
1

Life with Adeos
Philippe Gerum

Revision B

Copyright © 2005

Copyright © 2005 Philippe Gerum

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is published on
gnu.org: "GNU Free Documentation License" [http://www.gnu.org/licenses/
fdl.html].

10/09/2005

Abstract

This article gives an overview of the Adeos technology and what it provides to
Xenomai. After an introduction addressing the event pipeline, the implementation
of interrupts dispatching as well as the system event propagation, we will then study
the interactions between Xenomai and Adeos. The notions of primary and secondary
domains will be explained and we will also be interested in studying how interrupts
get propagated. We will finally conclude on a few tips and tricks to disable/enable
interrupts sources and to share interrupts between domains.

Table of Contents
1. What is Adeos .............................................................................................. 2

1.1. The event pipeline ..............................................................................  2
1.2. Optimistic interrupt protection ..............................................................  4
1.3. System-event propagation ....................................................................  6

2. What does Adeos provide to Xenomai? .............................................................  6
2.1. Xenomai's primary and secondary domains .............................................. 7
2.2. System call interception .....................................................................  10
2.3. Interrupt propagation .........................................................................  11

3. Tips and tricks ............................................................................................  11
3.1. Enabling/Disabling interrupt sources .....................................................  11
3.2. Sharing interrupts between domains .....................................................  12
3.3. Interrupt sharing and latency ...............................................................  13

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html


Life with Adeos

2

4. Conclusion .................................................................................................  14
5. Useful links ................................................................................................ 14

1. What is Adeos
Adeos is a resource virtualization layer available as a Linux kernel patch, which general
design has been proposed by Karim Yaghmour in a technical paper, back in 2001.

The current incarnation of this proposal makes it a simple, yet efficient real-time system
enabler, providing a mean to run a regular GNU/Linux environment and a RTOS, side-by-
side on the same hardware.

To this end, Adeos enables multiple entities — called domains — to exist simultaneously
on the same machine. These domains do not necessarily see each other, but all of them
see Adeos. A domain is most probably a complete OS, but there is no assumption being
made regarding the sophistication of what is in a domain. However, all domains are likely
to compete for processing external events (e.g. interrupts) or internal ones (e.g. traps,
exceptions), according to the system-wide priority they have been given.

Additionally to its straightforward virtualization capabilities, another key advantage of
Adeos relies in its ability to export a generic API to client domains, which does not depend
on the CPU architecture. Therefore, much if not most of the porting effort for client domains
occurs at the Adeos level.

1.1. The event pipeline
The fundamental Adeos structure one must keep in mind is the chain of client domains asking
for event control. A domain is a kernel-based software component which can ask the Adeos
layer to be notified of:

• Every incoming external interrupt, or auto-generated virtual interrupt;

• Every system call issued by Linux applications,

• Other system events triggered by the kernel code (e.g. Linux task switching, signal
notification, Linux task exits etc.)

Adeos ensures that events are dispatched in an orderly manner to the various client domains
according to their respective priority in the system, so it is possible to provide for timely
and predictable delivery of such events. This is achieved by assigning each domain a static
priority. This priority value strictly defines the delivery order of events to the domains.
All active domains are queued according to their respective priority, forming the pipeline
abstraction used by Adeos to make the events flow, from the highest to the lowest priority



Life with Adeos

3

domain. Incoming events (including interrupts) are pushed to the head of the pipeline (i.e. to
the highest priority domain) and progress down to its tail (i.e. to the lowest priority domain).
The figure below gives a general view of some Adeos-based system, where multiple domains
are sharing events through the pipeline abstraction:

Event pipeline representation

In the figure above, the position of the Linux kernel with respect to the pipelining order might
be anywhere; this said, the Linux kernel still has a special role since it stands for the root



Life with Adeos

4

domain, because all other domains need Linux to install them, usually by mean of loading
the kernel modules which embody them.

