include/mscvpdb.h: Use flexible array members for the rest of structures.
[wine.git] / libs / lcms2 / src / cmsgamma.c
blobcb0abd45db203f489b8c9cf0a2f6a76409fd3ac9
1 //---------------------------------------------------------------------------------
2 //
3 // Little Color Management System
4 // Copyright (c) 1998-2023 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 //---------------------------------------------------------------------------------
26 #include "lcms2_internal.h"
28 // Tone curves are powerful constructs that can contain curves specified in diverse ways.
29 // The curve is stored in segments, where each segment can be sampled or specified by parameters.
30 // a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation,
31 // each segment is evaluated separately. Plug-ins may be used to define new parametric schemes,
32 // each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function,
33 // the plug-in should provide the type id, how many parameters each type has, and a pointer to
34 // a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will
35 // be called with the type id as a negative value, and a sampled version of the reversed curve
36 // will be built.
38 // ----------------------------------------------------------------- Implementation
39 // Maxim number of nodes
40 #define MAX_NODES_IN_CURVE 4097
41 #define MINUS_INF (-1E22F)
42 #define PLUS_INF (+1E22F)
44 // The list of supported parametric curves
45 typedef struct _cmsParametricCurvesCollection_st {
47 cmsUInt32Number nFunctions; // Number of supported functions in this chunk
48 cmsInt32Number FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN]; // The identification types
49 cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN]; // Number of parameters for each function
51 cmsParametricCurveEvaluator Evaluator; // The evaluator
53 struct _cmsParametricCurvesCollection_st* Next; // Next in list
55 } _cmsParametricCurvesCollection;
57 // This is the default (built-in) evaluator
58 static cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R);
60 // The built-in list
61 static _cmsParametricCurvesCollection DefaultCurves = {
62 10, // # of curve types
63 { 1, 2, 3, 4, 5, 6, 7, 8, 108, 109 }, // Parametric curve ID
64 { 1, 3, 4, 5, 7, 4, 5, 5, 1, 1 }, // Parameters by type
65 DefaultEvalParametricFn, // Evaluator
66 NULL // Next in chain
69 // Duplicates the zone of memory used by the plug-in in the new context
70 static
71 void DupPluginCurvesList(struct _cmsContext_struct* ctx,
72 const struct _cmsContext_struct* src)
74 _cmsCurvesPluginChunkType newHead = { NULL };
75 _cmsParametricCurvesCollection* entry;
76 _cmsParametricCurvesCollection* Anterior = NULL;
77 _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin];
79 _cmsAssert(head != NULL);
81 // Walk the list copying all nodes
82 for (entry = head->ParametricCurves;
83 entry != NULL;
84 entry = entry ->Next) {
86 _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection));
88 if (newEntry == NULL)
89 return;
91 // We want to keep the linked list order, so this is a little bit tricky
92 newEntry -> Next = NULL;
93 if (Anterior)
94 Anterior -> Next = newEntry;
96 Anterior = newEntry;
98 if (newHead.ParametricCurves == NULL)
99 newHead.ParametricCurves = newEntry;
102 ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType));
105 // The allocator have to follow the chain
106 void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx,
107 const struct _cmsContext_struct* src)
109 _cmsAssert(ctx != NULL);
111 if (src != NULL) {
113 // Copy all linked list
114 DupPluginCurvesList(ctx, src);
116 else {
117 static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL };
118 ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType));
123 // The linked list head
124 _cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL };
126 // As a way to install new parametric curves
127 cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data)
129 _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
130 cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data;
131 _cmsParametricCurvesCollection* fl;
133 if (Data == NULL) {
135 ctx -> ParametricCurves = NULL;
136 return TRUE;
139 fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection));
140 if (fl == NULL) return FALSE;
142 // Copy the parameters
143 fl ->Evaluator = Plugin ->Evaluator;
144 fl ->nFunctions = Plugin ->nFunctions;
146 // Make sure no mem overwrites
147 if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN)
148 fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN;
150 // Copy the data
151 memmove(fl->FunctionTypes, Plugin ->FunctionTypes, fl->nFunctions * sizeof(cmsUInt32Number));
152 memmove(fl->ParameterCount, Plugin ->ParameterCount, fl->nFunctions * sizeof(cmsUInt32Number));
154 // Keep linked list
155 fl ->Next = ctx->ParametricCurves;
156 ctx->ParametricCurves = fl;
158 // All is ok
159 return TRUE;
163 // Search in type list, return position or -1 if not found
164 static
165 int IsInSet(int Type, _cmsParametricCurvesCollection* c)
167 int i;
169 for (i=0; i < (int) c ->nFunctions; i++)
170 if (abs(Type) == c ->FunctionTypes[i]) return i;
172 return -1;
176 // Search for the collection which contains a specific type
177 static
178 _cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index)
180 _cmsParametricCurvesCollection* c;
181 int Position;
182 _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin);
184 for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) {
186 Position = IsInSet(Type, c);
188 if (Position != -1) {
189 if (index != NULL)
190 *index = Position;
191 return c;
194 // If none found, revert for defaults
195 for (c = &DefaultCurves; c != NULL; c = c ->Next) {
197 Position = IsInSet(Type, c);
199 if (Position != -1) {
200 if (index != NULL)
201 *index = Position;
202 return c;
206 return NULL;
209 // Low level allocate, which takes care of memory details. nEntries may be zero, and in this case
210 // no optimization curve is computed. nSegments may also be zero in the inverse case, where only the
211 // optimization curve is given. Both features simultaneously is an error
212 static
213 cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries,
214 cmsUInt32Number nSegments, const cmsCurveSegment* Segments,
215 const cmsUInt16Number* Values)
217 cmsToneCurve* p;
218 cmsUInt32Number i;
220 // We allow huge tables, which are then restricted for smoothing operations
221 if (nEntries > 65530) {
222 cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries");
223 return NULL;
226 if (nEntries == 0 && nSegments == 0) {
227 cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table");
228 return NULL;
231 // Allocate all required pointers, etc.
