[PATCH] dvb: av7110: Siemens DVB-C analog video input support
[usb.git] / kernel / fork.c
blobb25802065031e7612a5733838459d41008bd31f6
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
53 * Protected counters by write_lock_irq(&tasklist_lock)
55 unsigned long total_forks; /* Handle normal Linux uptimes. */
56 int nr_threads; /* The idle threads do not count.. */
58 int max_threads; /* tunable limit on nr_threads */
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
62 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
64 EXPORT_SYMBOL(tasklist_lock);
66 int nr_processes(void)
68 int cpu;
69 int total = 0;
71 for_each_online_cpu(cpu)
72 total += per_cpu(process_counts, cpu);
74 return total;
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
101 void free_task(struct task_struct *tsk)
103 free_thread_info(tsk->thread_info);
104 free_task_struct(tsk);
106 EXPORT_SYMBOL(free_task);
108 void __put_task_struct(struct task_struct *tsk)
110 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 WARN_ON(atomic_read(&tsk->usage));
112 WARN_ON(tsk == current);
114 if (unlikely(tsk->audit_context))
115 audit_free(tsk);
116 security_task_free(tsk);
117 free_uid(tsk->user);
118 put_group_info(tsk->group_info);
120 if (!profile_handoff_task(tsk))
121 free_task(tsk);
124 void __init fork_init(unsigned long mempages)
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
129 #endif
130 /* create a slab on which task_structs can be allocated */
131 task_struct_cachep =
132 kmem_cache_create("task_struct", sizeof(struct task_struct),
133 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
137 * The default maximum number of threads is set to a safe
138 * value: the thread structures can take up at most half
139 * of memory.
141 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144 * we need to allow at least 20 threads to boot a system
146 if(max_threads < 20)
147 max_threads = 20;
149 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 init_task.signal->rlim[RLIMIT_NPROC];
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
157 struct task_struct *tsk;
158 struct thread_info *ti;
160 prepare_to_copy(orig);
162 tsk = alloc_task_struct();
163 if (!tsk)
164 return NULL;
166 ti = alloc_thread_info(tsk);
167 if (!ti) {
168 free_task_struct(tsk);
169 return NULL;
172 *ti = *orig->thread_info;
173 *tsk = *orig;
174 tsk->thread_info = ti;
175 ti->task = tsk;
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk->usage,2);
179 atomic_set(&tsk->fs_excl, 0);
180 return tsk;
183 #ifdef CONFIG_MMU
184 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
186 struct vm_area_struct * mpnt, *tmp, **pprev;
187 struct rb_node **rb_link, *rb_parent;
188 int retval;
189 unsigned long charge;
190 struct mempolicy *pol;
192 down_write(&oldmm->mmap_sem);
193 flush_cache_mm(current->mm);
194 mm->locked_vm = 0;
195 mm->mmap = NULL;
196 mm->mmap_cache = NULL;
197 mm->free_area_cache = oldmm->mmap_base;
198 mm->cached_hole_size = ~0UL;
199 mm->map_count = 0;
200 set_mm_counter(mm, rss, 0);
201 set_mm_counter(mm, anon_rss, 0);
202 cpus_clear(mm->cpu_vm_mask);
203 mm->mm_rb = RB_ROOT;
204 rb_link = &mm->mm_rb.rb_node;
205 rb_parent = NULL;
206 pprev = &mm->mmap;
208 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
209 struct file *file;
211 if (mpnt->vm_flags & VM_DONTCOPY) {
212 long pages = vma_pages(mpnt);
213 mm->total_vm -= pages;
214 __vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
215 -pages);
216 continue;
218 charge = 0;
219 if (mpnt->vm_flags & VM_ACCOUNT) {
220 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
221 if (security_vm_enough_memory(len))
222 goto fail_nomem;
223 charge = len;
225 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
226 if (!tmp)
227 goto fail_nomem;
228 *tmp = *mpnt;
229 pol = mpol_copy(vma_policy(mpnt));
230 retval = PTR_ERR(pol);
231 if (IS_ERR(pol))
232 goto fail_nomem_policy;
233 vma_set_policy(tmp, pol);
234 tmp->vm_flags &= ~VM_LOCKED;
235 tmp->vm_mm = mm;
236 tmp->vm_next = NULL;
237 anon_vma_link(tmp);
238 file = tmp->vm_file;
239 if (file) {
240 struct inode *inode = file->f_dentry->d_inode;
241 get_file(file);
242 if (tmp->vm_flags & VM_DENYWRITE)
243 atomic_dec(&inode->i_writecount);
245 /* insert tmp into the share list, just after mpnt */
246 spin_lock(&file->f_mapping->i_mmap_lock);
247 tmp->vm_truncate_count = mpnt->vm_truncate_count;
248 flush_dcache_mmap_lock(file->f_mapping);
249 vma_prio_tree_add(tmp, mpnt);
250 flush_dcache_mmap_unlock(file->f_mapping);
251 spin_unlock(&file->f_mapping->i_mmap_lock);
255 * Link in the new vma and copy the page table entries:
256 * link in first so that swapoff can see swap entries.
