Porting fixes.
[wine.git] / dlls / cabinet / cabextract.c
blob7c2a5d4242a85f0c5d5d320889b92d46cb5193fe
1 /*
2 * cabextract.c
4 * Copyright 2000-2002 Stuart Caie
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 * Principal author: Stuart Caie <kyzer@4u.net>
22 * Based on specification documents from Microsoft Corporation
23 * Quantum decompression researched and implemented by Matthew Russoto
24 * Huffman code adapted from unlzx by Dave Tritscher.
25 * InfoZip team's INFLATE implementation adapted to MSZIP by Dirk Stoecker.
26 * Major LZX fixes by Jae Jung.
29 #include "config.h"
31 #include <stdlib.h>
33 #include "windef.h"
34 #include "winbase.h"
35 #include "winerror.h"
37 #include "cabinet.h"
39 #include "wine/debug.h"
41 WINE_DEFAULT_DEBUG_CHANNEL(cabinet);
43 /* The first result of a search will be returned, and
44 * the remaining results will be chained to it via the cab->next structure
45 * member.
47 cab_UBYTE search_buf[CAB_SEARCH_SIZE];
49 cab_decomp_state decomp_state;
51 /* all the file IO is abstracted into these routines:
52 * cabinet_(open|close|read|seek|skip|getoffset)
53 * file_(open|close|write)
56 /* try to open a cabinet file, returns success */
57 BOOL cabinet_open(struct cabinet *cab)
59 char *name = (char *)cab->filename;
60 HANDLE fh;
62 TRACE("(cab == ^%p)\n", cab);
64 if ((fh = CreateFileA( name, GENERIC_READ, FILE_SHARE_READ,
65 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL )) == INVALID_HANDLE_VALUE) {
66 ERR("Couldn't open %s\n", debugstr_a(name));
67 return FALSE;
70 /* seek to end of file and get the length */
71 if ((cab->filelen = SetFilePointer(fh, 0, NULL, FILE_END)) == INVALID_SET_FILE_POINTER) {
72 if (GetLastError() != NO_ERROR) {
73 ERR("Seek END failed: %s", debugstr_a(name));
74 CloseHandle(fh);
75 return FALSE;
79 /* return to the start of the file */
80 if (SetFilePointer(fh, 0, NULL, FILE_BEGIN) == INVALID_SET_FILE_POINTER) {
81 ERR("Seek BEGIN failed: %s", debugstr_a(name));
82 CloseHandle(fh);
83 return FALSE;
86 cab->fh = fh;
87 return TRUE;
90 /*******************************************************************
91 * cabinet_close (internal)
93 * close the file handle in a struct cabinet.
95 void cabinet_close(struct cabinet *cab) {
96 TRACE("(cab == ^%p)\n", cab);
97 if (cab->fh) CloseHandle(cab->fh);
98 cab->fh = 0;
101 /*******************************************************
102 * ensure_filepath2 (internal)
104 BOOL ensure_filepath2(char *path) {
105 BOOL ret = TRUE;
106 int len;
107 char *new_path;
109 new_path = HeapAlloc(GetProcessHeap(), 0, (strlen(path) + 1));
110 strcpy(new_path, path);
112 while((len = strlen(new_path)) && new_path[len - 1] == '\\')
113 new_path[len - 1] = 0;
115 TRACE("About to try to create directory %s\n", debugstr_a(new_path));
116 while(!CreateDirectoryA(new_path, NULL)) {
117 char *slash;
118 DWORD last_error = GetLastError();
120 if(last_error == ERROR_ALREADY_EXISTS)
121 break;
123 if(last_error != ERROR_PATH_NOT_FOUND) {
124 ret = FALSE;
125 break;
128 if(!(slash = strrchr(new_path, '\\'))) {
129 ret = FALSE;
130 break;
133 len = slash - new_path;
134 new_path[len] = 0;
135 if(! ensure_filepath2(new_path)) {
136 ret = FALSE;
137 break;
139 new_path[len] = '\\';
140 TRACE("New path in next iteration: %s\n", debugstr_a(new_path));
143 HeapFree(GetProcessHeap(), 0, new_path);
144 return ret;
148 /**********************************************************************
149 * ensure_filepath (internal)
151 * ensure_filepath("a\b\c\d.txt") ensures a, a\b and a\b\c exist as dirs
153 BOOL ensure_filepath(char *path) {
154 char new_path[MAX_PATH];
155 int len, i, lastslashpos = -1;
157 TRACE("(path == %s)\n", debugstr_a(path));
159 strcpy(new_path, path);
160 /* remove trailing slashes (shouldn't need to but wth...) */
161 while ((len = strlen(new_path)) && new_path[len - 1] == '\\')
162 new_path[len - 1] = 0;
163 /* find the position of the last '\\' */
164 for (i=0; i<MAX_PATH; i++) {
165 if (new_path[i] == 0) break;
166 if (new_path[i] == '\\')
167 lastslashpos = i;
169 if (lastslashpos > 0) {
170 new_path[lastslashpos] = 0;
171 /* may be trailing slashes but ensure_filepath2 will chop them */
172 return ensure_filepath2(new_path);
173 } else
174 return TRUE; /* ? */
177 /*******************************************************************
178 * file_open (internal)
180 * opens a file for output, returns success
182 BOOL file_open(struct cab_file *fi, BOOL lower, LPCSTR dir)
184 char c, *s, *d, *name;
185 BOOL ok = FALSE;
187 TRACE("(fi == ^%p, lower == %s, dir == %s)\n", fi, lower ? "TRUE" : "FALSE", debugstr_a(dir));
189 if (!(name = malloc(strlen(fi->filename) + (dir ? strlen(dir) : 0) + 2))) {
190 ERR("out of memory!\n");
191 return FALSE;
194 /* start with blank name */
195 *name = 0;
197 /* add output directory if needed */
198 if (dir) {
199 strcpy(name, dir);
200 strcat(name, "\\");
203 /* remove leading slashes */
204 s = (char *) fi->filename;
205 while (*s == '\\') s++;
207 /* copy from fi->filename to new name.
208 * lowercases characters if needed.
210 d = &name[strlen(name)];
211 do {
212 c = *s++;
213 *d++ = (lower ? tolower((unsigned char) c) : c);
214 } while (c);
216 /* create directories if needed, attempt to write file */
217 if (ensure_filepath(name)) {
218 fi->fh = CreateFileA(name, GENERIC_WRITE, 0, NULL,
219 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
220 if (fi->fh != INVALID_HANDLE_VALUE)
221 ok = TRUE;
222 else {
223 ERR("CreateFileA returned INVALID_HANDLE_VALUE\n");
224 fi->fh = 0;
226 } else
227 ERR("Couldn't ensure filepath for %s", debugstr_a(name));
229 if (!ok) {
230 ERR("Couldn't open file %s for writing\n", debugstr_a(name));
233 /* as full filename is no longer needed, free it */
234 free(name);
236 return ok;
239 /********************************************************
240 * close_file (internal)
242 * closes a completed file
244 void file_close(struct cab_file *fi)
246 TRACE("(fi == ^%p)\n", fi);
248 if (fi->fh) {
249 CloseHandle(fi->fh);
251 fi->fh = 0;
254 /******************************************************************
255 * file_write (internal)
257 * writes from buf to a file specified as a cab_file struct.
258 * returns success/failure
260 BOOL file_write(struct cab_file *fi, cab_UBYTE *buf, cab_off_t length)
262 DWORD bytes_written;
264 TRACE("(fi == ^%p, buf == ^%p, length == %u)\n", fi, buf, length);
266 if ((!WriteFile( fi->fh, (LPCVOID) buf, length, &bytes_written, FALSE) ||
267 (bytes_written != length))) {
268 ERR("Error writing file: %s\n", debugstr_a(fi->filename));
269 return FALSE;
271 return TRUE;
275 /*******************************************************************
276 * cabinet_skip (internal)
278 * advance the file pointer associated with the cab structure
279 * by distance bytes
281 void cabinet_skip(struct cabinet *cab, cab_off_t distance)
283 TRACE("(cab == ^%p, distance == %u)\n", cab, distance);
284 if (SetFilePointer(cab->fh, distance, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER) {
285 if (distance != INVALID_SET_FILE_POINTER)
286 ERR("%s", debugstr_a((char *) cab->filename));
290 /*******************************************************************
291 * cabinet_seek (internal)
293 * seek to the specified absolute offset in a cab
295 void cabinet_seek(struct cabinet *cab, cab_off_t offset) {
296 TRACE("(cab == ^%p, offset == %u)\n", cab, offset);
297 if (SetFilePointer(cab->fh, offset, NULL, FILE_BEGIN) != offset)
298 ERR("%s seek failure\n", debugstr_a((char *)cab->filename));
301 /*******************************************************************
302 * cabinet_getoffset (internal)
304 * returns the file pointer position of a cab
306 cab_off_t cabinet_getoffset(struct cabinet *cab)
308 return SetFilePointer(cab->fh, 0, NULL, FILE_CURRENT);
311 /*******************************************************************
312 * cabinet_read (internal)
314 * read data from a cabinet, returns success
316 BOOL cabinet_read(struct cabinet *cab, cab_UBYTE *buf, cab_off_t length)
318 DWORD bytes_read;
319 cab_off_t avail = cab->filelen - cabinet_getoffset(cab);
321 TRACE("(cab == ^%p, buf == ^%p, length == %u)\n", cab, buf, length);
323 if (length > avail) {
324 WARN("%s: WARNING; cabinet is truncated\n", debugstr_a((char *)cab->filename));
325 length = avail;
328 if (! ReadFile( cab->fh, (LPVOID) buf, length, &bytes_read, NULL )) {
329 ERR("%s read error\n", debugstr_a((char *) cab->filename));
330 return FALSE;
331 } else if (bytes_read != length) {
332 ERR("%s read size mismatch\n", debugstr_a((char *) cab->filename));
333 return FALSE;
336 return TRUE;
339 /**********************************************************************
340 * cabinet_read_string (internal)
342 * allocate and read an aribitrarily long string from the cabinet
344 char *cabinet_read_string(struct cabinet *cab)
346 cab_off_t len=256, base = cabinet_getoffset(cab), maxlen = cab->filelen - base;
347 BOOL ok = FALSE;
348 int i;
349 cab_UBYTE *buf = NULL;
351 TRACE("(cab == ^%p)\n", cab);
353 do {
354 if (len > maxlen) len = maxlen;
355 if (!(buf = realloc(buf, (size_t) len))) break;
356 if (!cabinet_read(cab, buf, (size_t) len)) break;
358 /* search for a null terminator in what we've just read */
359 for (i=0; i < len; i++) {
360 if (!buf[i]) {ok=TRUE; break;}
363 if (!ok) {
364 if (len == maxlen) {
365 ERR("%s: WARNING; cabinet is truncated\n", debugstr_a((char *) cab->filename));
366 break;
368 len += 256;
369 cabinet_seek(cab, base);
371 } while (!ok);
373 if (!ok) {
374 if (buf)
375 free(buf);
376 else
377 ERR("out of memory!\n");
378 return NULL;
381 /* otherwise, set the stream to just after the string and return */
382 cabinet_seek(cab, base + ((cab_off_t) strlen((char *) buf)) + 1);
384 return (char *) buf;
387 /******************************************************************
388 * cabinet_read_entries (internal)
390 * reads the header and all folder and file entries in this cabinet
392 BOOL cabinet_read_entries(struct cabinet *cab)
394 int num_folders, num_files, header_resv, folder_resv = 0, i;
395 struct cab_folder *fol, *linkfol = NULL;
396 struct cab_file *file, *linkfile = NULL;
397 cab_off_t base_offset;
398 cab_UBYTE buf[64];
400 TRACE("(cab == ^%p)\n", cab);
402 /* read in the CFHEADER */
403 base_offset = cabinet_getoffset(cab);
404 if (!cabinet_read(cab, buf, cfhead_SIZEOF)) {
405 return FALSE;
408 /* check basic MSCF signature */
409 if (EndGetI32(buf+cfhead_Signature) != 0x4643534d) {
410 ERR("%s: not a Microsoft cabinet file\n", debugstr_a((char *) cab->filename));
411 return FALSE;
