[NET] socket: code style cleanup
[usb.git] / net / socket.c
blob156f2efa4e4a8b6db28565812def67a0567fb8cf
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/smp_lock.h>
63 #include <linux/socket.h>
64 #include <linux/file.h>
65 #include <linux/net.h>
66 #include <linux/interrupt.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/divert.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
99 size_t size, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
101 size_t size, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 #ifdef CONFIG_COMPAT
109 static long compat_sock_ioctl(struct file *file,
110 unsigned int cmd, unsigned long arg);
111 #endif
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
114 unsigned long count, loff_t *ppos);
115 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
116 unsigned long count, loff_t *ppos);
117 static ssize_t sock_sendpage(struct file *file, struct page *page,
118 int offset, size_t size, loff_t *ppos, int more);
121 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
122 * in the operation structures but are done directly via the socketcall() multiplexor.
125 static struct file_operations socket_file_ops = {
126 .owner = THIS_MODULE,
127 .llseek = no_llseek,
128 .aio_read = sock_aio_read,
129 .aio_write = sock_aio_write,
130 .poll = sock_poll,
131 .unlocked_ioctl = sock_ioctl,
132 #ifdef CONFIG_COMPAT
133 .compat_ioctl = compat_sock_ioctl,
134 #endif
135 .mmap = sock_mmap,
136 .open = sock_no_open, /* special open code to disallow open via /proc */
137 .release = sock_close,
138 .fasync = sock_fasync,
139 .readv = sock_readv,
140 .writev = sock_writev,
141 .sendpage = sock_sendpage,
142 .splice_write = generic_splice_sendpage,
146 * The protocol list. Each protocol is registered in here.
149 static struct net_proto_family *net_families[NPROTO];
151 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
152 static atomic_t net_family_lockct = ATOMIC_INIT(0);
153 static DEFINE_SPINLOCK(net_family_lock);
155 /* The strategy is: modifications net_family vector are short, do not
156 sleep and veeery rare, but read access should be free of any exclusive
157 locks.
160 static void net_family_write_lock(void)
162 spin_lock(&net_family_lock);
163 while (atomic_read(&net_family_lockct) != 0) {
164 spin_unlock(&net_family_lock);
166 yield();
168 spin_lock(&net_family_lock);
172 static __inline__ void net_family_write_unlock(void)
174 spin_unlock(&net_family_lock);
177 static __inline__ void net_family_read_lock(void)
179 atomic_inc(&net_family_lockct);
180 spin_unlock_wait(&net_family_lock);
183 static __inline__ void net_family_read_unlock(void)
185 atomic_dec(&net_family_lockct);
188 #else
189 #define net_family_write_lock() do { } while(0)
190 #define net_family_write_unlock() do { } while(0)
191 #define net_family_read_lock() do { } while(0)
192 #define net_family_read_unlock() do { } while(0)
193 #endif
196 * Statistics counters of the socket lists
199 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
202 * Support routines.
203 * Move socket addresses back and forth across the kernel/user
204 * divide and look after the messy bits.
207 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
208 16 for IP, 16 for IPX,
209 24 for IPv6,
210 about 80 for AX.25
211 must be at least one bigger than
212 the AF_UNIX size (see net/unix/af_unix.c
213 :unix_mkname()).
217 * move_addr_to_kernel - copy a socket address into kernel space
218 * @uaddr: Address in user space
219 * @kaddr: Address in kernel space
220 * @ulen: Length in user space
222 * The address is copied into kernel space. If the provided address is
223 * too long an error code of -EINVAL is returned. If the copy gives
224 * invalid addresses -EFAULT is returned. On a success 0 is returned.
227 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
229 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
230 return -EINVAL;
231 if (ulen == 0)
232 return 0;
233 if (copy_from_user(kaddr, uaddr, ulen))
234 return -EFAULT;
235 return audit_sockaddr(ulen, kaddr);
239 * move_addr_to_user - copy an address to user space
240 * @kaddr: kernel space address
241 * @klen: length of address in kernel
242 * @uaddr: user space address
243 * @ulen: pointer to user length field
245 * The value pointed to by ulen on entry is the buffer length available.
246 * This is overwritten with the buffer space used. -EINVAL is returned
247 * if an overlong buffer is specified or a negative buffer size. -EFAULT
248 * is returned if either the buffer or the length field are not
249 * accessible.
250 * After copying the data up to the limit the user specifies, the true
251 * length of the data is written over the length limit the user
252 * specified. Zero is returned for a success.
255 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
256 int __user *ulen)
258 int err;
259 int len;
261 err = get_user(len, ulen);
262 if (err)
263 return err;
264 if (len > klen)
265 len = klen;
266 if (len < 0 || len > MAX_SOCK_ADDR)
267 return -EINVAL;
268 if (len) {
269 if (audit_sockaddr(klen, kaddr))
270 return -ENOMEM;
271 if (copy_to_user(uaddr, kaddr, len))
272 return -EFAULT;
275 * "fromlen shall refer to the value before truncation.."
276 * 1003.1g
278 return __put_user(klen, ulen);
281 #define SOCKFS_MAGIC 0x534F434B
283 static kmem_cache_t *sock_inode_cachep __read_mostly;
285 static struct inode *sock_alloc_inode(struct super_block *sb)
287 struct socket_alloc *ei;
289 ei = kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
290 if (!ei)
291 return NULL;
292 init_waitqueue_head(&ei->socket.wait);
294 ei->socket.fasync_list = NULL;
295 ei->socket.state = SS_UNCONNECTED;
296 ei->socket.flags = 0;
297 ei->socket.ops = NULL;
298 ei->socket.sk = NULL;
299 ei->socket.file = NULL;
300 ei->socket.flags = 0;
302 return &ei->vfs_inode;
305 static void sock_destroy_inode(struct inode *inode)
307 kmem_cache_free(sock_inode_cachep,
308 container_of(inode, struct socket_alloc, vfs_inode));
311 static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
313 struct socket_alloc *ei = (struct socket_alloc *)foo;
315 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR))
316 == SLAB_CTOR_CONSTRUCTOR)
317 inode_init_once(&ei->vfs_inode);
320 static int init_inodecache(void)
322 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
323 sizeof(struct socket_alloc),
325 (SLAB_HWCACHE_ALIGN |
326 SLAB_RECLAIM_ACCOUNT |
327 SLAB_MEM_SPREAD),
328 init_once,
329 NULL);
330 if (sock_inode_cachep == NULL)
331 return -ENOMEM;
332 return 0;
335 static struct super_operations sockfs_ops = {
336 .alloc_inode = sock_alloc_inode,
337 .destroy_inode =sock_destroy_inode,
338 .statfs = simple_statfs,
341 static int sockfs_get_sb(struct file_system_type *fs_type,
342 int flags, const char *dev_name, void *data,
343 struct vfsmount *mnt)
345 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
346 mnt);
349 static struct vfsmount *sock_mnt __read_mostly;
351 static struct file_system_type sock_fs_type = {
352 .name = "sockfs",
353 .get_sb = sockfs_get_sb,
354 .kill_sb = kill_anon_super,
357 static int sockfs_delete_dentry(struct dentry *dentry)
359 return 1;
361 static struct dentry_operations sockfs_dentry_operations = {
362 .d_delete = sockfs_delete_dentry,
366 * Obtains the first available file descriptor and sets it up for use.
