Get rid of type-punning pointer casts
[ruby.git] / random.c
blobea76ea656f4b71e227b8a7dee1005831f942bace
1 /**********************************************************************
3 random.c -
5 $Author$
6 created at: Fri Dec 24 16:39:21 JST 1993
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
10 **********************************************************************/
12 #include "ruby/internal/config.h"
14 #include <errno.h>
15 #include <limits.h>
16 #include <math.h>
17 #include <float.h>
18 #include <time.h>
20 #ifdef HAVE_UNISTD_H
21 # include <unistd.h>
22 #endif
24 #include <sys/types.h>
25 #include <sys/stat.h>
27 #ifdef HAVE_FCNTL_H
28 # include <fcntl.h>
29 #endif
31 #if defined(HAVE_SYS_TIME_H)
32 # include <sys/time.h>
33 #endif
35 #ifdef HAVE_SYSCALL_H
36 # include <syscall.h>
37 #elif defined HAVE_SYS_SYSCALL_H
38 # include <sys/syscall.h>
39 #endif
41 #ifdef _WIN32
42 # include <winsock2.h>
43 # include <windows.h>
44 # include <wincrypt.h>
45 # include <bcrypt.h>
46 #endif
48 #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__)
49 /* to define OpenBSD and FreeBSD for version check */
50 # include <sys/param.h>
51 #endif
53 #if defined HAVE_GETRANDOM || defined HAVE_GETENTROPY
54 # if defined(HAVE_SYS_RANDOM_H)
55 # include <sys/random.h>
56 # endif
57 #elif defined __linux__ && defined __NR_getrandom
58 # include <linux/random.h>
59 #endif
61 #if defined __APPLE__
62 # include <AvailabilityMacros.h>
63 #endif
65 #include "internal.h"
66 #include "internal/array.h"
67 #include "internal/compilers.h"
68 #include "internal/numeric.h"
69 #include "internal/random.h"
70 #include "internal/sanitizers.h"
71 #include "internal/variable.h"
72 #include "ruby_atomic.h"
73 #include "ruby/random.h"
74 #include "ruby/ractor.h"
76 STATIC_ASSERT(int_must_be_32bit_at_least, sizeof(int) * CHAR_BIT >= 32);
78 #include "missing/mt19937.c"
80 /* generates a random number on [0,1) with 53-bit resolution*/
81 static double int_pair_to_real_exclusive(uint32_t a, uint32_t b);
82 static double
83 genrand_real(struct MT *mt)
85 /* mt must be initialized */
86 unsigned int a = genrand_int32(mt), b = genrand_int32(mt);
87 return int_pair_to_real_exclusive(a, b);
90 static const double dbl_reduce_scale = /* 2**(-DBL_MANT_DIG) */
91 (1.0
92 / (double)(DBL_MANT_DIG > 2*31 ? (1ul<<31) : 1.0)
93 / (double)(DBL_MANT_DIG > 1*31 ? (1ul<<31) : 1.0)
94 / (double)(1ul<<(DBL_MANT_DIG%31)));
96 static double
97 int_pair_to_real_exclusive(uint32_t a, uint32_t b)
99 static const int a_shift = DBL_MANT_DIG < 64 ?
100 (64-DBL_MANT_DIG)/2 : 0;
101 static const int b_shift = DBL_MANT_DIG < 64 ?
102 (65-DBL_MANT_DIG)/2 : 0;
103 a >>= a_shift;
104 b >>= b_shift;
105 return (a*(double)(1ul<<(32-b_shift))+b)*dbl_reduce_scale;
108 /* generates a random number on [0,1] with 53-bit resolution*/
109 static double int_pair_to_real_inclusive(uint32_t a, uint32_t b);
110 #if 0
111 static double
112 genrand_real2(struct MT *mt)
114 /* mt must be initialized */
115 uint32_t a = genrand_int32(mt), b = genrand_int32(mt);
116 return int_pair_to_real_inclusive(a, b);
118 #endif
120 /* These real versions are due to Isaku Wada, 2002/01/09 added */
122 #undef N
123 #undef M
125 typedef struct {
126 rb_random_t base;
127 struct MT mt;
128 } rb_random_mt_t;
130 #define DEFAULT_SEED_CNT 4
132 static VALUE rand_init(const rb_random_interface_t *, rb_random_t *, VALUE);
133 static VALUE random_seed(VALUE);
134 static void fill_random_seed(uint32_t *seed, size_t cnt);
135 static VALUE make_seed_value(uint32_t *ptr, size_t len);
137 RB_RANDOM_INTERFACE_DECLARE(rand_mt);
138 static const rb_random_interface_t random_mt_if = {
139 DEFAULT_SEED_CNT * 32,
140 RB_RANDOM_INTERFACE_DEFINE(rand_mt)
143 static rb_random_mt_t *
144 rand_mt_start(rb_random_mt_t *r)
146 if (!genrand_initialized(&r->mt)) {
147 r->base.seed = rand_init(&random_mt_if, &r->base, random_seed(Qundef));
149 return r;
152 static rb_random_t *
153 rand_start(rb_random_mt_t *r)
155 return &rand_mt_start(r)->base;
158 static rb_ractor_local_key_t default_rand_key;
160 void
161 rb_free_default_rand_key(void)
163 xfree(default_rand_key);
166 static void
167 default_rand_mark(void *ptr)
169 rb_random_mt_t *rnd = (rb_random_mt_t *)ptr;
170 rb_gc_mark(rnd->base.seed);
173 static const struct rb_ractor_local_storage_type default_rand_key_storage_type = {
174 default_rand_mark,
175 ruby_xfree,
178 static rb_random_mt_t *
179 default_rand(void)
181 rb_random_mt_t *rnd;
183 if ((rnd = rb_ractor_local_storage_ptr(default_rand_key)) == NULL) {
184 rnd = ZALLOC(rb_random_mt_t);
185 rb_ractor_local_storage_ptr_set(default_rand_key, rnd);
188 return rnd;
191 static rb_random_mt_t *
192 default_mt(void)
194 return rand_mt_start(default_rand());
197 unsigned int
198 rb_genrand_int32(void)
200 struct MT *mt = &default_mt()->mt;
201 return genrand_int32(mt);
204 double
205 rb_genrand_real(void)
207 struct MT *mt = &default_mt()->mt;
208 return genrand_real(mt);
211 #define SIZEOF_INT32 (31/CHAR_BIT + 1)
213 static double
214 int_pair_to_real_inclusive(uint32_t a, uint32_t b)
216 double r;
217 enum {dig = DBL_MANT_DIG};
218 enum {dig_u = dig-32, dig_r64 = 64-dig, bmask = ~(~0u<<(dig_r64))};
219 #if defined HAVE_UINT128_T
220 const uint128_t m = ((uint128_t)1 << dig) | 1;
221 uint128_t x = ((uint128_t)a << 32) | b;
222 r = (double)(uint64_t)((x * m) >> 64);
223 #elif defined HAVE_UINT64_T && !MSC_VERSION_BEFORE(1300)
224 uint64_t x = ((uint64_t)a << dig_u) +
225 (((uint64_t)b + (a >> dig_u)) >> dig_r64);
226 r = (double)x;
227 #else
228 /* shift then add to get rid of overflow */
229 b = (b >> dig_r64) + (((a >> dig_u) + (b & bmask)) >> dig_r64);