257 * Note that, exceptionally, here the vma is inserted
258 * without holding mm->mmap_sem.
260 spin_lock(&mm->page_table_lock);
261 *pprev = tmp;
262 pprev = &tmp->vm_next;
264 __vma_link_rb(mm, tmp, rb_link, rb_parent);
265 rb_link = &tmp->vm_rb.rb_right;
266 rb_parent = &tmp->vm_rb;
268 mm->map_count++;
269 retval = copy_page_range(mm, current->mm, tmp);
270 spin_unlock(&mm->page_table_lock);
272 if (tmp->vm_ops && tmp->vm_ops->open)
273 tmp->vm_ops->open(tmp);
275 if (retval)
276 goto out;
278 retval = 0;
280 out:
281 flush_tlb_mm(current->mm);
282 up_write(&oldmm->mmap_sem);
283 return retval;
284 fail_nomem_policy:
285 kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287 retval = -ENOMEM;
288 vm_unacct_memory(charge);
289 goto out;
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
294 mm->pgd = pgd_alloc(mm);
295 if (unlikely(!mm->pgd))
296 return -ENOMEM;
297 return 0;
300 static inline void mm_free_pgd(struct mm_struct * mm)
302 pgd_free(mm->pgd);
304 #else
305 #define dup_mmap(mm, oldmm) (0)
306 #define mm_alloc_pgd(mm) (0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
310 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
312 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
315 #include <linux/init_task.h>
317 static struct mm_struct * mm_init(struct mm_struct * mm)
319 atomic_set(&mm->mm_users, 1);
320 atomic_set(&mm->mm_count, 1);
321 init_rwsem(&mm->mmap_sem);
322 INIT_LIST_HEAD(&mm->mmlist);
323 mm->core_waiters = 0;
324 mm->nr_ptes = 0;
325 spin_lock_init(&mm->page_table_lock);
326 rwlock_init(&mm->ioctx_list_lock);
327 mm->ioctx_list = NULL;
328 mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
329 mm->free_area_cache = TASK_UNMAPPED_BASE;
330 mm->cached_hole_size = ~0UL;
332 if (likely(!mm_alloc_pgd(mm))) {
333 mm->def_flags = 0;
334 return mm;
336 free_mm(mm);
337 return NULL;
341 * Allocate and initialize an mm_struct.
343 struct mm_struct * mm_alloc(void)
345 struct mm_struct * mm;
347 mm = allocate_mm();
348 if (mm) {
349 memset(mm, 0, sizeof(*mm));
350 mm = mm_init(mm);
352 return mm;
356 * Called when the last reference to the mm
357 * is dropped: either by a lazy thread or by
358 * mmput. Free the page directory and the mm.
360 void fastcall __mmdrop(struct mm_struct *mm)
362 BUG_ON(mm == &init_mm);
363 mm_free_pgd(mm);
364 destroy_context(mm);
365 free_mm(mm);
369 * Decrement the use count and release all resources for an mm.
371 void mmput(struct mm_struct *mm)
373 if (atomic_dec_and_test(&mm->mm_users)) {
374 exit_aio(mm);
375 exit_mmap(mm);
376 if (!list_empty(&mm->mmlist)) {
377 spin_lock(&mmlist_lock);
378 list_del(&mm->mmlist);
379 spin_unlock(&mmlist_lock);
381 put_swap_token(mm);
382 mmdrop(mm);
385 EXPORT_SYMBOL_GPL(mmput);
388 * get_task_mm - acquire a reference to the task's mm
390 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
391 * this kernel workthread has transiently adopted a user mm with use_mm,
392 * to do its AIO) is not set and if so returns a reference to it, after
393 * bumping up the use count. User must release the mm via mmput()
394 * after use. Typically used by /proc and ptrace.