368 * These functions create file structures and maps them to fd space
369 * of the current process. On success it returns file descriptor
370 * and file struct implicitly stored in sock->file.
371 * Note that another thread may close file descriptor before we return
372 * from this function. We use the fact that now we do not refer
373 * to socket after mapping. If one day we will need it, this
374 * function will increment ref. count on file by 1.
376 * In any case returned fd MAY BE not valid!
377 * This race condition is unavoidable
378 * with shared fd spaces, we cannot solve it inside kernel,
379 * but we take care of internal coherence yet.
382 static int sock_alloc_fd(struct file **filep)
384 int fd;
386 fd = get_unused_fd();
387 if (likely(fd >= 0)) {
388 struct file *file = get_empty_filp();
390 *filep = file;
391 if (unlikely(!file)) {
392 put_unused_fd(fd);
393 return -ENFILE;
395 } else
396 *filep = NULL;
397 return fd;
400 static int sock_attach_fd(struct socket *sock, struct file *file)
402 struct qstr this;
403 char name[32];
405 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
406 this.name = name;
407 this.hash = SOCK_INODE(sock)->i_ino;
409 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
410 if (unlikely(!file->f_dentry))
411 return -ENOMEM;
413 file->f_dentry->d_op = &sockfs_dentry_operations;
414 d_add(file->f_dentry, SOCK_INODE(sock));
415 file->f_vfsmnt = mntget(sock_mnt);
416 file->f_mapping = file->f_dentry->d_inode->i_mapping;
418 sock->file = file;
419 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
420 file->f_mode = FMODE_READ | FMODE_WRITE;
421 file->f_flags = O_RDWR;
422 file->f_pos = 0;
423 file->private_data = sock;
425 return 0;
428 int sock_map_fd(struct socket *sock)
430 struct file *newfile;
431 int fd = sock_alloc_fd(&newfile);
433 if (likely(fd >= 0)) {
434 int err = sock_attach_fd(sock, newfile);
436 if (unlikely(err < 0)) {
437 put_filp(newfile);
438 put_unused_fd(fd);
439 return err;
441 fd_install(fd, newfile);
443 return fd;
446 static struct socket *sock_from_file(struct file *file, int *err)
448 struct inode *inode;
449 struct socket *sock;
451 if (file->f_op == &socket_file_ops)
452 return file->private_data; /* set in sock_map_fd */
454 inode = file->f_dentry->d_inode;
455 if (!S_ISSOCK(inode->i_mode)) {
456 *err = -ENOTSOCK;
457 return NULL;
460 sock = SOCKET_I(inode);
461 if (sock->file != file) {
462 printk(KERN_ERR "socki_lookup: socket file changed!\n");
463 sock->file = file;
465 return sock;
469 * sockfd_lookup - Go from a file number to its socket slot
470 * @fd: file handle
471 * @err: pointer to an error code return
473 * The file handle passed in is locked and the socket it is bound
474 * too is returned. If an error occurs the err pointer is overwritten
475 * with a negative errno code and NULL is returned. The function checks
476 * for both invalid handles and passing a handle which is not a socket.
478 * On a success the socket object pointer is returned.
481 struct socket *sockfd_lookup(int fd, int *err)
483 struct file *file;
484 struct socket *sock;
486 file = fget(fd);
487 if (!file) {
488 *err = -EBADF;
489 return NULL;
492 sock = sock_from_file(file, err);
493 if (!sock)
494 fput(file);
495 return sock;
498 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
500 struct file *file;
501 struct socket *sock;
503 *err = -EBADF;
504 file = fget_light(fd, fput_needed);
505 if (file) {
506 sock = sock_from_file(file, err);
507 if (sock)
508 return sock;
509 fput_light(file, *fput_needed);
511 return NULL;
515 * sock_alloc - allocate a socket
517 * Allocate a new inode and socket object. The two are bound together
518 * and initialised. The socket is then returned. If we are out of inodes
519 * NULL is returned.
522 static struct socket *sock_alloc(void)
524 struct inode *inode;
525 struct socket *sock;
527 inode = new_inode(sock_mnt->mnt_sb);
528 if (!inode)
529 return NULL;
531 sock = SOCKET_I(inode);
533 inode->i_mode = S_IFSOCK | S_IRWXUGO;
534 inode->i_uid = current->fsuid;
535 inode->i_gid = current->fsgid;
537 get_cpu_var(sockets_in_use)++;
538 put_cpu_var(sockets_in_use);
539 return sock;
543 * In theory you can't get an open on this inode, but /proc provides
544 * a back door. Remember to keep it shut otherwise you'll let the
545 * creepy crawlies in.
548 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
550 return -ENXIO;
553 const struct file_operations bad_sock_fops = {
554 .owner = THIS_MODULE,
555 .open = sock_no_open,
559 * sock_release - close a socket
560 * @sock: socket to close
562 * The socket is released from the protocol stack if it has a release
563 * callback, and the inode is then released if the socket is bound to
564 * an inode not a file.