414 /* get the number of folders */
415 num_folders = EndGetI16(buf+cfhead_NumFolders);
416 if (num_folders == 0) {
417 ERR("%s: no folders in cabinet\n", debugstr_a((char *) cab->filename));
418 return FALSE;
421 /* get the number of files */
422 num_files = EndGetI16(buf+cfhead_NumFiles);
423 if (num_files == 0) {
424 ERR("%s: no files in cabinet\n", debugstr_a((char *) cab->filename));
425 return FALSE;
428 /* just check the header revision */
429 if ((buf[cfhead_MajorVersion] > 1) ||
430 (buf[cfhead_MajorVersion] == 1 && buf[cfhead_MinorVersion] > 3))
432 WARN("%s: WARNING; cabinet format version > 1.3\n", debugstr_a((char *) cab->filename));
435 /* read the reserved-sizes part of header, if present */
436 cab->flags = EndGetI16(buf+cfhead_Flags);
437 if (cab->flags & cfheadRESERVE_PRESENT) {
438 if (!cabinet_read(cab, buf, cfheadext_SIZEOF)) return FALSE;
439 header_resv = EndGetI16(buf+cfheadext_HeaderReserved);
440 folder_resv = buf[cfheadext_FolderReserved];
441 cab->block_resv = buf[cfheadext_DataReserved];
443 if (header_resv > 60000) {
444 WARN("%s: WARNING; header reserved space > 60000\n", debugstr_a((char *) cab->filename));
447 /* skip the reserved header */
448 if (header_resv)
449 if (SetFilePointer(cab->fh, (cab_off_t) header_resv, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER)
450 ERR("seek failure: %s\n", debugstr_a((char *) cab->filename));
453 if (cab->flags & cfheadPREV_CABINET) {
454 cab->prevname = cabinet_read_string(cab);
455 if (!cab->prevname) return FALSE;
456 cab->previnfo = cabinet_read_string(cab);
459 if (cab->flags & cfheadNEXT_CABINET) {
460 cab->nextname = cabinet_read_string(cab);
461 if (!cab->nextname) return FALSE;
462 cab->nextinfo = cabinet_read_string(cab);
465 /* read folders */
466 for (i = 0; i < num_folders; i++) {
467 if (!cabinet_read(cab, buf, cffold_SIZEOF)) return FALSE;
468 if (folder_resv) cabinet_skip(cab, folder_resv);
470 fol = (struct cab_folder *) calloc(1, sizeof(struct cab_folder));
471 if (!fol) {
472 ERR("out of memory!\n");
473 return FALSE;
476 fol->cab[0] = cab;
477 fol->offset[0] = base_offset + (cab_off_t) EndGetI32(buf+cffold_DataOffset);
478 fol->num_blocks = EndGetI16(buf+cffold_NumBlocks);
479 fol->comp_type = EndGetI16(buf+cffold_CompType);
481 if (!linkfol)
482 cab->folders = fol;
483 else
484 linkfol->next = fol;
486 linkfol = fol;
489 /* read files */
490 for (i = 0; i < num_files; i++) {
491 if (!cabinet_read(cab, buf, cffile_SIZEOF))
492 return FALSE;
494 file = (struct cab_file *) calloc(1, sizeof(struct cab_file));
495 if (!file) {
496 ERR("out of memory!\n");
497 return FALSE;
500 file->length = EndGetI32(buf+cffile_UncompressedSize);
501 file->offset = EndGetI32(buf+cffile_FolderOffset);
502 file->index = EndGetI16(buf+cffile_FolderIndex);
503 file->time = EndGetI16(buf+cffile_Time);
504 file->date = EndGetI16(buf+cffile_Date);
505 file->attribs = EndGetI16(buf+cffile_Attribs);
506 file->filename = cabinet_read_string(cab);
508 if (!file->filename)
509 return FALSE;
511 if (!linkfile)
512 cab->files = file;
513 else
514 linkfile->next = file;
516 linkfile = file;
518 return TRUE;
521 /***********************************************************
522 * load_cab_offset (internal)
524 * validates and reads file entries from a cabinet at offset [offset] in
525 * file [name]. Returns a cabinet structure if successful, or NULL
526 * otherwise.
528 struct cabinet *load_cab_offset(LPCSTR name, cab_off_t offset)
530 struct cabinet *cab = (struct cabinet *) calloc(1, sizeof(struct cabinet));
531 int ok;
533 TRACE("(name == %s, offset == %u)\n", debugstr_a((char *) name), offset);
535 if (!cab) return NULL;
537 cab->filename = name;
538 if ((ok = cabinet_open(cab))) {
539 cabinet_seek(cab, offset);
540 ok = cabinet_read_entries(cab);
541 cabinet_close(cab);
544 if (ok) return cab;
545 free(cab);
546 return NULL;
549 /* MSZIP decruncher */
551 /* Dirk Stoecker wrote the ZIP decoder, based on the InfoZip deflate code */
553 /* Tables for deflate from PKZIP's appnote.txt. */
554 static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */
555 { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
556 static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */
557 { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51,
558 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
559 static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */
560 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
561 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
562 static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */
563 { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
564 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577};
565 static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */
566 { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
567 10, 11, 11, 12, 12, 13, 13};
569 /* And'ing with Zipmask[n] masks the lower n bits */
570 static const cab_UWORD Zipmask[17] = {
571 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
572 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
575 #define ZIPNEEDBITS(n) {while(k<(n)){cab_LONG c=*(ZIP(inpos)++);\
576 b|=((cab_ULONG)c)<<k;k+=8;}}
577 #define ZIPDUMPBITS(n) {b>>=(n);k-=(n);}
580 /********************************************************
581 * Ziphuft_free (internal)
583 void Ziphuft_free(struct Ziphuft *t)
585 register struct Ziphuft *p, *q;
587 /* Go through linked list, freeing from the allocated (t[-1]) address. */
588 p = t;
589 while (p != (struct Ziphuft *)NULL)
591 q = (--p)->v.t;
592 free(p);
593 p = q;
597 /*********************************************************
598 * Ziphuft_build (internal)
600 cab_LONG Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, cab_UWORD *d, cab_UWORD *e,
601 struct Ziphuft **t, cab_LONG *m)
603 cab_ULONG a; /* counter for codes of length k */
604 cab_ULONG el; /* length of EOB code (value 256) */
605 cab_ULONG f; /* i repeats in table every f entries */
606 cab_LONG g; /* maximum code length */
607 cab_LONG h; /* table level */
608 register cab_ULONG i; /* counter, current code */
609 register cab_ULONG j; /* counter */
610 register cab_LONG k; /* number of bits in current code */
611 cab_LONG *l; /* stack of bits per table */
612 register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */
613 register struct Ziphuft *q; /* points to current table */
614 struct Ziphuft r; /* table entry for structure assignment */
615 register cab_LONG w; /* bits before this table == (l * h) */
616 cab_ULONG *xp; /* pointer into x */
617 cab_LONG y; /* number of dummy codes added */
618 cab_ULONG z; /* number of entries in current table */
620 l = ZIP(lx)+1;
622 /* Generate counts for each bit length */
623 el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */
625 for(i = 0; i < ZIPBMAX+1; ++i)
626 ZIP(c)[i] = 0;
627 p = b; i = n;
630 ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */
631 } while (--i);
632 if (ZIP(c)[0] == n) /* null input--all zero length codes */
634 *t = (struct Ziphuft *)NULL;
635 *m = 0;
636 return 0;
639 /* Find minimum and maximum length, bound *m by those */
640 for (j = 1; j <= ZIPBMAX; j++)
641 if (ZIP(c)[j])
642 break;
643 k = j; /* minimum code length */
644 if ((cab_ULONG)*m < j)
645 *m = j;
646 for (i = ZIPBMAX; i; i--)
647 if (ZIP(c)[i])
648 break;
649 g = i; /* maximum code length */
650 if ((cab_ULONG)*m > i)
651 *m = i;
653 /* Adjust last length count to fill out codes, if needed */
654 for (y = 1 << j; j < i; j++, y <<= 1)
655 if ((y -= ZIP(c)[j]) < 0)
656 return 2; /* bad input: more codes than bits */
657 if ((y -= ZIP(c)[i]) < 0)
658 return 2;
659 ZIP(c)[i] += y;
661 /* Generate starting offsets LONGo the value table for each length */
662 ZIP(x)[1] = j = 0;
663 p = ZIP(c) + 1; xp = ZIP(x) + 2;
664 while (--i)
665 { /* note that i == g from above */
666 *xp++ = (j += *p++);
669 /* Make a table of values in order of bit lengths */
670 p = b; i = 0;
672 if ((j = *p++) != 0)
673 ZIP(v)[ZIP(x)[j]++] = i;
674 } while (++i < n);
677 /* Generate the Huffman codes and for each, make the table entries */
678 ZIP(x)[0] = i = 0; /* first Huffman code is zero */
679 p = ZIP(v); /* grab values in bit order */
680 h = -1; /* no tables yet--level -1 */
681 w = l[-1] = 0; /* no bits decoded yet */
682 ZIP(u)[0] = (struct Ziphuft *)NULL; /* just to keep compilers happy */
683 q = (struct Ziphuft *)NULL; /* ditto */
684 z = 0; /* ditto */
686 /* go through the bit lengths (k already is bits in shortest code) */
687 for (; k <= g; k++)
689 a = ZIP(c)[k];
690 while (a--)
692 /* here i is the Huffman code of length k bits for value *p */
693 /* make tables up to required level */
694 while (k > w + l[h])
696 w += l[h++]; /* add bits already decoded */
698 /* compute minimum size table less than or equal to *m bits */
699 z = (z = g - w) > (cab_ULONG)*m ? *m : z; /* upper limit */
700 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
701 { /* too few codes for k-w bit table */
702 f -= a + 1; /* deduct codes from patterns left */
703 xp = ZIP(c) + k;
704 while (++j < z) /* try smaller tables up to z bits */
706 if ((f <<= 1) <= *++xp)
707 break; /* enough codes to use up j bits */
708 f -= *xp; /* else deduct codes from patterns */
711 if ((cab_ULONG)w + j > el && (cab_ULONG)w < el)
712 j = el - w; /* make EOB code end at table */
713 z = 1 << j; /* table entries for j-bit table */
714 l[h] = j; /* set table size in stack */
716 /* allocate and link in new table */
717 if (!(q = (struct Ziphuft *) malloc((z + 1)*sizeof(struct Ziphuft))))
719 if(h)
720 Ziphuft_free(ZIP(u)[0]);
721 return 3; /* not enough memory */
723 *t = q + 1; /* link to list for Ziphuft_free() */
724 *(t = &(q->v.t)) = (struct Ziphuft *)NULL;
725 ZIP(u)[h] = ++q; /* table starts after link */
727 /* connect to last table, if there is one */
728 if (h)
730 ZIP(x)[h] = i; /* save pattern for backing up */
731 r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */
732 r.e = (cab_UBYTE)(16 + j); /* bits in this table */
733 r.v.t = q; /* pointer to this table */
734 j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
735 ZIP(u)[h-1][j] = r; /* connect to last table */
739 /* set up table entry in r */
740 r.b = (cab_UBYTE)(k - w);
741 if (p >= ZIP(v) + n)
742 r.e = 99; /* out of values--invalid code */
743 else if (*p < s)
745 r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
746 r.v.n = *p++; /* simple code is just the value */
748 else
750 r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */
751 r.v.n = d[*p++ - s];
754 /* fill code-like entries with r */
755 f = 1 << (k - w);