396 struct mm_struct *get_task_mm(struct task_struct *task)
398 struct mm_struct *mm;
400 task_lock(task);
401 mm = task->mm;
402 if (mm) {
403 if (task->flags & PF_BORROWED_MM)
404 mm = NULL;
405 else
406 atomic_inc(&mm->mm_users);
408 task_unlock(task);
409 return mm;
411 EXPORT_SYMBOL_GPL(get_task_mm);
413 /* Please note the differences between mmput and mm_release.
414 * mmput is called whenever we stop holding onto a mm_struct,
415 * error success whatever.
417 * mm_release is called after a mm_struct has been removed
418 * from the current process.
420 * This difference is important for error handling, when we
421 * only half set up a mm_struct for a new process and need to restore
422 * the old one. Because we mmput the new mm_struct before
423 * restoring the old one. . .
424 * Eric Biederman 10 January 1998
426 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 struct completion *vfork_done = tsk->vfork_done;
430 /* Get rid of any cached register state */
431 deactivate_mm(tsk, mm);
433 /* notify parent sleeping on vfork() */
434 if (vfork_done) {
435 tsk->vfork_done = NULL;
436 complete(vfork_done);
438 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
439 u32 __user * tidptr = tsk->clear_child_tid;
440 tsk->clear_child_tid = NULL;
443 * We don't check the error code - if userspace has
444 * not set up a proper pointer then tough luck.
446 put_user(0, tidptr);
447 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
451 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
453 struct mm_struct * mm, *oldmm;
454 int retval;
456 tsk->min_flt = tsk->maj_flt = 0;
457 tsk->nvcsw = tsk->nivcsw = 0;
459 tsk->mm = NULL;
460 tsk->active_mm = NULL;
463 * Are we cloning a kernel thread?
465 * We need to steal a active VM for that..
467 oldmm = current->mm;
468 if (!oldmm)
469 return 0;
471 if (clone_flags & CLONE_VM) {
472 atomic_inc(&oldmm->mm_users);
473 mm = oldmm;
475 * There are cases where the PTL is held to ensure no
476 * new threads start up in user mode using an mm, which
477 * allows optimizing out ipis; the tlb_gather_mmu code
478 * is an example.
480 spin_unlock_wait(&oldmm->page_table_lock);
481 goto good_mm;
484 retval = -ENOMEM;
485 mm = allocate_mm();
486 if (!mm)
487 goto fail_nomem;
489 /* Copy the current MM stuff.. */
490 memcpy(mm, oldmm, sizeof(*mm));
491 if (!mm_init(mm))
492 goto fail_nomem;
494 if (init_new_context(tsk,mm))
495 goto fail_nocontext;
497 retval = dup_mmap(mm, oldmm);
498 if (retval)
499 goto free_pt;
501 mm->hiwater_rss = get_mm_counter(mm,rss);
502 mm->hiwater_vm = mm->total_vm;
504 good_mm:
505 tsk->mm = mm;
506 tsk->active_mm = mm;
507 return 0;
509 free_pt:
510 mmput(mm);
511 fail_nomem:
512 return retval;
514 fail_nocontext:
516 * If init_new_context() failed, we cannot use mmput() to free the mm
517 * because it calls destroy_context()
519 mm_free_pgd(mm);
520 free_mm(mm);
521 return retval;
524 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
526 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
527 /* We don't need to lock fs - think why ;-) */
528 if (fs) {
529 atomic_set(&fs->count, 1);
530 rwlock_init(&fs->lock);
531 fs->umask = old->umask;
532 read_lock(&old->lock);
533 fs->rootmnt = mntget(old->rootmnt);
534 fs->root = dget(old->root);
535 fs->pwdmnt = mntget(old->pwdmnt);
536 fs->pwd = dget(old->pwd);
537 if (old->altroot) {
538 fs->altrootmnt = mntget(old->altrootmnt);
539 fs->altroot = dget(old->altroot);
540 } else {
541 fs->altrootmnt = NULL;
542 fs->altroot = NULL;
544 read_unlock(&old->lock);
546 return fs;
549 struct fs_struct *copy_fs_struct(struct fs_struct *old)
551 return __copy_fs_struct(old);
554 EXPORT_SYMBOL_GPL(copy_fs_struct);
556 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
558 if (clone_flags & CLONE_FS) {
559 atomic_inc(&current->fs->count);
560 return 0;
562 tsk->fs = __copy_fs_struct(current->fs);
563 if (!tsk->fs)
564 return -ENOMEM;
565 return 0;
568 static int count_open_files(struct files_struct *files, int size)
570 int i;
572 /* Find the last open fd */
573 for (i = size/(8*sizeof(long)); i > 0; ) {
574 if (files->open_fds->fds_bits[--i])
575 break;
577 i = (i+1) * 8 * sizeof(long);
578 return i;
581 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
583 struct files_struct *oldf, *newf;
584 struct file **old_fds, **new_fds;
585 int open_files, size, i, error = 0, expand;
588 * A background process may not have any files ...