230 r = (double)a * (1 << dig_u) + b;
231 #endif
232 return r * dbl_reduce_scale;
235 VALUE rb_cRandom;
236 #define id_minus '-'
237 #define id_plus '+'
238 static ID id_rand, id_bytes;
239 NORETURN(static void domain_error(void));
241 /* :nodoc: */
242 #define random_mark rb_random_mark
244 void
245 random_mark(void *ptr)
247 rb_gc_mark(((rb_random_t *)ptr)->seed);
250 #define random_free RUBY_TYPED_DEFAULT_FREE
252 static size_t
253 random_memsize(const void *ptr)
255 return sizeof(rb_random_t);
258 const rb_data_type_t rb_random_data_type = {
259 "random",
261 random_mark,
262 random_free,
263 random_memsize,
265 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
268 #define random_mt_mark rb_random_mark
269 #define random_mt_free RUBY_TYPED_DEFAULT_FREE
271 static size_t
272 random_mt_memsize(const void *ptr)
274 return sizeof(rb_random_mt_t);
277 static const rb_data_type_t random_mt_type = {
278 "random/MT",
280 random_mt_mark,
281 random_mt_free,
282 random_mt_memsize,
284 &rb_random_data_type,
285 (void *)&random_mt_if,
286 RUBY_TYPED_FREE_IMMEDIATELY
289 static rb_random_t *
290 get_rnd(VALUE obj)
292 rb_random_t *ptr;
293 TypedData_Get_Struct(obj, rb_random_t, &rb_random_data_type, ptr);
294 if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
295 return rand_start((rb_random_mt_t *)ptr);
296 return ptr;
299 static rb_random_mt_t *
300 get_rnd_mt(VALUE obj)
302 rb_random_mt_t *ptr;
303 TypedData_Get_Struct(obj, rb_random_mt_t, &random_mt_type, ptr);
304 return ptr;
307 static rb_random_t *
308 try_get_rnd(VALUE obj)
310 if (obj == rb_cRandom) {
311 return rand_start(default_rand());
313 if (!rb_typeddata_is_kind_of(obj, &rb_random_data_type)) return NULL;
314 if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
315 return rand_start(DATA_PTR(obj));
316 rb_random_t *rnd = DATA_PTR(obj);
317 if (!rnd) {
318 rb_raise(rb_eArgError, "uninitialized random: %s",
319 RTYPEDDATA_TYPE(obj)->wrap_struct_name);
321 return rnd;
324 static const rb_random_interface_t *
325 try_rand_if(VALUE obj, rb_random_t *rnd)
327 if (rnd == &default_rand()->base) {
328 return &random_mt_if;
330 return rb_rand_if(obj);
333 /* :nodoc: */
334 void
335 rb_random_base_init(rb_random_t *rnd)
337 rnd->seed = INT2FIX(0);
340 /* :nodoc: */
341 static VALUE
342 random_alloc(VALUE klass)
344 rb_random_mt_t *rnd;
345 VALUE obj = TypedData_Make_Struct(klass, rb_random_mt_t, &random_mt_type, rnd);
346 rb_random_base_init(&rnd->base);
347 return obj;
350 static VALUE
351 rand_init_default(const rb_random_interface_t *rng, rb_random_t *rnd)
353 VALUE seed, buf0 = 0;
354 size_t len = roomof(rng->default_seed_bits, 32);
355 uint32_t *buf = ALLOCV_N(uint32_t, buf0, len+1);
357 fill_random_seed(buf, len);
358 rng->init(rnd, buf, len);
359 seed = make_seed_value(buf, len);
360 explicit_bzero(buf, len * sizeof(*buf));
361 ALLOCV_END(buf0);
362 return seed;
365 static VALUE
366 rand_init(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE seed)
368 uint32_t *buf;
369 VALUE buf0 = 0;
370 size_t len;
371 int sign;
373 len = rb_absint_numwords(seed, 32, NULL);
374 if (len == 0) len = 1;
375 buf = ALLOCV_N(uint32_t, buf0, len);
376 sign = rb_integer_pack(seed, buf, len, sizeof(uint32_t), 0,
377 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
378 if (sign < 0)
379 sign = -sign;
380 if (len <= 1) {
381 rng->init_int32(rnd, len ? buf[0] : 0);
383 else {
384 if (sign != 2 && buf[len-1] == 1) /* remove leading-zero-guard */
385 len--;
386 rng->init(rnd, buf, len);
388 explicit_bzero(buf, len * sizeof(*buf));
389 ALLOCV_END(buf0);
390 return seed;
394 * call-seq:
395 * Random.new(seed = Random.new_seed) -> prng
397 * Creates a new PRNG using +seed+ to set the initial state. If +seed+ is
398 * omitted, the generator is initialized with Random.new_seed.
400 * See Random.srand for more information on the use of seed values.
402 static VALUE
403 random_init(int argc, VALUE *argv, VALUE obj)
405 rb_random_t *rnd = try_get_rnd(obj);
406 const rb_random_interface_t *rng = rb_rand_if(obj);
408 if (!rng) {
409 rb_raise(rb_eTypeError, "undefined random interface: %s",
410 RTYPEDDATA_TYPE(obj)->wrap_struct_name);
413 unsigned int major = rng->version.major;
414 unsigned int minor = rng->version.minor;
415 if (major != RUBY_RANDOM_INTERFACE_VERSION_MAJOR) {
416 rb_raise(rb_eTypeError, "Random interface version "
417 STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MAJOR) "."
418 STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MINOR) " "
419 "expected: %d.%d", major, minor);
421 argc = rb_check_arity(argc, 0, 1);
422 rb_check_frozen(obj);
423 if (argc == 0) {
424 rnd->seed = rand_init_default(rng, rnd);
426 else {
427 rnd->seed = rand_init(rng, rnd, rb_to_int(argv[0]));
429 return obj;
432 #define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int32_t))
434 #if defined(S_ISCHR) && !defined(DOSISH)
435 # define USE_DEV_URANDOM 1
436 #else
437 # define USE_DEV_URANDOM 0
438 #endif
440 #ifdef HAVE_GETENTROPY
441 # define MAX_SEED_LEN_PER_READ 256
442 static int
443 fill_random_bytes_urandom(void *seed, size_t size)
445 unsigned char *p = (unsigned char *)seed;
446 while (size) {
447 size_t len = size < MAX_SEED_LEN_PER_READ ? size : MAX_SEED_LEN_PER_READ;
448 if (getentropy(p, len) != 0) {
449 return -1;
451 p += len;
452 size -= len;
454 return 0;
456 #elif USE_DEV_URANDOM
457 static int
458 fill_random_bytes_urandom(void *seed, size_t size)
461 O_NONBLOCK and O_NOCTTY is meaningless if /dev/urandom correctly points
462 to a urandom device. But it protects from several strange hazard if
463 /dev/urandom is not a urandom device.