756 for (j = i >> w; j < z; j += f)
757 q[j] = r;
759 /* backwards increment the k-bit code i */
760 for (j = 1 << (k - 1); i & j; j >>= 1)
761 i ^= j;
762 i ^= j;
764 /* backup over finished tables */
765 while ((i & ((1 << w) - 1)) != ZIP(x)[h])
766 w -= l[--h]; /* don't need to update q */
770 /* return actual size of base table */
771 *m = l[0];
773 /* Return true (1) if we were given an incomplete table */
774 return y != 0 && g != 1;
777 /*********************************************************
778 * Zipinflate_codes (internal)
780 cab_LONG Zipinflate_codes(struct Ziphuft *tl, struct Ziphuft *td,
781 cab_LONG bl, cab_LONG bd)
783 register cab_ULONG e; /* table entry flag/number of extra bits */
784 cab_ULONG n, d; /* length and index for copy */
785 cab_ULONG w; /* current window position */
786 struct Ziphuft *t; /* pointer to table entry */
787 cab_ULONG ml, md; /* masks for bl and bd bits */
788 register cab_ULONG b; /* bit buffer */
789 register cab_ULONG k; /* number of bits in bit buffer */
791 /* make local copies of globals */
792 b = ZIP(bb); /* initialize bit buffer */
793 k = ZIP(bk);
794 w = ZIP(window_posn); /* initialize window position */
796 /* inflate the coded data */
797 ml = Zipmask[bl]; /* precompute masks for speed */
798 md = Zipmask[bd];
800 for(;;)
802 ZIPNEEDBITS((cab_ULONG)bl)
803 if((e = (t = tl + ((cab_ULONG)b & ml))->e) > 16)
806 if (e == 99)
807 return 1;
808 ZIPDUMPBITS(t->b)
809 e -= 16;
810 ZIPNEEDBITS(e)
811 } while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16);
812 ZIPDUMPBITS(t->b)
813 if (e == 16) /* then it's a literal */
814 CAB(outbuf)[w++] = (cab_UBYTE)t->v.n;
815 else /* it's an EOB or a length */
817 /* exit if end of block */
818 if(e == 15)
819 break;
821 /* get length of block to copy */
822 ZIPNEEDBITS(e)
823 n = t->v.n + ((cab_ULONG)b & Zipmask[e]);
824 ZIPDUMPBITS(e);
826 /* decode distance of block to copy */
827 ZIPNEEDBITS((cab_ULONG)bd)
828 if ((e = (t = td + ((cab_ULONG)b & md))->e) > 16)
829 do {
830 if (e == 99)
831 return 1;
832 ZIPDUMPBITS(t->b)
833 e -= 16;
834 ZIPNEEDBITS(e)
835 } while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16);
836 ZIPDUMPBITS(t->b)
837 ZIPNEEDBITS(e)
838 d = w - t->v.n - ((cab_ULONG)b & Zipmask[e]);
839 ZIPDUMPBITS(e)
842 n -= (e = (e = ZIPWSIZE - ((d &= ZIPWSIZE-1) > w ? d : w)) > n ?n:e);
845 CAB(outbuf)[w++] = CAB(outbuf)[d++];
846 } while (--e);
847 } while (n);
851 /* restore the globals from the locals */
852 ZIP(window_posn) = w; /* restore global window pointer */
853 ZIP(bb) = b; /* restore global bit buffer */
854 ZIP(bk) = k;
856 /* done */
857 return 0;
860 /***********************************************************
861 * Zipinflate_stored (internal)
863 cab_LONG Zipinflate_stored(void)
864 /* "decompress" an inflated type 0 (stored) block. */
866 cab_ULONG n; /* number of bytes in block */
867 cab_ULONG w; /* current window position */
868 register cab_ULONG b; /* bit buffer */
869 register cab_ULONG k; /* number of bits in bit buffer */
871 /* make local copies of globals */
872 b = ZIP(bb); /* initialize bit buffer */
873 k = ZIP(bk);
874 w = ZIP(window_posn); /* initialize window position */
876 /* go to byte boundary */
877 n = k & 7;
878 ZIPDUMPBITS(n);
880 /* get the length and its complement */
881 ZIPNEEDBITS(16)
882 n = ((cab_ULONG)b & 0xffff);
883 ZIPDUMPBITS(16)
884 ZIPNEEDBITS(16)
885 if (n != (cab_ULONG)((~b) & 0xffff))
886 return 1; /* error in compressed data */
887 ZIPDUMPBITS(16)
889 /* read and output the compressed data */
890 while(n--)
892 ZIPNEEDBITS(8)
893 CAB(outbuf)[w++] = (cab_UBYTE)b;
894 ZIPDUMPBITS(8)
897 /* restore the globals from the locals */
898 ZIP(window_posn) = w; /* restore global window pointer */
899 ZIP(bb) = b; /* restore global bit buffer */
900 ZIP(bk) = k;
901 return 0;
904 /******************************************************
905 * Zipinflate_fixed (internal)
907 cab_LONG Zipinflate_fixed(void)
909 struct Ziphuft *fixed_tl;
910 struct Ziphuft *fixed_td;
911 cab_LONG fixed_bl, fixed_bd;
912 cab_LONG i; /* temporary variable */
913 cab_ULONG *l;
915 l = ZIP(ll);
917 /* literal table */
918 for(i = 0; i < 144; i++)
919 l[i] = 8;
920 for(; i < 256; i++)
921 l[i] = 9;
922 for(; i < 280; i++)
923 l[i] = 7;
924 for(; i < 288; i++) /* make a complete, but wrong code set */
925 l[i] = 8;
926 fixed_bl = 7;
927 if((i = Ziphuft_build(l, 288, 257, (cab_UWORD *) Zipcplens,
928 (cab_UWORD *) Zipcplext, &fixed_tl, &fixed_bl)))
929 return i;
931 /* distance table */
932 for(i = 0; i < 30; i++) /* make an incomplete code set */
933 l[i] = 5;
934 fixed_bd = 5;
935 if((i = Ziphuft_build(l, 30, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext,
936 &fixed_td, &fixed_bd)) > 1)
938 Ziphuft_free(fixed_tl);
939 return i;
942 /* decompress until an end-of-block code */
943 i = Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd);
945 Ziphuft_free(fixed_td);
946 Ziphuft_free(fixed_tl);
947 return i;
950 /**************************************************************
951 * Zipinflate_dynamic (internal)
953 cab_LONG Zipinflate_dynamic(void)
954 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
956 cab_LONG i; /* temporary variables */
957 cab_ULONG j;
958 cab_ULONG *ll;
959 cab_ULONG l; /* last length */
960 cab_ULONG m; /* mask for bit lengths table */
961 cab_ULONG n; /* number of lengths to get */
962 struct Ziphuft *tl; /* literal/length code table */
963 struct Ziphuft *td; /* distance code table */
964 cab_LONG bl; /* lookup bits for tl */
965 cab_LONG bd; /* lookup bits for td */
966 cab_ULONG nb; /* number of bit length codes */
967 cab_ULONG nl; /* number of literal/length codes */
968 cab_ULONG nd; /* number of distance codes */
969 register cab_ULONG b; /* bit buffer */
970 register cab_ULONG k; /* number of bits in bit buffer */
972 /* make local bit buffer */
973 b = ZIP(bb);
974 k = ZIP(bk);
975 ll = ZIP(ll);
977 /* read in table lengths */
978 ZIPNEEDBITS(5)
979 nl = 257 + ((cab_ULONG)b & 0x1f); /* number of literal/length codes */
980 ZIPDUMPBITS(5)
981 ZIPNEEDBITS(5)
982 nd = 1 + ((cab_ULONG)b & 0x1f); /* number of distance codes */
983 ZIPDUMPBITS(5)
984 ZIPNEEDBITS(4)
985 nb = 4 + ((cab_ULONG)b & 0xf); /* number of bit length codes */
986 ZIPDUMPBITS(4)
987 if(nl > 288 || nd > 32)
988 return 1; /* bad lengths */
990 /* read in bit-length-code lengths */
991 for(j = 0; j < nb; j++)
993 ZIPNEEDBITS(3)
994 ll[Zipborder[j]] = (cab_ULONG)b & 7;
995 ZIPDUMPBITS(3)
997 for(; j < 19; j++)
998 ll[Zipborder[j]] = 0;
1000 /* build decoding table for trees--single level, 7 bit lookup */
1001 bl = 7;
1002 if((i = Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
1004 if(i == 1)
1005 Ziphuft_free(tl);
1006 return i; /* incomplete code set */
1009 /* read in literal and distance code lengths */
1010 n = nl + nd;
1011 m = Zipmask[bl];
1012 i = l = 0;
1013 while((cab_ULONG)i < n)
1015 ZIPNEEDBITS((cab_ULONG)bl)
1016 j = (td = tl + ((cab_ULONG)b & m))->b;
1017 ZIPDUMPBITS(j)
1018 j = td->v.n;
1019 if (j < 16) /* length of code in bits (0..15) */
1020 ll[i++] = l = j; /* save last length in l */
1021 else if (j == 16) /* repeat last length 3 to 6 times */
1023 ZIPNEEDBITS(2)
1024 j = 3 + ((cab_ULONG)b & 3);
1025 ZIPDUMPBITS(2)
1026 if((cab_ULONG)i + j > n)
1027 return 1;
1028 while (j--)
1029 ll[i++] = l;
1031 else if (j == 17) /* 3 to 10 zero length codes */
1033 ZIPNEEDBITS(3)
1034 j = 3 + ((cab_ULONG)b & 7);
1035 ZIPDUMPBITS(3)
1036 if ((cab_ULONG)i + j > n)
1037 return 1;
1038 while (j--)
1039 ll[i++] = 0;
1040 l = 0;
1042 else /* j == 18: 11 to 138 zero length codes */
1044 ZIPNEEDBITS(7)
1045 j = 11 + ((cab_ULONG)b & 0x7f);
1046 ZIPDUMPBITS(7)
1047 if ((cab_ULONG)i + j > n)
1048 return 1;
1049 while (j--)
1050 ll[i++] = 0;
1051 l = 0;
1055 /* free decoding table for trees */
1056 Ziphuft_free(tl);
1058 /* restore the global bit buffer */
1059 ZIP(bb) = b;
1060 ZIP(bk) = k;
1062 /* build the decoding tables for literal/length and distance codes */
1063 bl = ZIPLBITS;
1064 if((i = Ziphuft_build(ll, nl, 257, (cab_UWORD *) Zipcplens, (cab_UWORD *) Zipcplext, &tl, &bl)) != 0)
1066 if(i == 1)
1067 Ziphuft_free(tl);
1068 return i; /* incomplete code set */
1070 bd = ZIPDBITS;
1071 Ziphuft_build(ll + nl, nd, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext, &td, &bd);
1073 /* decompress until an end-of-block code */
1074 if(Zipinflate_codes(tl, td, bl, bd))
1075 return 1;
1077 /* free the decoding tables, return */
1078 Ziphuft_free(tl);
1079 Ziphuft_free(td);
1080 return 0;
1083 /*****************************************************
1084 * Zipinflate_block (internal)
1086 cab_LONG Zipinflate_block(cab_LONG *e) /* e == last block flag */
1087 { /* decompress an inflated block */
1088 cab_ULONG t; /* block type */
1089 register cab_ULONG b; /* bit buffer */
1090 register cab_ULONG k; /* number of bits in bit buffer */
1092 /* make local bit buffer */
1093 b = ZIP(bb);
1094 k = ZIP(bk);
1096 /* read in last block bit */
1097 ZIPNEEDBITS(1)
1098 *e = (cab_LONG)b & 1;
1099 ZIPDUMPBITS(1)
1101 /* read in block type */
1102 ZIPNEEDBITS(2)
1103 t = (cab_ULONG)b & 3;
1104 ZIPDUMPBITS(2)
1106 /* restore the global bit buffer */
1107 ZIP(bb) = b;
1108 ZIP(bk) = k;
1110 /* inflate that block type */
1111 if(t == 2)
1112 return Zipinflate_dynamic();
1113 if(t == 0)
1114 return Zipinflate_stored();
1115 if(t == 1)
1116 return Zipinflate_fixed();
1117 /* bad block type */
1118 return 2;
1121 /****************************************************
1122 * Zipdecompress (internal)
1124 int ZIPdecompress(int inlen, int outlen)
1126 cab_LONG e; /* last block flag */
1128 TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
1130 ZIP(inpos) = CAB(inbuf);
1131 ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0;
1132 if(outlen > ZIPWSIZE)
1133 return DECR_DATAFORMAT;
1135 /* CK = Chris Kirmse, official Microsoft purloiner */
1136 if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B)
1137 return DECR_ILLEGALDATA;
1138 ZIP(inpos) += 2;
1142 if(Zipinflate_block(&e))
1143 return DECR_ILLEGALDATA;
1144 } while(!e);
1146 /* return success */
1147 return DECR_OK;
1150 /* Quantum decruncher */
1152 /* This decruncher was researched and implemented by Matthew Russoto. */
1153 /* It has since been tidied up by Stuart Caie */
1155 static cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
1156 static cab_ULONG q_position_base[42];
1158 /******************************************************************
1159 * QTMinitmodel (internal)
1161 * Initialise a model which decodes symbols from [s] to [s]+[n]-1