567 void sock_release(struct socket *sock)
569 if (sock->ops) {
570 struct module *owner = sock->ops->owner;
572 sock->ops->release(sock);
573 sock->ops = NULL;
574 module_put(owner);
577 if (sock->fasync_list)
578 printk(KERN_ERR "sock_release: fasync list not empty!\n");
580 get_cpu_var(sockets_in_use)--;
581 put_cpu_var(sockets_in_use);
582 if (!sock->file) {
583 iput(SOCK_INODE(sock));
584 return;
586 sock->file = NULL;
589 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
590 struct msghdr *msg, size_t size)
592 struct sock_iocb *si = kiocb_to_siocb(iocb);
593 int err;
595 si->sock = sock;
596 si->scm = NULL;
597 si->msg = msg;
598 si->size = size;
600 err = security_socket_sendmsg(sock, msg, size);
601 if (err)
602 return err;
604 return sock->ops->sendmsg(iocb, sock, msg, size);
607 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
609 struct kiocb iocb;
610 struct sock_iocb siocb;
611 int ret;
613 init_sync_kiocb(&iocb, NULL);
614 iocb.private = &siocb;
615 ret = __sock_sendmsg(&iocb, sock, msg, size);
616 if (-EIOCBQUEUED == ret)
617 ret = wait_on_sync_kiocb(&iocb);
618 return ret;
621 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
622 struct kvec *vec, size_t num, size_t size)
624 mm_segment_t oldfs = get_fs();
625 int result;
627 set_fs(KERNEL_DS);
629 * the following is safe, since for compiler definitions of kvec and
630 * iovec are identical, yielding the same in-core layout and alignment
632 msg->msg_iov = (struct iovec *)vec;
633 msg->msg_iovlen = num;
634 result = sock_sendmsg(sock, msg, size);
635 set_fs(oldfs);
636 return result;
639 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
640 struct msghdr *msg, size_t size, int flags)
642 int err;
643 struct sock_iocb *si = kiocb_to_siocb(iocb);
645 si->sock = sock;
646 si->scm = NULL;
647 si->msg = msg;
648 si->size = size;
649 si->flags = flags;
651 err = security_socket_recvmsg(sock, msg, size, flags);
652 if (err)
653 return err;
655 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
658 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
659 size_t size, int flags)
661 struct kiocb iocb;
662 struct sock_iocb siocb;
663 int ret;
665 init_sync_kiocb(&iocb, NULL);
666 iocb.private = &siocb;
667 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
668 if (-EIOCBQUEUED == ret)
669 ret = wait_on_sync_kiocb(&iocb);
670 return ret;
673 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
674 struct kvec *vec, size_t num, size_t size, int flags)
676 mm_segment_t oldfs = get_fs();
677 int result;
679 set_fs(KERNEL_DS);
681 * the following is safe, since for compiler definitions of kvec and
682 * iovec are identical, yielding the same in-core layout and alignment
684 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
685 result = sock_recvmsg(sock, msg, size, flags);
686 set_fs(oldfs);
687 return result;
690 static void sock_aio_dtor(struct kiocb *iocb)
692 kfree(iocb->private);
695 static ssize_t sock_sendpage(struct file *file, struct page *page,
696 int offset, size_t size, loff_t *ppos, int more)
698 struct socket *sock;
699 int flags;
701 sock = file->private_data;
703 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
704 if (more)
705 flags |= MSG_MORE;
707 return sock->ops->sendpage(sock, page, offset, size, flags);
710 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
711 char __user *ubuf, size_t size,
712 struct sock_iocb *siocb)
714 if (!is_sync_kiocb(iocb)) {
715 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
716 if (!siocb)
717 return NULL;
718 iocb->ki_dtor = sock_aio_dtor;
721 siocb->kiocb = iocb;
722 siocb->async_iov.iov_base = ubuf;
723 siocb->async_iov.iov_len = size;
725 iocb->private = siocb;
726 return siocb;
729 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
730 struct file *file, struct iovec *iov,
731 unsigned long nr_segs)
733 struct socket *sock = file->private_data;
734 size_t size = 0;
735 int i;
737 for (i = 0; i < nr_segs; i++)
738 size += iov[i].iov_len;
740 msg->msg_name = NULL;
741 msg->msg_namelen = 0;
742 msg->msg_control = NULL;
743 msg->msg_controllen = 0;
744 msg->msg_iov = (struct iovec *)iov;
745 msg->msg_iovlen = nr_segs;
746 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
748 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
751 static ssize_t sock_readv(struct file *file, const struct iovec *iov,
752 unsigned long nr_segs, loff_t *ppos)
754 struct kiocb iocb;
755 struct sock_iocb siocb;
756 struct msghdr msg;
757 int ret;
759 init_sync_kiocb(&iocb, NULL);
760 iocb.private = &siocb;
762 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
763 if (-EIOCBQUEUED == ret)
764 ret = wait_on_sync_kiocb(&iocb);
765 return ret;
768 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
769 size_t count, loff_t pos)
771 struct sock_iocb siocb, *x;
773 if (pos != 0)
774 return -ESPIPE;
775 if (count == 0) /* Match SYS5 behaviour */
776 return 0;
778 x = alloc_sock_iocb(iocb, ubuf, count, &siocb);
779 if (!x)
780 return -ENOMEM;
781 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp,
782 &x->async_iov, 1);
785 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
786 struct file *file, struct iovec *iov,
787 unsigned long nr_segs)
789 struct socket *sock = file->private_data;
790 size_t size = 0;
791 int i;
793 for (i = 0; i < nr_segs; i++)
794 size += iov[i].iov_len;
796 msg->msg_name = NULL;
797 msg->msg_namelen = 0;
798 msg->msg_control = NULL;
799 msg->msg_controllen = 0;
800 msg->msg_iov = (struct iovec *)iov;
801 msg->msg_iovlen = nr_segs;
802 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
803 if (sock->type == SOCK_SEQPACKET)
804 msg->msg_flags |= MSG_EOR;
806 return __sock_sendmsg(iocb, sock, msg, size);
809 static ssize_t sock_writev(struct file *file, const struct iovec *iov,
810 unsigned long nr_segs, loff_t *ppos)
812 struct msghdr msg;
813 struct kiocb iocb;
814 struct sock_iocb siocb;
815 int ret;
817 init_sync_kiocb(&iocb, NULL);
818 iocb.private = &siocb;
820 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs);
821 if (-EIOCBQUEUED == ret)
822 ret = wait_on_sync_kiocb(&iocb);
823 return ret;
826 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
827 size_t count, loff_t pos)
829 struct sock_iocb siocb, *x;
831 if (pos != 0)
832 return -ESPIPE;
833 if (count == 0) /* Match SYS5 behaviour */
834 return 0;
836 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb);
837 if (!x)
838 return -ENOMEM;
840 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp,
841 &x->async_iov, 1);
845 * Atomic setting of ioctl hooks to avoid race
846 * with module unload.
849 static DEFINE_MUTEX(br_ioctl_mutex);
850 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
852 void brioctl_set(int (*hook) (unsigned int, void __user *))
854 mutex_lock(&br_ioctl_mutex);
855 br_ioctl_hook = hook;
856 mutex_unlock(&br_ioctl_mutex);
859 EXPORT_SYMBOL(brioctl_set);
861 static DEFINE_MUTEX(vlan_ioctl_mutex);
862 static int (*vlan_ioctl_hook) (void __user *arg);
864 void vlan_ioctl_set(int (*hook) (void __user *))
866 mutex_lock(&vlan_ioctl_mutex);
867 vlan_ioctl_hook = hook;
868 mutex_unlock(&vlan_ioctl_mutex);
871 EXPORT_SYMBOL(vlan_ioctl_set);
873 static DEFINE_MUTEX(dlci_ioctl_mutex);
874 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
876 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
878 mutex_lock(&dlci_ioctl_mutex);
879 dlci_ioctl_hook = hook;
880 mutex_unlock(&dlci_ioctl_mutex);
883 EXPORT_SYMBOL(dlci_ioctl_set);
886 * With an ioctl, arg may well be a user mode pointer, but we don't know
887 * what to do with it - that's up to the protocol still.