465 int fd = rb_cloexec_open("/dev/urandom",
466 # ifdef O_NONBLOCK
467 O_NONBLOCK|
468 # endif
469 # ifdef O_NOCTTY
470 O_NOCTTY|
471 # endif
472 O_RDONLY, 0);
473 struct stat statbuf;
474 ssize_t ret = 0;
475 size_t offset = 0;
477 if (fd < 0) return -1;
478 rb_update_max_fd(fd);
479 if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
480 do {
481 ret = read(fd, ((char*)seed) + offset, size - offset);
482 if (ret < 0) {
483 close(fd);
484 return -1;
486 offset += (size_t)ret;
487 } while (offset < size);
489 close(fd);
490 return 0;
492 #else
493 # define fill_random_bytes_urandom(seed, size) -1
494 #endif
496 #if ! defined HAVE_GETRANDOM && defined __linux__ && defined __NR_getrandom
497 # ifndef GRND_NONBLOCK
498 # define GRND_NONBLOCK 0x0001 /* not defined in musl libc */
499 # endif
500 # define getrandom(ptr, size, flags) \
501 (ssize_t)syscall(__NR_getrandom, (ptr), (size), (flags))
502 # define HAVE_GETRANDOM 1
503 #endif
505 #if 0
506 #elif defined MAC_OS_X_VERSION_10_7 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7
508 # if defined(USE_COMMON_RANDOM)
509 # elif defined MAC_OS_X_VERSION_10_10 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_10
510 # define USE_COMMON_RANDOM 1
511 # else
512 # define USE_COMMON_RANDOM 0
513 # endif
514 # if USE_COMMON_RANDOM
515 # include <CommonCrypto/CommonCryptoError.h> /* for old Xcode */
516 # include <CommonCrypto/CommonRandom.h>
517 # else
518 # include <Security/SecRandom.h>
519 # endif
521 static int
522 fill_random_bytes_syscall(void *seed, size_t size, int unused)
524 #if USE_COMMON_RANDOM
525 CCRNGStatus status = CCRandomGenerateBytes(seed, size);
526 int failed = status != kCCSuccess;
527 #else
528 int status = SecRandomCopyBytes(kSecRandomDefault, size, seed);
529 int failed = status != errSecSuccess;
530 #endif
532 if (failed) {
533 # if 0
534 # if USE_COMMON_RANDOM
535 /* How to get the error message? */
536 fprintf(stderr, "CCRandomGenerateBytes failed: %d\n", status);
537 # else
538 CFStringRef s = SecCopyErrorMessageString(status, NULL);
539 const char *m = s ? CFStringGetCStringPtr(s, kCFStringEncodingUTF8) : NULL;
540 fprintf(stderr, "SecRandomCopyBytes failed: %d: %s\n", status,
541 m ? m : "unknown");
542 if (s) CFRelease(s);
543 # endif
544 # endif
545 return -1;
547 return 0;
549 #elif defined(HAVE_ARC4RANDOM_BUF)
550 static int
551 fill_random_bytes_syscall(void *buf, size_t size, int unused)
553 #if (defined(__OpenBSD__) && OpenBSD >= 201411) || \
554 (defined(__NetBSD__) && __NetBSD_Version__ >= 700000000) || \
555 (defined(__FreeBSD__) && __FreeBSD_version >= 1200079)
556 arc4random_buf(buf, size);
557 return 0;
558 #else
559 return -1;
560 #endif
562 #elif defined(_WIN32)
564 #ifndef DWORD_MAX
565 # define DWORD_MAX (~(DWORD)0UL)
566 #endif
568 # if defined(CRYPT_VERIFYCONTEXT)
569 STATIC_ASSERT(sizeof_HCRYPTPROV, sizeof(HCRYPTPROV) == sizeof(size_t));
571 /* Although HCRYPTPROV is not a HANDLE, it looks like
572 * INVALID_HANDLE_VALUE is not a valid value */
573 static const HCRYPTPROV INVALID_HCRYPTPROV = (HCRYPTPROV)INVALID_HANDLE_VALUE;
575 static void
576 release_crypt(void *p)
578 HCRYPTPROV *ptr = p;
579 HCRYPTPROV prov = (HCRYPTPROV)ATOMIC_SIZE_EXCHANGE(*ptr, INVALID_HCRYPTPROV);
580 if (prov && prov != INVALID_HCRYPTPROV) {
581 CryptReleaseContext(prov, 0);
585 static int
586 fill_random_bytes_crypt(void *seed, size_t size)
588 static HCRYPTPROV perm_prov;
589 HCRYPTPROV prov = perm_prov, old_prov;
590 if (!prov) {
591 if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
592 prov = INVALID_HCRYPTPROV;
594 old_prov = (HCRYPTPROV)ATOMIC_SIZE_CAS(perm_prov, 0, prov);
595 if (LIKELY(!old_prov)) { /* no other threads acquired */
596 if (prov != INVALID_HCRYPTPROV) {
597 #undef RUBY_UNTYPED_DATA_WARNING
598 #define RUBY_UNTYPED_DATA_WARNING 0
599 rb_vm_register_global_object(Data_Wrap_Struct(0, 0, release_crypt, &perm_prov));
602 else { /* another thread acquired */
603 if (prov != INVALID_HCRYPTPROV) {
604 CryptReleaseContext(prov, 0);
606 prov = old_prov;
609 if (prov == INVALID_HCRYPTPROV) return -1;
610 while (size > 0) {
611 DWORD n = (size > (size_t)DWORD_MAX) ? DWORD_MAX : (DWORD)size;
612 if (!CryptGenRandom(prov, n, seed)) return -1;
613 seed = (char *)seed + n;
614 size -= n;
616 return 0;
618 # else
619 # define fill_random_bytes_crypt(seed, size) -1
620 # endif
622 static int
623 fill_random_bytes_bcrypt(void *seed, size_t size)
625 while (size > 0) {
626 ULONG n = (size > (size_t)ULONG_MAX) ? LONG_MAX : (ULONG)size;
627 if (BCryptGenRandom(NULL, seed, n, BCRYPT_USE_SYSTEM_PREFERRED_RNG))
628 return -1;
629 seed = (char *)seed + n;
630 size -= n;
632 return 0;
635 static int
636 fill_random_bytes_syscall(void *seed, size_t size, int unused)
638 if (fill_random_bytes_bcrypt(seed, size) == 0) return 0;
639 return fill_random_bytes_crypt(seed, size);
641 #elif defined HAVE_GETRANDOM
642 static int
643 fill_random_bytes_syscall(void *seed, size_t size, int need_secure)
645 static rb_atomic_t try_syscall = 1;
646 if (try_syscall) {
647 size_t offset = 0;
648 int flags = 0;
649 if (!need_secure)
650 flags = GRND_NONBLOCK;
651 do {
652 errno = 0;
653 ssize_t ret = getrandom(((char*)seed) + offset, size - offset, flags);
654 if (ret == -1) {
655 ATOMIC_SET(try_syscall, 0);
656 return -1;
658 offset += (size_t)ret;
659 } while (offset < size);
660 return 0;
662 return -1;
664 #else
665 # define fill_random_bytes_syscall(seed, size, need_secure) -1
666 #endif
669 ruby_fill_random_bytes(void *seed, size_t size, int need_secure)
671 int ret = fill_random_bytes_syscall(seed, size, need_secure);
672 if (ret == 0) return ret;
673 return fill_random_bytes_urandom(seed, size);
676 #define fill_random_bytes ruby_fill_random_bytes
678 /* cnt must be 4 or more */
679 static void
680 fill_random_seed(uint32_t *seed, size_t cnt)
682 static rb_atomic_t n = 0;
683 #if defined HAVE_CLOCK_GETTIME
684 struct timespec tv;
685 #elif defined HAVE_GETTIMEOFDAY
686 struct timeval tv;
687 #endif
688 size_t len = cnt * sizeof(*seed);
690 memset(seed, 0, len);
692 fill_random_bytes(seed, len, FALSE);
694 #if defined HAVE_CLOCK_GETTIME
695 clock_gettime(CLOCK_REALTIME, &tv);
696 seed[0] ^= tv.tv_nsec;
697 #elif defined HAVE_GETTIMEOFDAY
698 gettimeofday(&tv, 0);
699 seed[0] ^= tv.tv_usec;
700 #endif
701 seed[1] ^= (uint32_t)tv.tv_sec;
702 #if SIZEOF_TIME_T > SIZEOF_INT
703 seed[0] ^= (uint32_t)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
704 #endif
705 seed[2] ^= getpid() ^ (ATOMIC_FETCH_ADD(n, 1) << 16);
706 seed[3] ^= (uint32_t)(VALUE)&seed;
707 #if SIZEOF_VOIDP > SIZEOF_INT
708 seed[2] ^= (uint32_t)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
709 #endif
712 static VALUE
713 make_seed_value(uint32_t *ptr, size_t len)
715 VALUE seed;
717 if (ptr[len-1] <= 1) {
718 /* set leading-zero-guard */
719 ptr[len++] = 1;
722 seed = rb_integer_unpack(ptr, len, sizeof(uint32_t), 0,
723 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
725 return seed;
728 #define with_random_seed(size, add) \
729 for (uint32_t seedbuf[(size)+(add)], loop = (fill_random_seed(seedbuf, (size)), 1); \
730 loop; explicit_bzero(seedbuf, (size)*sizeof(seedbuf[0])), loop = 0)
733 * call-seq: Random.new_seed -> integer
735 * Returns an arbitrary seed value. This is used by Random.new
736 * when no seed value is specified as an argument.
