Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[wrt350n-kernel.git] / fs / efs / super.c
blobc3f1ffb9992bd00806b4ec010c75c437b4576c93
1 /*
2 * super.c
4 * Copyright (c) 1999 Al Smith
6 * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7 */
9 #include <linux/init.h>
10 #include <linux/module.h>
11 <<<<<<< HEAD:fs/efs/super.c
12 #include <linux/efs_fs.h>
13 #include <linux/efs_vh.h>
14 #include <linux/efs_fs_sb.h>
15 =======
16 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/efs/super.c
17 #include <linux/exportfs.h>
18 #include <linux/slab.h>
19 #include <linux/buffer_head.h>
20 #include <linux/vfs.h>
22 <<<<<<< HEAD:fs/efs/super.c
23 =======
24 #include "efs.h"
25 #include <linux/efs_vh.h>
26 #include <linux/efs_fs_sb.h>
28 >>>>>>> 264e3e889d86e552b4191d69bb60f4f3b383135a:fs/efs/super.c
29 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
30 static int efs_fill_super(struct super_block *s, void *d, int silent);
32 static int efs_get_sb(struct file_system_type *fs_type,
33 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
35 return get_sb_bdev(fs_type, flags, dev_name, data, efs_fill_super, mnt);
38 static struct file_system_type efs_fs_type = {
39 .owner = THIS_MODULE,
40 .name = "efs",
41 .get_sb = efs_get_sb,
42 .kill_sb = kill_block_super,
43 .fs_flags = FS_REQUIRES_DEV,
46 static struct pt_types sgi_pt_types[] = {
47 {0x00, "SGI vh"},
48 {0x01, "SGI trkrepl"},
49 {0x02, "SGI secrepl"},
50 {0x03, "SGI raw"},
51 {0x04, "SGI bsd"},
52 {SGI_SYSV, "SGI sysv"},
53 {0x06, "SGI vol"},
54 {SGI_EFS, "SGI efs"},
55 {0x08, "SGI lv"},
56 {0x09, "SGI rlv"},
57 {0x0A, "SGI xfs"},
58 {0x0B, "SGI xfslog"},
59 {0x0C, "SGI xlv"},
60 {0x82, "Linux swap"},
61 {0x83, "Linux native"},
62 {0, NULL}
66 static struct kmem_cache * efs_inode_cachep;
68 static struct inode *efs_alloc_inode(struct super_block *sb)
70 struct efs_inode_info *ei;
71 ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
72 if (!ei)
73 return NULL;
74 return &ei->vfs_inode;
77 static void efs_destroy_inode(struct inode *inode)
79 kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
82 static void init_once(struct kmem_cache *cachep, void *foo)
84 struct efs_inode_info *ei = (struct efs_inode_info *) foo;
86 inode_init_once(&ei->vfs_inode);
89 static int init_inodecache(void)
91 efs_inode_cachep = kmem_cache_create("efs_inode_cache",
92 sizeof(struct efs_inode_info),
93 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
94 init_once);
95 if (efs_inode_cachep == NULL)
96 return -ENOMEM;
97 return 0;
100 static void destroy_inodecache(void)
102 kmem_cache_destroy(efs_inode_cachep);
105 static void efs_put_super(struct super_block *s)
107 kfree(s->s_fs_info);
108 s->s_fs_info = NULL;
111 static int efs_remount(struct super_block *sb, int *flags, char *data)
113 *flags |= MS_RDONLY;
114 return 0;
117 static const struct super_operations efs_superblock_operations = {
118 .alloc_inode = efs_alloc_inode,
119 .destroy_inode = efs_destroy_inode,
120 .put_super = efs_put_super,
121 .statfs = efs_statfs,
122 .remount_fs = efs_remount,
125 static const struct export_operations efs_export_ops = {
126 .fh_to_dentry = efs_fh_to_dentry,
127 .fh_to_parent = efs_fh_to_parent,
128 .get_parent = efs_get_parent,
131 static int __init init_efs_fs(void) {
132 int err;
133 printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
134 err = init_inodecache();
135 if (err)
136 goto out1;
137 err = register_filesystem(&efs_fs_type);
138 if (err)
139 goto out;
140 return 0;
141 out:
142 destroy_inodecache();
143 out1:
144 return err;
147 static void __exit exit_efs_fs(void) {
148 unregister_filesystem(&efs_fs_type);
149 destroy_inodecache();
152 module_init(init_efs_fs)
153 module_exit(exit_efs_fs)
155 static efs_block_t efs_validate_vh(struct volume_header *vh) {
156 int i;
157 __be32 cs, *ui;
158 int csum;
159 efs_block_t sblock = 0; /* shuts up gcc */
160 struct pt_types *pt_entry;
161 int pt_type, slice = -1;
163 if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
165 * assume that we're dealing with a partition and allow
166 * read_super() to try and detect a valid superblock
167 * on the next block.