590 oldf = current->files;
591 if (!oldf)
592 goto out;
594 if (clone_flags & CLONE_FILES) {
595 atomic_inc(&oldf->count);
596 goto out;
600 * Note: we may be using current for both targets (See exec.c)
601 * This works because we cache current->files (old) as oldf. Don't
602 * break this.
604 tsk->files = NULL;
605 error = -ENOMEM;
606 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
607 if (!newf)
608 goto out;
610 atomic_set(&newf->count, 1);
612 spin_lock_init(&newf->file_lock);
613 newf->next_fd = 0;
614 newf->max_fds = NR_OPEN_DEFAULT;
615 newf->max_fdset = __FD_SETSIZE;
616 newf->close_on_exec = &newf->close_on_exec_init;
617 newf->open_fds = &newf->open_fds_init;
618 newf->fd = &newf->fd_array[0];
620 spin_lock(&oldf->file_lock);
622 open_files = count_open_files(oldf, oldf->max_fdset);
623 expand = 0;
626 * Check whether we need to allocate a larger fd array or fd set.
627 * Note: we're not a clone task, so the open count won't change.
629 if (open_files > newf->max_fdset) {
630 newf->max_fdset = 0;
631 expand = 1;
633 if (open_files > newf->max_fds) {
634 newf->max_fds = 0;
635 expand = 1;
638 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
639 if (expand) {
640 spin_unlock(&oldf->file_lock);
641 spin_lock(&newf->file_lock);
642 error = expand_files(newf, open_files-1);
643 spin_unlock(&newf->file_lock);
644 if (error < 0)
645 goto out_release;
646 spin_lock(&oldf->file_lock);
649 old_fds = oldf->fd;
650 new_fds = newf->fd;
652 memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
653 memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
655 for (i = open_files; i != 0; i--) {
656 struct file *f = *old_fds++;
657 if (f) {
658 get_file(f);
659 } else {
661 * The fd may be claimed in the fd bitmap but not yet
662 * instantiated in the files array if a sibling thread
663 * is partway through open(). So make sure that this
664 * fd is available to the new process.
666 FD_CLR(open_files - i, newf->open_fds);
668 *new_fds++ = f;
670 spin_unlock(&oldf->file_lock);
672 /* compute the remainder to be cleared */
673 size = (newf->max_fds - open_files) * sizeof(struct file *);
675 /* This is long word aligned thus could use a optimized version */
676 memset(new_fds, 0, size);
678 if (newf->max_fdset > open_files) {
679 int left = (newf->max_fdset-open_files)/8;
680 int start = open_files / (8 * sizeof(unsigned long));
682 memset(&newf->open_fds->fds_bits[start], 0, left);
683 memset(&newf->close_on_exec->fds_bits[start], 0, left);
686 tsk->files = newf;
687 error = 0;
688 out:
689 return error;
691 out_release:
692 free_fdset (newf->close_on_exec, newf->max_fdset);
693 free_fdset (newf->open_fds, newf->max_fdset);
694 free_fd_array(newf->fd, newf->max_fds);
695 kmem_cache_free(files_cachep, newf);
696 goto out;
700 * Helper to unshare the files of the current task.
701 * We don't want to expose copy_files internals to
702 * the exec layer of the kernel.