1.2. Optimistic interrupt protection

In order to dispatch interrupts in an prioritized manner, while still allowing domains to
create interrupt-free sections, Adeos implements the so-called Optimistic interrupt protection
scheme as described by Stodolsky, Chen, and Bershad, in the following paper. [http://
citeseer.nj.nec.com/stodolsky93fast.html]

The stage of the pipeline occupied by any given domain can be stalled, which means that the
next incoming interrupt will not be delivered to the domain's handler, and will be prevented
from flowing down to the lowest priority domain(s) in the same move. While a stage is
stalled, pending interrupts accumulate in the domain's interrupt log, and eventually get played
when the stage is unstalled, by an internal operation called synchronization. Domains use this
feature to protect their own critical sections from unwanted preemption by their own interrupt
handlers. However, thanks to the virtualization of the interrupt control Adeos brings, a
higher priority domain can still receive interrupts, and eventually preempt any lower priority
domain. Practically, this means that, albeit an Adeos-enabled Linux kernel regularly stalls
its own stage to perform critical operations, a real-time system running ahead of it in the
pipeline would still be able to receive interrupts any time, with no incurred delay.

When a domain has finished processing all the pending interrupts it has received, it then calls
a special Adeos service which yields the CPU to the next domain down the pipeline, so the
latter can process in turn the pending events it has been notified of, and this cycle continues
down to the lowest priority domain of the pipeline.

The figure below illustrates how several domains running on mutiple CPUs can share the
incoming interrupts through the Adeos pipeline abstraction. Of course, a correct book-
keeping of pending interrupts must be done while a stage is stalled: this is achieved by a per-
domain, per-CPU interrupt log, as illustrated below:

http://citeseer.nj.nec.com/stodolsky93fast.html
http://citeseer.nj.nec.com/stodolsky93fast.html
http://citeseer.nj.nec.com/stodolsky93fast.html


Life with Adeos

5

The optimistic interrupt protection scheme



Life with Adeos

6

1.3. System-event propagation

Interrupts are not the only kind of events which can flow through the pipeline abstraction;
internal events triggered by the Linux kernel itself or its applications can generate what
is called system events. Basically, system events are synchronous notifications of trap,
exception, or some action performed by the Linux kernel, and which gets notified to any
interested parties through the pipeline.

Since those events are synchronous by essence, there is no way to defer their notification
through the stall operation, just because you cannot delay their handling. The rationale behind
such design decision comes from the fact that a code triggering a system event might just
not be able to continue without immediate intervention from the corresponding handler: e.g.
the page fault handler must run immediately upon memory addressing exception, delaying
it makes no sense. In other words, stall/unstall operations on any given domain only concern
interrupts, either real or virtual.

2. What does Adeos provide to Xenomai?
Conversely, this question could also be: what basic guarantees does Xenomai need to provide
real-time services? The answer is simple and straightforward: it must be allowed to handle
all incoming interrupts first, before the Linux kernel has had the opportunity to notice them,
and it must be able to handle them immediately, regardless of any current attempt from the
Linux kernel to lock them out using the CPU interrupt mask. It must also make sure to always
enforce the proper priority management for its threads, regardless of their current execution
domain.

These guarantees give Xenomai predictable interrupt latencies in the lowest micro-second
level range whatever activity Linux is undergoing, which once coupled with Xenomai's fast
co-scheduling technique of Linux tasks (i.e. shadow threading), provide for deterministic
scheduling latencies of real-time threads. The figure below illustrates the position of the
Adeos layer in the Xenomai architecture:



Life with Adeos

7

Position of Adeos in the Xenomai architecture

You will notice that the Adeos interface is directly exposed to the Hardware Abstraction
Layer which underlies the Xenomai core. Therefore, most of the requests for Adeos services
are issued from the HAL, which implementation can be found in the relevant arch/
<archname>/hal directories, the generic bits being available under arch/generic/
hal. Having a look at the latter is the best approach to understand howXenomai makes use
of Adeos for its own purposes.

