) ui->hshow = 0;
1673 return dupstr(buf);
1676 if (button == 'M' || button == 'm')
1677 return dupstr("M");
1679 return NULL;
1682 static game_state *execute_move(const game_state *from, const char *move)
1684 int w = from->par.w, a = w*w;
1685 game_state *ret;
1686 int x, y, i, n;
1688 if (move[0] == 'S') {
1689 ret = dup_game(from);
1690 ret->completed = ret->cheated = TRUE;
1692 for (i = 0; i < a; i++) {
1693 if (move[i+1] < '1' || move[i+1] > '0'+w) {
1694 free_game(ret);
1695 return NULL;
1697 ret->grid[i] = move[i+1] - '0';
1698 ret->pencil[i] = 0;
1701 if (move[a+1] != '\0') {
1702 free_game(ret);
1703 return NULL;
1706 return ret;
1707 } else if ((move[0] == 'P' || move[0] == 'R') &&
1708 sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
1709 x >= 0 && x < w && y >= 0 && y < w && n >= 0 && n <= w) {
1711 ret = dup_game(from);
1712 if (move[0] == 'P' && n > 0) {
1713 ret->pencil[y*w+x] ^= 1 << n;
1714 } else {
1715 ret->grid[y*w+x] = n;
1716 ret->pencil[y*w+x] = 0;
1718 if (!ret->completed && !check_errors(ret, NULL))
1719 ret->completed = TRUE;
1721 return ret;
1722 } else if (move[0] == 'M') {
1724 * Fill in absolutely all pencil marks everywhere. (I
1725 * wouldn't use this for actual play, but it's a handy
1726 * starting point when following through a set of
1727 * diagnostics output by the standalone solver.)
1729 ret = dup_game(from);
1730 for (i = 0; i < a; i++) {
1731 if (!ret->grid[i])
1732 ret->pencil[i] = (1 << (w+1)) - (1 << 1);
1734 return ret;
1735 } else
1736 return NULL; /* couldn't parse move string */
1739 /* ----------------------------------------------------------------------
1740 * Drawing routines.
1743 #define SIZE(w) ((w) * TILESIZE + 2*BORDER)
1745 static void game_compute_size(const game_params *params, int tilesize,
1746 int *x, int *y)
1748 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
1749 struct { int tilesize; } ads, *ds = &ads;
1750 ads.tilesize = tilesize;
1752 *x = *y = SIZE(params->w);
1755 static void game_set_size(drawing *dr, game_drawstate *ds,
1756 const game_params *params, int tilesize)
1758 ds->tilesize = tilesize;
1761 static float *game_colours(frontend *fe, int *ncolours)
1763 float *ret = snewn(3 * NCOLOURS, float);
1765 frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
1767 ret[COL_GRID * 3 + 0] = 0.0F;
1768 ret[COL_GRID * 3 + 1] = 0.0F;
1769 ret[COL_GRID * 3 + 2] = 0.0F;
1771 ret[COL_USER * 3 + 0] = 0.0F;
1772 ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
1773 ret[COL_USER * 3 + 2] = 0.0F;
1775 ret[COL_HIGHLIGHT * 3 + 0] = 0.78F * ret[COL_BACKGROUND * 3 + 0];
1776 ret[COL_HIGHLIGHT * 3 + 1] = 0.78F * ret[COL_BACKGROUND * 3 + 1];
1777 ret[COL_HIGHLIGHT * 3 + 2] = 0.78F * ret[COL_BACKGROUND * 3 + 2];
1779 ret[COL_ERROR * 3 + 0] = 1.0F;
1780 ret[COL_ERROR * 3 + 1] = 0.0F;
1781 ret[COL_ERROR * 3 + 2] = 0.0F;
1783 ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
1784 ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
1785 ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
1787 *ncolours = NCOLOURS;
1788 return ret;
1791 static const char *const minus_signs[] = { "\xE2\x88\x92", "-" };
1792 static const char *const times_signs[] = { "\xC3\x97", "*" };
1793 static const char *const divide_signs[] = { "\xC3\xB7", "/" };
1795 static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
1797 int w = state->par.w, a = w*w;