705 int unshare_files(void)
707 struct files_struct *files = current->files;
708 int rc;
710 if(!files)
711 BUG();
713 /* This can race but the race causes us to copy when we don't
714 need to and drop the copy */
715 if(atomic_read(&files->count) == 1)
717 atomic_inc(&files->count);
718 return 0;
720 rc = copy_files(0, current);
721 if(rc)
722 current->files = files;
723 return rc;
726 EXPORT_SYMBOL(unshare_files);
728 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
730 struct sighand_struct *sig;
732 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
733 atomic_inc(&current->sighand->count);
734 return 0;
736 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
737 tsk->sighand = sig;
738 if (!sig)
739 return -ENOMEM;
740 spin_lock_init(&sig->siglock);
741 atomic_set(&sig->count, 1);
742 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
743 return 0;
746 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
748 struct signal_struct *sig;
749 int ret;
751 if (clone_flags & CLONE_THREAD) {
752 atomic_inc(&current->signal->count);
753 atomic_inc(&current->signal->live);
754 return 0;
756 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
757 tsk->signal = sig;
758 if (!sig)
759 return -ENOMEM;
761 ret = copy_thread_group_keys(tsk);
762 if (ret < 0) {
763 kmem_cache_free(signal_cachep, sig);
764 return ret;
767 atomic_set(&sig->count, 1);
768 atomic_set(&sig->live, 1);
769 init_waitqueue_head(&sig->wait_chldexit);
770 sig->flags = 0;
771 sig->group_exit_code = 0;
772 sig->group_exit_task = NULL;
773 sig->group_stop_count = 0;
774 sig->curr_target = NULL;
775 init_sigpending(&sig->shared_pending);
776 INIT_LIST_HEAD(&sig->posix_timers);
778 sig->it_real_value = sig->it_real_incr = 0;
779 sig->real_timer.function = it_real_fn;
780 sig->real_timer.data = (unsigned long) tsk;
781 init_timer(&sig->real_timer);
783 sig->it_virt_expires = cputime_zero;
784 sig->it_virt_incr = cputime_zero;
785 sig->it_prof_expires = cputime_zero;
786 sig->it_prof_incr = cputime_zero;
788 sig->tty = current->signal->tty;
789 sig->pgrp = process_group(current);
790 sig->session = current->signal->session;
791 sig->leader = 0; /* session leadership doesn't inherit */
792 sig->tty_old_pgrp = 0;
794 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
795 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
796 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
797 sig->sched_time = 0;
798 INIT_LIST_HEAD(&sig->cpu_timers[0]);
799 INIT_LIST_HEAD(&sig->cpu_timers[1]);
800 INIT_LIST_HEAD(&sig->cpu_timers[2]);
802 task_lock(current->group_leader);
803 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
804 task_unlock(current->group_leader);
806 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
808 * New sole thread in the process gets an expiry time
809 * of the whole CPU time limit.
811 tsk->it_prof_expires =
812 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
815 return 0;
818 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
820 unsigned long new_flags = p->flags;
822 new_flags &= ~PF_SUPERPRIV;
823 new_flags |= PF_FORKNOEXEC;
824 if (!(clone_flags & CLONE_PTRACE))
825 p->ptrace = 0;
826 p->flags = new_flags;
829 asmlinkage long sys_set_tid_address(int __user *tidptr)
831 current->clear_child_tid = tidptr;
833 return current->pid;
837 * This creates a new process as a copy of the old one,
838 * but does not actually start it yet.
840 * It copies the registers, and all the appropriate
841 * parts of the process environment (as per the clone
842 * flags). The actual kick-off is left to the caller.
844 static task_t *copy_process(unsigned long clone_flags,
845 unsigned long stack_start,
846 struct pt_regs *regs,
847 unsigned long stack_size,
848 int __user *parent_tidptr,
849 int __user *child_tidptr,
850 int pid)
852 int retval;
853 struct task_struct *p = NULL;
855 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
856 return ERR_PTR(-EINVAL);
859 * Thread groups must share signals as well, and detached threads
860 * can only be started up within the thread group.
862 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
863 return ERR_PTR(-EINVAL);
866 * Shared signal handlers imply shared VM. By way of the above,
867 * thread groups also imply shared VM. Blocking this case allows
868 * for various simplifications in other code.
870 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
871 return ERR_PTR(-EINVAL);
873 retval = security_task_create(clone_flags);
874 if (retval)
875 goto fork_out;
877 retval = -ENOMEM;
878 p = dup_task_struct(current);
879 if (!p)
880 goto fork_out;
882 retval = -EAGAIN;
883 if (atomic_read(&p->user->processes) >=
884 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
885 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
886 p->user != &root_user)
887 goto bad_fork_free;
890 atomic_inc(&p->user->__count);
891 atomic_inc(&p->user->processes);
892 get_group_info(p->group_info);
895 * If multiple threads are within copy_process(), then this check
896 * triggers too late. This doesn't hurt, the check is only there
897 * to stop root fork bombs.
