6872 zfs libraries should not allow uninitialized variables
[unleashed.git] / usr / src / lib / libzfs / common / libzfs_import.c
blobb73a71e94c015f3761c27d18ab7768896d94ca40
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
30 * Pool import support functions.
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
36 * pool guid -> toplevel vdev guid -> label txg
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <sys/vtoc.h>
57 #include <sys/dktp/fdisk.h>
58 #include <sys/efi_partition.h>
59 #include <thread_pool.h>
61 #include <sys/vdev_impl.h>
63 #include "libzfs.h"
64 #include "libzfs_impl.h"
67 * Intermediate structures used to gather configuration information.
69 typedef struct config_entry {
70 uint64_t ce_txg;
71 nvlist_t *ce_config;
72 struct config_entry *ce_next;
73 } config_entry_t;
75 typedef struct vdev_entry {
76 uint64_t ve_guid;
77 config_entry_t *ve_configs;
78 struct vdev_entry *ve_next;
79 } vdev_entry_t;
81 typedef struct pool_entry {
82 uint64_t pe_guid;
83 vdev_entry_t *pe_vdevs;
84 struct pool_entry *pe_next;
85 } pool_entry_t;
87 typedef struct name_entry {
88 char *ne_name;
89 uint64_t ne_guid;
90 struct name_entry *ne_next;
91 } name_entry_t;
93 typedef struct pool_list {
94 pool_entry_t *pools;
95 name_entry_t *names;
96 } pool_list_t;
98 static char *
99 get_devid(const char *path)
101 int fd;
102 ddi_devid_t devid;
103 char *minor, *ret;
105 if ((fd = open(path, O_RDONLY)) < 0)
106 return (NULL);
108 minor = NULL;
109 ret = NULL;
110 if (devid_get(fd, &devid) == 0) {
111 if (devid_get_minor_name(fd, &minor) == 0)
112 ret = devid_str_encode(devid, minor);
113 if (minor != NULL)
114 devid_str_free(minor);
115 devid_free(devid);
117 (void) close(fd);
119 return (ret);
124 * Go through and fix up any path and/or devid information for the given vdev
125 * configuration.
127 static int
128 fix_paths(nvlist_t *nv, name_entry_t *names)
130 nvlist_t **child;
131 uint_t c, children;
132 uint64_t guid;
133 name_entry_t *ne, *best;
134 char *path, *devid;
135 int matched;
137 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
138 &child, &children) == 0) {
139 for (c = 0; c < children; c++)
140 if (fix_paths(child[c], names) != 0)
141 return (-1);
142 return (0);
146 * This is a leaf (file or disk) vdev. In either case, go through
147 * the name list and see if we find a matching guid. If so, replace
148 * the path and see if we can calculate a new devid.
150 * There may be multiple names associated with a particular guid, in
151 * which case we have overlapping slices or multiple paths to the same
152 * disk. If this is the case, then we want to pick the path that is
153 * the most similar to the original, where "most similar" is the number
154 * of matching characters starting from the end of the path. This will
155 * preserve slice numbers even if the disks have been reorganized, and
156 * will also catch preferred disk names if multiple paths exist.
158 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
159 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160 path = NULL;
162 matched = 0;
163 best = NULL;
164 for (ne = names; ne != NULL; ne = ne->ne_next) {
165 if (ne->ne_guid == guid) {
166 const char *src, *dst;
167 int count;
169 if (path == NULL) {
170 best = ne;
171 break;
174 src = ne->ne_name + strlen(ne->ne_name) - 1;
175 dst = path + strlen(path) - 1;
176 for (count = 0; src >= ne->ne_name && dst >= path;
177 src--, dst--, count++)
178 if (*src != *dst)
179 break;
182 * At this point, 'count' is the number of characters
183 * matched from the end.
185 if (count > matched || best == NULL) {
186 best = ne;
187 matched = count;
192 if (best == NULL)
193 return (0);
195 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
196 return (-1);
198 if ((devid = get_devid(best->ne_name)) == NULL) {
199 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
200 } else {
201 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
202 devid_str_free(devid);
203 return (-1);
205 devid_str_free(devid);
208 return (0);
212 * Add the given configuration to the list of known devices.
214 static int
215 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
216 nvlist_t *config)
218 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
219 pool_entry_t *pe;
220 vdev_entry_t *ve;
221 config_entry_t *ce;
222 name_entry_t *ne;
225 * If this is a hot spare not currently in use or level 2 cache
226 * device, add it to the list of names to translate, but don't do
227 * anything else.
229 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
230 &state) == 0 &&
231 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
232 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
233 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
234 return (-1);
236 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
237 free(ne);
238 return (-1);
240 ne->ne_guid = vdev_guid;
241 ne->ne_next = pl->names;
242 pl->names = ne;
243 return (0);
247 * If we have a valid config but cannot read any of these fields, then
248 * it means we have a half-initialized label. In vdev_label_init()
249 * we write a label with txg == 0 so that we can identify the device
250 * in case the user refers to the same disk later on. If we fail to
251 * create the pool, we'll be left with a label in this state
252 * which should not be considered part of a valid pool.