1798 struct game_drawstate *ds = snew(struct game_drawstate);
1799 int i;
1801 ds->tilesize = 0;
1802 ds->started = FALSE;
1803 ds->tiles = snewn(a, long);
1804 for (i = 0; i < a; i++)
1805 ds->tiles[i] = -1;
1806 ds->errors = snewn(a, long);
1807 ds->minus_sign = text_fallback(dr, minus_signs, lenof(minus_signs));
1808 ds->times_sign = text_fallback(dr, times_signs, lenof(times_signs));
1809 ds->divide_sign = text_fallback(dr, divide_signs, lenof(divide_signs));
1811 return ds;
1814 static void game_free_drawstate(drawing *dr, game_drawstate *ds)
1816 sfree(ds->tiles);
1817 sfree(ds->errors);
1818 sfree(ds->minus_sign);
1819 sfree(ds->times_sign);
1820 sfree(ds->divide_sign);
1821 sfree(ds);
1824 static void draw_tile(drawing *dr, game_drawstate *ds, struct clues *clues,
1825 int x, int y, long tile, int only_one_op)
1827 int w = clues->w /* , a = w*w */;
1828 int tx, ty, tw, th;
1829 int cx, cy, cw, ch;
1830 char str[64];
1832 tx = BORDER + x * TILESIZE + 1 + GRIDEXTRA;
1833 ty = BORDER + y * TILESIZE + 1 + GRIDEXTRA;
1835 cx = tx;
1836 cy = ty;
1837 cw = tw = TILESIZE-1-2*GRIDEXTRA;
1838 ch = th = TILESIZE-1-2*GRIDEXTRA;
1840 if (x > 0 && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, y*w+x-1))
1841 cx -= GRIDEXTRA, cw += GRIDEXTRA;
1842 if (x+1 < w && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, y*w+x+1))
1843 cw += GRIDEXTRA;
1844 if (y > 0 && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, (y-1)*w+x))
1845 cy -= GRIDEXTRA, ch += GRIDEXTRA;
1846 if (y+1 < w && dsf_canonify(clues->dsf, y*w+x) == dsf_canonify(clues->dsf, (y+1)*w+x))
1847 ch += GRIDEXTRA;
1849 clip(dr, cx, cy, cw, ch);
1851 /* background needs erasing */
1852 draw_rect(dr, cx, cy, cw, ch,
1853 (tile & DF_HIGHLIGHT) ? COL_HIGHLIGHT : COL_BACKGROUND);
1855 /* pencil-mode highlight */
1856 if (tile & DF_HIGHLIGHT_PENCIL) {
1857 int coords[6];
1858 coords[0] = cx;
1859 coords[1] = cy;
1860 coords[2] = cx+cw/2;
1861 coords[3] = cy;
1862 coords[4] = cx;
1863 coords[5] = cy+ch/2;
1864 draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
1868 * Draw the corners of thick lines in corner-adjacent squares,
1869 * which jut into this square by one pixel.
1871 if (x > 0 && y > 0 && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y-1)*w+x-1))
1872 draw_rect(dr, tx-GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1873 if (x+1 < w && y > 0 && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y-1)*w+x+1))
1874 draw_rect(dr, tx+TILESIZE-1-2*GRIDEXTRA, ty-GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1875 if (x > 0 && y+1 < w && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y+1)*w+x-1))
1876 draw_rect(dr, tx-GRIDEXTRA, ty+TILESIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1877 if (x+1 < w && y+1 < w && dsf_canonify(clues->dsf, y*w+x) != dsf_canonify(clues->dsf, (y+1)*w+x+1))
1878 draw_rect(dr, tx+TILESIZE-1-2*GRIDEXTRA, ty+TILESIZE-1-2*GRIDEXTRA, GRIDEXTRA, GRIDEXTRA, COL_GRID);
1880 /* Draw the box clue. */
1881 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1882 long clue = clues->clues[y*w+x];
1883 long cluetype = clue & CMASK, clueval = clue & ~CMASK;
1884 int size = dsf_size(clues->dsf, y*w+x);
1886 * Special case of clue-drawing: a box with only one square
1887 * is written as just the number, with no operation, because
1888 * it doesn't matter whether the operation is ADD or MUL.