2.1. Xenomai's primary and secondary domains
Xenomai allows to run real-time threads either strictly in kernel space, or within the address
space of a Linux process. In the rest of this article, we will refer to the latter as the
Xenomai threads, not to be confused with regular Linux tasks (even when they belong to



Life with Adeos

8

the SCHED_FIFO class). All threads managed by Xenomai are known from the real-time
nucleus.

Support for real-time threads exclusively running in kernel space is a reminiscence of the
mere co-kernel era, before the advent of true real-time support in user-space, when real-time
applications would only run embodied into kernel modules; this feature has been kept in
Xenomai mainly for the purpose of supporting legacy applications, and won't be discussed
here.

What is more interesting is that Xenomai has a symbiotic approach with respect to Linux;
this is, for instance, what makes it different from the RTAI/LXRT implementation. To this
end, Xenomai threads are not only able to run over the context of the highest priority domain
in the pipeline (i.e. the primary domain) like kernel-based Xenomai threads, but also in the
regular Linux space (i.e. the secondary domain), while still being considered as real-time
by Xenomai, albeit suffering higher scheduling latencies. In Xenomai's jargon, the former
are said to run in primary execution mode, whilst the latter undergo the secondary execution
mode.

In order to provide a complete real-time support to threads running in the secondary domain,
Xenomai needs the following to be achieved:

• Common priority scheme. Scheduling-wise, we need a way to have both the real- time
nucleus and the Linux kernel share the same priority scheme with respect to the set
of threads they share the control of; in other words, a Xenomai thread should have
its priority properly enforced at any time, regardless of its current domain, among all
existing Xenomai threads. Xenomai applies what it calls the root thread's mutable priority
technique, by which the Linux kernel automatically inherits the priority of the Xenomai
thread controlled by the real-time nucleus which happens to enter the secondary domain.
Practically, this means that Xenomai threads currently running in the primary domain
won't necessarily preempt those running in the secondary one, unless their effective
priority is actually higher. The above behaviour is to be opposed to what happens with
RTAI/LXRT for instance, where threads migrating to the Linux space actually lose their
real-time priority in the same move, by inheriting the lowest priority defined by the RTAI
scheduler. This said, regular Linux tasks unknown to Xenomai, and which only happen to
belong to the SCHED_FIFO class, will always be preempted when competing for the CPU
with Xenomai threads from the primary Xenomai domain, albeit they will still compete
priority-wise with Xenomai threads running in the secondary domain.

• Predictability of program execution times. When a Xenomai thread runs over the Linux
(i.e. secondary) domain, either executing kernel or application code, its timing should not
be perturbated by non real-time Linux interrupt activities, and generally speaking, by any,
low priority, asynchronous activity occurring at kernel level. A simple way to prevent most
opportunities for the latter to happen is to starve the Linux kernel from interrupts when
a Xenomai thread is running in the Linux domain, so that no deferred post-processing



Life with Adeos

9

could be triggered from top-halves interrupt handlers during this period of time. A simple
way to starve the Linux kernel from interrupts is to block them when needed inside an
intermediate Adeos domain, sitting between those occupied by the real-time nucleus and
the Linux kernel, which is called the interrupt shield in Xenomai's jargon. This shield is
engaged whenever a Xenomai thread is scheduled in by the Linux kernel, and disengaged
in all other cases. It should be noted that the shielding support can be enabled/disabled
on a per-thread basis, or on a system-wide basis at Xenomai build time; by default, it is
disabled for Xenomai threads and not built in.