232 p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve));
233 if (!p) return NULL;
235 // In this case, there are no segments
236 if (nSegments == 0) {
237 p ->Segments = NULL;
238 p ->Evals = NULL;
240 else {
241 p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment));
242 if (p ->Segments == NULL) goto Error;
244 p ->Evals = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator));
245 if (p ->Evals == NULL) goto Error;
248 p -> nSegments = nSegments;
250 // This 16-bit table contains a limited precision representation of the whole curve and is kept for
251 // increasing xput on certain operations.
252 if (nEntries == 0) {
253 p ->Table16 = NULL;
255 else {
256 p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number));
257 if (p ->Table16 == NULL) goto Error;
260 p -> nEntries = nEntries;
262 // Initialize members if requested
263 if (Values != NULL && (nEntries > 0)) {
265 for (i=0; i < nEntries; i++)
266 p ->Table16[i] = Values[i];
269 // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it
270 // is placed in advance to maximize performance.
271 if (Segments != NULL && (nSegments > 0)) {
273 _cmsParametricCurvesCollection *c;
275 p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*));
276 if (p ->SegInterp == NULL) goto Error;
278 for (i=0; i < nSegments; i++) {
280 // Type 0 is a special marker for table-based curves
281 if (Segments[i].Type == 0)
282 p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT);
284 memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment));
286 if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL)
287 p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints);
288 else
289 p ->Segments[i].SampledPoints = NULL;
292 c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL);
293 if (c != NULL)
294 p ->Evals[i] = c ->Evaluator;
298 p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS);
299 if (p->InterpParams != NULL)
300 return p;
302 Error:
303 for (i=0; i < nSegments; i++) {
304 if (p ->Segments && p ->Segments[i].SampledPoints) _cmsFree(ContextID, p ->Segments[i].SampledPoints);
305 if (p ->SegInterp && p ->SegInterp[i]) _cmsFree(ContextID, p ->SegInterp[i]);
307 if (p -> SegInterp) _cmsFree(ContextID, p -> SegInterp);
308 if (p -> Segments) _cmsFree(ContextID, p -> Segments);
309 if (p -> Evals) _cmsFree(ContextID, p -> Evals);
310 if (p ->Table16) _cmsFree(ContextID, p ->Table16);
311 _cmsFree(ContextID, p);
312 return NULL;
316 // Generates a sigmoidal function with desired steepness.