254 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
255 &pool_guid) != 0 ||
256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
257 &vdev_guid) != 0 ||
258 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
259 &top_guid) != 0 ||
260 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
261 &txg) != 0 || txg == 0) {
262 nvlist_free(config);
263 return (0);
267 * First, see if we know about this pool. If not, then add it to the
268 * list of known pools.
270 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
271 if (pe->pe_guid == pool_guid)
272 break;
275 if (pe == NULL) {
276 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
277 nvlist_free(config);
278 return (-1);
280 pe->pe_guid = pool_guid;
281 pe->pe_next = pl->pools;
282 pl->pools = pe;
286 * Second, see if we know about this toplevel vdev. Add it if its
287 * missing.
289 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
290 if (ve->ve_guid == top_guid)
291 break;
294 if (ve == NULL) {
295 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
296 nvlist_free(config);
297 return (-1);
299 ve->ve_guid = top_guid;
300 ve->ve_next = pe->pe_vdevs;
301 pe->pe_vdevs = ve;
305 * Third, see if we have a config with a matching transaction group. If
306 * so, then we do nothing. Otherwise, add it to the list of known
307 * configs.
309 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
310 if (ce->ce_txg == txg)
311 break;
314 if (ce == NULL) {
315 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
316 nvlist_free(config);
317 return (-1);
319 ce->ce_txg = txg;
320 ce->ce_config = config;
321 ce->ce_next = ve->ve_configs;
322 ve->ve_configs = ce;
323 } else {
324 nvlist_free(config);
328 * At this point we've successfully added our config to the list of
329 * known configs. The last thing to do is add the vdev guid -> path
330 * mappings so that we can fix up the configuration as necessary before
331 * doing the import.
333 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
334 return (-1);
336 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
337 free(ne);
338 return (-1);
341 ne->ne_guid = vdev_guid;
342 ne->ne_next = pl->names;
343 pl->names = ne;
345 return (0);
349 * Returns true if the named pool matches the given GUID.
351 static int
352 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
353 boolean_t *isactive)
355 zpool_handle_t *zhp;
356 uint64_t theguid;
358 if (zpool_open_silent(hdl, name, &zhp) != 0)
359 return (-1);
361 if (zhp == NULL) {
362 *isactive = B_FALSE;
363 return (0);
366 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
367 &theguid) == 0);
369 zpool_close(zhp);
371 *isactive = (theguid == guid);
372 return (0);
375 static nvlist_t *
376 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
378 nvlist_t *nvl;
379 zfs_cmd_t zc = { 0 };
380 int err;
382 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
383 return (NULL);
385 if (zcmd_alloc_dst_nvlist(hdl, &zc,
386 zc.zc_nvlist_conf_size * 2) != 0) {
387 zcmd_free_nvlists(&zc);
388 return (NULL);
391 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
392 &zc)) != 0 && errno == ENOMEM) {
393 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
394 zcmd_free_nvlists(&zc);
395 return (NULL);
399 if (err) {
400 zcmd_free_nvlists(&zc);
401 return (NULL);
404 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
405 zcmd_free_nvlists(&zc);
406 return (NULL);
409 zcmd_free_nvlists(&zc);
410 return (nvl);
414 * Determine if the vdev id is a hole in the namespace.
416 boolean_t
417 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
419 for (int c = 0; c < holes; c++) {
421 /* Top-level is a hole */
422 if (hole_array[c] == id)
423 return (B_TRUE);
425 return (B_FALSE);
429 * Convert our list of pools into the definitive set of configurations. We
430 * start by picking the best config for each toplevel vdev. Once that's done,
431 * we assemble the toplevel vdevs into a full config for the pool. We make a
432 * pass to fix up any incorrect paths, and then add it to the main list to
433 * return to the user.
435 static nvlist_t *
436 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
438 pool_entry_t *pe;
439 vdev_entry_t *ve;
440 config_entry_t *ce;
441 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
442 nvlist_t **spares, **l2cache;
443 uint_t i, nspares, nl2cache;
444 boolean_t config_seen;
445 uint64_t best_txg;
446 char *name, *hostname = NULL;
447 uint64_t guid;
448 uint_t children = 0;
449 nvlist_t **child = NULL;
450 uint_t holes;
451 uint64_t *hole_array, max_id;
452 uint_t c;
453 boolean_t isactive;
454 uint64_t hostid;
455 nvlist_t *nvl;
456 boolean_t found_one = B_FALSE;
457 boolean_t valid_top_config = B_FALSE;
459 if (nvlist_alloc(&ret, 0, 0) != 0)
460 goto nomem;
462 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
463 uint64_t id, max_txg = 0;
465 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
466 goto nomem;
467 config_seen = B_FALSE;
470 * Iterate over all toplevel vdevs. Grab the pool configuration
471 * from the first one we find, and then go through the rest and
472 * add them as necessary to the 'vdevs' member of the config.
474 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
477 * Determine the best configuration for this vdev by
478 * selecting the config with the latest transaction
479 * group.
481 best_txg = 0;
482 for (ce = ve->ve_configs; ce != NULL;
483 ce = ce->ce_next) {
485 if (ce->ce_txg > best_txg) {
486 tmp = ce->ce_config;
487 best_txg = ce->ce_txg;
492 * We rely on the fact that the max txg for the
493 * pool will contain the most up-to-date information
494 * about the valid top-levels in the vdev namespace.