1889 * The generation code above should never produce puzzles
1890 * containing such a thing - I think they're inelegant - but
1891 * it's possible to type in game IDs from elsewhere, so I
1892 * want to display them right if so.
1894 sprintf (str, "%ld%s", clueval,
1895 (size == 1 || only_one_op ? "" :
1896 cluetype == C_ADD ? "+" :
1897 cluetype == C_SUB ? ds->minus_sign :
1898 cluetype == C_MUL ? ds->times_sign :
1899 /* cluetype == C_DIV ? */ ds->divide_sign));
1900 draw_text(dr, tx + GRIDEXTRA * 2, ty + GRIDEXTRA * 2 + TILESIZE/4,
1901 FONT_VARIABLE, TILESIZE/4, ALIGN_VNORMAL | ALIGN_HLEFT,
1902 (tile & DF_ERR_CLUE ? COL_ERROR : COL_GRID), str);
1905 /* new number needs drawing? */
1906 if (tile & DF_DIGIT_MASK) {
1907 str[1] = '\0';
1908 str[0] = (tile & DF_DIGIT_MASK) + '0';
1909 draw_text(dr, tx + TILESIZE/2, ty + TILESIZE/2,
1910 FONT_VARIABLE, TILESIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
1911 (tile & DF_ERR_LATIN) ? COL_ERROR : COL_USER, str);
1912 } else {
1913 int i, j, npencil;
1914 int pl, pr, pt, pb;
1915 float bestsize;
1916 int pw, ph, minph, pbest, fontsize;
1918 /* Count the pencil marks required. */
1919 for (i = 1, npencil = 0; i <= w; i++)
1920 if (tile & (1L << (i + DF_PENCIL_SHIFT)))
1921 npencil++;
1922 if (npencil) {
1924 minph = 2;
1927 * Determine the bounding rectangle within which we're going
1928 * to put the pencil marks.
1930 /* Start with the whole square */
1931 pl = tx + GRIDEXTRA;
1932 pr = pl + TILESIZE - GRIDEXTRA;
1933 pt = ty + GRIDEXTRA;
1934 pb = pt + TILESIZE - GRIDEXTRA;
1935 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1937 * Make space for the clue text.
1939 pt += TILESIZE/4;
1940 /* minph--; */
1944 * We arrange our pencil marks in a grid layout, with
1945 * the number of rows and columns adjusted to allow the
1946 * maximum font size.
1948 * So now we work out what the grid size ought to be.
1950 bestsize = 0.0;
1951 pbest = 0;
1952 /* Minimum */
1953 for (pw = 3; pw < max(npencil,4); pw++) {
1954 float fw, fh, fs;
1956 ph = (npencil + pw - 1) / pw;
1957 ph = max(ph, minph);
1958 fw = (pr - pl) / (float)pw;
1959 fh = (pb - pt) / (float)ph;
1960 fs = min(fw, fh);
1961 if (fs > bestsize) {
1962 bestsize = fs;
1963 pbest = pw;
1966 assert(pbest > 0);
1967 pw = pbest;
1968 ph = (npencil + pw - 1) / pw;
1969 ph = max(ph, minph);
1972 * Now we've got our grid dimensions, work out the pixel
1973 * size of a grid element, and round it to the nearest
1974 * pixel. (We don't want rounding errors to make the
1975 * grid look uneven at low pixel sizes.)
1977 fontsize = min((pr - pl) / pw, (pb - pt) / ph);
1980 * Centre the resulting figure in the square.