317 cmsINLINE double sigmoid_base(double k, double t)
319 return (1.0 / (1.0 + exp(-k * t))) - 0.5;
322 cmsINLINE double inverted_sigmoid_base(double k, double t)
324 return -log((1.0 / (t + 0.5)) - 1.0) / k;
327 cmsINLINE double sigmoid_factory(double k, double t)
329 double correction = 0.5 / sigmoid_base(k, 1);
331 return correction * sigmoid_base(k, 2.0 * t - 1.0) + 0.5;
334 cmsINLINE double inverse_sigmoid_factory(double k, double t)
336 double correction = 0.5 / sigmoid_base(k, 1);
338 return (inverted_sigmoid_base(k, (t - 0.5) / correction) + 1.0) / 2.0;
342 // Parametric Fn using floating point
343 static
344 cmsFloat64Number DefaultEvalParametricFn(cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R)
346 cmsFloat64Number e, Val, disc;
348 switch (Type) {
350 // X = Y ^ Gamma
351 case 1:
352 if (R < 0) {
354 if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
355 Val = R;
356 else
357 Val = 0;
359 else
360 Val = pow(R, Params[0]);
361 break;
363 // Type 1 Reversed: X = Y ^1/gamma
364 case -1:
365 if (R < 0) {
367 if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE)
368 Val = R;
369 else
370 Val = 0;
372 else
374 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
375 Val = PLUS_INF;
376 else
377 Val = pow(R, 1 / Params[0]);
379 break;
381 // CIE 122-1966
382 // Y = (aX + b)^Gamma | X >= -b/a
383 // Y = 0 | else
384 case 2:
387 if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
389 Val = 0;
391 else
393 disc = -Params[2] / Params[1];
395 if (R >= disc) {
397 e = Params[1] * R + Params[2];
399 if (e > 0)
400 Val = pow(e, Params[0]);
401 else
402 Val = 0;
404 else
405 Val = 0;
408 break;
410 // Type 2 Reversed
411 // X = (Y ^1/g - b) / a
412 case -2:
414 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
415 fabs(Params[1]) < MATRIX_DET_TOLERANCE)
417 Val = 0;
419 else
421 if (R < 0)
422 Val = 0;
423 else
424 Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
426 if (Val < 0)
427 Val = 0;
430 break;
433 // IEC 61966-3
434 // Y = (aX + b)^Gamma + c | X <= -b/a
435 // Y = c | else
436 case 3:
438 if (fabs(Params[1]) < MATRIX_DET_TOLERANCE)
440 Val = 0;
442 else
444 disc = -Params[2] / Params[1];
445 if (disc < 0)
446 disc = 0;
448 if (R >= disc) {
450 e = Params[1] * R + Params[2];
452 if (e > 0)
453 Val = pow(e, Params[0]) + Params[3];
454 else
455 Val = 0;
457 else
458 Val = Params[3];
461 break;
464 // Type 3 reversed
465 // X=((Y-c)^1/g - b)/a | (Y>=c)
466 // X=-b/a | (Y<c)
467 case -3:
469 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
470 fabs(Params[1]) < MATRIX_DET_TOLERANCE)
472 Val = 0;
474 else
476 if (R >= Params[3]) {
478 e = R - Params[3];
480 if (e > 0)
481 Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1];
482 else
483 Val = 0;
485 else {
486 Val = -Params[2] / Params[1];
490 break;
493 // IEC 61966-2.1 (sRGB)
494 // Y = (aX + b)^Gamma | X >= d
495 // Y = cX | X < d
496 case 4:
497 if (R >= Params[4]) {
499 e = Params[1]*R + Params[2];
501 if (e > 0)
502 Val = pow(e, Params[0]);
503 else
504 Val = 0;
506 else
507 Val = R * Params[3];
508 break;
510 // Type 4 reversed
511 // X=((Y^1/g-b)/a) | Y >= (ad+b)^g
512 // X=Y/c | Y< (ad+b)^g
513 case -4:
516 e = Params[1] * Params[4] + Params[2];
517 if (e < 0)
518 disc = 0;
519 else
520 disc = pow(e, Params[0]);
522 if (R >= disc) {
524 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
525 fabs(Params[1]) < MATRIX_DET_TOLERANCE)
527 Val = 0;
529 else
530 Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1];
532 else {
534 if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
535 Val = 0;
536 else
537 Val = R / Params[3];
541 break;
544 // Y = (aX + b)^Gamma + e | X >= d
545 // Y = cX + f | X < d
546 case 5:
547 if (R >= Params[4]) {
549 e = Params[1]*R + Params[2];
551 if (e > 0)
552 Val = pow(e, Params[0]) + Params[5];
553 else
554 Val = Params[5];
556 else
557 Val = R*Params[3] + Params[6];
558 break;
561 // Reversed type 5
562 // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f
563 // X=(Y-f)/c | else
564 case -5:
566 disc = Params[3] * Params[4] + Params[6];
567 if (R >= disc) {
569 e = R - Params[5];
570 if (e < 0)
571 Val = 0;
572 else
574 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
575 fabs(Params[1]) < MATRIX_DET_TOLERANCE)
577 Val = 0;
578 else
579 Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
582 else {
583 if (fabs(Params[3]) < MATRIX_DET_TOLERANCE)
584 Val = 0;
585 else
586 Val = (R - Params[6]) / Params[3];
590 break;
593 // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf
594 // Type 6 is basically identical to type 5 without d
596 // Y = (a * X + b) ^ Gamma + c
597 case 6:
598 e = Params[1]*R + Params[2];
600 // On gamma 1.0, don't clamp