496 if (best_txg > max_txg) {
497 (void) nvlist_remove(config,
498 ZPOOL_CONFIG_VDEV_CHILDREN,
499 DATA_TYPE_UINT64);
500 (void) nvlist_remove(config,
501 ZPOOL_CONFIG_HOLE_ARRAY,
502 DATA_TYPE_UINT64_ARRAY);
504 max_txg = best_txg;
505 hole_array = NULL;
506 holes = 0;
507 max_id = 0;
508 valid_top_config = B_FALSE;
510 if (nvlist_lookup_uint64(tmp,
511 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
512 verify(nvlist_add_uint64(config,
513 ZPOOL_CONFIG_VDEV_CHILDREN,
514 max_id) == 0);
515 valid_top_config = B_TRUE;
518 if (nvlist_lookup_uint64_array(tmp,
519 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
520 &holes) == 0) {
521 verify(nvlist_add_uint64_array(config,
522 ZPOOL_CONFIG_HOLE_ARRAY,
523 hole_array, holes) == 0);
527 if (!config_seen) {
529 * Copy the relevant pieces of data to the pool
530 * configuration:
532 * version
533 * pool guid
534 * name
535 * comment (if available)
536 * pool state
537 * hostid (if available)
538 * hostname (if available)
540 uint64_t state, version;
541 char *comment = NULL;
543 version = fnvlist_lookup_uint64(tmp,
544 ZPOOL_CONFIG_VERSION);
545 fnvlist_add_uint64(config,
546 ZPOOL_CONFIG_VERSION, version);
547 guid = fnvlist_lookup_uint64(tmp,
548 ZPOOL_CONFIG_POOL_GUID);
549 fnvlist_add_uint64(config,
550 ZPOOL_CONFIG_POOL_GUID, guid);
551 name = fnvlist_lookup_string(tmp,
552 ZPOOL_CONFIG_POOL_NAME);
553 fnvlist_add_string(config,
554 ZPOOL_CONFIG_POOL_NAME, name);
556 if (nvlist_lookup_string(tmp,
557 ZPOOL_CONFIG_COMMENT, &comment) == 0)
558 fnvlist_add_string(config,
559 ZPOOL_CONFIG_COMMENT, comment);
561 state = fnvlist_lookup_uint64(tmp,
562 ZPOOL_CONFIG_POOL_STATE);
563 fnvlist_add_uint64(config,
564 ZPOOL_CONFIG_POOL_STATE, state);
566 hostid = 0;
567 if (nvlist_lookup_uint64(tmp,
568 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
569 fnvlist_add_uint64(config,
570 ZPOOL_CONFIG_HOSTID, hostid);
571 hostname = fnvlist_lookup_string(tmp,
572 ZPOOL_CONFIG_HOSTNAME);
573 fnvlist_add_string(config,
574 ZPOOL_CONFIG_HOSTNAME, hostname);
577 config_seen = B_TRUE;
581 * Add this top-level vdev to the child array.
583 verify(nvlist_lookup_nvlist(tmp,
584 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
585 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
586 &id) == 0);
588 if (id >= children) {
589 nvlist_t **newchild;
591 newchild = zfs_alloc(hdl, (id + 1) *
592 sizeof (nvlist_t *));
593 if (newchild == NULL)
594 goto nomem;
596 for (c = 0; c < children; c++)
597 newchild[c] = child[c];
599 free(child);
600 child = newchild;
601 children = id + 1;
603 if (nvlist_dup(nvtop, &child[id], 0) != 0)
604 goto nomem;
609 * If we have information about all the top-levels then
610 * clean up the nvlist which we've constructed. This
611 * means removing any extraneous devices that are
612 * beyond the valid range or adding devices to the end
613 * of our array which appear to be missing.
615 if (valid_top_config) {
616 if (max_id < children) {
617 for (c = max_id; c < children; c++)
618 nvlist_free(child[c]);
619 children = max_id;
620 } else if (max_id > children) {
621 nvlist_t **newchild;
623 newchild = zfs_alloc(hdl, (max_id) *
624 sizeof (nvlist_t *));
625 if (newchild == NULL)
626 goto nomem;
628 for (c = 0; c < children; c++)
629 newchild[c] = child[c];
631 free(child);
632 child = newchild;
633 children = max_id;
637 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
638 &guid) == 0);
641 * The vdev namespace may contain holes as a result of
642 * device removal. We must add them back into the vdev
643 * tree before we process any missing devices.
645 if (holes > 0) {
646 ASSERT(valid_top_config);
648 for (c = 0; c < children; c++) {
649 nvlist_t *holey;
651 if (child[c] != NULL ||
652 !vdev_is_hole(hole_array, holes, c))
653 continue;
655 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
656 0) != 0)
657 goto nomem;
660 * Holes in the namespace are treated as
661 * "hole" top-level vdevs and have a
662 * special flag set on them.
664 if (nvlist_add_string(holey,
665 ZPOOL_CONFIG_TYPE,
666 VDEV_TYPE_HOLE) != 0 ||
667 nvlist_add_uint64(holey,
668 ZPOOL_CONFIG_ID, c) != 0 ||
669 nvlist_add_uint64(holey,
670 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
671 nvlist_free(holey);
672 goto nomem;
674 child[c] = holey;
679 * Look for any missing top-level vdevs. If this is the case,
680 * create a faked up 'missing' vdev as a placeholder. We cannot
681 * simply compress the child array, because the kernel performs
682 * certain checks to make sure the vdev IDs match their location
683 * in the configuration.