890 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
892 struct socket *sock;
893 void __user *argp = (void __user *)arg;
894 int pid, err;
896 sock = file->private_data;
897 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
898 err = dev_ioctl(cmd, argp);
899 } else
900 #ifdef CONFIG_WIRELESS_EXT
901 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
902 err = dev_ioctl(cmd, argp);
903 } else
904 #endif /* CONFIG_WIRELESS_EXT */
905 switch (cmd) {
906 case FIOSETOWN:
907 case SIOCSPGRP:
908 err = -EFAULT;
909 if (get_user(pid, (int __user *)argp))
910 break;
911 err = f_setown(sock->file, pid, 1);
912 break;
913 case FIOGETOWN:
914 case SIOCGPGRP:
915 err = put_user(sock->file->f_owner.pid,
916 (int __user *)argp);
917 break;
918 case SIOCGIFBR:
919 case SIOCSIFBR:
920 case SIOCBRADDBR:
921 case SIOCBRDELBR:
922 err = -ENOPKG;
923 if (!br_ioctl_hook)
924 request_module("bridge");
926 mutex_lock(&br_ioctl_mutex);
927 if (br_ioctl_hook)
928 err = br_ioctl_hook(cmd, argp);
929 mutex_unlock(&br_ioctl_mutex);
930 break;
931 case SIOCGIFVLAN:
932 case SIOCSIFVLAN:
933 err = -ENOPKG;
934 if (!vlan_ioctl_hook)
935 request_module("8021q");
937 mutex_lock(&vlan_ioctl_mutex);
938 if (vlan_ioctl_hook)
939 err = vlan_ioctl_hook(argp);
940 mutex_unlock(&vlan_ioctl_mutex);
941 break;
942 case SIOCGIFDIVERT:
943 case SIOCSIFDIVERT:
944 /* Convert this to call through a hook */
945 err = divert_ioctl(cmd, argp);
946 break;
947 case SIOCADDDLCI:
948 case SIOCDELDLCI:
949 err = -ENOPKG;
950 if (!dlci_ioctl_hook)
951 request_module("dlci");
953 if (dlci_ioctl_hook) {
954 mutex_lock(&dlci_ioctl_mutex);
955 err = dlci_ioctl_hook(cmd, argp);
956 mutex_unlock(&dlci_ioctl_mutex);
958 break;
959 default:
960 err = sock->ops->ioctl(sock, cmd, arg);
963 * If this ioctl is unknown try to hand it down
964 * to the NIC driver.
966 if (err == -ENOIOCTLCMD)
967 err = dev_ioctl(cmd, argp);
968 break;
970 return err;
973 int sock_create_lite(int family, int type, int protocol, struct socket **res)
975 int err;
976 struct socket *sock = NULL;
978 err = security_socket_create(family, type, protocol, 1);
979 if (err)
980 goto out;
982 sock = sock_alloc();
983 if (!sock) {
984 err = -ENOMEM;
985 goto out;
988 sock->type = type;
989 err = security_socket_post_create(sock, family, type, protocol, 1);
990 if (err)
991 goto out_release;
993 out:
994 *res = sock;
995 return err;
996 out_release:
997 sock_release(sock);
998 sock = NULL;
999 goto out;
1002 /* No kernel lock held - perfect */
1003 static unsigned int sock_poll(struct file *file, poll_table *wait)
1005 struct socket *sock;
1008 * We can't return errors to poll, so it's either yes or no.
1010 sock = file->private_data;
1011 return sock->ops->poll(file, sock, wait);
1014 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1016 struct socket *sock = file->private_data;
1018 return sock->ops->mmap(file, sock, vma);
1021 static int sock_close(struct inode *inode, struct file *filp)
1024 * It was possible the inode is NULL we were
1025 * closing an unfinished socket.
1028 if (!inode) {
1029 printk(KERN_DEBUG "sock_close: NULL inode\n");
1030 return 0;
1032 sock_fasync(-1, filp, 0);
1033 sock_release(SOCKET_I(inode));
1034 return 0;
1038 * Update the socket async list
1040 * Fasync_list locking strategy.
1042 * 1. fasync_list is modified only under process context socket lock
1043 * i.e. under semaphore.
1044 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1045 * or under socket lock.
1046 * 3. fasync_list can be used from softirq context, so that
1047 * modification under socket lock have to be enhanced with
1048 * write_lock_bh(&sk->sk_callback_lock).
1049 * --ANK (990710)
1052 static int sock_fasync(int fd, struct file *filp, int on)
1054 struct fasync_struct *fa, *fna = NULL, **prev;
1055 struct socket *sock;
1056 struct sock *sk;
1058 if (on) {
1059 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1060 if (fna == NULL)
1061 return -ENOMEM;
1064 sock = filp->private_data;
1066 sk = sock->sk;
1067 if (sk == NULL) {
1068 kfree(fna);
1069 return -EINVAL;
1072 lock_sock(sk);
1074 prev = &(sock->fasync_list);
1076 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1077 if (fa->fa_file == filp)
1078 break;
1080 if (on) {
1081 if (fa != NULL) {
1082 write_lock_bh(&sk->sk_callback_lock);
1083 fa->fa_fd = fd;
1084 write_unlock_bh(&sk->sk_callback_lock);
1086 kfree(fna);
1087 goto out;
1089 fna->fa_file = filp;
1090 fna->fa_fd = fd;
1091 fna->magic = FASYNC_MAGIC;
1092 fna->fa_next = sock->fasync_list;
1093 write_lock_bh(&sk->sk_callback_lock);
1094 sock->fasync_list = fna;
1095 write_unlock_bh(&sk->sk_callback_lock);
1096 } else {
1097 if (fa != NULL) {
1098 write_lock_bh(&sk->sk_callback_lock);
1099 *prev = fa->fa_next;
1100 write_unlock_bh(&sk->sk_callback_lock);
1101 kfree(fa);
1105 out:
1106 release_sock(sock->sk);
1107 return 0;
1110 /* This function may be called only under socket lock or callback_lock */
1112 int sock_wake_async(struct socket *sock, int how, int band)
1114 if (!sock || !sock->fasync_list)
1115 return -1;
1116 switch (how) {
1117 case 1:
1119 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1120 break;
1121 goto call_kill;
1122 case 2:
1123 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1124 break;
1125 /* fall through */
1126 case 0:
1127 call_kill:
1128 __kill_fasync(sock->fasync_list, SIGIO, band);
1129 break;
1130 case 3:
1131 __kill_fasync(sock->fasync_list, SIGURG, band);
1133 return 0;
1136 static int __sock_create(int family, int type, int protocol,
1137 struct socket **res, int kern)
1139 int err;
1140 struct socket *sock;
1143 * Check protocol is in range
1145 if (family < 0 || family >= NPROTO)
1146 return -EAFNOSUPPORT;
1147 if (type < 0 || type >= SOCK_MAX)
1148 return -EINVAL;
1150 /* Compatibility.
1152 This uglymoron is moved from INET layer to here to avoid
1153 deadlock in module load.
1155 if (family == PF_INET && type == SOCK_PACKET) {
1156 static int warned;
1157 if (!warned) {
1158 warned = 1;
1159 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1160 current->comm);
1162 family = PF_PACKET;
1165 err = security_socket_create(family, type, protocol, kern);
1166 if (err)
1167 return err;
1169 #if defined(CONFIG_KMOD)
1170 /* Attempt to load a protocol module if the find failed.
1172 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1173 * requested real, full-featured networking support upon configuration.
1174 * Otherwise module support will break!
1176 if (net_families[family] == NULL) {
1177 request_module("net-pf-%d", family);
1179 #endif
1181 net_family_read_lock();
1182 if (net_families[family] == NULL) {
1183 err = -EAFNOSUPPORT;
1184 goto out;
1188 * Allocate the socket and allow the family to set things up. if
1189 * the protocol is 0, the family is instructed to select an appropriate
1190 * default.
1193 if (!(sock = sock_alloc())) {
1194 if (net_ratelimit())
1195 printk(KERN_WARNING "socket: no more sockets\n");
1196 err = -ENFILE; /* Not exactly a match, but its the
1197 closest posix thing */
1198 goto out;
1201 sock->type = type;
1204 * We will call the ->create function, that possibly is in a loadable
1205 * module, so we have to bump that loadable module refcnt first.