738 * Random.new_seed #=> 115032730400174366788466674494640623225
740 static VALUE
741 random_seed(VALUE _)
743 VALUE v;
744 with_random_seed(DEFAULT_SEED_CNT, 1) {
745 v = make_seed_value(seedbuf, DEFAULT_SEED_CNT);
747 return v;
751 * call-seq: Random.urandom(size) -> string
753 * Returns a string, using platform providing features.
754 * Returned value is expected to be a cryptographically secure
755 * pseudo-random number in binary form.
756 * This method raises a RuntimeError if the feature provided by platform
757 * failed to prepare the result.
759 * In 2017, Linux manpage random(7) writes that "no cryptographic
760 * primitive available today can hope to promise more than 256 bits of
761 * security". So it might be questionable to pass size > 32 to this
762 * method.
764 * Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"
766 static VALUE
767 random_raw_seed(VALUE self, VALUE size)
769 long n = NUM2ULONG(size);
770 VALUE buf = rb_str_new(0, n);
771 if (n == 0) return buf;
772 if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE))
773 rb_raise(rb_eRuntimeError, "failed to get urandom");
774 return buf;
778 * call-seq: prng.seed -> integer
780 * Returns the seed value used to initialize the generator. This may be used to
781 * initialize another generator with the same state at a later time, causing it
782 * to produce the same sequence of numbers.
784 * prng1 = Random.new(1234)
785 * prng1.seed #=> 1234
786 * prng1.rand(100) #=> 47
788 * prng2 = Random.new(prng1.seed)
789 * prng2.rand(100) #=> 47
791 static VALUE
792 random_get_seed(VALUE obj)
794 return get_rnd(obj)->seed;
797 /* :nodoc: */
798 static VALUE
799 rand_mt_copy(VALUE obj, VALUE orig)
801 rb_random_mt_t *rnd1, *rnd2;
802 struct MT *mt;
804 if (!OBJ_INIT_COPY(obj, orig)) return obj;
806 rnd1 = get_rnd_mt(obj);
807 rnd2 = get_rnd_mt(orig);
808 mt = &rnd1->mt;
810 *rnd1 = *rnd2;
811 mt->next = mt->state + numberof(mt->state) - mt->left + 1;
812 return obj;
815 static VALUE
816 mt_state(const struct MT *mt)
818 return rb_integer_unpack(mt->state, numberof(mt->state),
819 sizeof(*mt->state), 0,
820 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
823 /* :nodoc: */
824 static VALUE
825 rand_mt_state(VALUE obj)
827 rb_random_mt_t *rnd = get_rnd_mt(obj);
828 return mt_state(&rnd->mt);
831 /* :nodoc: */
832 static VALUE
833 random_s_state(VALUE klass)
835 return mt_state(&default_rand()->mt);
838 /* :nodoc: */
839 static VALUE
840 rand_mt_left(VALUE obj)
842 rb_random_mt_t *rnd = get_rnd_mt(obj);
843 return INT2FIX(rnd->mt.left);
846 /* :nodoc: */
847 static VALUE
848 random_s_left(VALUE klass)
850 return INT2FIX(default_rand()->mt.left);
853 /* :nodoc: */
854 static VALUE
855 rand_mt_dump(VALUE obj)
857 rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
858 VALUE dump = rb_ary_new2(3);
860 rb_ary_push(dump, mt_state(&rnd->mt));
861 rb_ary_push(dump, INT2FIX(rnd->mt.left));
862 rb_ary_push(dump, rnd->base.seed);
864 return dump;
867 /* :nodoc: */
868 static VALUE
869 rand_mt_load(VALUE obj, VALUE dump)
871 rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
872 struct MT *mt = &rnd->mt;
873 VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
874 unsigned long x;
876 rb_check_copyable(obj, dump);
877 Check_Type(dump, T_ARRAY);
878 switch (RARRAY_LEN(dump)) {
879 case 3:
880 seed = RARRAY_AREF(dump, 2);
881 case 2:
882 left = RARRAY_AREF(dump, 1);
883 case 1:
884 state = RARRAY_AREF(dump, 0);
885 break;
886 default:
887 rb_raise(rb_eArgError, "wrong dump data");
889 rb_integer_pack(state, mt->state, numberof(mt->state),
890 sizeof(*mt->state), 0,
891 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
892 x = NUM2ULONG(left);
893 if (x > numberof(mt->state)) {
894 rb_raise(rb_eArgError, "wrong value");
896 mt->left = (unsigned int)x;
897 mt->next = mt->state + numberof(mt->state) - x + 1;
898 rnd->base.seed = rb_to_int(seed);
900 return obj;
903 static void
904 rand_mt_init_int32(rb_random_t *rnd, uint32_t data)
906 struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
907 init_genrand(mt, data);
910 static void
911 rand_mt_init(rb_random_t *rnd, const uint32_t *buf, size_t len)
913 struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
914 init_by_array(mt, buf, (int)len);
917 static unsigned int
918 rand_mt_get_int32(rb_random_t *rnd)
920 struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
921 return genrand_int32(mt);
924 static void
925 rand_mt_get_bytes(rb_random_t *rnd, void *ptr, size_t n)
927 rb_rand_bytes_int32(rand_mt_get_int32, rnd, ptr, n);
931 * call-seq:
932 * srand(number = Random.new_seed) -> old_seed
934 * Seeds the system pseudo-random number generator, with +number+.
935 * The previous seed value is returned.
937 * If +number+ is omitted, seeds the generator using a source of entropy
938 * provided by the operating system, if available (/dev/urandom on Unix systems
939 * or the RSA cryptographic provider on Windows), which is then combined with
940 * the time, the process id, and a sequence number.
942 * srand may be used to ensure repeatable sequences of pseudo-random numbers
943 * between different runs of the program. By setting the seed to a known value,
944 * programs can be made deterministic during testing.