685 for (c = 0; c < children; c++) {
686 if (child[c] == NULL) {
687 nvlist_t *missing;
688 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
689 0) != 0)
690 goto nomem;
691 if (nvlist_add_string(missing,
692 ZPOOL_CONFIG_TYPE,
693 VDEV_TYPE_MISSING) != 0 ||
694 nvlist_add_uint64(missing,
695 ZPOOL_CONFIG_ID, c) != 0 ||
696 nvlist_add_uint64(missing,
697 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
698 nvlist_free(missing);
699 goto nomem;
701 child[c] = missing;
706 * Put all of this pool's top-level vdevs into a root vdev.
708 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
709 goto nomem;
710 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
711 VDEV_TYPE_ROOT) != 0 ||
712 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
713 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
714 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
715 child, children) != 0) {
716 nvlist_free(nvroot);
717 goto nomem;
720 for (c = 0; c < children; c++)
721 nvlist_free(child[c]);
722 free(child);
723 children = 0;
724 child = NULL;
727 * Go through and fix up any paths and/or devids based on our
728 * known list of vdev GUID -> path mappings.
730 if (fix_paths(nvroot, pl->names) != 0) {
731 nvlist_free(nvroot);
732 goto nomem;
736 * Add the root vdev to this pool's configuration.
738 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
739 nvroot) != 0) {
740 nvlist_free(nvroot);
741 goto nomem;
743 nvlist_free(nvroot);
746 * zdb uses this path to report on active pools that were
747 * imported or created using -R.
749 if (active_ok)
750 goto add_pool;
753 * Determine if this pool is currently active, in which case we
754 * can't actually import it.
756 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
757 &name) == 0);
758 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
759 &guid) == 0);
761 if (pool_active(hdl, name, guid, &isactive) != 0)
762 goto error;
764 if (isactive) {
765 nvlist_free(config);
766 config = NULL;
767 continue;
770 if ((nvl = refresh_config(hdl, config)) == NULL) {
771 nvlist_free(config);
772 config = NULL;
773 continue;
776 nvlist_free(config);
777 config = nvl;
780 * Go through and update the paths for spares, now that we have
781 * them.
783 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
784 &nvroot) == 0);
785 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
786 &spares, &nspares) == 0) {
787 for (i = 0; i < nspares; i++) {
788 if (fix_paths(spares[i], pl->names) != 0)
789 goto nomem;
794 * Update the paths for l2cache devices.
796 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
797 &l2cache, &nl2cache) == 0) {
798 for (i = 0; i < nl2cache; i++) {
799 if (fix_paths(l2cache[i], pl->names) != 0)
800 goto nomem;
805 * Restore the original information read from the actual label.
807 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
808 DATA_TYPE_UINT64);
809 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
810 DATA_TYPE_STRING);
811 if (hostid != 0) {
812 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
813 hostid) == 0);
814 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
815 hostname) == 0);
818 add_pool:
820 * Add this pool to the list of configs.
822 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
823 &name) == 0);
824 if (nvlist_add_nvlist(ret, name, config) != 0)
825 goto nomem;
827 found_one = B_TRUE;
828 nvlist_free(config);
829 config = NULL;
832 if (!found_one) {
833 nvlist_free(ret);
834 ret = NULL;
837 return (ret);
839 nomem:
840 (void) no_memory(hdl);
841 error:
842 nvlist_free(config);
843 nvlist_free(ret);
844 for (c = 0; c < children; c++)
845 nvlist_free(child[c]);
846 free(child);
848 return (NULL);
852 * Return the offset of the given label.
854 static uint64_t
855 label_offset(uint64_t size, int l)
857 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
858 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
859 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
863 * Given a file descriptor, read the label information and return an nvlist
864 * describing the configuration, if there is one.