601 if (Params[0] == 1.0) {
602 Val = e + Params[3];
604 else {
605 if (e < 0)
606 Val = Params[3];
607 else
608 Val = pow(e, Params[0]) + Params[3];
610 break;
612 // ((Y - c) ^1/Gamma - b) / a
613 case -6:
615 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
616 fabs(Params[1]) < MATRIX_DET_TOLERANCE)
618 Val = 0;
620 else
622 e = R - Params[3];
623 if (e < 0)
624 Val = 0;
625 else
626 Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1];
629 break;
632 // Y = a * log (b * X^Gamma + c) + d
633 case 7:
635 e = Params[2] * pow(R, Params[0]) + Params[3];
636 if (e <= 0)
637 Val = Params[4];
638 else
639 Val = Params[1]*log10(e) + Params[4];
640 break;
642 // (Y - d) / a = log(b * X ^Gamma + c)
643 // pow(10, (Y-d) / a) = b * X ^Gamma + c
644 // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X
645 case -7:
647 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
648 fabs(Params[1]) < MATRIX_DET_TOLERANCE ||
649 fabs(Params[2]) < MATRIX_DET_TOLERANCE)
651 Val = 0;
653 else
655 Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]);
658 break;
661 //Y = a * b^(c*X+d) + e
662 case 8:
663 Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]);
664 break;
667 // Y = (log((y-e) / a) / log(b) - d ) / c
668 // a=0, b=1, c=2, d=3, e=4,
669 case -8:
671 disc = R - Params[4];
672 if (disc < 0) Val = 0;
673 else
675 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE ||
676 fabs(Params[2]) < MATRIX_DET_TOLERANCE)
678 Val = 0;
680 else
682 Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2];
685 break;
688 // S-Shaped: (1 - (1-x)^1/g)^1/g
689 case 108:
690 if (fabs(Params[0]) < MATRIX_DET_TOLERANCE)
691 Val = 0;
692 else
693 Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]);
694 break;
696 // y = (1 - (1-x)^1/g)^1/g
697 // y^g = (1 - (1-x)^1/g)
698 // 1 - y^g = (1-x)^1/g
699 // (1 - y^g)^g = 1 - x
700 // 1 - (1 - y^g)^g
701 case -108:
702 Val = 1 - pow(1 - pow(R, Params[0]), Params[0]);
703 break;
705 // Sigmoidals
706 case 109:
707 Val = sigmoid_factory(Params[0], R);
708 break;
710 case -109:
711 Val = inverse_sigmoid_factory(Params[0], R);
712 break;
714 default:
715 // Unsupported parametric curve. Should never reach here
716 return 0;
719 return Val;
722 // Evaluate a segmented function for a single value. Return -Inf if no valid segment found .
723 // If fn type is 0, perform an interpolation on the table
724 static
725 cmsFloat64Number EvalSegmentedFn(const cmsToneCurve *g, cmsFloat64Number R)
727 int i;
728 cmsFloat32Number Out32;
729 cmsFloat64Number Out;
731 for (i = (int) g->nSegments - 1; i >= 0; --i) {
733 // Check for domain
734 if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) {
736 // Type == 0 means segment is sampled
737 if (g->Segments[i].Type == 0) {
739 cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0);
741 // Setup the table (TODO: clean that)
742 g->SegInterp[i]->Table = g->Segments[i].SampledPoints;
744 g->SegInterp[i]->Interpolation.LerpFloat(&R1, &Out32, g->SegInterp[i]);
745 Out = (cmsFloat64Number) Out32;
748 else {
749 Out = g->Evals[i](g->Segments[i].Type, g->Segments[i].Params, R);
752 if (isinf(Out))
753 return PLUS_INF;
754 else
756 if (isinf(-Out))
757 return MINUS_INF;
760 return Out;
764 return MINUS_INF;
767 // Access to estimated low-res table
768 cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(const cmsToneCurve* t)
770 _cmsAssert(t != NULL);
771 return t ->nEntries;
774 const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(const cmsToneCurve* t)
776 _cmsAssert(t != NULL);
777 return t ->Table16;
781 // Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the
782 // floating point description empty.
783 cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[])
785 return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values);
788 static
789 cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma)
791 if (fabs(Gamma - 1.0) < 0.001) return 2;
792 return 4096;
796 // Create a segmented gamma, fill the table
797 cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID,
798 cmsUInt32Number nSegments, const cmsCurveSegment Segments[])
800 cmsUInt32Number i;
801 cmsFloat64Number R, Val;
802 cmsToneCurve* g;
803 cmsUInt32Number nGridPoints = 4096;
805 _cmsAssert(Segments != NULL);
807 // Optimizatin for identity curves.
808 if (nSegments == 1 && Segments[0].Type == 1) {
810 nGridPoints = EntriesByGamma(Segments[0].Params[0]);
813 g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL);
814 if (g == NULL) return NULL;
816 // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries
817 // for performance reasons. This table would normally not be used except on 8/16 bits transforms.