• Fine-grained Linux kernel. In order to get the best from the secondary execution mode,
we need the Linux kernel to exhibit the shortest possible non-preemptible section, so that
rescheduling opportunities are taken as soon as possible after a Xenomai thread running
in the secondary domain becomes ready-to-run. Additionally, this ensures that Xenomai
threads can migrate from the primary to the secondary domain within a short and time-
bounded period of time, since this operation involves reaching a kernel rescheduling point.
For this reason, Xenomai benefits from the continuous trend of improvements regarding
the overall preemptibility of the Linux kernel, including Ingo Molnar's PREEMPT_RT
extension. Of course, Xenomai threads which only run in the primary domain are not
impacted by the level of granularity of the Linux kernel, and always benefit from ultra-
low and bounded latencies, since they do not need to synchonize in any way with the
undergoing Linux operations, which they actually always preempt unconditionally.

• Priority inversion management. Both the real-time nucleus and the Linux kernel should
handle the case where a high priority thread is kept from running because a low priority one
holds a contended resource for a possibly unbounded amount of time. Xenomai provides
this support, but only the PREEMPT_RT variant does so for the Linux kernel. For this
reason, Xenomai keeps an eye and provides support for the current developments of
PREEMPT_RT, albeit the mainline kernel still remains the system of reference for now.

As a consequence of the requirements above, when the Xenomai core is loaded, the
underlying Adeos pipeline contains three stages, through which all interrupts are flowing,
by order of priority:

• Xenomai's primary domain, which is the home of the real-time nucleus;

• The interrupt shield domain;

• The Linux domain.



Life with Adeos

10

The three stages of the Adeos pipeline

2.2. System call interception
Since real-time APIs (i.e. skins) which are stackable over the Xenomai nucleus, can
export their own set of services to Xenomai threads in user-space, there must be a way
to properly dispatch the corresponding system calls, and the regular Linux kernel system
calls altogether, to the proper handlers. To this end, Xenomai intercepts every system
call trap/exception issued on behalf of any of the Xenomai or Linux domains by the
Xenomai threads. This is made possible by subscribing an event handler using the proper
Adeos service (for more on this, see the adeos_catch_event() service, when specifying the
ADEOS_SYSCALL_PROLOGUE/IPIPE_EVENT_SYSCALL event). Xenomai uses this
capability to:

• Dispatch the real-time services requests from applications to the proper system call
handlers, which are implemented by the various APIs running over the real-time nucleus;

• Ensure that every system call is performed under the control of the proper domain, either
Xenomai or Linux, by migrating the caller seamlessly to the target domain as required.
For instance, a Linux system call issued from a Xenomai thread running in the Xenomai
domain will cause the automatic migration of the caller to the Linux domain, before the
request is relayed to the regular Linux system call handler. Conversely, a Xenomai thread
which invokes a possibly blocking Xenomai system call will be moved to the Xenomai



Life with Adeos

11

domain before the service is eventually performed, so that the caller may sleep under the
control of the real-time nucleus.

The combination of both makes Xenomai threads particularly well integrated into the
Linux realm. For instance, a common system call path for Xenomai and the regular Linux
applications makes the former appear as a natural extension of the latter. As an illustration
of this, Xenomai threads both support the full Linux signals semantics and ptracing feature,
which in turn enables the GDB support natively for them.

2.3. Interrupt propagation
Because it is ahead in the pipeline, the real-time nucleus which lives in the Xenomai domain
is first notified of any incoming interrupt of interest, processes it, then marks such interrupt
to be passed down the pipeline, eventually to the Linux kernel domain, if needed.

When notified from an incoming interrupt, the real-time nucleus reschedules after the outer
interrupt handler has returned (in case interrupts are piling up), and switches in the highest
priority runnable thread it controls.

The Xenomai domain yields the CPU to the interrupt shield domain when no real-time
activity is pending, which in turn let them through whenever it is disengaged to the Linux
kernel, or block them if engaged. Adeos has two basic propagation modes for interrupts
through the pipeline:

• In the implicit mode, any incoming interrupt is automatically marked as pending by Adeos
into each and every receiving domain's log accepting the interrupt source.