946 * srand 1234 # => 268519324636777531569100071560086917274
947 * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
948 * [ rand(10), rand(1000) ] # => [4, 664]
949 * srand 1234 # => 1234
950 * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
953 static VALUE
954 rb_f_srand(int argc, VALUE *argv, VALUE obj)
956 VALUE seed, old;
957 rb_random_mt_t *r = rand_mt_start(default_rand());
959 if (rb_check_arity(argc, 0, 1) == 0) {
960 seed = random_seed(obj);
962 else {
963 seed = rb_to_int(argv[0]);
965 old = r->base.seed;
966 rand_init(&random_mt_if, &r->base, seed);
967 r->base.seed = seed;
969 return old;
972 static unsigned long
973 make_mask(unsigned long x)
975 x = x | x >> 1;
976 x = x | x >> 2;
977 x = x | x >> 4;
978 x = x | x >> 8;
979 x = x | x >> 16;
980 #if 4 < SIZEOF_LONG
981 x = x | x >> 32;
982 #endif
983 return x;
986 static unsigned long
987 limited_rand(const rb_random_interface_t *rng, rb_random_t *rnd, unsigned long limit)
989 /* mt must be initialized */
990 unsigned long val, mask;
992 if (!limit) return 0;
993 mask = make_mask(limit);
995 #if 4 < SIZEOF_LONG
996 if (0xffffffff < limit) {
997 int i;
998 retry:
999 val = 0;
1000 for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
1001 if ((mask >> (i * 32)) & 0xffffffff) {
1002 val |= (unsigned long)rng->get_int32(rnd) << (i * 32);
1003 val &= mask;
1004 if (limit < val)
1005 goto retry;
1008 return val;
1010 #endif
1012 do {
1013 val = rng->get_int32(rnd) & mask;
1014 } while (limit < val);
1015 return val;
1018 static VALUE
1019 limited_big_rand(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE limit)
1021 /* mt must be initialized */
1023 uint32_t mask;
1024 long i;
1025 int boundary;
1027 size_t len;
1028 uint32_t *tmp, *lim_array, *rnd_array;
1029 VALUE vtmp;
1030 VALUE val;
1032 len = rb_absint_numwords(limit, 32, NULL);
1033 tmp = ALLOCV_N(uint32_t, vtmp, len*2);
1034 lim_array = tmp;
1035 rnd_array = tmp + len;
1036 rb_integer_pack(limit, lim_array, len, sizeof(uint32_t), 0,
1037 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
1039 retry:
1040 mask = 0;
1041 boundary = 1;
1042 for (i = len-1; 0 <= i; i--) {
1043 uint32_t r = 0;
1044 uint32_t lim = lim_array[i];
1045 mask = mask ? 0xffffffff : (uint32_t)make_mask(lim);
1046 if (mask) {
1047 r = rng->get_int32(rnd) & mask;
1048 if (boundary) {
1049 if (lim < r)
1050 goto retry;
1051 if (r < lim)
1052 boundary = 0;
1055 rnd_array[i] = r;
1057 val = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0,
1058 INTEGER_PACK_LSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER);
1059 ALLOCV_END(vtmp);
1061 return val;
1065 * Returns random unsigned long value in [0, +limit+].
1067 * Note that +limit+ is included, and the range of the argument and the
1068 * return value depends on environments.
1070 unsigned long
1071 rb_genrand_ulong_limited(unsigned long limit)
1073 rb_random_mt_t *mt = default_mt();
1074 return limited_rand(&random_mt_if, &mt->base, limit);
1077 static VALUE
1078 obj_random_bytes(VALUE obj, void *p, long n)
1080 VALUE len = LONG2NUM(n);
1081 VALUE v = rb_funcallv_public(obj, id_bytes, 1, &len);
1082 long l;
1083 Check_Type(v, T_STRING);
1084 l = RSTRING_LEN(v);
1085 if (l < n)
1086 rb_raise(rb_eRangeError, "random data too short %ld", l);
1087 else if (l > n)
1088 rb_raise(rb_eRangeError, "random data too long %ld", l);
1089 if (p) memcpy(p, RSTRING_PTR(v), n);
1090 return v;
1093 static unsigned int
1094 random_int32(const rb_random_interface_t *rng, rb_random_t *rnd)
1096 return rng->get_int32(rnd);
1099 unsigned int
1100 rb_random_int32(VALUE obj)
1102 rb_random_t *rnd = try_get_rnd(obj);
1103 if (!rnd) {
1104 uint32_t x;
1105 obj_random_bytes(obj, &x, sizeof(x));
1106 return (unsigned int)x;
1108 return random_int32(try_rand_if(obj, rnd), rnd);
1111 static double
1112 random_real(VALUE obj, rb_random_t *rnd, int excl)
1114 uint32_t a, b;
1116 if (!rnd) {
1117 uint32_t x[2] = {0, 0};
1118 obj_random_bytes(obj, x, sizeof(x));
1119 a = x[0];
1120 b = x[1];
1122 else {
1123 const rb_random_interface_t *rng = try_rand_if(obj, rnd);
1124 if (rng->get_real) return rng->get_real(rnd, excl);
1125 a = random_int32(rng, rnd);
1126 b = random_int32(rng, rnd);
1128 return rb_int_pair_to_real(a, b, excl);
1131 double
1132 rb_int_pair_to_real(uint32_t a, uint32_t b, int excl)
1134 if (excl) {
1135 return int_pair_to_real_exclusive(a, b);
1137 else {
1138 return int_pair_to_real_inclusive(a, b);
1142 double
1143 rb_random_real(VALUE obj)
1145 rb_random_t *rnd = try_get_rnd(obj);
1146 if (!rnd) {
1147 VALUE v = rb_funcallv(obj, id_rand, 0, 0);
1148 double d = NUM2DBL(v);
1149 if (d < 0.0) {
1150 rb_raise(rb_eRangeError, "random number too small %g", d);
1152 else if (d >= 1.0) {
1153 rb_raise(rb_eRangeError, "random number too big %g", d);
1155 return d;
1157 return random_real(obj, rnd, TRUE);
1160 static inline VALUE
1161 ulong_to_num_plus_1(unsigned long n)
1163 #if HAVE_LONG_LONG
1164 return ULL2NUM((LONG_LONG)n+1);
1165 #else
1166 if (n >= ULONG_MAX) {
1167 return rb_big_plus(ULONG2NUM(n), INT2FIX(1));
1169 return ULONG2NUM(n+1);
1170 #endif
1173 static unsigned long
1174 random_ulong_limited(VALUE obj, rb_random_t *rnd, unsigned long limit)
1176 if (!limit) return 0;
1177 if (!rnd) {
1178 const int w = sizeof(limit) * CHAR_BIT - nlz_long(limit);
1179 const int n = w > 32 ? sizeof(unsigned long) : sizeof(uint32_t);
1180 const unsigned long mask = ~(~0UL << w);
1181 const unsigned long full =
1182 (size_t)n >= sizeof(unsigned long) ? ~0UL :
1183 ~(~0UL << n * CHAR_BIT);
1184 unsigned long val, bits = 0, rest = 0;
1185 do {
1186 if (mask & ~rest) {
1187 union {uint32_t u32; unsigned long ul;} buf;
1188 obj_random_bytes(obj, &buf, n);
1189 rest = full;
1190 bits = (n == sizeof(uint32_t)) ? buf.u32 : buf.ul;
1192 val = bits;
1193 bits >>= w;
1194 rest >>= w;
1195 val &= mask;
1196 } while (limit < val);
1197 return val;
1199 return limited_rand(try_rand_if(obj, rnd), rnd, limit);
1202 unsigned long
1203 rb_random_ulong_limited(VALUE obj, unsigned long limit)
1205 rb_random_t *rnd = try_get_rnd(obj);
1206 if (!rnd) {
1207 VALUE lim = ulong_to_num_plus_1(limit);
1208 VALUE v = rb_to_int(rb_funcallv_public(obj, id_rand, 1, &lim));
1209 unsigned long r = NUM2ULONG(v);
1210 if (rb_num_negative_p(v)) {
1211 rb_raise(rb_eRangeError, "random number too small %ld", r);
1213 if (r > limit) {
1214 rb_raise(rb_eRangeError, "random number too big %ld", r);
1216 return r;
1218 return limited_rand(try_rand_if(obj, rnd), rnd, limit);
1221 static VALUE
1222 random_ulong_limited_big(VALUE obj, rb_random_t *rnd, VALUE vmax)
1224 if (!rnd) {
1225 VALUE v, vtmp;
1226 size_t i, nlz, len = rb_absint_numwords(vmax, 32, &nlz);
1227 uint32_t *tmp = ALLOCV_N(uint32_t, vtmp, len * 2);
1228 uint32_t mask = (uint32_t)~0 >> nlz;
1229 uint32_t *lim_array = tmp;
1230 uint32_t *rnd_array = tmp + len;
1231 int flag = INTEGER_PACK_MSWORD_FIRST|INTEGER_PACK_NATIVE_BYTE_ORDER;
1232 rb_integer_pack(vmax, lim_array, len, sizeof(uint32_t), 0, flag);
1234 retry:
1235 obj_random_bytes(obj, rnd_array, len * sizeof(uint32_t));
1236 rnd_array[0] &= mask;
1237 for (i = 0; i < len; ++i) {
1238 if (lim_array[i] < rnd_array[i])
1239 goto retry;
1240 if (rnd_array[i] < lim_array[i])
1241 break;
1243 v = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0, flag);
1244 ALLOCV_END(vtmp);
1245 return v;
1247 return limited_big_rand(try_rand_if(obj, rnd), rnd, vmax);
1250 static VALUE
1251 rand_bytes(const rb_random_interface_t *rng, rb_random_t *rnd, long n)
1253 VALUE bytes;
1254 char *ptr;
1256 bytes = rb_str_new(0, n);
1257 ptr = RSTRING_PTR(bytes);
1258 rng->get_bytes(rnd, ptr, n);
1259 return bytes;
1263 * call-seq: prng.bytes(size) -> string
1265 * Returns a random binary string containing +size+ bytes.