1163 void QTMinitmodel(struct QTMmodel *m, struct QTMmodelsym *sym, int n, int s) {
1164 int i;
1165 m->shiftsleft = 4;
1166 m->entries = n;
1167 m->syms = sym;
1168 memset(m->tabloc, 0xFF, sizeof(m->tabloc)); /* clear out look-up table */
1169 for (i = 0; i < n; i++) {
1170 m->tabloc[i+s] = i; /* set up a look-up entry for symbol */
1171 m->syms[i].sym = i+s; /* actual symbol */
1172 m->syms[i].cumfreq = n-i; /* current frequency of that symbol */
1174 m->syms[n].cumfreq = 0;
1177 /******************************************************************
1178 * QTMinit (internal)
1180 int QTMinit(int window, int level) {
1181 int wndsize = 1 << window, msz = window * 2, i;
1182 cab_ULONG j;
1184 /* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */
1185 /* if a previously allocated window is big enough, keep it */
1186 if (window < 10 || window > 21) return DECR_DATAFORMAT;
1187 if (QTM(actual_size) < wndsize) {
1188 if (QTM(window)) free(QTM(window));
1189 QTM(window) = NULL;
1191 if (!QTM(window)) {
1192 if (!(QTM(window) = malloc(wndsize))) return DECR_NOMEMORY;
1193 QTM(actual_size) = wndsize;
1195 QTM(window_size) = wndsize;
1196 QTM(window_posn) = 0;
1198 /* initialise static slot/extrabits tables */
1199 for (i = 0, j = 0; i < 27; i++) {
1200 q_length_extra[i] = (i == 26) ? 0 : (i < 2 ? 0 : i - 2) >> 2;
1201 q_length_base[i] = j; j += 1 << ((i == 26) ? 5 : q_length_extra[i]);
1203 for (i = 0, j = 0; i < 42; i++) {
1204 q_extra_bits[i] = (i < 2 ? 0 : i-2) >> 1;
1205 q_position_base[i] = j; j += 1 << q_extra_bits[i];
1208 /* initialise arithmetic coding models */
1210 QTMinitmodel(&QTM(model7), &QTM(m7sym)[0], 7, 0);
1212 QTMinitmodel(&QTM(model00), &QTM(m00sym)[0], 0x40, 0x00);
1213 QTMinitmodel(&QTM(model40), &QTM(m40sym)[0], 0x40, 0x40);
1214 QTMinitmodel(&QTM(model80), &QTM(m80sym)[0], 0x40, 0x80);
1215 QTMinitmodel(&QTM(modelC0), &QTM(mC0sym)[0], 0x40, 0xC0);
1217 /* model 4 depends on table size, ranges from 20 to 24 */
1218 QTMinitmodel(&QTM(model4), &QTM(m4sym)[0], (msz < 24) ? msz : 24, 0);
1219 /* model 5 depends on table size, ranges from 20 to 36 */
1220 QTMinitmodel(&QTM(model5), &QTM(m5sym)[0], (msz < 36) ? msz : 36, 0);
1221 /* model 6pos depends on table size, ranges from 20 to 42 */
1222 QTMinitmodel(&QTM(model6pos), &QTM(m6psym)[0], msz, 0);
1223 QTMinitmodel(&QTM(model6len), &QTM(m6lsym)[0], 27, 0);
1225 return DECR_OK;
1228 /****************************************************************
1229 * QTMupdatemodel (internal)
1231 void QTMupdatemodel(struct QTMmodel *model, int sym) {
1232 struct QTMmodelsym temp;
1233 int i, j;
1235 for (i = 0; i < sym; i++) model->syms[i].cumfreq += 8;
1237 if (model->syms[0].cumfreq > 3800) {
1238 if (--model->shiftsleft) {
1239 for (i = model->entries - 1; i >= 0; i--) {
1240 /* -1, not -2; the 0 entry saves this */
1241 model->syms[i].cumfreq >>= 1;
1242 if (model->syms[i].cumfreq <= model->syms[i+1].cumfreq) {
1243 model->syms[i].cumfreq = model->syms[i+1].cumfreq + 1;
1247 else {
1248 model->shiftsleft = 50;
1249 for (i = 0; i < model->entries ; i++) {
1250 /* no -1, want to include the 0 entry */
1251 /* this converts cumfreqs into frequencies, then shifts right */
1252 model->syms[i].cumfreq -= model->syms[i+1].cumfreq;
1253 model->syms[i].cumfreq++; /* avoid losing things entirely */
1254 model->syms[i].cumfreq >>= 1;
1257 /* now sort by frequencies, decreasing order -- this must be an
1258 * inplace selection sort, or a sort with the same (in)stability
1259 * characteristics
1261 for (i = 0; i < model->entries - 1; i++) {
1262 for (j = i + 1; j < model->entries; j++) {
1263 if (model->syms[i].cumfreq < model->syms[j].cumfreq) {
1264 temp = model->syms[i];
1265 model->syms[i] = model->syms[j];
1266 model->syms[j] = temp;
1271 /* then convert frequencies back to cumfreq */
1272 for (i = model->entries - 1; i >= 0; i--) {
1273 model->syms[i].cumfreq += model->syms[i+1].cumfreq;
1275 /* then update the other part of the table */
1276 for (i = 0; i < model->entries; i++) {
1277 model->tabloc[model->syms[i].sym] = i;
1283 /* Bitstream reading macros (Quantum / normal byte order)
1285 * Q_INIT_BITSTREAM should be used first to set up the system
1286 * Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
1287 * unlike LZX, this can loop several times to get the
1288 * requisite number of bits.
1289 * Q_FILL_BUFFER adds more data to the bit buffer, if there is room
1290 * for another 16 bits.
1291 * Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
1292 * buffer
1293 * Q_REMOVE_BITS(n) removes N bits from the bit buffer
1295 * These bit access routines work by using the area beyond the MSB and the
1296 * LSB as a free source of zeroes. This avoids having to mask any bits.
1297 * So we have to know the bit width of the bitbuffer variable. This is
1298 * defined as ULONG_BITS.
1300 * ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
1301 * Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
1302 * need an assured number. Retrieving larger bitstrings can be done with
1303 * multiple reads and fills of the bitbuffer. The code should work fine
1304 * for machines where ULONG >= 32 bits.
1306 * Also note that Quantum reads bytes in normal order; LZX is in
1307 * little-endian order.
1310 #define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
1312 #define Q_FILL_BUFFER do { \
1313 if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
1314 bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
1315 bitsleft += 16; inpos += 2; \
1317 } while (0)
1319 #define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
1320 #define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
1322 #define Q_READ_BITS(v,n) do { \
1323 (v) = 0; \
1324 for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
1325 Q_FILL_BUFFER; \
1326 bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
1327 (v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
1328 Q_REMOVE_BITS(bitrun); \
1330 } while (0)
1332 #define Q_MENTRIES(model) (QTM(model).entries)
1333 #define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
1334 #define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
1336 /* GET_SYMBOL(model, var) fetches the next symbol from the stated model
1337 * and puts it in var. it may need to read the bitstream to do this.
1339 #define GET_SYMBOL(m, var) do { \
1340 range = ((H - L) & 0xFFFF) + 1; \
1341 symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
1343 for (i=1; i < Q_MENTRIES(m); i++) { \
1344 if (Q_MSYMFREQ(m,i) <= symf) break; \
1346 (var) = Q_MSYM(m,i-1); \
1348 range = (H - L) + 1; \
1349 H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
1350 L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
1351 while (1) { \
1352 if ((L & 0x8000) != (H & 0x8000)) { \
1353 if ((L & 0x4000) && !(H & 0x4000)) { \
1354 /* underflow case */ \
1355 C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
1357 else break; \
1359 L <<= 1; H = (H << 1) | 1; \
1360 Q_FILL_BUFFER; \
1361 C = (C << 1) | Q_PEEK_BITS(1); \
1362 Q_REMOVE_BITS(1); \
1365 QTMupdatemodel(&(QTM(m)), i); \
1366 } while (0)
1368 /*******************************************************************
1369 * QTMdecompress (internal)
1371 int QTMdecompress(int inlen, int outlen)
1373 cab_UBYTE *inpos = CAB(inbuf);
1374 cab_UBYTE *window = QTM(window);
1375 cab_UBYTE *runsrc, *rundest;
1377 cab_ULONG window_posn = QTM(window_posn);
1378 cab_ULONG window_size = QTM(window_size);
1380 /* used by bitstream macros */
1381 register int bitsleft, bitrun, bitsneed;
1382 register cab_ULONG bitbuf;
1384 /* used by GET_SYMBOL */
1385 cab_ULONG range;
1386 cab_UWORD symf;
1387 int i;
1389 int extra, togo = outlen, match_length = 0, copy_length;
1390 cab_UBYTE selector, sym;
1391 cab_ULONG match_offset = 0;
1393 cab_UWORD H = 0xFFFF, L = 0, C;
1395 TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
1397 /* read initial value of C */
1398 Q_INIT_BITSTREAM;
1399 Q_READ_BITS(C, 16);
1401 /* apply 2^x-1 mask */
1402 window_posn &= window_size - 1;
1403 /* runs can't straddle the window wraparound */
1404 if ((window_posn + togo) > window_size) {
1405 TRACE("straddled run\n");
1406 return DECR_DATAFORMAT;
1409 while (togo > 0) {
1410 GET_SYMBOL(model7, selector);
1411 switch (selector) {
1412 case 0:
1413 GET_SYMBOL(model00, sym); window[window_posn++] = sym; togo--;
1414 break;
1415 case 1:
1416 GET_SYMBOL(model40, sym); window[window_posn++] = sym; togo--;
1417 break;
1418 case 2:
1419 GET_SYMBOL(model80, sym); window[window_posn++] = sym; togo--;
1420 break;
1421 case 3:
1422 GET_SYMBOL(modelC0, sym); window[window_posn++] = sym; togo--;
1423 break;
1425 case 4:
1426 /* selector 4 = fixed length of 3 */
1427 GET_SYMBOL(model4, sym);
1428 Q_READ_BITS(extra, q_extra_bits[sym]);
1429 match_offset = q_position_base[sym] + extra + 1;
1430 match_length = 3;
1431 break;
1433 case 5:
1434 /* selector 5 = fixed length of 4 */
1435 GET_SYMBOL(model5, sym);
1436 Q_READ_BITS(extra, q_extra_bits[sym]);
1437 match_offset = q_position_base[sym] + extra + 1;
1438 match_length = 4;
1439 break;
1441 case 6:
1442 /* selector 6 = variable length */
1443 GET_SYMBOL(model6len, sym);
1444 Q_READ_BITS(extra, q_length_extra[sym]);
1445 match_length = q_length_base[sym] + extra + 5;
1446 GET_SYMBOL(model6pos, sym);
1447 Q_READ_BITS(extra, q_extra_bits[sym]);
1448 match_offset = q_position_base[sym] + extra + 1;
1449 break;
1451 default:
1452 TRACE("Selector is bogus\n");
1453 return DECR_ILLEGALDATA;
1456 /* if this is a match */
1457 if (selector >= 4) {
1458 rundest = window + window_posn;
1459 togo -= match_length;
1461 /* copy any wrapped around source data */
1462 if (window_posn >= match_offset) {
1463 /* no wrap */
1464 runsrc = rundest - match_offset;
1465 } else {
1466 runsrc = rundest + (window_size - match_offset);
1467 copy_length = match_offset - window_posn;
1468 if (copy_length < match_length) {
1469 match_length -= copy_length;
1470 window_posn += copy_length;
1471 while (copy_length-- > 0) *rundest++ = *runsrc++;
1472 runsrc = window;
1475 window_posn += match_length;
1477 /* copy match data - no worries about destination wraps */
1478 while (match_length-- > 0) *rundest++ = *runsrc++;
1480 } /* while (togo > 0) */
1482 if (togo != 0) {
1483 TRACE("Frame overflow, this_run = %d\n", togo);
1484 return DECR_ILLEGALDATA;
1487 memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) -
1488 outlen, outlen);
1490 QTM(window_posn) = window_posn;
1491 return DECR_OK;
1494 /* LZX decruncher */
1496 /* Microsoft's LZX document and their implementation of the
1497 * com.ms.util.cab Java package do not concur.