• In the explicit mode, an interrupt must be propagated "manually" if needed by the interrupt
handler to the neighbour domain down the pipeline.

This setting is defined on a per-domain, per-interrupt basis. Xenomai always uses the explicit
mode for all interrupts it intercepts. This means that each handler must call the explicit
propagation service to pass an incoming interrupt down the pipeline. When no handler is
defined for a given interrupt by Xenomai, the interrupt is unconditionally propagated down
to the Linux kernel: this keeps the system working when the real-time nucleus does not
intercept such interrupt.

3. Tips and tricks

3.1. Enabling/Disabling interrupt sources
In addition to being able to stall a domain entirely so that no interrupt could flow through it
anymore until it is explicitly unstalled, Adeos allows to selectively disable, and conversely
re-enable, the actual source of interrupts, at hardware level.



Life with Adeos

12

After having taken over the box, Adeos handles the interrupt disabling requests for all
domains, including for the Linux kernel and the real-time nucleus. This means disabling the
interrupt source at the hardware PIC level, and locking out any interrupt delivery from this
source to the current domain at the pipeline level. Conversely, enabling interrupts means
reactivating the interrupt source at the PIC level, and allowing further delivery from this
source to the current domain. Therefore, a domain enabling an interrupt source must be the
same as the one which disabled it, because such operation is domain-dependent.

Practically, this means that, when used in pair, the rthal_irq_disable() and
rthal_irq_enable() services which encapsulate the relevant Adeos calls inside the
real-time HAL underlying Xenomai, must be issued from the same Adeos domain. For
instance, if a real-time interrupt handler connected to some interrupt source using the
rthal_irq_request() service, disables the source using rthal_irq_disable(), then such
source will be blocked for the Xenomai domain until rthal_irq_enable() is called for
the same interrupt, and from the same domain. Failing to deal with this requirement usually
leads to the permanent loss of the affected interrupt channel.

3.2. Sharing interrupts between domains
A typical example of mis-using the Adeos pipeline when sharing hardware interrupts
between domains is as follows:

void realtime_eth_handler (unsigned irq, void *cookie) 
{ 
    /* 
     * This interrupt handler has been installed using 
     * rthal_irq_request(), so it will always be invoked on behalf of 
     * the Xenomai (primary) domain. 
     */ 

    rthal_irq_disable(irq); 
    /* The Xenomai domain won't receive this irq anymore */
    
    rthal_irq_host_pend(irq); 
    /* This irq has been marked as pending for Linux */ 
}

void linux_eth_handler (int irq, void *dev_id, struct pt_regs *regs) 
{ 
    /* 
     * This interrupt handler has been installed using 
     * rthal_irq_host_request(), so it will always be invoked on 
     * behalf of the Linux (secondary) domain, as a shared interrupt 



Life with Adeos

13

     * handler (Linux-wise). 
     */ 
    rthal_irq_enable(irq); 
    
    /* 
     * BUG: This won't work as expected: we are only unlocking the 
     * interrupt source for the Linux domain which is current here, 
     * not for the Xenomai domain! 
     */ 
      

In the non-working example above, since Xenomai always uses the explicit propagation
mode for all interrupts it intercepts, the next ethernet interrupt will be marked as pending in
the Xenomai log only, waiting for the Xenomai handler to possibly propagate it manually
down to Linux. But since the interrupt is still locked at pipeline level for Xenomai (remember
that nobody actually issued the expected rthal_irq_enable() from the Xenomai
domain, but only mistakenly from the Linux one), this won't happen, because the Xenomai
handler won't run until the lock is removed. Therefore, well, chickenandegg problem: we
are toast.