899 if (nr_threads >= max_threads)
900 goto bad_fork_cleanup_count;
902 if (!try_module_get(p->thread_info->exec_domain->module))
903 goto bad_fork_cleanup_count;
905 if (p->binfmt && !try_module_get(p->binfmt->module))
906 goto bad_fork_cleanup_put_domain;
908 p->did_exec = 0;
909 copy_flags(clone_flags, p);
910 p->pid = pid;
911 retval = -EFAULT;
912 if (clone_flags & CLONE_PARENT_SETTID)
913 if (put_user(p->pid, parent_tidptr))
914 goto bad_fork_cleanup;
916 p->proc_dentry = NULL;
918 INIT_LIST_HEAD(&p->children);
919 INIT_LIST_HEAD(&p->sibling);
920 p->vfork_done = NULL;
921 spin_lock_init(&p->alloc_lock);
922 spin_lock_init(&p->proc_lock);
924 clear_tsk_thread_flag(p, TIF_SIGPENDING);
925 init_sigpending(&p->pending);
927 p->utime = cputime_zero;
928 p->stime = cputime_zero;
929 p->sched_time = 0;
930 p->rchar = 0; /* I/O counter: bytes read */
931 p->wchar = 0; /* I/O counter: bytes written */
932 p->syscr = 0; /* I/O counter: read syscalls */
933 p->syscw = 0; /* I/O counter: write syscalls */
934 acct_clear_integrals(p);
936 p->it_virt_expires = cputime_zero;
937 p->it_prof_expires = cputime_zero;
938 p->it_sched_expires = 0;
939 INIT_LIST_HEAD(&p->cpu_timers[0]);
940 INIT_LIST_HEAD(&p->cpu_timers[1]);
941 INIT_LIST_HEAD(&p->cpu_timers[2]);
943 p->lock_depth = -1; /* -1 = no lock */
944 do_posix_clock_monotonic_gettime(&p->start_time);
945 p->security = NULL;
946 p->io_context = NULL;
947 p->io_wait = NULL;
948 p->audit_context = NULL;
949 #ifdef CONFIG_NUMA
950 p->mempolicy = mpol_copy(p->mempolicy);
951 if (IS_ERR(p->mempolicy)) {
952 retval = PTR_ERR(p->mempolicy);
953 p->mempolicy = NULL;
954 goto bad_fork_cleanup;
956 #endif
958 p->tgid = p->pid;
959 if (clone_flags & CLONE_THREAD)
960 p->tgid = current->tgid;
962 if ((retval = security_task_alloc(p)))
963 goto bad_fork_cleanup_policy;
964 if ((retval = audit_alloc(p)))
965 goto bad_fork_cleanup_security;
966 /* copy all the process information */
967 if ((retval = copy_semundo(clone_flags, p)))
968 goto bad_fork_cleanup_audit;
969 if ((retval = copy_files(clone_flags, p)))
970 goto bad_fork_cleanup_semundo;
971 if ((retval = copy_fs(clone_flags, p)))
972 goto bad_fork_cleanup_files;
973 if ((retval = copy_sighand(clone_flags, p)))
974 goto bad_fork_cleanup_fs;
975 if ((retval = copy_signal(clone_flags, p)))
976 goto bad_fork_cleanup_sighand;
977 if ((retval = copy_mm(clone_flags, p)))
978 goto bad_fork_cleanup_signal;
979 if ((retval = copy_keys(clone_flags, p)))
980 goto bad_fork_cleanup_mm;
981 if ((retval = copy_namespace(clone_flags, p)))
982 goto bad_fork_cleanup_keys;
983 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
984 if (retval)
985 goto bad_fork_cleanup_namespace;
987 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
989 * Clear TID on mm_release()?
991 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
994 * Syscall tracing should be turned off in the child regardless
995 * of CLONE_PTRACE.
997 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
998 #ifdef TIF_SYSCALL_EMU
999 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1000 #endif
1002 /* Our parent execution domain becomes current domain
1003 These must match for thread signalling to apply */
1005 p->parent_exec_id = p->self_exec_id;
1007 /* ok, now we should be set up.. */
1008 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1009 p->pdeath_signal = 0;
1010 p->exit_state = 0;
1013 * Ok, make it visible to the rest of the system.
1014 * We dont wake it up yet.