1499 * In the LZX document, there is a table showing the correlation between
1500 * window size and the number of position slots. It states that the 1MB
1501 * window = 40 slots and the 2MB window = 42 slots. In the implementation,
1502 * 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the
1503 * first slot whose position base is equal to or more than the required
1504 * window size'. This would explain why other tables in the document refer
1505 * to 50 slots rather than 42.
1507 * The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode
1508 * is not defined in the specification.
1510 * The LZX document does not state the uncompressed block has an
1511 * uncompressed length field. Where does this length field come from, so
1512 * we can know how large the block is? The implementation has it as the 24
1513 * bits following after the 3 blocktype bits, before the alignment
1514 * padding.
1516 * The LZX document states that aligned offset blocks have their aligned
1517 * offset huffman tree AFTER the main and length trees. The implementation
1518 * suggests that the aligned offset tree is BEFORE the main and length
1519 * trees.
1521 * The LZX document decoding algorithm states that, in an aligned offset
1522 * block, if an extra_bits value is 1, 2 or 3, then that number of bits
1523 * should be read and the result added to the match offset. This is
1524 * correct for 1 and 2, but not 3, where just a huffman symbol (using the
1525 * aligned tree) should be read.
1527 * Regarding the E8 preprocessing, the LZX document states 'No translation
1528 * may be performed on the last 6 bytes of the input block'. This is
1529 * correct. However, the pseudocode provided checks for the *E8 leader*
1530 * up to the last 6 bytes. If the leader appears between -10 and -7 bytes
1531 * from the end, this would cause the next four bytes to be modified, at
1532 * least one of which would be in the last 6 bytes, which is not allowed
1533 * according to the spec.
1535 * The specification states that the huffman trees must always contain at
1536 * least one element. However, many CAB files contain blocks where the
1537 * length tree is completely empty (because there are no matches), and
1538 * this is expected to succeed.
1542 /* LZX uses what it calls 'position slots' to represent match offsets.
1543 * What this means is that a small 'position slot' number and a small
1544 * offset from that slot are encoded instead of one large offset for
1545 * every match.
1546 * - lzx_position_base is an index to the position slot bases
1547 * - lzx_extra_bits states how many bits of offset-from-base data is needed.
1549 static cab_ULONG lzx_position_base[51];
1550 static cab_UBYTE extra_bits[51];
1552 /************************************************************
1553 * LZXinit (internal)
1555 int LZXinit(int window) {
1556 cab_ULONG wndsize = 1 << window;
1557 int i, j, posn_slots;
1559 /* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
1560 /* if a previously allocated window is big enough, keep it */
1561 if (window < 15 || window > 21) return DECR_DATAFORMAT;
1562 if (LZX(actual_size) < wndsize) {
1563 if (LZX(window)) free(LZX(window));
1564 LZX(window) = NULL;
1566 if (!LZX(window)) {
1567 if (!(LZX(window) = malloc(wndsize))) return DECR_NOMEMORY;
1568 LZX(actual_size) = wndsize;
1570 LZX(window_size) = wndsize;
1572 /* initialise static tables */
1573 for (i=0, j=0; i <= 50; i += 2) {
1574 extra_bits[i] = extra_bits[i+1] = j; /* 0,0,0,0,1,1,2,2,3,3... */
1575 if ((i != 0) && (j < 17)) j++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */
1577 for (i=0, j=0; i <= 50; i++) {
1578 lzx_position_base[i] = j; /* 0,1,2,3,4,6,8,12,16,24,32,... */
1579 j += 1 << extra_bits[i]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */
1582 /* calculate required position slots */
1583 if (window == 20) posn_slots = 42;
1584 else if (window == 21) posn_slots = 50;
1585 else posn_slots = window << 1;
1587 /*posn_slots=i=0; while (i < wndsize) i += 1 << extra_bits[posn_slots++]; */
1589 LZX(R0) = LZX(R1) = LZX(R2) = 1;
1590 LZX(main_elements) = LZX_NUM_CHARS + (posn_slots << 3);
1591 LZX(header_read) = 0;
1592 LZX(frames_read) = 0;
1593 LZX(block_remaining) = 0;
1594 LZX(block_type) = LZX_BLOCKTYPE_INVALID;
1595 LZX(intel_curpos) = 0;
1596 LZX(intel_started) = 0;
1597 LZX(window_posn) = 0;
1599 /* initialise tables to 0 (because deltas will be applied to them) */
1600 for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) LZX(MAINTREE_len)[i] = 0;
1601 for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) LZX(LENGTH_len)[i] = 0;
1603 return DECR_OK;
1606 /* Bitstream reading macros (LZX / intel little-endian byte order)
1608 * INIT_BITSTREAM should be used first to set up the system
1609 * READ_BITS(var,n) takes N bits from the buffer and puts them in var
1611 * ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
1612 * it can guarantee up to 17 bits (i.e. it can read in
1613 * 16 new bits when there is down to 1 bit in the buffer,
1614 * and it can read 32 bits when there are 0 bits in the
1615 * buffer).
1616 * PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
1617 * REMOVE_BITS(n) removes N bits from the bit buffer
1619 * These bit access routines work by using the area beyond the MSB and the
1620 * LSB as a free source of zeroes. This avoids having to mask any bits.
1621 * So we have to know the bit width of the bitbuffer variable.
1624 #define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
1626 /* Quantum reads bytes in normal order; LZX is little-endian order */
1627 #define ENSURE_BITS(n) \
1628 while (bitsleft < (n)) { \
1629 bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
1630 bitsleft += 16; inpos+=2; \
1633 #define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
1634 #define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
1636 #define READ_BITS(v,n) do { \
1637 if (n) { \
1638 ENSURE_BITS(n); \
1639 (v) = PEEK_BITS(n); \
1640 REMOVE_BITS(n); \
1642 else { \
1643 (v) = 0; \
1645 } while (0)
1647 /* Huffman macros */
1649 #define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
1650 #define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
1651 #define SYMTABLE(tbl) (LZX(tbl##_table))
1652 #define LENTABLE(tbl) (LZX(tbl##_len))
1654 /* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
1655 * In reality, it just calls make_decode_table() with the appropriate
1656 * values - they're all fixed by some #defines anyway, so there's no point
1657 * writing each call out in full by hand.
1659 #define BUILD_TABLE(tbl) \
1660 if (make_decode_table( \
1661 MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
1662 )) { return DECR_ILLEGALDATA; }
1664 /* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
1665 * bitstream using the stated table and puts it in var.
1667 #define READ_HUFFSYM(tbl,var) do { \
1668 ENSURE_BITS(16); \
1669 hufftbl = SYMTABLE(tbl); \
1670 if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
1671 j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
1672 do { \
1673 j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
1674 if (!j) { return DECR_ILLEGALDATA; } \
1675 } while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
1677 j = LENTABLE(tbl)[(var) = i]; \
1678 REMOVE_BITS(j); \
1679 } while (0)
1681 /* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
1682 * first to last in the given table. The code lengths are stored in their
1683 * own special LZX way.
1685 #define READ_LENGTHS(tbl,first,last) do { \
1686 lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
1687 if (lzx_read_lens(LENTABLE(tbl),(first),(last),&lb)) { \
1688 return DECR_ILLEGALDATA; \
1690 bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
1691 } while (0)
1693 /*************************************************************************
1694 * make_decode_table (internal)
1696 * This function was coded by David Tritscher. It builds a fast huffman
1697 * decoding table out of just a canonical huffman code lengths table.
1699 * PARAMS
1700 * nsyms: total number of symbols in this huffman tree.
1701 * nbits: any symbols with a code length of nbits or less can be decoded
1702 * in one lookup of the table.
1703 * length: A table to get code lengths from [0 to syms-1]
1704 * table: The table to fill up with decoded symbols and pointers.