1207 err = -EAFNOSUPPORT;
1208 if (!try_module_get(net_families[family]->owner))
1209 goto out_release;
1211 if ((err = net_families[family]->create(sock, protocol)) < 0) {
1212 sock->ops = NULL;
1213 goto out_module_put;
1217 * Now to bump the refcnt of the [loadable] module that owns this
1218 * socket at sock_release time we decrement its refcnt.
1220 if (!try_module_get(sock->ops->owner)) {
1221 sock->ops = NULL;
1222 goto out_module_put;
1225 * Now that we're done with the ->create function, the [loadable]
1226 * module can have its refcnt decremented
1228 module_put(net_families[family]->owner);
1229 *res = sock;
1230 err = security_socket_post_create(sock, family, type, protocol, kern);
1231 if (err)
1232 goto out_release;
1234 out:
1235 net_family_read_unlock();
1236 return err;
1237 out_module_put:
1238 module_put(net_families[family]->owner);
1239 out_release:
1240 sock_release(sock);
1241 goto out;
1244 int sock_create(int family, int type, int protocol, struct socket **res)
1246 return __sock_create(family, type, protocol, res, 0);
1249 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1251 return __sock_create(family, type, protocol, res, 1);
1254 asmlinkage long sys_socket(int family, int type, int protocol)
1256 int retval;
1257 struct socket *sock;
1259 retval = sock_create(family, type, protocol, &sock);
1260 if (retval < 0)
1261 goto out;
1263 retval = sock_map_fd(sock);
1264 if (retval < 0)
1265 goto out_release;
1267 out:
1268 /* It may be already another descriptor 8) Not kernel problem. */
1269 return retval;
1271 out_release:
1272 sock_release(sock);
1273 return retval;
1277 * Create a pair of connected sockets.
1280 asmlinkage long sys_socketpair(int family, int type, int protocol,
1281 int __user *usockvec)
1283 struct socket *sock1, *sock2;
1284 int fd1, fd2, err;
1287 * Obtain the first socket and check if the underlying protocol
1288 * supports the socketpair call.
1291 err = sock_create(family, type, protocol, &sock1);
1292 if (err < 0)
1293 goto out;
1295 err = sock_create(family, type, protocol, &sock2);
1296 if (err < 0)
1297 goto out_release_1;
1299 err = sock1->ops->socketpair(sock1, sock2);
1300 if (err < 0)
1301 goto out_release_both;
1303 fd1 = fd2 = -1;
1305 err = sock_map_fd(sock1);
1306 if (err < 0)
1307 goto out_release_both;
1308 fd1 = err;
1310 err = sock_map_fd(sock2);
1311 if (err < 0)
1312 goto out_close_1;
1313 fd2 = err;
1315 /* fd1 and fd2 may be already another descriptors.
1316 * Not kernel problem.
1319 err = put_user(fd1, &usockvec[0]);
1320 if (!err)
1321 err = put_user(fd2, &usockvec[1]);
1322 if (!err)
1323 return 0;
1325 sys_close(fd2);
1326 sys_close(fd1);
1327 return err;
1329 out_close_1:
1330 sock_release(sock2);
1331 sys_close(fd1);
1332 return err;
1334 out_release_both:
1335 sock_release(sock2);
1336 out_release_1:
1337 sock_release(sock1);
1338 out:
1339 return err;
1343 * Bind a name to a socket. Nothing much to do here since it's
1344 * the protocol's responsibility to handle the local address.
1346 * We move the socket address to kernel space before we call
1347 * the protocol layer (having also checked the address is ok).
1350 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1352 struct socket *sock;
1353 char address[MAX_SOCK_ADDR];
1354 int err, fput_needed;
1356 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1357 if(sock) {
1358 err = move_addr_to_kernel(umyaddr, addrlen, address);
1359 if (err >= 0) {
1360 err = security_socket_bind(sock,
1361 (struct sockaddr *)address,
1362 addrlen);
1363 if (!err)
1364 err = sock->ops->bind(sock,
1365 (struct sockaddr *)
1366 address, addrlen);
1368 fput_light(sock->file, fput_needed);
1370 return err;
1374 * Perform a listen. Basically, we allow the protocol to do anything
1375 * necessary for a listen, and if that works, we mark the socket as
1376 * ready for listening.
1379 int sysctl_somaxconn = SOMAXCONN;
1381 asmlinkage long sys_listen(int fd, int backlog)
1383 struct socket *sock;
1384 int err, fput_needed;
1386 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1387 if (sock) {
1388 if ((unsigned)backlog > sysctl_somaxconn)
1389 backlog = sysctl_somaxconn;
1391 err = security_socket_listen(sock, backlog);
1392 if (!err)
1393 err = sock->ops->listen(sock, backlog);
1395 fput_light(sock->file, fput_needed);
1397 return err;
1401 * For accept, we attempt to create a new socket, set up the link
1402 * with the client, wake up the client, then return the new
1403 * connected fd. We collect the address of the connector in kernel
1404 * space and move it to user at the very end. This is unclean because
1405 * we open the socket then return an error.
1407 * 1003.1g adds the ability to recvmsg() to query connection pending
1408 * status to recvmsg. We need to add that support in a way thats
1409 * clean when we restucture accept also.
1412 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1413 int __user *upeer_addrlen)
1415 struct socket *sock, *newsock;
1416 struct file *newfile;
1417 int err, len, newfd, fput_needed;
1418 char address[MAX_SOCK_ADDR];
1420 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1421 if (!sock)
1422 goto out;
1424 err = -ENFILE;
1425 if (!(newsock = sock_alloc()))
1426 goto out_put;
1428 newsock->type = sock->type;
1429 newsock->ops = sock->ops;
1432 * We don't need try_module_get here, as the listening socket (sock)
1433 * has the protocol module (sock->ops->owner) held.
1435 __module_get(newsock->ops->owner);
1437 newfd = sock_alloc_fd(&newfile);
1438 if (unlikely(newfd < 0)) {
1439 err = newfd;
1440 sock_release(newsock);
1441 goto out_put;
1444 err = sock_attach_fd(newsock, newfile);
1445 if (err < 0)
1446 goto out_fd;
1448 err = security_socket_accept(sock, newsock);
1449 if (err)
1450 goto out_fd;
1452 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1453 if (err < 0)
1454 goto out_fd;
1456 if (upeer_sockaddr) {
1457 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1458 &len, 2) < 0) {
1459 err = -ECONNABORTED;
1460 goto out_fd;
1462 err = move_addr_to_user(address, len, upeer_sockaddr,
1463 upeer_addrlen);
1464 if (err < 0)
1465 goto out_fd;
1468 /* File flags are not inherited via accept() unlike another OSes. */
1470 fd_install(newfd, newfile);
1471 err = newfd;
1473 security_socket_post_accept(sock, newsock);
1475 out_put:
1476 fput_light(sock->file, fput_needed);
1477 out:
1478 return err;
1479 out_fd:
1480 fput(newfile);
1481 put_unused_fd(newfd);
1482 goto out_put;
1486 * Attempt to connect to a socket with the server address. The address
1487 * is in user space so we verify it is OK and move it to kernel space.