1982 pl = tx + (TILESIZE - fontsize * pw) / 2;
1983 pt = ty + (TILESIZE - fontsize * ph) / 2;
1986 * And move it down a bit if it's collided with some
1987 * clue text.
1989 if (dsf_canonify(clues->dsf, y*w+x) == y*w+x) {
1990 pt = max(pt, ty + GRIDEXTRA * 3 + TILESIZE/4);
1994 * Now actually draw the pencil marks.
1996 for (i = 1, j = 0; i <= w; i++)
1997 if (tile & (1L << (i + DF_PENCIL_SHIFT))) {
1998 int dx = j % pw, dy = j / pw;
2000 str[1] = '\0';
2001 str[0] = i + '0';
2002 draw_text(dr, pl + fontsize * (2*dx+1) / 2,
2003 pt + fontsize * (2*dy+1) / 2,
2004 FONT_VARIABLE, fontsize,
2005 ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
2006 j++;
2011 unclip(dr);
2013 draw_update(dr, cx, cy, cw, ch);
2016 static void game_redraw(drawing *dr, game_drawstate *ds,
2017 const game_state *oldstate, const game_state *state,
2018 int dir, const game_ui *ui,
2019 float animtime, float flashtime)
2021 int w = state->par.w /*, a = w*w */;
2022 int x, y;
2024 if (!ds->started) {
2026 * The initial contents of the window are not guaranteed and
2027 * can vary with front ends. To be on the safe side, all
2028 * games should start by drawing a big background-colour
2029 * rectangle covering the whole window.
2031 draw_rect(dr, 0, 0, SIZE(w), SIZE(w), COL_BACKGROUND);
2034 * Big containing rectangle.
2036 draw_rect(dr, COORD(0) - GRIDEXTRA, COORD(0) - GRIDEXTRA,
2037 w*TILESIZE+1+GRIDEXTRA*2, w*TILESIZE+1+GRIDEXTRA*2,
2038 COL_GRID);
2040 draw_update(dr, 0, 0, SIZE(w), SIZE(w));
2042 ds->started = TRUE;
2045 check_errors(state, ds->errors);
2047 for (y = 0; y < w; y++) {
2048 for (x = 0; x < w; x++) {
2049 long tile = 0L;
2051 if (state->grid[y*w+x])
2052 tile = state->grid[y*w+x];
2053 else
2054 tile = (long)state->pencil[y*w+x] << DF_PENCIL_SHIFT;
2056 if (ui->hshow && ui->hx == x && ui->hy == y)
2057 tile |= (ui->hpencil ? DF_HIGHLIGHT_PENCIL : DF_HIGHLIGHT);
2059 if (flashtime > 0 &&
2060 (flashtime <= FLASH_TIME/3 ||
2061 flashtime >= FLASH_TIME*2/3))
2062 tile |= DF_HIGHLIGHT; /* completion flash */
2064 tile |= ds->errors[y*w+x];
2066 if (ds->tiles[y*w+x] != tile) {
2067 ds->tiles[y*w+x] = tile;
2068 draw_tile(dr, ds, state->clues, x, y, tile,
2069 state->par.multiplication_only);
2075 static float game_anim_length(const game_state *oldstate,
2076 const game_state *newstate, int dir, game_ui *ui)
2078 return 0.0F;
2081 static float game_flash_length(const game_state *oldstate,
2082 const game_state *newstate, int dir, game_ui *ui)
2084 if (!oldstate->completed && newstate->completed &&
2085 !oldstate->cheated && !newstate->cheated)
2086 return FLASH_TIME;
2087 return 0.0F;
2090 static int game_status(const game_state *state)
2092 return state->completed ? +1 : 0;
2095 static int game_timing_state(const game_state *state, game_ui *ui)
2097 if (state->completed)
2098 return FALSE;
2099 return TRUE;
2102 static void game_print_size(const game_params *params, float *x, float *y)
2104 int pw, ph;
2107 * We use 9mm squares by default, like Solo.