1706 * RETURNS
1707 * OK: 0
1708 * error: 1
1710 int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_UWORD *table) {
1711 register cab_UWORD sym;
1712 register cab_ULONG leaf;
1713 register cab_UBYTE bit_num = 1;
1714 cab_ULONG fill;
1715 cab_ULONG pos = 0; /* the current position in the decode table */
1716 cab_ULONG table_mask = 1 << nbits;
1717 cab_ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */
1718 cab_ULONG next_symbol = bit_mask; /* base of allocation for long codes */
1720 /* fill entries for codes short enough for a direct mapping */
1721 while (bit_num <= nbits) {
1722 for (sym = 0; sym < nsyms; sym++) {
1723 if (length[sym] == bit_num) {
1724 leaf = pos;
1726 if((pos += bit_mask) > table_mask) return 1; /* table overrun */
1728 /* fill all possible lookups of this symbol with the symbol itself */
1729 fill = bit_mask;
1730 while (fill-- > 0) table[leaf++] = sym;
1733 bit_mask >>= 1;
1734 bit_num++;
1737 /* if there are any codes longer than nbits */
1738 if (pos != table_mask) {
1739 /* clear the remainder of the table */
1740 for (sym = pos; sym < table_mask; sym++) table[sym] = 0;
1742 /* give ourselves room for codes to grow by up to 16 more bits */
1743 pos <<= 16;
1744 table_mask <<= 16;
1745 bit_mask = 1 << 15;
1747 while (bit_num <= 16) {
1748 for (sym = 0; sym < nsyms; sym++) {
1749 if (length[sym] == bit_num) {
1750 leaf = pos >> 16;
1751 for (fill = 0; fill < bit_num - nbits; fill++) {
1752 /* if this path hasn't been taken yet, 'allocate' two entries */
1753 if (table[leaf] == 0) {
1754 table[(next_symbol << 1)] = 0;
1755 table[(next_symbol << 1) + 1] = 0;
1756 table[leaf] = next_symbol++;
1758 /* follow the path and select either left or right for next bit */
1759 leaf = table[leaf] << 1;
1760 if ((pos >> (15-fill)) & 1) leaf++;
1762 table[leaf] = sym;
1764 if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
1767 bit_mask >>= 1;
1768 bit_num++;
1772 /* full table? */
1773 if (pos == table_mask) return 0;
1775 /* either erroneous table, or all elements are 0 - let's find out. */
1776 for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1;
1777 return 0;
1780 struct lzx_bits {
1781 cab_ULONG bb;
1782 int bl;
1783 cab_UBYTE *ip;
1786 /************************************************************
1787 * lzx_read_lens (internal)
1789 int lzx_read_lens(cab_UBYTE *lens, cab_ULONG first, cab_ULONG last, struct lzx_bits *lb) {
1790 cab_ULONG i,j, x,y;
1791 int z;
1793 register cab_ULONG bitbuf = lb->bb;
1794 register int bitsleft = lb->bl;
1795 cab_UBYTE *inpos = lb->ip;
1796 cab_UWORD *hufftbl;
1798 for (x = 0; x < 20; x++) {
1799 READ_BITS(y, 4);
1800 LENTABLE(PRETREE)[x] = y;
1802 BUILD_TABLE(PRETREE);
1804 for (x = first; x < last; ) {
1805 READ_HUFFSYM(PRETREE, z);
1806 if (z == 17) {
1807 READ_BITS(y, 4); y += 4;
1808 while (y--) lens[x++] = 0;
1810 else if (z == 18) {
1811 READ_BITS(y, 5); y += 20;
1812 while (y--) lens[x++] = 0;
1814 else if (z == 19) {
1815 READ_BITS(y, 1); y += 4;
1816 READ_HUFFSYM(PRETREE, z);
1817 z = lens[x] - z; if (z < 0) z += 17;
1818 while (y--) lens[x++] = z;
1820 else {
1821 z = lens[x] - z; if (z < 0) z += 17;
1822 lens[x++] = z;
1826 lb->bb = bitbuf;
1827 lb->bl = bitsleft;
1828 lb->ip = inpos;
1829 return 0;
1832 /*******************************************************
1833 * LZXdecompress (internal)
1835 int LZXdecompress(int inlen, int outlen) {
1836 cab_UBYTE *inpos = CAB(inbuf);
1837 cab_UBYTE *endinp = inpos + inlen;
1838 cab_UBYTE *window = LZX(window);
1839 cab_UBYTE *runsrc, *rundest;
1840 cab_UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */
1842 cab_ULONG window_posn = LZX(window_posn);
1843 cab_ULONG window_size = LZX(window_size);
1844 cab_ULONG R0 = LZX(R0);
1845 cab_ULONG R1 = LZX(R1);
1846 cab_ULONG R2 = LZX(R2);
1848 register cab_ULONG bitbuf;
1849 register int bitsleft;
1850 cab_ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */
1851 struct lzx_bits lb; /* used in READ_LENGTHS macro */
1853 int togo = outlen, this_run, main_element, aligned_bits;
1854 int match_length, copy_length, length_footer, extra, verbatim_bits;
1856 TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
1858 INIT_BITSTREAM;
1860 /* read header if necessary */
1861 if (!LZX(header_read)) {
1862 i = j = 0;
1863 READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); }
1864 LZX(intel_filesize) = (i << 16) | j; /* or 0 if not encoded */
1865 LZX(header_read) = 1;
1868 /* main decoding loop */
1869 while (togo > 0) {
1870 /* last block finished, new block expected */
1871 if (LZX(block_remaining) == 0) {
1872 if (LZX(block_type) == LZX_BLOCKTYPE_UNCOMPRESSED) {
1873 if (LZX(block_length) & 1) inpos++; /* realign bitstream to word */
1874 INIT_BITSTREAM;
1877 READ_BITS(LZX(block_type), 3);
1878 READ_BITS(i, 16);
1879 READ_BITS(j, 8);
1880 LZX(block_remaining) = LZX(block_length) = (i << 8) | j;
1882 switch (LZX(block_type)) {
1883 case LZX_BLOCKTYPE_ALIGNED:
1884 for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; }
1885 BUILD_TABLE(ALIGNED);
1886 /* rest of aligned header is same as verbatim */
1888 case LZX_BLOCKTYPE_VERBATIM:
1889 READ_LENGTHS(MAINTREE, 0, 256);
1890 READ_LENGTHS(MAINTREE, 256, LZX(main_elements));
1891 BUILD_TABLE(MAINTREE);
1892 if (LENTABLE(MAINTREE)[0xE8] != 0) LZX(intel_started) = 1;
1894 READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS);
1895 BUILD_TABLE(LENGTH);
1896 break;
1898 case LZX_BLOCKTYPE_UNCOMPRESSED:
1899 LZX(intel_started) = 1; /* because we can't assume otherwise */
1900 ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */
1901 if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */
1902 R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
1903 R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
1904 R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
1905 break;
1907 default:
1908 return DECR_ILLEGALDATA;
1912 /* buffer exhaustion check */
1913 if (inpos > endinp) {
1914 /* it's possible to have a file where the next run is less than
1915 * 16 bits in size. In this case, the READ_HUFFSYM() macro used
1916 * in building the tables will exhaust the buffer, so we should
1917 * allow for this, but not allow those accidentally read bits to
1918 * be used (so we check that there are at least 16 bits
1919 * remaining - in this boundary case they aren't really part of
1920 * the compressed data)
1922 if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA;
1925 while ((this_run = LZX(block_remaining)) > 0 && togo > 0) {
1926 if (this_run > togo) this_run = togo;
1927 togo -= this_run;
1928 LZX(block_remaining) -= this_run;
1930 /* apply 2^x-1 mask */
1931 window_posn &= window_size - 1;
1932 /* runs can't straddle the window wraparound */
1933 if ((window_posn + this_run) > window_size)
1934 return DECR_DATAFORMAT;
1936 switch (LZX(block_type)) {
1938 case LZX_BLOCKTYPE_VERBATIM:
1939 while (this_run > 0) {
1940 READ_HUFFSYM(MAINTREE, main_element);
1942 if (main_element < LZX_NUM_CHARS) {
1943 /* literal: 0 to LZX_NUM_CHARS-1 */
1944 window[window_posn++] = main_element;
1945 this_run--;
1947 else {
1948 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
1949 main_element -= LZX_NUM_CHARS;
1951 match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
1952 if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
1953 READ_HUFFSYM(LENGTH, length_footer);
1954 match_length += length_footer;
1956 match_length += LZX_MIN_MATCH;
1958 match_offset = main_element >> 3;
1960 if (match_offset > 2) {
1961 /* not repeated offset */
1962 if (match_offset != 3) {
1963 extra = extra_bits[match_offset];
1964 READ_BITS(verbatim_bits, extra);
1965 match_offset = lzx_position_base[match_offset]
1966 - 2 + verbatim_bits;
1968 else {
1969 match_offset = 1;
1972 /* update repeated offset LRU queue */
1973 R2 = R1; R1 = R0; R0 = match_offset;
1975 else if (match_offset == 0) {
1976 match_offset = R0;
1978 else if (match_offset == 1) {
1979 match_offset = R1;
1980 R1 = R0; R0 = match_offset;
1982 else /* match_offset == 2 */ {
1983 match_offset = R2;
1984 R2 = R0; R0 = match_offset;
1987 rundest = window + window_posn;
1988 this_run -= match_length;
1990 /* copy any wrapped around source data */
1991 if (window_posn >= match_offset) {
1992 /* no wrap */
1993 runsrc = rundest - match_offset;
1994 } else {
1995 runsrc = rundest + (window_size - match_offset);
1996 copy_length = match_offset - window_posn;
1997 if (copy_length < match_length) {
1998 match_length -= copy_length;
1999 window_posn += copy_length;
2000 while (copy_length-- > 0) *rundest++ = *runsrc++;
2001 runsrc = window;
2004 window_posn += match_length;
2006 /* copy match data - no worries about destination wraps */
2007 while (match_length-- > 0) *rundest++ = *runsrc++;
2010 break;
2012 case LZX_BLOCKTYPE_ALIGNED:
2013 while (this_run > 0) {
2014 READ_HUFFSYM(MAINTREE, main_element);
2016 if (main_element < LZX_NUM_CHARS) {
2017 /* literal: 0 to LZX_NUM_CHARS-1 */
2018 window[window_posn++] = main_element;
2019 this_run--;
2021 else {
2022 /* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
2023 main_element -= LZX_NUM_CHARS;
2025 match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
2026 if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
2027 READ_HUFFSYM(LENGTH, length_footer);
2028 match_length += length_footer;
2030 match_length += LZX_MIN_MATCH;
2032 match_offset = main_element >> 3;
2034 if (match_offset > 2) {
2035 /* not repeated offset */
2036 extra = extra_bits[match_offset];
2037 match_offset = lzx_position_base[match_offset] - 2;
2038 if (extra > 3) {
2039 /* verbatim and aligned bits */
2040 extra -= 3;
2041 READ_BITS(verbatim_bits, extra);
2042 match_offset += (verbatim_bits << 3);
2043 READ_HUFFSYM(ALIGNED, aligned_bits);
2044 match_offset += aligned_bits;
2046 else if (extra == 3) {
2047 /* aligned bits only */
2048 READ_HUFFSYM(ALIGNED, aligned_bits);
2049 match_offset += aligned_bits;
2051 else if (extra > 0) { /* extra==1, extra==2 */
2052 /* verbatim bits only */
2053 READ_BITS(verbatim_bits, extra);
2054 match_offset += verbatim_bits;
2056 else /* extra == 0 */ {
2057 /* ??? */
2058 match_offset = 1;
2061 /* update repeated offset LRU queue */
2062 R2 = R1; R1 = R0; R0 = match_offset;
2064 else if (match_offset == 0) {
2065 match_offset = R0;
2067 else if (match_offset == 1) {
2068 match_offset = R1;
2069 R1 = R0; R0 = match_offset;
2071 else /* match_offset == 2 */ {
2072 match_offset = R2;
2073 R2 = R0; R0 = match_offset;
2076 rundest = window + window_posn;
2077 this_run -= match_length;
2079 /* copy any wrapped around source data */
2080 if (window_posn >= match_offset) {
2081 /* no wrap */
2082 runsrc = rundest - match_offset;
2083 } else {
2084 runsrc = rundest + (window_size - match_offset);
2085 copy_length = match_offset - window_posn;
2086 if (copy_length < match_length) {
2087 match_length -= copy_length;
2088 window_posn += copy_length;
2089 while (copy_length-- > 0) *rundest++ = *runsrc++;
2090 runsrc = window;
2093 window_posn += match_length;
2095 /* copy match data - no worries about destination wraps */
2096 while (match_length-- > 0) *rundest++ = *runsrc++;
2099 break;
2101 case LZX_BLOCKTYPE_UNCOMPRESSED:
2102 if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA;
2103 memcpy(window + window_posn, inpos, (size_t) this_run);
2104 inpos += this_run; window_posn += this_run;
2105 break;
2107 default:
2108 return DECR_ILLEGALDATA; /* might as well */
2114 if (togo != 0) return DECR_ILLEGALDATA;
2115 memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) -
2116 outlen, (size_t) outlen);
2118 LZX(window_posn) = window_posn;
2119 LZX(R0) = R0;
2120 LZX(R1) = R1;
2121 LZX(R2) = R2;
2123 /* intel E8 decoding */
2124 if ((LZX(frames_read)++ < 32768) && LZX(intel_filesize) != 0) {
2125 if (outlen <= 6 || !LZX(intel_started)) {
2126 LZX(intel_curpos) += outlen;
2128 else {
2129 cab_UBYTE *data = CAB(outbuf);
2130 cab_UBYTE *dataend = data + outlen - 10;
2131 cab_LONG curpos = LZX(intel_curpos);
2132 cab_LONG filesize = LZX(intel_filesize);
2133 cab_LONG abs_off, rel_off;
2135 LZX(intel_curpos) = curpos + outlen;
2137 while (data < dataend) {
2138 if (*data++ != 0xE8) { curpos++; continue; }
2139 abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);
2140 if ((abs_off >= -curpos) && (abs_off < filesize)) {
2141 rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize;
2142 data[0] = (cab_UBYTE) rel_off;
2143 data[1] = (cab_UBYTE) (rel_off >> 8);
2144 data[2] = (cab_UBYTE) (rel_off >> 16);
2145 data[3] = (cab_UBYTE) (rel_off >> 24);
2147 data += 4;
2148 curpos += 5;
2152 return DECR_OK;
2155 /*********************************************************
2156 * find_cabs_in_file (internal)
2158 struct cabinet *find_cabs_in_file(LPCSTR name)
2160 struct cabinet *cab, *cab2, *firstcab = NULL, *linkcab = NULL;
2161 cab_UBYTE *pstart = &search_buf[0], *pend, *p;
2162 cab_off_t offset, caboff, cablen = 0, foffset = 0, filelen, length;
2163 int state = 0, found = 0, ok = 0;
2165 TRACE("(name == %s)\n", debugstr_a((char *) name));
2167 /* open the file and search for cabinet headers */
2168 if ((cab = (struct cabinet *) calloc(1, sizeof(struct cabinet)))) {
2169 cab->filename = name;
2170 if (cabinet_open(cab)) {
2171 filelen = cab->filelen;
2172 for (offset = 0; (offset < filelen); offset += length) {
2173 /* search length is either the full length of the search buffer,
2174 * or the amount of data remaining to the end of the file,
2175 * whichever is less.