1016 p->group_leader = p;
1017 INIT_LIST_HEAD(&p->ptrace_children);
1018 INIT_LIST_HEAD(&p->ptrace_list);
1020 /* Perform scheduler related setup. Assign this task to a CPU. */
1021 sched_fork(p, clone_flags);
1023 /* Need tasklist lock for parent etc handling! */
1024 write_lock_irq(&tasklist_lock);
1027 * The task hasn't been attached yet, so its cpus_allowed mask will
1028 * not be changed, nor will its assigned CPU.
1030 * The cpus_allowed mask of the parent may have changed after it was
1031 * copied first time - so re-copy it here, then check the child's CPU
1032 * to ensure it is on a valid CPU (and if not, just force it back to
1033 * parent's CPU). This avoids alot of nasty races.
1035 p->cpus_allowed = current->cpus_allowed;
1036 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed)))
1037 set_task_cpu(p, smp_processor_id());
1040 * Check for pending SIGKILL! The new thread should not be allowed
1041 * to slip out of an OOM kill. (or normal SIGKILL.)
1043 if (sigismember(&current->pending.signal, SIGKILL)) {
1044 write_unlock_irq(&tasklist_lock);
1045 retval = -EINTR;
1046 goto bad_fork_cleanup_namespace;
1049 /* CLONE_PARENT re-uses the old parent */
1050 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1051 p->real_parent = current->real_parent;
1052 else
1053 p->real_parent = current;
1054 p->parent = p->real_parent;
1056 if (clone_flags & CLONE_THREAD) {
1057 spin_lock(&current->sighand->siglock);
1059 * Important: if an exit-all has been started then
1060 * do not create this new thread - the whole thread
1061 * group is supposed to exit anyway.
1063 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1064 spin_unlock(&current->sighand->siglock);
1065 write_unlock_irq(&tasklist_lock);
1066 retval = -EAGAIN;
1067 goto bad_fork_cleanup_namespace;
1069 p->group_leader = current->group_leader;
1071 if (current->signal->group_stop_count > 0) {
1073 * There is an all-stop in progress for the group.
1074 * We ourselves will stop as soon as we check signals.
1075 * Make the new thread part of that group stop too.
1077 current->signal->group_stop_count++;
1078 set_tsk_thread_flag(p, TIF_SIGPENDING);
1081 if (!cputime_eq(current->signal->it_virt_expires,
1082 cputime_zero) ||
1083 !cputime_eq(current->signal->it_prof_expires,
1084 cputime_zero) ||
1085 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1086 !list_empty(&current->signal->cpu_timers[0]) ||
1087 !list_empty(&current->signal->cpu_timers[1]) ||
1088 !list_empty(&current->signal->cpu_timers[2])) {
1090 * Have child wake up on its first tick to check
1091 * for process CPU timers.
1093 p->it_prof_expires = jiffies_to_cputime(1);
1096 spin_unlock(&current->sighand->siglock);
1100 * inherit ioprio
1102 p->ioprio = current->ioprio;
1104 SET_LINKS(p);
1105 if (unlikely(p->ptrace & PT_PTRACED))
1106 __ptrace_link(p, current->parent);
1108 cpuset_fork(p);
1110 attach_pid(p, PIDTYPE_PID, p->pid);
1111 attach_pid(p, PIDTYPE_TGID, p->tgid);
1112 if (thread_group_leader(p)) {
1113 attach_pid(p, PIDTYPE_PGID, process_group(p));
1114 attach_pid(p, PIDTYPE_SID, p->signal->session);
1115 if (p->pid)
1116 __get_cpu_var(process_counts)++;
1119 if (!current->signal->tty && p->signal->tty)
1120 p->signal->tty = NULL;
1122 nr_threads++;
1123 total_forks++;
1124 write_unlock_irq(&tasklist_lock);
1125 retval = 0;
1127 fork_out:
1128 if (retval)
1129 return ERR_PTR(retval);
1130 return p;
1132 bad_fork_cleanup_namespace:
1133 exit_namespace(p);
1134 bad_fork_cleanup_keys:
1135 exit_keys(p);
1136 bad_fork_cleanup_mm:
1137 if (p->mm)
1138 mmput(p->mm);
1139 bad_fork_cleanup_signal:
1140 exit_signal(p);
1141 bad_fork_cleanup_sighand:
1142 exit_sighand(p);
1143 bad_fork_cleanup_fs:
1144 exit_fs(p); /* blocking */
1145 bad_fork_cleanup_files:
1146 exit_files(p); /* blocking */
1147 bad_fork_cleanup_semundo:
1148 exit_sem(p);
1149 bad_fork_cleanup_audit:
1150 audit_free(p);