2109 game_compute_size(params, 900, &pw, &ph);
2110 *x = pw / 100.0F;
2111 *y = ph / 100.0F;
2115 * Subfunction to draw the thick lines between cells. In order to do
2116 * this using the line-drawing rather than rectangle-drawing API (so
2117 * as to get line thicknesses to scale correctly) and yet have
2118 * correctly mitred joins between lines, we must do this by tracing
2119 * the boundary of each sub-block and drawing it in one go as a
2120 * single polygon.
2122 static void outline_block_structure(drawing *dr, game_drawstate *ds,
2123 int w, int *dsf, int ink)
2125 int a = w*w;
2126 int *coords;
2127 int i, n;
2128 int x, y, dx, dy, sx, sy, sdx, sdy;
2130 coords = snewn(4*a, int);
2133 * Iterate over all the blocks.
2135 for (i = 0; i < a; i++) {
2136 if (dsf_canonify(dsf, i) != i)
2137 continue;
2140 * For each block, we need a starting square within it which
2141 * has a boundary at the left. Conveniently, we have one
2142 * right here, by construction.
2144 x = i % w;
2145 y = i / w;
2146 dx = -1;
2147 dy = 0;
2150 * Now begin tracing round the perimeter. At all
2151 * times, (x,y) describes some square within the
2152 * block, and (x+dx,y+dy) is some adjacent square
2153 * outside it; so the edge between those two squares
2154 * is always an edge of the block.
2156 sx = x, sy = y, sdx = dx, sdy = dy; /* save starting position */
2157 n = 0;
2158 do {
2159 int cx, cy, tx, ty, nin;
2162 * Advance to the next edge, by looking at the two
2163 * squares beyond it. If they're both outside the block,
2164 * we turn right (by leaving x,y the same and rotating
2165 * dx,dy clockwise); if they're both inside, we turn
2166 * left (by rotating dx,dy anticlockwise and contriving
2167 * to leave x+dx,y+dy unchanged); if one of each, we go
2168 * straight on (and may enforce by assertion that
2169 * they're one of each the _right_ way round).
2171 nin = 0;
2172 tx = x - dy + dx;
2173 ty = y + dx + dy;
2174 nin += (tx >= 0 && tx < w && ty >= 0 && ty < w &&
2175 dsf_canonify(dsf, ty*w+tx) == i);
2176 tx = x - dy;
2177 ty = y + dx;
2178 nin += (tx >= 0 && tx < w && ty >= 0 && ty < w &&
2179 dsf_canonify(dsf, ty*w+tx) == i);
2180 if (nin == 0) {
2182 * Turn right.
2184 int tmp;
2185 tmp = dx;
2186 dx = -dy;
2187 dy = tmp;
2188 } else if (nin == 2) {
2190 * Turn left.
2192 int tmp;
2194 x += dx;
2195 y += dy;
2197 tmp = dx;
2198 dx = dy;
2199 dy = -tmp;
2201 x -= dx;
2202 y -= dy;
2203 } else {
2205 * Go straight on.
2207 x -= dy;
2208 y += dx;
2212 * Now enforce by assertion that we ended up
2213 * somewhere sensible.
2215 assert(x >= 0 && x < w && y >= 0 && y < w &&
2216 dsf_canonify(dsf, y*w+x) == i);
2217 assert(x+dx < 0 || x+dx >= w || y+dy < 0 || y+dy >= w ||
2218 dsf_canonify(dsf, (y+dy)*w+(x+dx)) != i);
2221 * Record the point we just went past at one end of the
2222 * edge. To do this, we translate (x,y) down and right
2223 * by half a unit (so they're describing a point in the
2224 * _centre_ of the square) and then translate back again
2225 * in a manner rotated by dy and dx.