867 zpool_read_label(int fd, nvlist_t **config)
869 struct stat64 statbuf;
870 int l;
871 vdev_label_t *label;
872 uint64_t state, txg, size;
874 *config = NULL;
876 if (fstat64(fd, &statbuf) == -1)
877 return (0);
878 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
880 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
881 return (-1);
883 for (l = 0; l < VDEV_LABELS; l++) {
884 if (pread64(fd, label, sizeof (vdev_label_t),
885 label_offset(size, l)) != sizeof (vdev_label_t))
886 continue;
888 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
889 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
890 continue;
892 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
893 &state) != 0 || state > POOL_STATE_L2CACHE) {
894 nvlist_free(*config);
895 continue;
898 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
899 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
900 &txg) != 0 || txg == 0)) {
901 nvlist_free(*config);
902 continue;
905 free(label);
906 return (0);
909 free(label);
910 *config = NULL;
911 return (0);
914 typedef struct rdsk_node {
915 char *rn_name;
916 int rn_dfd;
917 libzfs_handle_t *rn_hdl;
918 nvlist_t *rn_config;
919 avl_tree_t *rn_avl;
920 avl_node_t rn_node;
921 boolean_t rn_nozpool;
922 } rdsk_node_t;
924 static int
925 slice_cache_compare(const void *arg1, const void *arg2)
927 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
928 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
929 char *nm1slice, *nm2slice;
930 int rv;
933 * slices zero and two are the most likely to provide results,
934 * so put those first
936 nm1slice = strstr(nm1, "s0");
937 nm2slice = strstr(nm2, "s0");
938 if (nm1slice && !nm2slice) {
939 return (-1);
941 if (!nm1slice && nm2slice) {
942 return (1);
944 nm1slice = strstr(nm1, "s2");
945 nm2slice = strstr(nm2, "s2");
946 if (nm1slice && !nm2slice) {
947 return (-1);
949 if (!nm1slice && nm2slice) {
950 return (1);
953 rv = strcmp(nm1, nm2);
954 if (rv == 0)
955 return (0);
956 return (rv > 0 ? 1 : -1);
959 static void
960 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
961 diskaddr_t size, uint_t blksz)
963 rdsk_node_t tmpnode;
964 rdsk_node_t *node;
965 char sname[MAXNAMELEN];
967 tmpnode.rn_name = &sname[0];
968 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
969 diskname, partno);
971 * protect against division by zero for disk labels that
972 * contain a bogus sector size
974 if (blksz == 0)
975 blksz = DEV_BSIZE;
976 /* too small to contain a zpool? */
977 if ((size < (SPA_MINDEVSIZE / blksz)) &&
978 (node = avl_find(r, &tmpnode, NULL)))
979 node->rn_nozpool = B_TRUE;
982 static void
983 nozpool_all_slices(avl_tree_t *r, const char *sname)
985 char diskname[MAXNAMELEN];
986 char *ptr;
987 int i;
989 (void) strncpy(diskname, sname, MAXNAMELEN);
990 if (((ptr = strrchr(diskname, 's')) == NULL) &&
991 ((ptr = strrchr(diskname, 'p')) == NULL))
992 return;
993 ptr[0] = 's';
994 ptr[1] = '\0';
995 for (i = 0; i < NDKMAP; i++)
996 check_one_slice(r, diskname, i, 0, 1);
997 ptr[0] = 'p';
998 for (i = 0; i <= FD_NUMPART; i++)
999 check_one_slice(r, diskname, i, 0, 1);
1002 static void
1003 check_slices(avl_tree_t *r, int fd, const char *sname)
1005 struct extvtoc vtoc;
1006 struct dk_gpt *gpt;
1007 char diskname[MAXNAMELEN];
1008 char *ptr;
1009 int i;
1011 (void) strncpy(diskname, sname, MAXNAMELEN);
1012 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1013 return;
1014 ptr[1] = '\0';
1016 if (read_extvtoc(fd, &vtoc) >= 0) {
1017 for (i = 0; i < NDKMAP; i++)
1018 check_one_slice(r, diskname, i,
1019 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1020 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1022 * on x86 we'll still have leftover links that point
1023 * to slices s[9-15], so use NDKMAP instead
1025 for (i = 0; i < NDKMAP; i++)
1026 check_one_slice(r, diskname, i,
1027 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1028 /* nodes p[1-4] are never used with EFI labels */
1029 ptr[0] = 'p';
1030 for (i = 1; i <= FD_NUMPART; i++)
1031 check_one_slice(r, diskname, i, 0, 1);
1032 efi_free(gpt);
1036 static void
1037 zpool_open_func(void *arg)
1039 rdsk_node_t *rn = arg;
1040 struct stat64 statbuf;
1041 nvlist_t *config;
1042 int fd;
1044 if (rn->rn_nozpool)
1045 return;
1046 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1047 /* symlink to a device that's no longer there */
1048 if (errno == ENOENT)
1049 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1050 return;
1053 * Ignore failed stats. We only want regular
1054 * files, character devs and block devs.
1056 if (fstat64(fd, &statbuf) != 0 ||
1057 (!S_ISREG(statbuf.st_mode) &&
1058 !S_ISCHR(statbuf.st_mode) &&
1059 !S_ISBLK(statbuf.st_mode))) {
1060 (void) close(fd);
1061 return;
1063 /* this file is too small to hold a zpool */
1064 if (S_ISREG(statbuf.st_mode) &&
1065 statbuf.st_size < SPA_MINDEVSIZE) {
1066 (void) close(fd);
1067 return;
1068 } else if (!S_ISREG(statbuf.st_mode)) {
1070 * Try to read the disk label first so we don't have to
1071 * open a bunch of minor nodes that can't have a zpool.
1073 check_slices(rn->rn_avl, fd, rn->rn_name);
1076 if ((zpool_read_label(fd, &config)) != 0) {
1077 (void) close(fd);
1078 (void) no_memory(rn->rn_hdl);
1079 return;
1081 (void) close(fd);
1083 rn->rn_config = config;
1087 * Given a file descriptor, clear (zero) the label information.