818 for (i = 0; i < nGridPoints; i++) {
820 R = (cmsFloat64Number) i / (nGridPoints-1);
822 Val = EvalSegmentedFn(g, R);
824 // Round and saturate
825 g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0);
828 return g;
831 // Use a segmented curve to store the floating point table
832 cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[])
834 cmsCurveSegment Seg[3];
836 // Do some housekeeping
837 if (nEntries == 0 || values == NULL)
838 return NULL;
840 // A segmented tone curve should have function segments in the first and last positions
841 // Initialize segmented curve part up to 0 to constant value = samples[0]
842 Seg[0].x0 = MINUS_INF;
843 Seg[0].x1 = 0;
844 Seg[0].Type = 6;
846 Seg[0].Params[0] = 1;
847 Seg[0].Params[1] = 0;
848 Seg[0].Params[2] = 0;
849 Seg[0].Params[3] = values[0];
850 Seg[0].Params[4] = 0;
852 // From zero to 1
853 Seg[1].x0 = 0;
854 Seg[1].x1 = 1.0;
855 Seg[1].Type = 0;
857 Seg[1].nGridPoints = nEntries;
858 Seg[1].SampledPoints = (cmsFloat32Number*) values;
860 // Final segment is constant = lastsample
861 Seg[2].x0 = 1.0;
862 Seg[2].x1 = PLUS_INF;
863 Seg[2].Type = 6;
865 Seg[2].Params[0] = 1;
866 Seg[2].Params[1] = 0;
867 Seg[2].Params[2] = 0;
868 Seg[2].Params[3] = values[nEntries-1];
869 Seg[2].Params[4] = 0;
872 return cmsBuildSegmentedToneCurve(ContextID, 3, Seg);
875 // Parametric curves
877 // Parameters goes as: Curve, a, b, c, d, e, f
878 // Type is the ICC type +1
879 // if type is negative, then the curve is analytically inverted
880 cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[])
882 cmsCurveSegment Seg0;
883 int Pos = 0;
884 cmsUInt32Number size;
885 _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos);
887 _cmsAssert(Params != NULL);
889 if (c == NULL) {
890 cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d", Type);
891 return NULL;
894 memset(&Seg0, 0, sizeof(Seg0));
896 Seg0.x0 = MINUS_INF;
897 Seg0.x1 = PLUS_INF;
898 Seg0.Type = Type;
900 size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number);
901 memmove(Seg0.Params, Params, size);
903 return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0);
908 // Build a gamma table based on gamma constant
909 cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma)
911 return cmsBuildParametricToneCurve(ContextID, 1, &Gamma);
915 // Free all memory taken by the gamma curve
916 void CMSEXPORT cmsFreeToneCurve(cmsToneCurve* Curve)
918 cmsContext ContextID;
920 if (Curve == NULL) return;
922 ContextID = Curve ->InterpParams->ContextID;
924 _cmsFreeInterpParams(Curve ->InterpParams);
926 if (Curve -> Table16)
927 _cmsFree(ContextID, Curve ->Table16);
929 if (Curve ->Segments) {
931 cmsUInt32Number i;
933 for (i=0; i < Curve ->nSegments; i++) {
935 if (Curve ->Segments[i].SampledPoints) {
936 _cmsFree(ContextID, Curve ->Segments[i].SampledPoints);
939 if (Curve ->SegInterp[i] != 0)
940 _cmsFreeInterpParams(Curve->SegInterp[i]);
943 _cmsFree(ContextID, Curve ->Segments);
944 _cmsFree(ContextID, Curve ->SegInterp);
947 if (Curve -> Evals)
948 _cmsFree(ContextID, Curve -> Evals);
950 _cmsFree(ContextID, Curve);
953 // Utility function, free 3 gamma tables
954 void CMSEXPORT cmsFreeToneCurveTriple(cmsToneCurve* Curve[3])
957 _cmsAssert(Curve != NULL);
959 if (Curve[0] != NULL) cmsFreeToneCurve(Curve[0]);
960 if (Curve[1] != NULL) cmsFreeToneCurve(Curve[1]);
961 if (Curve[2] != NULL) cmsFreeToneCurve(Curve[2]);
963 Curve[0] = Curve[1] = Curve[2] = NULL;
967 // Duplicate a gamma table
968 cmsToneCurve* CMSEXPORT cmsDupToneCurve(const cmsToneCurve* In)
970 if (In == NULL) return NULL;
972 return AllocateToneCurveStruct(In ->InterpParams ->ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16);
975 // Joins two curves for X and Y. Curves should be monotonic.