169 return 0;
172 ui = ((__be32 *) (vh + 1)) - 1;
173 for(csum = 0; ui >= ((__be32 *) vh);) {
174 cs = *ui--;
175 csum += be32_to_cpu(cs);
177 if (csum) {
178 printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
179 return 0;
182 #ifdef DEBUG
183 printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
185 for(i = 0; i < NVDIR; i++) {
186 int j;
187 char name[VDNAMESIZE+1];
189 for(j = 0; j < VDNAMESIZE; j++) {
190 name[j] = vh->vh_vd[i].vd_name[j];
192 name[j] = (char) 0;
194 if (name[0]) {
195 printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
196 name,
197 (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
198 (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
201 #endif
203 for(i = 0; i < NPARTAB; i++) {
204 pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
205 for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
206 if (pt_type == pt_entry->pt_type) break;
208 #ifdef DEBUG
209 if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
210 printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
212 (int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
213 (int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
214 pt_type,
215 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
217 #endif
218 if (IS_EFS(pt_type)) {
219 sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
220 slice = i;
224 if (slice == -1) {
225 printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
226 #ifdef DEBUG
227 } else {
228 printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
229 slice,
230 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
231 sblock);
232 #endif
234 return sblock;
237 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
239 if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
240 return -1;
242 sb->fs_magic = be32_to_cpu(super->fs_magic);
243 sb->total_blocks = be32_to_cpu(super->fs_size);
244 sb->first_block = be32_to_cpu(super->fs_firstcg);
245 sb->group_size = be32_to_cpu(super->fs_cgfsize);
246 sb->data_free = be32_to_cpu(super->fs_tfree);
247 sb->inode_free = be32_to_cpu(super->fs_tinode);
248 sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
249 sb->total_groups = be16_to_cpu(super->fs_ncg);
251 return 0;
254 static int efs_fill_super(struct super_block *s, void *d, int silent)
256 struct efs_sb_info *sb;
257 struct buffer_head *bh;
258 struct inode *root;
259 int ret = -EINVAL;
261 sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
262 if (!sb)
263 return -ENOMEM;
264 s->s_fs_info = sb;
266 s->s_magic = EFS_SUPER_MAGIC;
267 if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
268 printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
269 EFS_BLOCKSIZE);
270 goto out_no_fs_ul;
273 /* read the vh (volume header) block */
274 bh = sb_bread(s, 0);
276 if (!bh) {
277 printk(KERN_ERR "EFS: cannot read volume header\n");
278 goto out_no_fs_ul;
282 * if this returns zero then we didn't find any partition table.
283 * this isn't (yet) an error - just assume for the moment that
284 * the device is valid and go on to search for a superblock.
286 sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
287 brelse(bh);
289 if (sb->fs_start == -1) {
290 goto out_no_fs_ul;
293 bh = sb_bread(s, sb->fs_start + EFS_SUPER);
294 if (!bh) {
295 printk(KERN_ERR "EFS: cannot read superblock\n");
296 goto out_no_fs_ul;
299 if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
300 #ifdef DEBUG
301 printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
302 #endif
303 brelse(bh);
304 goto out_no_fs_ul;
306 brelse(bh);
308 if (!(s->s_flags & MS_RDONLY)) {
309 #ifdef DEBUG
310 printk(KERN_INFO "EFS: forcing read-only mode\n");
311 #endif
312 s->s_flags |= MS_RDONLY;
314 s->s_op = &efs_superblock_operations;
315 s->s_export_op = &efs_export_ops;
316 root = efs_iget(s, EFS_ROOTINODE);
317 if (IS_ERR(root)) {
318 printk(KERN_ERR "EFS: get root inode failed\n");
319 ret = PTR_ERR(root);
320 goto out_no_fs;
323 s->s_root = d_alloc_root(root);
324 if (!(s->s_root)) {
325 printk(KERN_ERR "EFS: get root dentry failed\n");
326 iput(root);
327 ret = -ENOMEM;
328 goto out_no_fs;
331 return 0;
333 out_no_fs_ul:
334 out_no_fs:
335 s->s_fs_info = NULL;
336 kfree(sb);
337 return ret;
340 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
341 struct efs_sb_info *sb = SUPER_INFO(dentry->d_sb);
343 buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
344 buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
345 buf->f_blocks = sb->total_groups * /* total data blocks */
346 (sb->group_size - sb->inode_blocks);
347 buf->f_bfree = sb->data_free; /* free data blocks */
348 buf->f_bavail = sb->data_free; /* free blocks for non-root */
349 buf->f_files = sb->total_groups * /* total inodes */
350 sb->inode_blocks *
351 (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
352 buf->f_ffree = sb->inode_free; /* free inodes */
353 buf->f_fsid.val[0] = (sb->fs_magic >> 16) & 0xffff; /* fs ID */
354 buf->f_fsid.val[1] = sb->fs_magic & 0xffff; /* fs ID */
355 buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */
357 return 0;