1267 * random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
1268 * random_string.size # => 10
1270 static VALUE
1271 random_bytes(VALUE obj, VALUE len)
1273 rb_random_t *rnd = try_get_rnd(obj);
1274 return rand_bytes(rb_rand_if(obj), rnd, NUM2LONG(rb_to_int(len)));
1277 void
1278 rb_rand_bytes_int32(rb_random_get_int32_func *get_int32,
1279 rb_random_t *rnd, void *p, size_t n)
1281 char *ptr = p;
1282 unsigned int r, i;
1283 for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
1284 r = get_int32(rnd);
1285 i = SIZEOF_INT32;
1286 do {
1287 *ptr++ = (char)r;
1288 r >>= CHAR_BIT;
1289 } while (--i);
1291 if (n > 0) {
1292 r = get_int32(rnd);
1293 do {
1294 *ptr++ = (char)r;
1295 r >>= CHAR_BIT;
1296 } while (--n);
1300 VALUE
1301 rb_random_bytes(VALUE obj, long n)
1303 rb_random_t *rnd = try_get_rnd(obj);
1304 if (!rnd) {
1305 return obj_random_bytes(obj, NULL, n);
1307 return rand_bytes(try_rand_if(obj, rnd), rnd, n);
1311 * call-seq: Random.bytes(size) -> string
1313 * Returns a random binary string.
1314 * The argument +size+ specifies the length of the returned string.
1316 static VALUE
1317 random_s_bytes(VALUE obj, VALUE len)
1319 rb_random_t *rnd = rand_start(default_rand());
1320 return rand_bytes(&random_mt_if, rnd, NUM2LONG(rb_to_int(len)));
1324 * call-seq: Random.seed -> integer
1326 * Returns the seed value used to initialize the Ruby system PRNG.
1327 * This may be used to initialize another generator with the same
1328 * state at a later time, causing it to produce the same sequence of
1329 * numbers.
1331 * Random.seed #=> 1234
1332 * prng1 = Random.new(Random.seed)
1333 * prng1.seed #=> 1234
1334 * prng1.rand(100) #=> 47
1335 * Random.seed #=> 1234
1336 * Random.rand(100) #=> 47
1338 static VALUE
1339 random_s_seed(VALUE obj)
1341 rb_random_mt_t *rnd = rand_mt_start(default_rand());
1342 return rnd->base.seed;
1345 static VALUE
1346 range_values(VALUE vmax, VALUE *begp, VALUE *endp, int *exclp)
1348 VALUE beg, end;
1350 if (!rb_range_values(vmax, &beg, &end, exclp)) return Qfalse;
1351 if (begp) *begp = beg;
1352 if (NIL_P(beg)) return Qnil;
1353 if (endp) *endp = end;
1354 if (NIL_P(end)) return Qnil;
1355 return rb_check_funcall_default(end, id_minus, 1, begp, Qfalse);
1358 static VALUE
1359 rand_int(VALUE obj, rb_random_t *rnd, VALUE vmax, int restrictive)
1361 /* mt must be initialized */
1362 unsigned long r;
1364 if (FIXNUM_P(vmax)) {
1365 long max = FIX2LONG(vmax);
1366 if (!max) return Qnil;
1367 if (max < 0) {
1368 if (restrictive) return Qnil;
1369 max = -max;
1371 r = random_ulong_limited(obj, rnd, (unsigned long)max - 1);
1372 return ULONG2NUM(r);
1374 else {
1375 VALUE ret;
1376 if (rb_bigzero_p(vmax)) return Qnil;
1377 if (!BIGNUM_SIGN(vmax)) {
1378 if (restrictive) return Qnil;
1379 vmax = rb_big_uminus(vmax);
1381 vmax = rb_big_minus(vmax, INT2FIX(1));
1382 if (FIXNUM_P(vmax)) {
1383 long max = FIX2LONG(vmax);
1384 if (max == -1) return Qnil;
1385 r = random_ulong_limited(obj, rnd, max);
1386 return LONG2NUM(r);
1388 ret = random_ulong_limited_big(obj, rnd, vmax);
1389 RB_GC_GUARD(vmax);
1390 return ret;
1394 static void
1395 domain_error(void)
1397 VALUE error = INT2FIX(EDOM);
1398 rb_exc_raise(rb_class_new_instance(1, &error, rb_eSystemCallError));
1401 NORETURN(static void invalid_argument(VALUE));
1402 static void
1403 invalid_argument(VALUE arg0)
1405 rb_raise(rb_eArgError, "invalid argument - %"PRIsVALUE, arg0);
1408 static VALUE
1409 check_random_number(VALUE v, const VALUE *argv)
1411 switch (v) {
1412 case Qfalse:
1413 (void)NUM2LONG(argv[0]);
1414 break;
1415 case Qnil:
1416 invalid_argument(argv[0]);
1418 return v;
1421 static inline double
1422 float_value(VALUE v)
1424 double x = RFLOAT_VALUE(v);
1425 if (!isfinite(x)) {
1426 domain_error();
1428 return x;
1431 static inline VALUE
1432 rand_range(VALUE obj, rb_random_t* rnd, VALUE range)
1434 VALUE beg = Qundef, end = Qundef, vmax, v;
1435 int excl = 0;
1437 if ((v = vmax = range_values(range, &beg, &end, &excl)) == Qfalse)
1438 return Qfalse;
1439 if (NIL_P(v)) domain_error();
1440 if (!RB_FLOAT_TYPE_P(vmax) && (v = rb_check_to_int(vmax), !NIL_P(v))) {
1441 long max;
1442 vmax = v;
1443 v = Qnil;
1444 fixnum:
1445 if (FIXNUM_P(vmax)) {
1446 if ((max = FIX2LONG(vmax) - excl) >= 0) {
1447 unsigned long r = random_ulong_limited(obj, rnd, (unsigned long)max);
1448 v = ULONG2NUM(r);
1451 else if (BUILTIN_TYPE(vmax) == T_BIGNUM && BIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) {
1452 vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax);
1453 if (FIXNUM_P(vmax)) {
1454 excl = 0;
1455 goto fixnum;
1457 v = random_ulong_limited_big(obj, rnd, vmax);
1460 else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
1461 int scale = 1;
1462 double max = RFLOAT_VALUE(v), mid = 0.5, r;
1463 if (isinf(max)) {
1464 double min = float_value(rb_to_float(beg)) / 2.0;
1465 max = float_value(rb_to_float(end)) / 2.0;
1466 scale = 2;
1467 mid = max + min;
1468 max -= min;
1470 else if (isnan(max)) {
1471 domain_error();
1473 v = Qnil;
1474 if (max > 0.0) {
1475 r = random_real(obj, rnd, excl);
1476 if (scale > 1) {
1477 return rb_float_new(+(+(+(r - 0.5) * max) * scale) + mid);
1479 v = rb_float_new(r * max);
1481 else if (max == 0.0 && !excl) {
1482 v = rb_float_new(0.0);
1486 if (FIXNUM_P(beg) && FIXNUM_P(v)) {
1487 long x = FIX2LONG(beg) + FIX2LONG(v);
1488 return LONG2NUM(x);
1490 switch (TYPE(v)) {
1491 case T_NIL:
1492 break;
1493 case T_BIGNUM:
1494 return rb_big_plus(v, beg);
1495 case T_FLOAT: {
1496 VALUE f = rb_check_to_float(beg);