1489 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1490 * break bindings
1492 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1493 * other SEQPACKET protocols that take time to connect() as it doesn't
1494 * include the -EINPROGRESS status for such sockets.
1497 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1498 int addrlen)
1500 struct socket *sock;
1501 char address[MAX_SOCK_ADDR];
1502 int err, fput_needed;
1504 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1505 if (!sock)
1506 goto out;
1507 err = move_addr_to_kernel(uservaddr, addrlen, address);
1508 if (err < 0)
1509 goto out_put;
1511 err =
1512 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1513 if (err)
1514 goto out_put;
1516 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1517 sock->file->f_flags);
1518 out_put:
1519 fput_light(sock->file, fput_needed);
1520 out:
1521 return err;
1525 * Get the local address ('name') of a socket object. Move the obtained
1526 * name to user space.
1529 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1530 int __user *usockaddr_len)
1532 struct socket *sock;
1533 char address[MAX_SOCK_ADDR];
1534 int len, err, fput_needed;
1536 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 if (!sock)
1538 goto out;
1540 err = security_socket_getsockname(sock);
1541 if (err)
1542 goto out_put;
1544 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1545 if (err)
1546 goto out_put;
1547 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1549 out_put:
1550 fput_light(sock->file, fput_needed);
1551 out:
1552 return err;
1556 * Get the remote address ('name') of a socket object. Move the obtained
1557 * name to user space.
1560 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1561 int __user *usockaddr_len)
1563 struct socket *sock;
1564 char address[MAX_SOCK_ADDR];
1565 int len, err, fput_needed;
1567 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1568 if (sock != NULL) {
1569 err = security_socket_getpeername(sock);
1570 if (err) {
1571 fput_light(sock->file, fput_needed);
1572 return err;
1575 err =
1576 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1578 if (!err)
1579 err = move_addr_to_user(address, len, usockaddr,
1580 usockaddr_len);
1581 fput_light(sock->file, fput_needed);
1583 return err;
1587 * Send a datagram to a given address. We move the address into kernel
1588 * space and check the user space data area is readable before invoking
1589 * the protocol.
1592 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1593 unsigned flags, struct sockaddr __user *addr,
1594 int addr_len)
1596 struct socket *sock;
1597 char address[MAX_SOCK_ADDR];
1598 int err;
1599 struct msghdr msg;
1600 struct iovec iov;
1601 int fput_needed;
1602 struct file *sock_file;
1604 sock_file = fget_light(fd, &fput_needed);
1605 if (!sock_file)
1606 return -EBADF;
1608 sock = sock_from_file(sock_file, &err);
1609 if (!sock)
1610 goto out_put;
1611 iov.iov_base = buff;
1612 iov.iov_len = len;
1613 msg.msg_name = NULL;
1614 msg.msg_iov = &iov;
1615 msg.msg_iovlen = 1;
1616 msg.msg_control = NULL;
1617 msg.msg_controllen = 0;
1618 msg.msg_namelen = 0;
1619 if (addr) {
1620 err = move_addr_to_kernel(addr, addr_len, address);
1621 if (err < 0)
1622 goto out_put;
1623 msg.msg_name = address;
1624 msg.msg_namelen = addr_len;
1626 if (sock->file->f_flags & O_NONBLOCK)
1627 flags |= MSG_DONTWAIT;
1628 msg.msg_flags = flags;
1629 err = sock_sendmsg(sock, &msg, len);
1631 out_put:
1632 fput_light(sock_file, fput_needed);
1633 return err;
1637 * Send a datagram down a socket.
1640 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1642 return sys_sendto(fd, buff, len, flags, NULL, 0);
1646 * Receive a frame from the socket and optionally record the address of the
1647 * sender. We verify the buffers are writable and if needed move the
1648 * sender address from kernel to user space.
1651 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1652 unsigned flags, struct sockaddr __user *addr,
1653 int __user *addr_len)
1655 struct socket *sock;
1656 struct iovec iov;
1657 struct msghdr msg;
1658 char address[MAX_SOCK_ADDR];
1659 int err, err2;
1660 struct file *sock_file;
1661 int fput_needed;
1663 sock_file = fget_light(fd, &fput_needed);
1664 if (!sock_file)
1665 return -EBADF;
1667 sock = sock_from_file(sock_file, &err);
1668 if (!sock)
1669 goto out;
1671 msg.msg_control = NULL;
1672 msg.msg_controllen = 0;
1673 msg.msg_iovlen = 1;
1674 msg.msg_iov = &iov;
1675 iov.iov_len = size;
1676 iov.iov_base = ubuf;
1677 msg.msg_name = address;
1678 msg.msg_namelen = MAX_SOCK_ADDR;
1679 if (sock->file->f_flags & O_NONBLOCK)
1680 flags |= MSG_DONTWAIT;
1681 err = sock_recvmsg(sock, &msg, size, flags);
1683 if (err >= 0 && addr != NULL) {
1684 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1685 if (err2 < 0)
1686 err = err2;
1688 out:
1689 fput_light(sock_file, fput_needed);
1690 return err;
1694 * Receive a datagram from a socket.
1697 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1698 unsigned flags)
1700 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1704 * Set a socket option. Because we don't know the option lengths we have
1705 * to pass the user mode parameter for the protocols to sort out.
1708 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1709 char __user *optval, int optlen)
1711 int err, fput_needed;
1712 struct socket *sock;
1714 if (optlen < 0)
1715 return -EINVAL;
1717 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1718 if (sock != NULL) {
1719 err = security_socket_setsockopt(sock, level, optname);
1720 if (err)
1721 goto out_put;
1723 if (level == SOL_SOCKET)
1724 err =
1725 sock_setsockopt(sock, level, optname, optval,
1726 optlen);
1727 else
1728 err =
1729 sock->ops->setsockopt(sock, level, optname, optval,
1730 optlen);
1731 out_put:
1732 fput_light(sock->file, fput_needed);
1734 return err;
1738 * Get a socket option. Because we don't know the option lengths we have
1739 * to pass a user mode parameter for the protocols to sort out.
1742 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1743 char __user *optval, int __user *optlen)
1745 int err, fput_needed;
1746 struct socket *sock;
1748 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1749 if (sock != NULL) {
1750 err = security_socket_getsockopt(sock, level, optname);
1751 if (err)
1752 goto out_put;
1754 if (level == SOL_SOCKET)
1755 err =
1756 sock_getsockopt(sock, level, optname, optval,
1757 optlen);
1758 else
1759 err =
1760 sock->ops->getsockopt(sock, level, optname, optval,
1761 optlen);
1762 out_put:
1763 fput_light(sock->file, fput_needed);
1765 return err;
1769 * Shutdown a socket.
1772 asmlinkage long sys_shutdown(int fd, int how)
1774 int err, fput_needed;
1775 struct socket *sock;
1777 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1778 if (sock != NULL) {
1779 err = security_socket_shutdown(sock, how);
1780 if (!err)
1781 err = sock->ops->shutdown(sock, how);
1782 fput_light(sock->file, fput_needed);
1784 return err;
1787 /* A couple of helpful macros for getting the address of the 32/64 bit
1788 * fields which are the same type (int / unsigned) on our platforms.