2177 length = filelen - offset;
2178 if (length > CAB_SEARCH_SIZE) length = CAB_SEARCH_SIZE;
2180 /* fill the search buffer with data from disk */
2181 if (!cabinet_read(cab, search_buf, length)) break;
2183 /* read through the entire buffer. */
2184 p = pstart;
2185 pend = &search_buf[length];
2186 while (p < pend) {
2187 switch (state) {
2188 /* starting state */
2189 case 0:
2190 /* we spend most of our time in this while loop, looking for
2191 * a leading 'M' of the 'MSCF' signature
2193 while (*p++ != 0x4D && p < pend);
2194 if (p < pend) state = 1; /* if we found tht 'M', advance state */
2195 break;
2197 /* verify that the next 3 bytes are 'S', 'C' and 'F' */
2198 case 1: state = (*p++ == 0x53) ? 2 : 0; break;
2199 case 2: state = (*p++ == 0x43) ? 3 : 0; break;
2200 case 3: state = (*p++ == 0x46) ? 4 : 0; break;
2202 /* we don't care about bytes 4-7 */
2203 /* bytes 8-11 are the overall length of the cabinet */
2204 case 8: cablen = *p++; state++; break;
2205 case 9: cablen |= *p++ << 8; state++; break;
2206 case 10: cablen |= *p++ << 16; state++; break;
2207 case 11: cablen |= *p++ << 24; state++; break;
2209 /* we don't care about bytes 12-15 */
2210 /* bytes 16-19 are the offset within the cabinet of the filedata */
2211 case 16: foffset = *p++; state++; break;
2212 case 17: foffset |= *p++ << 8; state++; break;
2213 case 18: foffset |= *p++ << 16; state++; break;
2214 case 19: foffset |= *p++ << 24;
2215 /* now we have recieved 20 bytes of potential cab header. */
2216 /* work out the offset in the file of this potential cabinet */
2217 caboff = offset + (p-pstart) - 20;
2219 /* check that the files offset is less than the alleged length
2220 * of the cabinet, and that the offset + the alleged length are
2221 * 'roughly' within the end of overall file length
2223 if ((foffset < cablen) &&
2224 ((caboff + foffset) < (filelen + 32)) &&
2225 ((caboff + cablen) < (filelen + 32)) )
2227 /* found a potential result - try loading it */
2228 found++;
2229 cab2 = load_cab_offset(name, caboff);
2230 if (cab2) {
2231 /* success */
2232 ok++;
2234 /* cause the search to restart after this cab's data. */
2235 offset = caboff + cablen;
2236 if (offset < cab->filelen) cabinet_seek(cab, offset);
2237 length = 0;
2238 p = pend;
2240 /* link the cab into the list */
2241 if (linkcab == NULL) firstcab = cab2;
2242 else linkcab->next = cab2;
2243 linkcab = cab2;
2246 state = 0;
2247 break;
2248 default:
2249 p++, state++; break;
2253 cabinet_close(cab);
2255 free(cab);
2258 /* if there were cabinets that were found but are not ok, point this out */
2259 if (found > ok) {
2260 WARN("%s: found %d bad cabinets\n", debugstr_a(name), found-ok);
2263 /* if no cabinets were found, let the user know */
2264 if (!firstcab) {
2265 WARN("%s: not a Microsoft cabinet file.\n", debugstr_a(name));
2267 return firstcab;
2270 /***********************************************************************
2271 * find_cabinet_file (internal)
2273 * tries to find *cabname, from the directory path of origcab, correcting the
2274 * case of *cabname if necessary, If found, writes back to *cabname.
2276 void find_cabinet_file(char **cabname, LPCSTR origcab) {
2278 char *tail, *cab, *name, *nextpart, nametmp[MAX_PATH], *filepart;
2279 int found = 0;
2281 TRACE("(*cabname == ^%p, origcab == %s)\n", cabname ? *cabname : NULL, debugstr_a(origcab));
2283 /* ensure we have a cabinet name at all */
2284 if (!(name = *cabname)) {
2285 WARN("no cabinet name at all\n");
2288 /* find if there's a directory path in the origcab */
2289 tail = origcab ? max(strrchr(origcab, '/'), strrchr(origcab, '\\')) : NULL;
2291 if ((cab = (char *) malloc(MAX_PATH))) {
2292 /* add the directory path from the original cabinet name */
2293 if (tail) {
2294 memcpy(cab, origcab, tail - origcab);
2295 cab[tail - origcab] = '\0';
2296 } else {
2297 /* default directory path of '.' */
2298 cab[0] = '.';
2299 cab[1] = '\0';
2302 do {
2303 TRACE("trying cab == %s", debugstr_a(cab));
2305 /* we don't want null cabinet filenames */
2306 if (name[0] == '\0') {
2307 WARN("null cab name\n");
2308 break;
2311 /* if there is a directory component in the cabinet name,
2312 * look for that alone first
2314 nextpart = strchr(name, '\\');
2315 if (nextpart) *nextpart = '\0';
2317 found = SearchPathA(cab, name, NULL, MAX_PATH, nametmp, &filepart);
2319 /* if the component was not found, look for it in the current dir */
2320 if (!found) {
2321 found = SearchPathA(".", name, NULL, MAX_PATH, nametmp, &filepart);
2324 if (found)
2325 TRACE("found: %s\n", debugstr_a(nametmp));
2326 else
2327 TRACE("not found.\n");
2329 /* restore the real name and skip to the next directory component
2330 * or actual cabinet name
2332 if (nextpart) *nextpart = '\\', name = &nextpart[1];
2334 /* while there is another directory component, and while we
2335 * successfully found the current component
2337 } while (nextpart && found);
2339 /* if we found the cabinet, change the next cabinet's name.
2340 * otherwise, pretend nothing happened
2342 if (found) {
2343 free((void *) *cabname);
2344 *cabname = cab;
2345 strncpy(cab, nametmp, found+1);
2346 TRACE("result: %s\n", debugstr_a(cab));
2347 } else {
2348 free((void *) cab);
2349 TRACE("result: nothing\n");
2354 /************************************************************************
2355 * process_files (internal)
2357 * this does the tricky job of running through every file in the cabinet,
2358 * including spanning cabinets, and working out which file is in which
2359 * folder in which cabinet. It also throws out the duplicate file entries
2360 * that appear in spanning cabinets. There is memory leakage here because
2361 * those entries are not freed. See the XAD CAB client for an
2362 * implementation of this that correctly frees the discarded file entries.
2364 struct cab_file *process_files(struct cabinet *basecab) {
2365 struct cabinet *cab;
2366 struct cab_file *outfi = NULL, *linkfi = NULL, *nextfi, *fi, *cfi;
2367 struct cab_folder *fol, *firstfol, *lastfol = NULL, *predfol;
2368 int i, mergeok;
2370 FIXME("(basecab == ^%p): Memory leak.\n", basecab);
2372 for (cab = basecab; cab; cab = cab->nextcab) {
2373 /* firstfol = first folder in this cabinet */
2374 /* lastfol = last folder in this cabinet */
2375 /* predfol = last folder in previous cabinet (or NULL if first cabinet) */
2376 predfol = lastfol;
2377 firstfol = cab->folders;
2378 for (lastfol = firstfol; lastfol->next;) lastfol = lastfol->next;
2379 mergeok = 1;
2381 for (fi = cab->files; fi; fi = nextfi) {
2382 i = fi->index;
2383 nextfi = fi->next;
2385 if (i < cffileCONTINUED_FROM_PREV) {
2386 for (fol = firstfol; fol && i--; ) fol = fol->next;
2387 fi->folder = fol; /* NULL if an invalid folder index */
2389 else {
2390 /* folder merging */
2391 if (i == cffileCONTINUED_TO_NEXT
2392 || i == cffileCONTINUED_PREV_AND_NEXT) {
2393 if (cab->nextcab && !lastfol->contfile) lastfol->contfile = fi;
2396 if (i == cffileCONTINUED_FROM_PREV
2397 || i == cffileCONTINUED_PREV_AND_NEXT) {
2398 /* these files are to be continued in yet another
2399 * cabinet, don't merge them in just yet */
2400 if (i == cffileCONTINUED_PREV_AND_NEXT) mergeok = 0;
2402 /* only merge once per cabinet */
2403 if (predfol) {
2404 if ((cfi = predfol->contfile)
2405 && (cfi->offset == fi->offset)
2406 && (cfi->length == fi->length)
2407 && (strcmp(cfi->filename, fi->filename) == 0)
2408 && (predfol->comp_type == firstfol->comp_type)) {
2409 /* increase the number of splits */
2410 if ((i = ++(predfol->num_splits)) > CAB_SPLITMAX) {
2411 mergeok = 0;
2412 ERR("%s: internal error, increase CAB_SPLITMAX\n", debugstr_a(basecab->filename));
2414 else {
2415 /* copy information across from the merged folder */
2416 predfol->offset[i] = firstfol->offset[0];
2417 predfol->cab[i] = firstfol->cab[0];
2418 predfol->next = firstfol->next;
2419 predfol->contfile = firstfol->contfile;
2421 if (firstfol == lastfol) lastfol = predfol;
2422 firstfol = predfol;
2423 predfol = NULL; /* don't merge again within this cabinet */
2426 else {
2427 /* if the folders won't merge, don't add their files */
2428 mergeok = 0;
2432 if (mergeok) fi->folder = firstfol;
2436 if (fi->folder) {
2437 if (linkfi) linkfi->next = fi; else outfi = fi;
2438 linkfi = fi;
2440 } /* for (fi= .. */
2441 } /* for (cab= ...*/
2443 return outfi;
2446 /****************************************************************
2447 * convertUTF (internal)
2449 * translate UTF -> ASCII
2451 * UTF translates two-byte unicode characters into 1, 2 or 3 bytes.