1090 zpool_clear_label(int fd)
1092 struct stat64 statbuf;
1093 int l;
1094 vdev_label_t *label;
1095 uint64_t size;
1097 if (fstat64(fd, &statbuf) == -1)
1098 return (0);
1099 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1101 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1102 return (-1);
1104 for (l = 0; l < VDEV_LABELS; l++) {
1105 if (pwrite64(fd, label, sizeof (vdev_label_t),
1106 label_offset(size, l)) != sizeof (vdev_label_t)) {
1107 free(label);
1108 return (-1);
1112 free(label);
1113 return (0);
1117 * Given a list of directories to search, find all pools stored on disk. This
1118 * includes partial pools which are not available to import. If no args are
1119 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1120 * poolname or guid (but not both) are provided by the caller when trying
1121 * to import a specific pool.
1123 static nvlist_t *
1124 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1126 int i, dirs = iarg->paths;
1127 struct dirent64 *dp;
1128 char path[MAXPATHLEN];
1129 char *end, **dir = iarg->path;
1130 size_t pathleft;
1131 nvlist_t *ret = NULL;
1132 static char *default_dir = ZFS_DISK_ROOT;
1133 pool_list_t pools = { 0 };
1134 pool_entry_t *pe, *penext;
1135 vdev_entry_t *ve, *venext;
1136 config_entry_t *ce, *cenext;
1137 name_entry_t *ne, *nenext;
1138 avl_tree_t slice_cache;
1139 rdsk_node_t *slice;
1140 void *cookie;
1142 if (dirs == 0) {
1143 dirs = 1;
1144 dir = &default_dir;
1148 * Go through and read the label configuration information from every
1149 * possible device, organizing the information according to pool GUID
1150 * and toplevel GUID.
1152 for (i = 0; i < dirs; i++) {
1153 tpool_t *t;
1154 char rdsk[MAXPATHLEN];
1155 int dfd;
1156 boolean_t config_failed = B_FALSE;
1157 DIR *dirp;
1159 /* use realpath to normalize the path */
1160 if (realpath(dir[i], path) == 0) {
1161 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1162 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1163 goto error;
1165 end = &path[strlen(path)];
1166 *end++ = '/';
1167 *end = 0;
1168 pathleft = &path[sizeof (path)] - end;
1171 * Using raw devices instead of block devices when we're
1172 * reading the labels skips a bunch of slow operations during
1173 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1175 if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1176 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1177 else
1178 (void) strlcpy(rdsk, path, sizeof (rdsk));
1180 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1181 (dirp = fdopendir(dfd)) == NULL) {
1182 if (dfd >= 0)
1183 (void) close(dfd);
1184 zfs_error_aux(hdl, strerror(errno));
1185 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1186 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1187 rdsk);
1188 goto error;
1191 avl_create(&slice_cache, slice_cache_compare,
1192 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1194 * This is not MT-safe, but we have no MT consumers of libzfs
1196 while ((dp = readdir64(dirp)) != NULL) {
1197 const char *name = dp->d_name;
1198 if (name[0] == '.' &&
1199 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1200 continue;
1202 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1203 slice->rn_name = zfs_strdup(hdl, name);
1204 slice->rn_avl = &slice_cache;
1205 slice->rn_dfd = dfd;
1206 slice->rn_hdl = hdl;
1207 slice->rn_nozpool = B_FALSE;
1208 avl_add(&slice_cache, slice);
1211 * create a thread pool to do all of this in parallel;
1212 * rn_nozpool is not protected, so this is racy in that
1213 * multiple tasks could decide that the same slice can
1214 * not hold a zpool, which is benign. Also choose
1215 * double the number of processors; we hold a lot of
1216 * locks in the kernel, so going beyond this doesn't
1217 * buy us much.
1219 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1220 0, NULL);
1221 for (slice = avl_first(&slice_cache); slice;
1222 (slice = avl_walk(&slice_cache, slice,
1223 AVL_AFTER)))
1224 (void) tpool_dispatch(t, zpool_open_func, slice);
1225 tpool_wait(t);
1226 tpool_destroy(t);
1228 cookie = NULL;
1229 while ((slice = avl_destroy_nodes(&slice_cache,
1230 &cookie)) != NULL) {
1231 if (slice->rn_config != NULL && !config_failed) {
1232 nvlist_t *config = slice->rn_config;
1233 boolean_t matched = B_TRUE;
1235 if (iarg->poolname != NULL) {
1236 char *pname;
1238 matched = nvlist_lookup_string(config,
1239 ZPOOL_CONFIG_POOL_NAME,
1240 &pname) == 0 &&
1241 strcmp(iarg->poolname, pname) == 0;
1242 } else if (iarg->guid != 0) {
1243 uint64_t this_guid;
1245 matched = nvlist_lookup_uint64(config,
1246 ZPOOL_CONFIG_POOL_GUID,
1247 &this_guid) == 0 &&
1248 iarg->guid == this_guid;
1250 if (!matched) {
1251 nvlist_free(config);
1252 } else {
1254 * use the non-raw path for the config
1256 (void) strlcpy(end, slice->rn_name,
1257 pathleft);
1258 if (add_config(hdl, &pools, path,
1259 config) != 0)
1260 config_failed = B_TRUE;
1263 free(slice->rn_name);
1264 free(slice);
1266 avl_destroy(&slice_cache);
1268 (void) closedir(dirp);
1270 if (config_failed)
1271 goto error;
1274 ret = get_configs(hdl, &pools, iarg->can_be_active);
1276 error:
1277 for (pe = pools.pools; pe != NULL; pe = penext) {
1278 penext = pe->pe_next;
1279 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1280 venext = ve->ve_next;
1281 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1282 cenext = ce->ce_next;
1283 nvlist_free(ce->ce_config);
1284 free(ce);
1286 free(ve);
1288 free(pe);
1291 for (ne = pools.names; ne != NULL; ne = nenext) {
1292 nenext = ne->ne_next;
1293 free(ne->ne_name);
1294 free(ne);
1297 return (ret);
1300 nvlist_t *
1301 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1303 importargs_t iarg = { 0 };
1305 iarg.paths = argc;
1306 iarg.path = argv;
1308 return (zpool_find_import_impl(hdl, &iarg));
1312 * Given a cache file, return the contents as a list of importable pools.