1790 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1791 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1792 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1795 * BSD sendmsg interface
1798 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1800 struct compat_msghdr __user *msg_compat =
1801 (struct compat_msghdr __user *)msg;
1802 struct socket *sock;
1803 char address[MAX_SOCK_ADDR];
1804 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1805 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1806 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1807 /* 20 is size of ipv6_pktinfo */
1808 unsigned char *ctl_buf = ctl;
1809 struct msghdr msg_sys;
1810 int err, ctl_len, iov_size, total_len;
1811 int fput_needed;
1813 err = -EFAULT;
1814 if (MSG_CMSG_COMPAT & flags) {
1815 if (get_compat_msghdr(&msg_sys, msg_compat))
1816 return -EFAULT;
1818 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1819 return -EFAULT;
1821 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1822 if (!sock)
1823 goto out;
1825 /* do not move before msg_sys is valid */
1826 err = -EMSGSIZE;
1827 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1828 goto out_put;
1830 /* Check whether to allocate the iovec area */
1831 err = -ENOMEM;
1832 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1833 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1834 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1835 if (!iov)
1836 goto out_put;
1839 /* This will also move the address data into kernel space */
1840 if (MSG_CMSG_COMPAT & flags) {
1841 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1842 } else
1843 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1844 if (err < 0)
1845 goto out_freeiov;
1846 total_len = err;
1848 err = -ENOBUFS;
1850 if (msg_sys.msg_controllen > INT_MAX)
1851 goto out_freeiov;
1852 ctl_len = msg_sys.msg_controllen;
1853 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1854 err =
1855 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1856 sizeof(ctl));
1857 if (err)
1858 goto out_freeiov;
1859 ctl_buf = msg_sys.msg_control;
1860 ctl_len = msg_sys.msg_controllen;
1861 } else if (ctl_len) {
1862 if (ctl_len > sizeof(ctl)) {
1863 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1864 if (ctl_buf == NULL)
1865 goto out_freeiov;
1867 err = -EFAULT;
1869 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1870 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1871 * checking falls down on this.
1873 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1874 ctl_len))
1875 goto out_freectl;
1876 msg_sys.msg_control = ctl_buf;
1878 msg_sys.msg_flags = flags;
1880 if (sock->file->f_flags & O_NONBLOCK)
1881 msg_sys.msg_flags |= MSG_DONTWAIT;
1882 err = sock_sendmsg(sock, &msg_sys, total_len);
1884 out_freectl:
1885 if (ctl_buf != ctl)
1886 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1887 out_freeiov:
1888 if (iov != iovstack)
1889 sock_kfree_s(sock->sk, iov, iov_size);
1890 out_put:
1891 fput_light(sock->file, fput_needed);
1892 out:
1893 return err;
1897 * BSD recvmsg interface
1900 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1901 unsigned int flags)
1903 struct compat_msghdr __user *msg_compat =
1904 (struct compat_msghdr __user *)msg;
1905 struct socket *sock;
1906 struct iovec iovstack[UIO_FASTIOV];
1907 struct iovec *iov = iovstack;
1908 struct msghdr msg_sys;
1909 unsigned long cmsg_ptr;
1910 int err, iov_size, total_len, len;
1911 int fput_needed;
1913 /* kernel mode address */
1914 char addr[MAX_SOCK_ADDR];
1916 /* user mode address pointers */
1917 struct sockaddr __user *uaddr;
1918 int __user *uaddr_len;
1920 if (MSG_CMSG_COMPAT & flags) {
1921 if (get_compat_msghdr(&msg_sys, msg_compat))
1922 return -EFAULT;
1924 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1925 return -EFAULT;
1927 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1928 if (!sock)
1929 goto out;
1931 err = -EMSGSIZE;
1932 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1933 goto out_put;
1935 /* Check whether to allocate the iovec area */
1936 err = -ENOMEM;
1937 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1938 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1939 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1940 if (!iov)
1941 goto out_put;
1945 * Save the user-mode address (verify_iovec will change the
1946 * kernel msghdr to use the kernel address space)
1949 uaddr = (void __user *)msg_sys.msg_name;
1950 uaddr_len = COMPAT_NAMELEN(msg);
1951 if (MSG_CMSG_COMPAT & flags) {
1952 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1953 } else
1954 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1955 if (err < 0)
1956 goto out_freeiov;
1957 total_len = err;
1959 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1960 msg_sys.msg_flags = 0;
1961 if (MSG_CMSG_COMPAT & flags)
1962 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1964 if (sock->file->f_flags & O_NONBLOCK)
1965 flags |= MSG_DONTWAIT;
1966 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1967 if (err < 0)
1968 goto out_freeiov;
1969 len = err;
1971 if (uaddr != NULL) {
1972 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1973 uaddr_len);
1974 if (err < 0)
1975 goto out_freeiov;
1977 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1978 COMPAT_FLAGS(msg));
1979 if (err)
1980 goto out_freeiov;
1981 if (MSG_CMSG_COMPAT & flags)
1982 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1983 &msg_compat->msg_controllen);
1984 else
1985 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1986 &msg->msg_controllen);
1987 if (err)
1988 goto out_freeiov;
1989 err = len;
1991 out_freeiov:
1992 if (iov != iovstack)
1993 sock_kfree_s(sock->sk, iov, iov_size);
1994 out_put:
1995 fput_light(sock->file, fput_needed);
1996 out:
1997 return err;
2000 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2002 /* Argument list sizes for sys_socketcall */
2003 #define AL(x) ((x) * sizeof(unsigned long))
2004 static const unsigned char nargs[18]={
2005 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2006 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2007 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
2010 #undef AL
2013 * System call vectors.
2015 * Argument checking cleaned up. Saved 20% in size.
2016 * This function doesn't need to set the kernel lock because
2017 * it is set by the callees.
2020 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2022 unsigned long a[6];
2023 unsigned long a0, a1;
2024 int err;
2026 if (call < 1 || call > SYS_RECVMSG)
2027 return -EINVAL;
2029 /* copy_from_user should be SMP safe. */
2030 if (copy_from_user(a, args, nargs[call]))
2031 return -EFAULT;
2033 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2034 if (err)
2035 return err;
2037 a0 = a[0];
2038 a1 = a[1];
2040 switch (call) {
2041 case SYS_SOCKET:
2042 err = sys_socket(a0, a1, a[2]);
2043 break;
2044 case SYS_BIND:
2045 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2046 break;
2047 case SYS_CONNECT:
2048 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2049 break;
2050 case SYS_LISTEN:
2051 err = sys_listen(a0, a1);
2052 break;
2053 case SYS_ACCEPT:
2054 err =
2055 sys_accept(a0, (struct sockaddr __user *)a1,
2056 (int __user *)a[2]);
2057 break;
2058 case SYS_GETSOCKNAME:
2059 err =
2060 sys_getsockname(a0, (struct sockaddr __user *)a1,
2061 (int __user *)a[2]);
2062 break;
2063 case SYS_GETPEERNAME:
2064 err =
2065 sys_getpeername(a0, (struct sockaddr __user *)a1,
2066 (int __user *)a[2]);
2067 break;
2068 case SYS_SOCKETPAIR:
2069 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2070 break;
2071 case SYS_SEND:
2072 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2073 break;
2074 case SYS_SENDTO:
2075 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2076 (struct sockaddr __user *)a[4], a[5]);
2077 break;
2078 case SYS_RECV:
2079 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2080 break;
2081 case SYS_RECVFROM:
2082 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2083 (struct sockaddr __user *)a[4],
2084 (int __user *)a[5]);
2085 break;
2086 case SYS_SHUTDOWN:
2087 err = sys_shutdown(a0, a1);
2088 break;
2089 case SYS_SETSOCKOPT:
2090 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2091 break;
2092 case SYS_GETSOCKOPT:
2093 err =
2094 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2095 (int __user *)a[4]);
2096 break;
2097 case SYS_SENDMSG:
2098 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2099 break;
2100 case SYS_RECVMSG:
2101 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2102 break;
2103 default:
2104 err = -EINVAL;
2105 break;
2107 return err;
2110 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2113 * This function is called by a protocol handler that wants to
2114 * advertise its address family, and have it linked into the
2115 * SOCKET module.