976 // We want to get
978 // y = Y^-1(X(t))
980 cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID,
981 const cmsToneCurve* X,
982 const cmsToneCurve* Y, cmsUInt32Number nResultingPoints)
984 cmsToneCurve* out = NULL;
985 cmsToneCurve* Yreversed = NULL;
986 cmsFloat32Number t, x;
987 cmsFloat32Number* Res = NULL;
988 cmsUInt32Number i;
991 _cmsAssert(X != NULL);
992 _cmsAssert(Y != NULL);
994 Yreversed = cmsReverseToneCurveEx(nResultingPoints, Y);
995 if (Yreversed == NULL) goto Error;
997 Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number));
998 if (Res == NULL) goto Error;
1000 //Iterate
1001 for (i=0; i < nResultingPoints; i++) {
1003 t = (cmsFloat32Number) i / (cmsFloat32Number)(nResultingPoints-1);
1004 x = cmsEvalToneCurveFloat(X, t);
1005 Res[i] = cmsEvalToneCurveFloat(Yreversed, x);
1008 // Allocate space for output
1009 out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res);
1011 Error:
1013 if (Res != NULL) _cmsFree(ContextID, Res);
1014 if (Yreversed != NULL) cmsFreeToneCurve(Yreversed);
1016 return out;
1021 // Get the surrounding nodes. This is tricky on non-monotonic tables
1022 static
1023 int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p)
1025 int i;
1026 int y0, y1;
1028 // A 1 point table is not allowed
1029 if (p -> Domain[0] < 1) return -1;
1031 // Let's see if ascending or descending.
1032 if (LutTable[0] < LutTable[p ->Domain[0]]) {
1034 // Table is overall ascending
1035 for (i = (int) p->Domain[0] - 1; i >= 0; --i) {
1037 y0 = LutTable[i];
1038 y1 = LutTable[i+1];
1040 if (y0 <= y1) { // Increasing
1041 if (In >= y0 && In <= y1) return i;
1043 else
1044 if (y1 < y0) { // Decreasing
1045 if (In >= y1 && In <= y0) return i;
1049 else {
1050 // Table is overall descending
1051 for (i=0; i < (int) p -> Domain[0]; i++) {
1053 y0 = LutTable[i];
1054 y1 = LutTable[i+1];
1056 if (y0 <= y1) { // Increasing
1057 if (In >= y0 && In <= y1) return i;
1059 else
1060 if (y1 < y0) { // Decreasing
1061 if (In >= y1 && In <= y0) return i;
1066 return -1;
1069 // Reverse a gamma table
1070 cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve)
1072 cmsToneCurve *out;
1073 cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2;
1074 int i, j;
1075 int Ascending;
1077 _cmsAssert(InCurve != NULL);
1079 // Try to reverse it analytically whatever possible
1081 if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 &&
1082 /* InCurve -> Segments[0].Type <= 5 */
1083 GetParametricCurveByType(InCurve ->InterpParams->ContextID, InCurve ->Segments[0].Type, NULL) != NULL) {
1085 return cmsBuildParametricToneCurve(InCurve ->InterpParams->ContextID,
1086 -(InCurve -> Segments[0].Type),
1087 InCurve -> Segments[0].Params);
1090 // Nope, reverse the table.
1091 out = cmsBuildTabulatedToneCurve16(InCurve ->InterpParams->ContextID, nResultSamples, NULL);
1092 if (out == NULL)
1093 return NULL;
1095 // We want to know if this is an ascending or descending table
1096 Ascending = !cmsIsToneCurveDescending(InCurve);
1098 // Iterate across Y axis
1099 for (i=0; i < (int) nResultSamples; i++) {
1101 y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1);
1103 // Find interval in which y is within.
1104 j = GetInterval(y, InCurve->Table16, InCurve->InterpParams);
1105 if (j >= 0) {
1108 // Get limits of interval
1109 x1 = InCurve ->Table16[j];
1110 x2 = InCurve ->Table16[j+1];
1112 y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1);
1113 y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1);
1115 // If collapsed, then use any
1116 if (x1 == x2) {
1118 out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1);
1119 continue;
1121 } else {
1123 // Interpolate
1124 a = (y2 - y1) / (x2 - x1);
1125 b = y2 - a * x2;
1129 out ->Table16[i] = _cmsQuickSaturateWord(a* y + b);
1133 return out;
1136 // Reverse a gamma table
1137 cmsToneCurve* CMSEXPORT cmsReverseToneCurve(const cmsToneCurve* InGamma)
1139 _cmsAssert(InGamma != NULL);
1141 return cmsReverseToneCurveEx(4096, InGamma);
1144 // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite
1145 // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press.
1147 // Smoothing and interpolation with second differences.
1149 // Input: weights (w), data (y): vector from 1 to m.
1150 // Input: smoothing parameter (lambda), length (m).
1151 // Output: smoothed vector (z): vector from 1 to m.