2452 * %000000000xxxxxxx -> %0xxxxxxx
2453 * %00000xxxxxyyyyyy -> %110xxxxx %10yyyyyy
2454 * %xxxxyyyyyyzzzzzz -> %1110xxxx %10yyyyyy %10zzzzzz
2456 * Therefore, the inverse is as follows:
2457 * First char:
2458 * 0x00 - 0x7F = one byte char
2459 * 0x80 - 0xBF = invalid
2460 * 0xC0 - 0xDF = 2 byte char (next char only 0x80-0xBF is valid)
2461 * 0xE0 - 0xEF = 3 byte char (next 2 chars only 0x80-0xBF is valid)
2462 * 0xF0 - 0xFF = invalid
2464 * FIXME: use a winapi to do this
2466 int convertUTF(cab_UBYTE *in) {
2467 cab_UBYTE c, *out = in, *end = in + strlen((char *) in) + 1;
2468 cab_ULONG x;
2470 do {
2471 /* read unicode character */
2472 if ((c = *in++) < 0x80) x = c;
2473 else {
2474 if (c < 0xC0) return 0;
2475 else if (c < 0xE0) {
2476 x = (c & 0x1F) << 6;
2477 if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F);
2479 else if (c < 0xF0) {
2480 x = (c & 0xF) << 12;
2481 if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F)<<6;
2482 if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F);
2484 else return 0;
2487 /* terrible unicode -> ASCII conversion */
2488 if (x > 127) x = '_';
2490 if (in > end) return 0; /* just in case */
2491 } while ((*out++ = (cab_UBYTE) x));
2492 return 1;
2495 /****************************************************
2496 * NONEdecompress (internal)
2498 int NONEdecompress(int inlen, int outlen)
2500 if (inlen != outlen) return DECR_ILLEGALDATA;
2501 memcpy(CAB(outbuf), CAB(inbuf), (size_t) inlen);
2502 return DECR_OK;
2505 /**************************************************
2506 * checksum (internal)
2508 cab_ULONG checksum(cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum) {
2509 int len;
2510 cab_ULONG ul = 0;
2512 for (len = bytes >> 2; len--; data += 4) {
2513 csum ^= ((data[0]) | (data[1]<<8) | (data[2]<<16) | (data[3]<<24));
2516 switch (bytes & 3) {
2517 case 3: ul |= *data++ << 16;
2518 case 2: ul |= *data++ << 8;
2519 case 1: ul |= *data;
2521 csum ^= ul;
2523 return csum;
2526 /**********************************************************
2527 * decompress (internal)
2529 int decompress(struct cab_file *fi, int savemode, int fix)
2531 cab_ULONG bytes = savemode ? fi->length : fi->offset - CAB(offset);
2532 struct cabinet *cab = CAB(current)->cab[CAB(split)];
2533 cab_UBYTE buf[cfdata_SIZEOF], *data;
2534 cab_UWORD inlen, len, outlen, cando;
2535 cab_ULONG cksum;
2536 cab_LONG err;
2538 TRACE("(fi == ^%p, savemode == %d, fix == %d)\n", fi, savemode, fix);
2540 while (bytes > 0) {
2541 /* cando = the max number of bytes we can do */
2542 cando = CAB(outlen);
2543 if (cando > bytes) cando = bytes;
2545 /* if cando != 0 */
2546 if (cando && savemode)
2547 file_write(fi, CAB(outpos), cando);
2549 CAB(outpos) += cando;
2550 CAB(outlen) -= cando;
2551 bytes -= cando; if (!bytes) break;
2553 /* we only get here if we emptied the output buffer */
2555 /* read data header + data */
2556 inlen = outlen = 0;
2557 while (outlen == 0) {
2558 /* read the block header, skip the reserved part */
2559 if (!cabinet_read(cab, buf, cfdata_SIZEOF)) return DECR_INPUT;
2560 cabinet_skip(cab, cab->block_resv);
2562 /* we shouldn't get blocks over CAB_INPUTMAX in size */
2563 data = CAB(inbuf) + inlen;
2564 len = EndGetI16(buf+cfdata_CompressedSize);
2565 inlen += len;
2566 if (inlen > CAB_INPUTMAX) return DECR_INPUT;
2567 if (!cabinet_read(cab, data, len)) return DECR_INPUT;
2569 /* clear two bytes after read-in data */
2570 data[len+1] = data[len+2] = 0;
2572 /* perform checksum test on the block (if one is stored) */
2573 cksum = EndGetI32(buf+cfdata_CheckSum);
2574 if (cksum && cksum != checksum(buf+4, 4, checksum(data, len, 0))) {
2575 /* checksum is wrong */
2576 if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK)
2577 == cffoldCOMPTYPE_MSZIP))
2579 WARN("%s: checksum failed\n", debugstr_a(fi->filename));
2581 else {
2582 return DECR_CHECKSUM;
2586 /* outlen=0 means this block was part of a split block */
2587 outlen = EndGetI16(buf+cfdata_UncompressedSize);
2588 if (outlen == 0) {
2589 cabinet_close(cab);
2590 cab = CAB(current)->cab[++CAB(split)];
2591 if (!cabinet_open(cab)) return DECR_INPUT;
2592 cabinet_seek(cab, CAB(current)->offset[CAB(split)]);
2596 /* decompress block */
2597 if ((err = CAB(decompress)(inlen, outlen))) {
2598 if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK)
2599 == cffoldCOMPTYPE_MSZIP))
2601 ERR("%s: failed decrunching block\n", debugstr_a(fi->filename));
2603 else {
2604 return err;
2607 CAB(outlen) = outlen;
2608 CAB(outpos) = CAB(outbuf);
2611 return DECR_OK;
2614 /****************************************************************
2615 * extract_file (internal)
2617 * workhorse to extract a particular file from a cab
2619 void extract_file(struct cab_file *fi, int lower, int fix, LPCSTR dir)
2621 struct cab_folder *fol = fi->folder, *oldfol = CAB(current);
2622 cab_LONG err = DECR_OK;
2624 TRACE("(fi == ^%p, lower == %d, fix == %d, dir == %s)\n", fi, lower, fix, debugstr_a(dir));
2626 /* is a change of folder needed? do we need to reset the current folder? */
2627 if (fol != oldfol || fi->offset < CAB(offset)) {
2628 cab_UWORD comptype = fol->comp_type;
2629 int ct1 = comptype & cffoldCOMPTYPE_MASK;
2630 int ct2 = oldfol ? (oldfol->comp_type & cffoldCOMPTYPE_MASK) : 0;
2632 /* if the archiver has changed, call the old archiver's free() function */
2633 if (ct1 != ct2) {
2634 switch (ct2) {
2635 case cffoldCOMPTYPE_LZX:
2636 if (LZX(window)) {
2637 free(LZX(window));
2638 LZX(window) = NULL;
2640 break;
2641 case cffoldCOMPTYPE_QUANTUM:
2642 if (QTM(window)) {
2643 free(QTM(window));
2644 QTM(window) = NULL;
2646 break;
2650 switch (ct1) {
2651 case cffoldCOMPTYPE_NONE:
2652 CAB(decompress) = NONEdecompress;
2653 break;
2655 case cffoldCOMPTYPE_MSZIP:
2656 CAB(decompress) = ZIPdecompress;
2657 break;
2659 case cffoldCOMPTYPE_QUANTUM:
2660 CAB(decompress) = QTMdecompress;
2661 err = QTMinit((comptype >> 8) & 0x1f, (comptype >> 4) & 0xF);
2662 break;
2664 case cffoldCOMPTYPE_LZX:
2665 CAB(decompress) = LZXdecompress;
2666 err = LZXinit((comptype >> 8) & 0x1f);
2667 break;
2669 default:
2670 err = DECR_DATAFORMAT;
2672 if (err) goto exit_handler;
2674 /* initialisation OK, set current folder and reset offset */
2675 if (oldfol) cabinet_close(oldfol->cab[CAB(split)]);
2676 if (!cabinet_open(fol->cab[0])) goto exit_handler;
2677 cabinet_seek(fol->cab[0], fol->offset[0]);
2678 CAB(current) = fol;
2679 CAB(offset) = 0;
2680 CAB(outlen) = 0; /* discard existing block */
2681 CAB(split) = 0;
2684 if (fi->offset > CAB(offset)) {
2685 /* decode bytes and send them to /dev/null */
2686 if ((err = decompress(fi, 0, fix))) goto exit_handler;
2687 CAB(offset) = fi->offset;
2690 if (!file_open(fi, lower, dir)) return;
2691 err = decompress(fi, 1, fix);
2692 if (err) CAB(current) = NULL; else CAB(offset) += fi->length;
2693 file_close(fi);
2695 exit_handler:
2696 if (err) {
2697 char *errmsg, *cabname;
2698 switch (err) {
2699 case DECR_NOMEMORY:
2700 errmsg = "out of memory!\n"; break;
2701 case DECR_ILLEGALDATA:
2702 errmsg = "%s: illegal or corrupt data\n"; break;
2703 case DECR_DATAFORMAT:
2704 errmsg = "%s: unsupported data format\n"; break;
2705 case DECR_CHECKSUM:
2706 errmsg = "%s: checksum error\n"; break;
2707 case DECR_INPUT:
2708 errmsg = "%s: input error\n"; break;
2709 case DECR_OUTPUT:
2710 errmsg = "%s: output error\n"; break;
2711 default:
2712 errmsg = "%s: unknown error (BUG)\n";
2715 if (CAB(current)) {
2716 cabname = (char *) (CAB(current)->cab[CAB(split)]->filename);
2718 else {
2719 cabname = (char *) (fi->folder->cab[0]->filename);
2722 ERR(errmsg, cabname);
2726 /*********************************************************
2727 * print_fileinfo (internal)
2729 void print_fileinfo(struct cab_file *fi) {
2730 int d = fi->date, t = fi->time;
2731 char *fname = NULL;
2733 if (fi->attribs & cffile_A_NAME_IS_UTF) {
2734 fname = malloc(strlen(fi->filename) + 1);
2735 if (fname) {
2736 strcpy(fname, fi->filename);
2737 convertUTF((cab_UBYTE *) fname);
2741 TRACE("%9u | %02d.%02d.%04d %02d:%02d:%02d | %s\n",
2742 fi->length,
2743 d & 0x1f, (d>>5) & 0xf, (d>>9) + 1980,
2744 t >> 11, (t>>5) & 0x3f, (t << 1) & 0x3e,
2745 fname ? fname : fi->filename
2748 if (fname) free(fname);
2751 /****************************************************************************
2752 * process_cabinet (internal)
2754 * called to simply "extract" a cabinet file. Will find every cabinet file
2755 * in that file, search for every chained cabinet attached to those cabinets,
2756 * and will either extract the cabinets, or ? (call a callback?)
2758 * PARAMS
2759 * cabname [I] name of the cabinet file to extract
2760 * dir [I] directory to extract to
2761 * fix [I] attempt to process broken cabinets
2762 * lower [I] ? (lower case something or other?)
2764 * RETURNS
2765 * Success: TRUE
2766 * Failure: FALSE
2768 BOOL process_cabinet(LPCSTR cabname, LPCSTR dir, BOOL fix, BOOL lower)
2770 struct cabinet *basecab, *cab, *cab1, *cab2;
2771 struct cab_file *filelist, *fi;
2773 /* has the list-mode header been seen before? */
2774 int viewhdr = 0;
2776 ZeroMemory(&decomp_state, sizeof(cab_decomp_state));
2778 TRACE("Extract %s\n", debugstr_a(cabname));
2780 /* load the file requested */
2781 basecab = find_cabs_in_file(cabname);
2782 if (!basecab) return FALSE;
2784 /* iterate over all cabinets found in that file */
2785 for (cab = basecab; cab; cab=cab->next) {
2787 /* bi-directionally load any spanning cabinets -- backwards */
2788 for (cab1 = cab; cab1->flags & cfheadPREV_CABINET; cab1 = cab1->prevcab) {
2789 TRACE("%s: extends backwards to %s (%s)\n", debugstr_a(cabname),
2790 debugstr_a(cab1->prevname), debugstr_a(cab1->previnfo));
2791 find_cabinet_file(&(cab1->prevname), cabname);
2792 if (!(cab1->prevcab = load_cab_offset(cab1->prevname, 0))) {
2793 ERR("%s: can't read previous cabinet %s\n", debugstr_a(cabname), debugstr_a(cab1->prevname));
2794 break;
2796 cab1->prevcab->nextcab = cab1;
2799 /* bi-directionally load any spanning cabinets -- forwards */
2800 for (cab2 = cab; cab2->flags & cfheadNEXT_CABINET; cab2 = cab2->nextcab) {
2801 TRACE("%s: extends to %s (%s)\n", debugstr_a(cabname),
2802 debugstr_a(cab2->nextname), debugstr_a(cab2->nextinfo));
2803 find_cabinet_file(&(cab2->nextname), cabname);
2804 if (!(cab2->nextcab = load_cab_offset(cab2->nextname, 0))) {
2805 ERR("%s: can't read next cabinet %s\n", debugstr_a(cabname), debugstr_a(cab2->nextname));
2806 break;
2808 cab2->nextcab->prevcab = cab2;
2811 filelist = process_files(cab1);
2812 CAB(current) = NULL;
2814 if (!viewhdr) {
2815 TRACE("File size | Date Time | Name\n");
2816 TRACE("----------+---------------------+-------------\n");
2817 viewhdr = 1;
2819 for (fi = filelist; fi; fi = fi->next)
2820 print_fileinfo(fi);
2821 TRACE("Beginning Extraction...\n");
2822 for (fi = filelist; fi; fi = fi->next) {
2823 TRACE(" extracting: %s\n", debugstr_a(fi->filename));
2824 extract_file(fi, lower, fix, dir);
2828 TRACE("Finished processing cabinet.\n");
2830 return TRUE;