Fortunately, there is a solution for sharing interrupts properly, between domains which need
to keep the interrupt source disabled until the final processing is done (e.g. dealing with
level-triggered interrupts is one of those issues): actually, you don't need to do anything,
because Adeos already masks any incoming interrupts at PIC level before feeding the
pipeline with it. Therefore, you only need to process the interrupt as you see fit in the relevant
domain handler, and make sure to re-enable the interrupt source from the last one using
rthal_irq_enable(). Whenever the Linux kernel is one of those recipients, the regular
kernel handler will do this re-enabling automatically, so basically, you just need to bother
calling rthal_irq_enable() in handlers which don't propagate the incoming interrupts
downstream to the Linux kernel.

Specifically on the x86 architecture, it happens that the timer interrupt is not being masked
upon receipt by Adeos, for performances reasons. This said, the timer source is not one you
may want to disable in any way, so this is a nonissue.

3.3. Interrupt sharing and latency
However, keeping an interrupt source masked while the propagation takes place through the
entire pipeline may increase the latency.

Since Adeos guarantees that no stack overflow can occur due to interrupts piling up over any
given domain, and because it also stalls the current stage before firing an interrupt handler,
there is no need to disable the interrupt source in the Xenomai handler. Instead you may
even want to re-enable it, so that further occurrences can be immediately logged, and will
get played immediately after the current handler invocation returns.



Life with Adeos

14

So, the solution is to re-write the previous example this way, this time properly:

void realtime_eth_handler (unsigned irq, void *cookie) 
{ 
    rthal_irq_enable(irq); 
    rthal_irq_host_pend(irq); 
    /* This irq has been marked as pending for Linux */ 
}

void linux_eth_handler (int irq, void *dev_id, struct pt_regs *regs) 
{ 
    /* process the IRQ normally. */ 
} 
      

4. Conclusion
Adeos is a rather simple piece of code, with very interesting properties when used properly.
The backbone of the Adeos scheme is the event pipeline, and as such, it brings all the critical
features we need in Xenomai:

• Predictable interrupt latencies;

• Precise interrupt virtualization control (per-domain and per-interrupt handler registration,
per-domain and per-cpu interrupt masking);

• Uniform, prioritized and domain-oriented propagation scheme for events;

• A generic and straightforward API to ease portability of client code.

Xenomai uses these features to seek the best possible integration of the real-time services it
brings with the Linux kernel. Xenomai's primary mode delivers true real-time performances
in the lowest micro-second latency range. Additionally, Xenomai bets on future evolutions of
Linux, like PREEMPT_RT, to improve the kernel's overall granularity, so that the secondary
mode will still be real-time in the deterministic sense, with bounded albeit higher worst-case
latencies. This is the reason why Xenomai is working hard since day one to reach a tight
integration level with the Linux kernel. Think symbiotic, seek mutualism.

5. Useful links
• Karim Yaghmour's Adeos proposal: http://www.opersys.com/ftp/pub/Adeos/adeos.pdf

• Optimistic Interrupt Protection: http://citeseer.nj.nec.com/stodolsky93fast.html

http://www.opersys.com/ftp/pub/Adeos/adeos.pdf
http://citeseer.nj.nec.com/stodolsky93fast.html


Life with Adeos

15

• The Adeos project workspace on GNA: https://gna.org/projects/adeos/

• Where to download the latest Adeos patches: http://download.gna.org/adeos/patches/

• The Adeos API reference manual: http://home.gna.org/adeos/doc/api/globals.html

https://gna.org/projects/adeos/
http://download.gna.org/adeos/patches/
http://home.gna.org/adeos/doc/api/globals.html

	Life with Adeos
	Table of Contents
	1. What is Adeos
	1.1. The event pipeline
	1.2. Optimistic interrupt protection
	1.3. System-event propagation

	2. What does Adeos provide to Xenomai?
	2.1. Xenomai's primary and secondary domains
	2.2. System call interception
	2.3. Interrupt propagation

	3. Tips and tricks
	3.1. Enabling/Disabling interrupt sources
	3.2. Sharing interrupts between domains
	3.3. Interrupt sharing and latency

	4. Conclusion
	5. Useful links