1497 if (!NIL_P(f)) {
1498 return DBL2NUM(RFLOAT_VALUE(v) + RFLOAT_VALUE(f));
1501 default:
1502 return rb_funcallv(beg, id_plus, 1, &v);
1505 return v;
1508 static VALUE rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd);
1511 * call-seq:
1512 * prng.rand -> float
1513 * prng.rand(max) -> number
1514 * prng.rand(range) -> number
1516 * When +max+ is an Integer, +rand+ returns a random integer greater than
1517 * or equal to zero and less than +max+. Unlike Kernel.rand, when +max+
1518 * is a negative integer or zero, +rand+ raises an ArgumentError.
1520 * prng = Random.new
1521 * prng.rand(100) # => 42
1523 * When +max+ is a Float, +rand+ returns a random floating point number
1524 * between 0.0 and +max+, including 0.0 and excluding +max+.
1526 * prng.rand(1.5) # => 1.4600282860034115
1528 * When +range+ is a Range, +rand+ returns a random number where
1529 * <code>range.member?(number) == true</code>.
1531 * prng.rand(5..9) # => one of [5, 6, 7, 8, 9]
1532 * prng.rand(5...9) # => one of [5, 6, 7, 8]
1533 * prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0
1534 * prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
1536 * Both the beginning and ending values of the range must respond to subtract
1537 * (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an
1538 * ArgumentError.
1540 static VALUE
1541 random_rand(int argc, VALUE *argv, VALUE obj)
1543 VALUE v = rand_random(argc, argv, obj, try_get_rnd(obj));
1544 check_random_number(v, argv);
1545 return v;
1548 static VALUE
1549 rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd)
1551 VALUE vmax, v;
1553 if (rb_check_arity(argc, 0, 1) == 0) {
1554 return rb_float_new(random_real(obj, rnd, TRUE));
1556 vmax = argv[0];
1557 if (NIL_P(vmax)) return Qnil;
1558 if (!RB_FLOAT_TYPE_P(vmax)) {
1559 v = rb_check_to_int(vmax);
1560 if (!NIL_P(v)) return rand_int(obj, rnd, v, 1);
1562 v = rb_check_to_float(vmax);
1563 if (!NIL_P(v)) {
1564 const double max = float_value(v);
1565 if (max < 0.0) {
1566 return Qnil;
1568 else {
1569 double r = random_real(obj, rnd, TRUE);
1570 if (max > 0.0) r *= max;
1571 return rb_float_new(r);
1574 return rand_range(obj, rnd, vmax);
1578 * call-seq:
1579 * prng.random_number -> float
1580 * prng.random_number(max) -> number
1581 * prng.random_number(range) -> number
1582 * prng.rand -> float
1583 * prng.rand(max) -> number
1584 * prng.rand(range) -> number
1586 * Generates formatted random number from raw random bytes.
1587 * See Random#rand.
1589 static VALUE
1590 rand_random_number(int argc, VALUE *argv, VALUE obj)
1592 rb_random_t *rnd = try_get_rnd(obj);
1593 VALUE v = rand_random(argc, argv, obj, rnd);
1594 if (NIL_P(v)) v = rand_random(0, 0, obj, rnd);
1595 else if (!v) invalid_argument(argv[0]);
1596 return v;
1600 * call-seq:
1601 * prng1 == prng2 -> true or false
1603 * Returns true if the two generators have the same internal state, otherwise
1604 * false. Equivalent generators will return the same sequence of
1605 * pseudo-random numbers. Two generators will generally have the same state
1606 * only if they were initialized with the same seed
1608 * Random.new == Random.new # => false
1609 * Random.new(1234) == Random.new(1234) # => true
1611 * and have the same invocation history.
1613 * prng1 = Random.new(1234)
1614 * prng2 = Random.new(1234)
1615 * prng1 == prng2 # => true
1617 * prng1.rand # => 0.1915194503788923
1618 * prng1 == prng2 # => false
1620 * prng2.rand # => 0.1915194503788923
1621 * prng1 == prng2 # => true
1623 static VALUE
1624 rand_mt_equal(VALUE self, VALUE other)
1626 rb_random_mt_t *r1, *r2;
1627 if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
1628 r1 = get_rnd_mt(self);
1629 r2 = get_rnd_mt(other);
1630 if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
1631 if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
1632 if (r1->mt.left != r2->mt.left) return Qfalse;
1633 return rb_equal(r1->base.seed, r2->base.seed);
1637 * call-seq:
1638 * rand(max=0) -> number
1640 * If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand
1641 * returns a pseudo-random floating point number between 0.0 and 1.0,
1642 * including 0.0 and excluding 1.0.
1644 * rand #=> 0.2725926052826416
1646 * When +max.abs+ is greater than or equal to 1, +rand+ returns a pseudo-random
1647 * integer greater than or equal to 0 and less than +max.to_i.abs+.
1649 * rand(100) #=> 12
1651 * When +max+ is a Range, +rand+ returns a random number where
1652 * <code>range.member?(number) == true</code>.
1654 * Negative or floating point values for +max+ are allowed, but may give
1655 * surprising results.
1657 * rand(-100) # => 87
1658 * rand(-0.5) # => 0.8130921818028143
1659 * rand(1.9) # equivalent to rand(1), which is always 0
1661 * Kernel.srand may be used to ensure that sequences of random numbers are
1662 * reproducible between different runs of a program.
1664 * See also Random.rand.
1667 static VALUE
1668 rb_f_rand(int argc, VALUE *argv, VALUE obj)
1670 VALUE vmax;
1671 rb_random_t *rnd = rand_start(default_rand());
1673 if (rb_check_arity(argc, 0, 1) && !NIL_P(vmax = argv[0])) {
1674 VALUE v = rand_range(obj, rnd, vmax);
1675 if (v != Qfalse) return v;
1676 vmax = rb_to_int(vmax);
1677 if (vmax != INT2FIX(0)) {
1678 v = rand_int(obj, rnd, vmax, 0);
1679 if (!NIL_P(v)) return v;
1682 return DBL2NUM(random_real(obj, rnd, TRUE));
1686 * call-seq:
1687 * Random.rand -> float
1688 * Random.rand(max) -> number
1689 * Random.rand(range) -> number
1691 * Returns a random number using the Ruby system PRNG.