1151 bad_fork_cleanup_security:
1152 security_task_free(p);
1153 bad_fork_cleanup_policy:
1154 #ifdef CONFIG_NUMA
1155 mpol_free(p->mempolicy);
1156 #endif
1157 bad_fork_cleanup:
1158 if (p->binfmt)
1159 module_put(p->binfmt->module);
1160 bad_fork_cleanup_put_domain:
1161 module_put(p->thread_info->exec_domain->module);
1162 bad_fork_cleanup_count:
1163 put_group_info(p->group_info);
1164 atomic_dec(&p->user->processes);
1165 free_uid(p->user);
1166 bad_fork_free:
1167 free_task(p);
1168 goto fork_out;
1171 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1173 memset(regs, 0, sizeof(struct pt_regs));
1174 return regs;
1177 task_t * __devinit fork_idle(int cpu)
1179 task_t *task;
1180 struct pt_regs regs;
1182 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1183 if (!task)
1184 return ERR_PTR(-ENOMEM);
1185 init_idle(task, cpu);
1186 unhash_process(task);
1187 return task;
1190 static inline int fork_traceflag (unsigned clone_flags)
1192 if (clone_flags & CLONE_UNTRACED)
1193 return 0;
1194 else if (clone_flags & CLONE_VFORK) {
1195 if (current->ptrace & PT_TRACE_VFORK)
1196 return PTRACE_EVENT_VFORK;
1197 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1198 if (current->ptrace & PT_TRACE_CLONE)
1199 return PTRACE_EVENT_CLONE;
1200 } else if (current->ptrace & PT_TRACE_FORK)
1201 return PTRACE_EVENT_FORK;
1203 return 0;
1207 * Ok, this is the main fork-routine.
1209 * It copies the process, and if successful kick-starts
1210 * it and waits for it to finish using the VM if required.
1212 long do_fork(unsigned long clone_flags,
1213 unsigned long stack_start,
1214 struct pt_regs *regs,
1215 unsigned long stack_size,
1216 int __user *parent_tidptr,
1217 int __user *child_tidptr)
1219 struct task_struct *p;
1220 int trace = 0;
1221 long pid = alloc_pidmap();
1223 if (pid < 0)
1224 return -EAGAIN;
1225 if (unlikely(current->ptrace)) {
1226 trace = fork_traceflag (clone_flags);
1227 if (trace)
1228 clone_flags |= CLONE_PTRACE;
1231 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1233 * Do this prior waking up the new thread - the thread pointer
1234 * might get invalid after that point, if the thread exits quickly.
1236 if (!IS_ERR(p)) {
1237 struct completion vfork;
1239 if (clone_flags & CLONE_VFORK) {
1240 p->vfork_done = &vfork;
1241 init_completion(&vfork);
1244 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1246 * We'll start up with an immediate SIGSTOP.
1248 sigaddset(&p->pending.signal, SIGSTOP);
1249 set_tsk_thread_flag(p, TIF_SIGPENDING);
1252 if (!(clone_flags & CLONE_STOPPED))
1253 wake_up_new_task(p, clone_flags);
1254 else
1255 p->state = TASK_STOPPED;
1257 if (unlikely (trace)) {
1258 current->ptrace_message = pid;
1259 ptrace_notify ((trace << 8) | SIGTRAP);
1262 if (clone_flags & CLONE_VFORK) {
1263 wait_for_completion(&vfork);
1264 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1265 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1267 } else {
1268 free_pidmap(pid);
1269 pid = PTR_ERR(p);
1271 return pid;
1274 void __init proc_caches_init(void)
1276 sighand_cachep = kmem_cache_create("sighand_cache",
1277 sizeof(struct sighand_struct), 0,
1278 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1279 signal_cachep = kmem_cache_create("signal_cache",
1280 sizeof(struct signal_struct), 0,
1281 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1282 files_cachep = kmem_cache_create("files_cache",
1283 sizeof(struct files_struct), 0,
1284 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1285 fs_cachep = kmem_cache_create("fs_cache",
1286 sizeof(struct fs_struct), 0,
1287 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1288 vm_area_cachep = kmem_cache_create("vm_area_struct",
1289 sizeof(struct vm_area_struct), 0,
1290 SLAB_PANIC, NULL, NULL);
1291 mm_cachep = kmem_cache_create("mm_struct",
1292 sizeof(struct mm_struct), 0,
1293 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);