1153 static
1154 cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[],
1155 cmsFloat32Number z[], cmsFloat32Number lambda, int m)
1157 int i, i1, i2;
1158 cmsFloat32Number *c, *d, *e;
1159 cmsBool st;
1162 c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1163 d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1164 e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number));
1166 if (c != NULL && d != NULL && e != NULL) {
1169 d[1] = w[1] + lambda;
1170 c[1] = -2 * lambda / d[1];
1171 e[1] = lambda /d[1];
1172 z[1] = w[1] * y[1];
1173 d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1];
1174 c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2];
1175 e[2] = lambda / d[2];
1176 z[2] = w[2] * y[2] - c[1] * z[1];
1178 for (i = 3; i < m - 1; i++) {
1179 i1 = i - 1; i2 = i - 2;
1180 d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1181 c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i];
1182 e[i] = lambda / d[i];
1183 z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2];
1186 i1 = m - 2; i2 = m - 3;
1188 d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1189 c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1];
1190 z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2];
1191 i1 = m - 1; i2 = m - 2;
1193 d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2];
1194 z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m];
1195 z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m];
1197 for (i = m - 2; 1<= i; i--)
1198 z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2];
1200 st = TRUE;
1202 else st = FALSE;
1204 if (c != NULL) _cmsFree(ContextID, c);
1205 if (d != NULL) _cmsFree(ContextID, d);
1206 if (e != NULL) _cmsFree(ContextID, e);
1208 return st;
1211 // Smooths a curve sampled at regular intervals.
1212 cmsBool CMSEXPORT cmsSmoothToneCurve(cmsToneCurve* Tab, cmsFloat64Number lambda)
1214 cmsBool SuccessStatus = TRUE;
1215 cmsFloat32Number *w, *y, *z;
1216 cmsUInt32Number i, nItems, Zeros, Poles;
1217 cmsBool notCheck = FALSE;
1219 if (Tab != NULL && Tab->InterpParams != NULL)
1221 cmsContext ContextID = Tab->InterpParams->ContextID;
1223 if (!cmsIsToneCurveLinear(Tab)) // Only non-linear curves need smoothing
1225 nItems = Tab->nEntries;
1226 if (nItems < MAX_NODES_IN_CURVE)
1228 // Allocate one more item than needed
1229 w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1230 y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1231 z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number));
1233 if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure
1235 memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1236 memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1237 memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number));
1239 for (i = 0; i < nItems; i++)
1241 y[i + 1] = (cmsFloat32Number)Tab->Table16[i];
1242 w[i + 1] = 1.0;
1245 if (lambda < 0)
1247 notCheck = TRUE;
1248 lambda = -lambda;
1251 if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems))
1253 // Do some reality - checking...
1255 Zeros = Poles = 0;
1256 for (i = nItems; i > 1; --i)
1258 if (z[i] == 0.) Zeros++;
1259 if (z[i] >= 65535.) Poles++;
1260 if (z[i] < z[i - 1])
1262 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic.");
1263 SuccessStatus = notCheck;
1264 break;
1268 if (SuccessStatus && Zeros > (nItems / 3))
1270 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros.");
1271 SuccessStatus = notCheck;
1274 if (SuccessStatus && Poles > (nItems / 3))
1276 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles.");
1277 SuccessStatus = notCheck;
1280 if (SuccessStatus) // Seems ok
1282 for (i = 0; i < nItems; i++)
1284 // Clamp to cmsUInt16Number
1285 Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]);
1289 else // Could not smooth
1291 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed.");
1292 SuccessStatus = FALSE;
1295 else // One or more buffers could not be allocated
1297 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory.");
1298 SuccessStatus = FALSE;
1301 if (z != NULL)
1302 _cmsFree(ContextID, z);
1304 if (y != NULL)
1305 _cmsFree(ContextID, y);
1307 if (w != NULL)
1308 _cmsFree(ContextID, w);
1310 else // too many items in the table
1312 cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points.");
1313 SuccessStatus = FALSE;
1317 else // Tab parameter or Tab->InterpParams is NULL
1319 // Can't signal an error here since the ContextID is not known at this point
1320 SuccessStatus = FALSE;
1323 return SuccessStatus;
1326 // Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting
1327 // in a linear table. This way assures it is linear in 12 bits, which should be enough in most cases.