1693 * See also Random#rand.
1695 static VALUE
1696 random_s_rand(int argc, VALUE *argv, VALUE obj)
1698 VALUE v = rand_random(argc, argv, Qnil, rand_start(default_rand()));
1699 check_random_number(v, argv);
1700 return v;
1703 #define SIP_HASH_STREAMING 0
1704 #define sip_hash13 ruby_sip_hash13
1705 #if !defined _WIN32 && !defined BYTE_ORDER
1706 # ifdef WORDS_BIGENDIAN
1707 # define BYTE_ORDER BIG_ENDIAN
1708 # else
1709 # define BYTE_ORDER LITTLE_ENDIAN
1710 # endif
1711 # ifndef LITTLE_ENDIAN
1712 # define LITTLE_ENDIAN 1234
1713 # endif
1714 # ifndef BIG_ENDIAN
1715 # define BIG_ENDIAN 4321
1716 # endif
1717 #endif
1718 #include "siphash.c"
1720 typedef struct {
1721 st_index_t hash;
1722 uint8_t sip[16];
1723 } hash_salt_t;
1725 static union {
1726 hash_salt_t key;
1727 uint32_t u32[type_roomof(hash_salt_t, uint32_t)];
1728 } hash_salt;
1730 static void
1731 init_hash_salt(struct MT *mt)
1733 int i;
1735 for (i = 0; i < numberof(hash_salt.u32); ++i)
1736 hash_salt.u32[i] = genrand_int32(mt);
1739 NO_SANITIZE("unsigned-integer-overflow", extern st_index_t rb_hash_start(st_index_t h));
1740 st_index_t
1741 rb_hash_start(st_index_t h)
1743 return st_hash_start(hash_salt.key.hash + h);
1746 st_index_t
1747 rb_memhash(const void *ptr, long len)
1749 sip_uint64_t h = sip_hash13(hash_salt.key.sip, ptr, len);
1750 #ifdef HAVE_UINT64_T
1751 return (st_index_t)h;
1752 #else
1753 return (st_index_t)(h.u32[0] ^ h.u32[1]);
1754 #endif
1757 /* Initialize Ruby internal seeds. This function is called at very early stage
1758 * of Ruby startup. Thus, you can't use Ruby's object. */
1759 void
1760 Init_RandomSeedCore(void)
1762 if (!fill_random_bytes(&hash_salt, sizeof(hash_salt), FALSE)) return;
1765 If failed to fill siphash's salt with random data, expand less random
1766 data with MT.
1768 Don't reuse this MT for default_rand(). default_rand()::seed shouldn't
1769 provide a hint that an attacker guess siphash's seed.
1771 struct MT mt;
1773 with_random_seed(DEFAULT_SEED_CNT, 0) {
1774 init_by_array(&mt, seedbuf, DEFAULT_SEED_CNT);
1777 init_hash_salt(&mt);
1778 explicit_bzero(&mt, sizeof(mt));
1781 void
1782 rb_reset_random_seed(void)
1784 rb_random_mt_t *r = default_rand();
1785 uninit_genrand(&r->mt);
1786 r->base.seed = INT2FIX(0);
1790 * Document-class: Random
1792 * Random provides an interface to Ruby's pseudo-random number generator, or
1793 * PRNG. The PRNG produces a deterministic sequence of bits which approximate
1794 * true randomness. The sequence may be represented by integers, floats, or
1795 * binary strings.
1797 * The generator may be initialized with either a system-generated or
1798 * user-supplied seed value by using Random.srand.
1800 * The class method Random.rand provides the base functionality of Kernel.rand
1801 * along with better handling of floating point values. These are both
1802 * interfaces to the Ruby system PRNG.
1804 * Random.new will create a new PRNG with a state independent of the Ruby
1805 * system PRNG, allowing multiple generators with different seed values or
1806 * sequence positions to exist simultaneously. Random objects can be
1807 * marshaled, allowing sequences to be saved and resumed.
1809 * PRNGs are currently implemented as a modified Mersenne Twister with a period
1810 * of 2**19937-1. As this algorithm is _not_ for cryptographical use, you must
1811 * use SecureRandom for security purpose, instead of this PRNG.
1813 * See also Random::Formatter module that adds convenience methods to generate
1814 * various forms of random data.
1817 void
1818 InitVM_Random(void)
1820 VALUE base;
1821 ID id_base = rb_intern_const("Base");
1823 rb_define_global_function("srand", rb_f_srand, -1);
1824 rb_define_global_function("rand", rb_f_rand, -1);
1826 base = rb_define_class_id(id_base, rb_cObject);
1827 rb_undef_alloc_func(base);
1828 rb_cRandom = rb_define_class("Random", base);
1829 rb_const_set(rb_cRandom, id_base, base);
1830 rb_define_alloc_func(rb_cRandom, random_alloc);
1831 rb_define_method(base, "initialize", random_init, -1);
1832 rb_define_method(base, "rand", random_rand, -1);
1833 rb_define_method(base, "bytes", random_bytes, 1);
1834 rb_define_method(base, "seed", random_get_seed, 0);
1835 rb_define_method(rb_cRandom, "initialize_copy", rand_mt_copy, 1);
1836 rb_define_private_method(rb_cRandom, "marshal_dump", rand_mt_dump, 0);
1837 rb_define_private_method(rb_cRandom, "marshal_load", rand_mt_load, 1);
1838 rb_define_private_method(rb_cRandom, "state", rand_mt_state, 0);
1839 rb_define_private_method(rb_cRandom, "left", rand_mt_left, 0);
1840 rb_define_method(rb_cRandom, "==", rand_mt_equal, 1);
1842 #if 0 /* for RDoc: it can't handle unnamed base class */
1843 rb_define_method(rb_cRandom, "initialize", random_init, -1);
1844 rb_define_method(rb_cRandom, "rand", random_rand, -1);
1845 rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
1846 rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
1847 #endif
1849 rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
1850 rb_define_singleton_method(rb_cRandom, "rand", random_s_rand, -1);
1851 rb_define_singleton_method(rb_cRandom, "bytes", random_s_bytes, 1);
1852 rb_define_singleton_method(rb_cRandom, "seed", random_s_seed, 0);
1853 rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
1854 rb_define_singleton_method(rb_cRandom, "urandom", random_raw_seed, 1);
1855 rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0);
1856 rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0);
1860 * Generate a random number in the given range as Random does
1862 * prng.random_number #=> 0.5816771641321361
1863 * prng.random_number(1000) #=> 485
1864 * prng.random_number(1..6) #=> 3
1865 * prng.rand #=> 0.5816771641321361
1866 * prng.rand(1000) #=> 485
1867 * prng.rand(1..6) #=> 3
1869 VALUE m = rb_define_module_under(rb_cRandom, "Formatter");
1870 rb_include_module(base, m);
1871 rb_extend_object(base, m);
1872 rb_define_method(m, "random_number", rand_random_number, -1);
1873 rb_define_method(m, "rand", rand_random_number, -1);
1876 default_rand_key = rb_ractor_local_storage_ptr_newkey(&default_rand_key_storage_type);
1879 #undef rb_intern
1880 void
1881 Init_Random(void)
1883 id_rand = rb_intern("rand");
1884 id_bytes = rb_intern("bytes");
1886 InitVM(Random);