2227 assert(n < 2*w+2);
2228 cx = ((2*x+1) + dy + dx) / 2;
2229 cy = ((2*y+1) - dx + dy) / 2;
2230 coords[2*n+0] = BORDER + cx * TILESIZE;
2231 coords[2*n+1] = BORDER + cy * TILESIZE;
2232 n++;
2234 } while (x != sx || y != sy || dx != sdx || dy != sdy);
2237 * That's our polygon; now draw it.
2239 draw_polygon(dr, coords, n, -1, ink);
2242 sfree(coords);
2245 static void game_print(drawing *dr, const game_state *state, int tilesize)
2247 int w = state->par.w;
2248 int ink = print_mono_colour(dr, 0);
2249 int x, y;
2250 char *minus_sign, *times_sign, *divide_sign;
2252 /* Ick: fake up `ds->tilesize' for macro expansion purposes */
2253 game_drawstate ads, *ds = &ads;
2254 game_set_size(dr, ds, NULL, tilesize);
2256 minus_sign = text_fallback(dr, minus_signs, lenof(minus_signs));
2257 times_sign = text_fallback(dr, times_signs, lenof(times_signs));
2258 divide_sign = text_fallback(dr, divide_signs, lenof(divide_signs));
2261 * Border.
2263 print_line_width(dr, 3 * TILESIZE / 40);
2264 draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, w*TILESIZE, ink);
2267 * Main grid.
2269 for (x = 1; x < w; x++) {
2270 print_line_width(dr, TILESIZE / 40);
2271 draw_line(dr, BORDER+x*TILESIZE, BORDER,
2272 BORDER+x*TILESIZE, BORDER+w*TILESIZE, ink);
2274 for (y = 1; y < w; y++) {
2275 print_line_width(dr, TILESIZE / 40);
2276 draw_line(dr, BORDER, BORDER+y*TILESIZE,
2277 BORDER+w*TILESIZE, BORDER+y*TILESIZE, ink);
2281 * Thick lines between cells.
2283 print_line_width(dr, 3 * TILESIZE / 40);
2284 outline_block_structure(dr, ds, w, state->clues->dsf, ink);
2287 * Clues.
2289 for (y = 0; y < w; y++)
2290 for (x = 0; x < w; x++)
2291 if (dsf_canonify(state->clues->dsf, y*w+x) == y*w+x) {
2292 long clue = state->clues->clues[y*w+x];
2293 long cluetype = clue & CMASK, clueval = clue & ~CMASK;
2294 int size = dsf_size(state->clues->dsf, y*w+x);
2295 char str[64];
2298 * As in the drawing code, we omit the operator for
2299 * blocks of area 1.
2301 sprintf (str, "%ld%s", clueval,
2302 (size == 1 ? "" :
2303 cluetype == C_ADD ? "+" :
2304 cluetype == C_SUB ? minus_sign :
2305 cluetype == C_MUL ? times_sign :
2306 /* cluetype == C_DIV ? */ divide_sign));
2308 draw_text(dr,
2309 BORDER+x*TILESIZE + 5*TILESIZE/80,
2310 BORDER+y*TILESIZE + 20*TILESIZE/80,
2311 FONT_VARIABLE, TILESIZE/4,
2312 ALIGN_VNORMAL | ALIGN_HLEFT,
2313 ink, str);
2317 * Numbers for the solution, if any.