1313 * poolname or guid (but not both) are provided by the caller when trying
1314 * to import a specific pool.
1316 nvlist_t *
1317 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1318 char *poolname, uint64_t guid)
1320 char *buf;
1321 int fd;
1322 struct stat64 statbuf;
1323 nvlist_t *raw, *src, *dst;
1324 nvlist_t *pools;
1325 nvpair_t *elem;
1326 char *name;
1327 uint64_t this_guid;
1328 boolean_t active;
1330 verify(poolname == NULL || guid == 0);
1332 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1333 zfs_error_aux(hdl, "%s", strerror(errno));
1334 (void) zfs_error(hdl, EZFS_BADCACHE,
1335 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1336 return (NULL);
1339 if (fstat64(fd, &statbuf) != 0) {
1340 zfs_error_aux(hdl, "%s", strerror(errno));
1341 (void) close(fd);
1342 (void) zfs_error(hdl, EZFS_BADCACHE,
1343 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1344 return (NULL);
1347 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1348 (void) close(fd);
1349 return (NULL);
1352 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1353 (void) close(fd);
1354 free(buf);
1355 (void) zfs_error(hdl, EZFS_BADCACHE,
1356 dgettext(TEXT_DOMAIN,
1357 "failed to read cache file contents"));
1358 return (NULL);
1361 (void) close(fd);
1363 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1364 free(buf);
1365 (void) zfs_error(hdl, EZFS_BADCACHE,
1366 dgettext(TEXT_DOMAIN,
1367 "invalid or corrupt cache file contents"));
1368 return (NULL);
1371 free(buf);
1374 * Go through and get the current state of the pools and refresh their
1375 * state.
1377 if (nvlist_alloc(&pools, 0, 0) != 0) {
1378 (void) no_memory(hdl);
1379 nvlist_free(raw);
1380 return (NULL);
1383 elem = NULL;
1384 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1385 src = fnvpair_value_nvlist(elem);
1387 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1388 if (poolname != NULL && strcmp(poolname, name) != 0)
1389 continue;
1391 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1392 if (guid != 0 && guid != this_guid)
1393 continue;
1395 if (pool_active(hdl, name, this_guid, &active) != 0) {
1396 nvlist_free(raw);
1397 nvlist_free(pools);
1398 return (NULL);
1401 if (active)
1402 continue;
1404 if ((dst = refresh_config(hdl, src)) == NULL) {
1405 nvlist_free(raw);
1406 nvlist_free(pools);
1407 return (NULL);
1410 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1411 (void) no_memory(hdl);
1412 nvlist_free(dst);
1413 nvlist_free(raw);
1414 nvlist_free(pools);
1415 return (NULL);
1417 nvlist_free(dst);
1420 nvlist_free(raw);
1421 return (pools);
1424 static int
1425 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1427 importargs_t *import = data;
1428 int found = 0;
1430 if (import->poolname != NULL) {
1431 char *pool_name;
1433 verify(nvlist_lookup_string(zhp->zpool_config,
1434 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1435 if (strcmp(pool_name, import->poolname) == 0)
1436 found = 1;
1437 } else {
1438 uint64_t pool_guid;
1440 verify(nvlist_lookup_uint64(zhp->zpool_config,
1441 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1442 if (pool_guid == import->guid)
1443 found = 1;
1446 zpool_close(zhp);
1447 return (found);
1450 nvlist_t *
1451 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1453 verify(import->poolname == NULL || import->guid == 0);
1455 if (import->unique)
1456 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1458 if (import->cachefile != NULL)
1459 return (zpool_find_import_cached(hdl, import->cachefile,
1460 import->poolname, import->guid));
1462 return (zpool_find_import_impl(hdl, import));
1465 boolean_t
1466 find_guid(nvlist_t *nv, uint64_t guid)
1468 uint64_t tmp;
1469 nvlist_t **child;
1470 uint_t c, children;
1472 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1473 if (tmp == guid)
1474 return (B_TRUE);
1476 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1477 &child, &children) == 0) {
1478 for (c = 0; c < children; c++)
1479 if (find_guid(child[c], guid))
1480 return (B_TRUE);
1483 return (B_FALSE);
1486 typedef struct aux_cbdata {
1487 const char *cb_type;
1488 uint64_t cb_guid;
1489 zpool_handle_t *cb_zhp;
1490 } aux_cbdata_t;
1492 static int
1493 find_aux(zpool_handle_t *zhp, void *data)
1495 aux_cbdata_t *cbp = data;
1496 nvlist_t **list;
1497 uint_t i, count;
1498 uint64_t guid;
1499 nvlist_t *nvroot;
1501 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1502 &nvroot) == 0);
1504 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1505 &list, &count) == 0) {
1506 for (i = 0; i < count; i++) {
1507 verify(nvlist_lookup_uint64(list[i],
1508 ZPOOL_CONFIG_GUID, &guid) == 0);
1509 if (guid == cbp->cb_guid) {
1510 cbp->cb_zhp = zhp;
1511 return (1);
1516 zpool_close(zhp);
1517 return (0);
1521 * Determines if the pool is in use. If so, it returns true and the state of
1522 * the pool as well as the name of the pool. Both strings are allocated and
1523 * must be freed by the caller.