2118 int sock_register(struct net_proto_family *ops)
2120 int err;
2122 if (ops->family >= NPROTO) {
2123 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2124 NPROTO);
2125 return -ENOBUFS;
2127 net_family_write_lock();
2128 err = -EEXIST;
2129 if (net_families[ops->family] == NULL) {
2130 net_families[ops->family] = ops;
2131 err = 0;
2133 net_family_write_unlock();
2134 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2135 return err;
2139 * This function is called by a protocol handler that wants to
2140 * remove its address family, and have it unlinked from the
2141 * SOCKET module.
2144 int sock_unregister(int family)
2146 if (family < 0 || family >= NPROTO)
2147 return -1;
2149 net_family_write_lock();
2150 net_families[family] = NULL;
2151 net_family_write_unlock();
2152 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2153 return 0;
2156 static int __init sock_init(void)
2159 * Initialize sock SLAB cache.
2162 sk_init();
2165 * Initialize skbuff SLAB cache
2167 skb_init();
2170 * Initialize the protocols module.
2173 init_inodecache();
2174 register_filesystem(&sock_fs_type);
2175 sock_mnt = kern_mount(&sock_fs_type);
2177 /* The real protocol initialization is performed in later initcalls.
2180 #ifdef CONFIG_NETFILTER
2181 netfilter_init();
2182 #endif
2184 return 0;
2187 core_initcall(sock_init); /* early initcall */
2189 #ifdef CONFIG_PROC_FS
2190 void socket_seq_show(struct seq_file *seq)
2192 int cpu;
2193 int counter = 0;
2195 for_each_possible_cpu(cpu)
2196 counter += per_cpu(sockets_in_use, cpu);
2198 /* It can be negative, by the way. 8) */
2199 if (counter < 0)
2200 counter = 0;
2202 seq_printf(seq, "sockets: used %d\n", counter);
2204 #endif /* CONFIG_PROC_FS */
2206 #ifdef CONFIG_COMPAT
2207 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2208 unsigned long arg)
2210 struct socket *sock = file->private_data;
2211 int ret = -ENOIOCTLCMD;
2213 if (sock->ops->compat_ioctl)
2214 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2216 return ret;
2218 #endif
2220 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2222 return sock->ops->bind(sock, addr, addrlen);
2225 int kernel_listen(struct socket *sock, int backlog)
2227 return sock->ops->listen(sock, backlog);
2230 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2232 struct sock *sk = sock->sk;
2233 int err;
2235 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2236 newsock);
2237 if (err < 0)
2238 goto done;
2240 err = sock->ops->accept(sock, *newsock, flags);
2241 if (err < 0) {
2242 sock_release(*newsock);
2243 goto done;
2246 (*newsock)->ops = sock->ops;
2248 done:
2249 return err;
2252 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2253 int flags)
2255 return sock->ops->connect(sock, addr, addrlen, flags);
2258 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2259 int *addrlen)
2261 return sock->ops->getname(sock, addr, addrlen, 0);
2264 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2265 int *addrlen)
2267 return sock->ops->getname(sock, addr, addrlen, 1);
2270 int kernel_getsockopt(struct socket *sock, int level, int optname,
2271 char *optval, int *optlen)
2273 mm_segment_t oldfs = get_fs();
2274 int err;
2276 set_fs(KERNEL_DS);
2277 if (level == SOL_SOCKET)
2278 err = sock_getsockopt(sock, level, optname, optval, optlen);
2279 else
2280 err = sock->ops->getsockopt(sock, level, optname, optval,
2281 optlen);
2282 set_fs(oldfs);
2283 return err;
2286 int kernel_setsockopt(struct socket *sock, int level, int optname,
2287 char *optval, int optlen)
2289 mm_segment_t oldfs = get_fs();
2290 int err;
2292 set_fs(KERNEL_DS);
2293 if (level == SOL_SOCKET)
2294 err = sock_setsockopt(sock, level, optname, optval, optlen);
2295 else
2296 err = sock->ops->setsockopt(sock, level, optname, optval,
2297 optlen);
2298 set_fs(oldfs);
2299 return err;
2302 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2303 size_t size, int flags)
2305 if (sock->ops->sendpage)
2306 return sock->ops->sendpage(sock, page, offset, size, flags);
2308 return sock_no_sendpage(sock, page, offset, size, flags);
2311 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2313 mm_segment_t oldfs = get_fs();
2314 int err;
2316 set_fs(KERNEL_DS);
2317 err = sock->ops->ioctl(sock, cmd, arg);
2318 set_fs(oldfs);
2320 return err;
2323 /* ABI emulation layers need these two */
2324 EXPORT_SYMBOL(move_addr_to_kernel);
2325 EXPORT_SYMBOL(move_addr_to_user);
2326 EXPORT_SYMBOL(sock_create);
2327 EXPORT_SYMBOL(sock_create_kern);
2328 EXPORT_SYMBOL(sock_create_lite);
2329 EXPORT_SYMBOL(sock_map_fd);
2330 EXPORT_SYMBOL(sock_recvmsg);
2331 EXPORT_SYMBOL(sock_register);
2332 EXPORT_SYMBOL(sock_release);
2333 EXPORT_SYMBOL(sock_sendmsg);
2334 EXPORT_SYMBOL(sock_unregister);
2335 EXPORT_SYMBOL(sock_wake_async);
2336 EXPORT_SYMBOL(sockfd_lookup);
2337 EXPORT_SYMBOL(kernel_sendmsg);
2338 EXPORT_SYMBOL(kernel_recvmsg);
2339 EXPORT_SYMBOL(kernel_bind);
2340 EXPORT_SYMBOL(kernel_listen);
2341 EXPORT_SYMBOL(kernel_accept);
2342 EXPORT_SYMBOL(kernel_connect);
2343 EXPORT_SYMBOL(kernel_getsockname);
2344 EXPORT_SYMBOL(kernel_getpeername);
2345 EXPORT_SYMBOL(kernel_getsockopt);
2346 EXPORT_SYMBOL(kernel_setsockopt);
2347 EXPORT_SYMBOL(kernel_sendpage);
2348 EXPORT_SYMBOL(kernel_sock_ioctl);