2319 for (y = 0; y < w; y++)
2320 for (x = 0; x < w; x++)
2321 if (state->grid[y*w+x]) {
2322 char str[2];
2323 str[1] = '\0';
2324 str[0] = state->grid[y*w+x] + '0';
2325 draw_text(dr, BORDER + x*TILESIZE + TILESIZE/2,
2326 BORDER + y*TILESIZE + TILESIZE/2,
2327 FONT_VARIABLE, TILESIZE/2,
2328 ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
2331 sfree(minus_sign);
2332 sfree(times_sign);
2333 sfree(divide_sign);
2336 #ifdef COMBINED
2337 #define thegame keen
2338 #endif
2340 const struct game thegame = {
2341 "Keen", "games.keen", "keen",
2342 default_params,
2343 game_fetch_preset, NULL,
2344 decode_params,
2345 encode_params,
2346 free_params,
2347 dup_params,
2348 TRUE, game_configure, custom_params,
2349 validate_params,
2350 new_game_desc,
2351 validate_desc,
2352 new_game,
2353 dup_game,
2354 free_game,
2355 TRUE, solve_game,
2356 FALSE, game_can_format_as_text_now, game_text_format,
2357 new_ui,
2358 free_ui,
2359 encode_ui,
2360 decode_ui,
2361 game_changed_state,
2362 interpret_move,
2363 execute_move,
2364 PREFERRED_TILESIZE, game_compute_size, game_set_size,
2365 game_colours,
2366 game_new_drawstate,
2367 game_free_drawstate,
2368 game_redraw,
2369 game_anim_length,
2370 game_flash_length,
2371 game_status,
2372 TRUE, FALSE, game_print_size, game_print,
2373 FALSE, /* wants_statusbar */
2374 FALSE, game_timing_state,
2375 REQUIRE_RBUTTON | REQUIRE_NUMPAD, /* flags */
2378 #ifdef STANDALONE_SOLVER
2380 #include <stdarg.h>
2382 int main(int argc, char **argv)
2384 game_params *p;
2385 game_state *s;
2386 char *id = NULL, *desc, *err;
2387 int grade = FALSE;
2388 int ret, diff, really_show_working = FALSE;
2390 while (--argc > 0) {
2391 char *p = *++argv;
2392 if (!strcmp(p, "-v")) {
2393 really_show_working = TRUE;
2394 } else if (!strcmp(p, "-g")) {
2395 grade = TRUE;
2396 } else if (*p == '-') {
2397 fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
2398 return 1;
2399 } else {
2400 id = p;
2404 if (!id) {
2405 fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
2406 return 1;
2409 desc = strchr(id, ':');
2410 if (!desc) {
2411 fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
2412 return 1;
2414 *desc++ = '\0';
2416 p = default_params();
2417 decode_params(p, id);
2418 err = validate_desc(p, desc);
2419 if (err) {
2420 fprintf(stderr, "%s: %s\n", argv[0], err);
2421 return 1;
2423 s = new_game(NULL, p, desc);
2426 * When solving an Easy puzzle, we don't want to bother the
2427 * user with Hard-level deductions. For this reason, we grade
2428 * the puzzle internally before doing anything else.
2430 ret = -1; /* placate optimiser */
2431 solver_show_working = FALSE;
2432 for (diff = 0; diff < DIFFCOUNT; diff++) {
2433 memset(s->grid, 0, p->w * p->w);
2434 ret = solver(p->w, s->clues->dsf, s->clues->clues,
2435 s->grid, diff);
2436 if (ret <= diff)
2437 break;
2440 if (diff == DIFFCOUNT) {
2441 if (grade)
2442 printf("Difficulty rating: ambiguous\n");
2443 else
2444 printf("Unable to find a unique solution\n");
2445 } else {
2446 if (grade) {
2447 if (ret == diff_impossible)
2448 printf("Difficulty rating: impossible (no solution exists)\n");
2449 else
2450 printf("Difficulty rating: %s\n", keen_diffnames[ret]);
2451 } else {
2452 solver_show_working = really_show_working;
2453 memset(s->grid, 0, p->w * p->w);
2454 ret = solver(p->w, s->clues->dsf, s->clues->clues,
2455 s->grid, diff);
2456 if (ret != diff)
2457 printf("Puzzle is inconsistent\n");
2458 else {
2460 * We don't have a game_text_format for this game,
2461 * so we have to output the solution manually.
2463 int x, y;
2464 for (y = 0; y < p->w; y++) {
2465 for (x = 0; x < p->w; x++) {
2466 printf("%s%c", x>0?" ":"", '0' + s->grid[y*p->w+x]);
2468 putchar('\n');
2474 return 0;
2477 #endif
2479 /* vim: set shiftwidth=4 tabstop=8: */