1526 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1527 boolean_t *inuse)
1529 nvlist_t *config;
1530 char *name;
1531 boolean_t ret;
1532 uint64_t guid, vdev_guid;
1533 zpool_handle_t *zhp;
1534 nvlist_t *pool_config;
1535 uint64_t stateval, isspare;
1536 aux_cbdata_t cb = { 0 };
1537 boolean_t isactive;
1539 *inuse = B_FALSE;
1541 if (zpool_read_label(fd, &config) != 0) {
1542 (void) no_memory(hdl);
1543 return (-1);
1546 if (config == NULL)
1547 return (0);
1549 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1550 &stateval) == 0);
1551 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1552 &vdev_guid) == 0);
1554 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1555 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1556 &name) == 0);
1557 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1558 &guid) == 0);
1561 switch (stateval) {
1562 case POOL_STATE_EXPORTED:
1564 * A pool with an exported state may in fact be imported
1565 * read-only, so check the in-core state to see if it's
1566 * active and imported read-only. If it is, set
1567 * its state to active.
1569 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1570 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1571 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1572 stateval = POOL_STATE_ACTIVE;
1575 * All we needed the zpool handle for is the
1576 * readonly prop check.
1578 zpool_close(zhp);
1581 ret = B_TRUE;
1582 break;
1584 case POOL_STATE_ACTIVE:
1586 * For an active pool, we have to determine if it's really part
1587 * of a currently active pool (in which case the pool will exist
1588 * and the guid will be the same), or whether it's part of an
1589 * active pool that was disconnected without being explicitly
1590 * exported.
1592 if (pool_active(hdl, name, guid, &isactive) != 0) {
1593 nvlist_free(config);
1594 return (-1);
1597 if (isactive) {
1599 * Because the device may have been removed while
1600 * offlined, we only report it as active if the vdev is
1601 * still present in the config. Otherwise, pretend like
1602 * it's not in use.
1604 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1605 (pool_config = zpool_get_config(zhp, NULL))
1606 != NULL) {
1607 nvlist_t *nvroot;
1609 verify(nvlist_lookup_nvlist(pool_config,
1610 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1611 ret = find_guid(nvroot, vdev_guid);
1612 } else {
1613 ret = B_FALSE;
1617 * If this is an active spare within another pool, we
1618 * treat it like an unused hot spare. This allows the
1619 * user to create a pool with a hot spare that currently
1620 * in use within another pool. Since we return B_TRUE,
1621 * libdiskmgt will continue to prevent generic consumers
1622 * from using the device.
1624 if (ret && nvlist_lookup_uint64(config,
1625 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1626 stateval = POOL_STATE_SPARE;
1628 if (zhp != NULL)
1629 zpool_close(zhp);
1630 } else {
1631 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1632 ret = B_TRUE;
1634 break;
1636 case POOL_STATE_SPARE:
1638 * For a hot spare, it can be either definitively in use, or
1639 * potentially active. To determine if it's in use, we iterate
1640 * over all pools in the system and search for one with a spare
1641 * with a matching guid.
1643 * Due to the shared nature of spares, we don't actually report
1644 * the potentially active case as in use. This means the user
1645 * can freely create pools on the hot spares of exported pools,
1646 * but to do otherwise makes the resulting code complicated, and
1647 * we end up having to deal with this case anyway.
1649 cb.cb_zhp = NULL;
1650 cb.cb_guid = vdev_guid;
1651 cb.cb_type = ZPOOL_CONFIG_SPARES;
1652 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1653 name = (char *)zpool_get_name(cb.cb_zhp);
1654 ret = B_TRUE;
1655 } else {
1656 ret = B_FALSE;
1658 break;
1660 case POOL_STATE_L2CACHE:
1663 * Check if any pool is currently using this l2cache device.
1665 cb.cb_zhp = NULL;
1666 cb.cb_guid = vdev_guid;
1667 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1668 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1669 name = (char *)zpool_get_name(cb.cb_zhp);
1670 ret = B_TRUE;
1671 } else {
1672 ret = B_FALSE;
1674 break;
1676 default:
1677 ret = B_FALSE;
1681 if (ret) {
1682 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1683 if (cb.cb_zhp)
1684 zpool_close(cb.cb_zhp);
1685 nvlist_free(config);
1686 return (-1);
1688 *state = (pool_state_t)stateval;
1691 if (cb.cb_zhp)
1692 zpool_close(cb.cb_zhp);
1694 nvlist_free(config);
1695 *inuse = ret;
1696 return (0);