1328 cmsBool CMSEXPORT cmsIsToneCurveLinear(const cmsToneCurve* Curve)
1330 int i;
1331 int diff;
1333 _cmsAssert(Curve != NULL);
1335 for (i=0; i < (int) Curve ->nEntries; i++) {
1337 diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries));
1338 if (diff > 0x0f)
1339 return FALSE;
1342 return TRUE;
1345 // Same, but for monotonicity
1346 cmsBool CMSEXPORT cmsIsToneCurveMonotonic(const cmsToneCurve* t)
1348 cmsUInt32Number n;
1349 int i, last;
1350 cmsBool lDescending;
1352 _cmsAssert(t != NULL);
1354 // Degenerated curves are monotonic? Ok, let's pass them
1355 n = t ->nEntries;
1356 if (n < 2) return TRUE;
1358 // Curve direction
1359 lDescending = cmsIsToneCurveDescending(t);
1361 if (lDescending) {
1363 last = t ->Table16[0];
1365 for (i = 1; i < (int) n; i++) {
1367 if (t ->Table16[i] - last > 2) // We allow some ripple
1368 return FALSE;
1369 else
1370 last = t ->Table16[i];
1374 else {
1376 last = t ->Table16[n-1];
1378 for (i = (int) n - 2; i >= 0; --i) {
1380 if (t ->Table16[i] - last > 2)
1381 return FALSE;
1382 else
1383 last = t ->Table16[i];
1388 return TRUE;
1391 // Same, but for descending tables
1392 cmsBool CMSEXPORT cmsIsToneCurveDescending(const cmsToneCurve* t)
1394 _cmsAssert(t != NULL);
1396 return t ->Table16[0] > t ->Table16[t ->nEntries-1];
1400 // Another info fn: is out gamma table multisegment?
1401 cmsBool CMSEXPORT cmsIsToneCurveMultisegment(const cmsToneCurve* t)
1403 _cmsAssert(t != NULL);
1405 return t -> nSegments > 1;
1408 cmsInt32Number CMSEXPORT cmsGetToneCurveParametricType(const cmsToneCurve* t)
1410 _cmsAssert(t != NULL);
1412 if (t -> nSegments != 1) return 0;
1413 return t ->Segments[0].Type;
1416 // We need accuracy this time
1417 cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(const cmsToneCurve* Curve, cmsFloat32Number v)
1419 _cmsAssert(Curve != NULL);
1421 // Check for 16 bits table. If so, this is a limited-precision tone curve
1422 if (Curve ->nSegments == 0) {
1424 cmsUInt16Number In, Out;
1426 In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0);
1427 Out = cmsEvalToneCurve16(Curve, In);
1429 return (cmsFloat32Number) (Out / 65535.0);
1432 return (cmsFloat32Number) EvalSegmentedFn(Curve, v);
1435 // We need xput over here
1436 cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(const cmsToneCurve* Curve, cmsUInt16Number v)
1438 cmsUInt16Number out;
1440 _cmsAssert(Curve != NULL);
1442 Curve ->InterpParams ->Interpolation.Lerp16(&v, &out, Curve ->InterpParams);
1443 return out;
1447 // Least squares fitting.
1448 // A mathematical procedure for finding the best-fitting curve to a given set of points by
1449 // minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve.
1450 // The sum of the squares of the offsets is used instead of the offset absolute values because
1451 // this allows the residuals to be treated as a continuous differentiable quantity.
1453 // y = f(x) = x ^ g
1455 // R = (yi - (xi^g))
1456 // R2 = (yi - (xi^g))2
1457 // SUM R2 = SUM (yi - (xi^g))2
1459 // dR2/dg = -2 SUM x^g log(x)(y - x^g)
1460 // solving for dR2/dg = 0
1462 // g = 1/n * SUM(log(y) / log(x))
1464 cmsFloat64Number CMSEXPORT cmsEstimateGamma(const cmsToneCurve* t, cmsFloat64Number Precision)
1466 cmsFloat64Number gamma, sum, sum2;
1467 cmsFloat64Number n, x, y, Std;
1468 cmsUInt32Number i;
1470 _cmsAssert(t != NULL);
1472 sum = sum2 = n = 0;
1474 // Excluding endpoints
1475 for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) {
1477 x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1);
1478 y = (cmsFloat64Number) cmsEvalToneCurveFloat(t, (cmsFloat32Number) x);
1480 // Avoid 7% on lower part to prevent
1481 // artifacts due to linear ramps
1483 if (y > 0. && y < 1. && x > 0.07) {
1485 gamma = log(y) / log(x);
1486 sum += gamma;
1487 sum2 += gamma * gamma;
1488 n++;
1492 // We need enough valid samples
1493 if (n <= 1) return -1.0;
1495 // Take a look on SD to see if gamma isn't exponential at all
1496 Std = sqrt((n * sum2 - sum * sum) / (n*(n-1)));
1498 if (Std > Precision)
1499 return -1.0;
1501 return (sum / n); // The mean
1504 // Retrieve segments on tone curves
1506 const cmsCurveSegment* CMSEXPORT cmsGetToneCurveSegment(cmsInt32Number n, const cmsToneCurve* t)
1508 _cmsAssert(t != NULL);
1510 if (n < 0 || n >= (cmsInt32Number) t->nSegments) return NULL;
1511 return t->Segments + n;