3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()
[unleashed.git] / usr / src / uts / common / fs / zfs / metaslab.c
blob6449788c1c38378512b232b69e51129b937a9d5a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/space_map.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
35 * Allow allocations to switch to gang blocks quickly. We do this to
36 * avoid having to load lots of space_maps in a given txg. There are,
37 * however, some cases where we want to avoid "fast" ganging and instead
38 * we want to do an exhaustive search of all metaslabs on this device.
39 * Currently we don't allow any gang, zil, or dump device related allocations
40 * to "fast" gang.
42 #define CAN_FASTGANG(flags) \
43 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
44 METASLAB_GANG_AVOID)))
46 uint64_t metaslab_aliquot = 512ULL << 10;
47 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
50 * This value defines the number of allowed allocation failures per vdev.
51 * If a device reaches this threshold in a given txg then we consider skipping
52 * allocations on that device.
54 int zfs_mg_alloc_failures;
57 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
59 static int metaslab_debug = 0;
62 * Minimum size which forces the dynamic allocator to change
63 * it's allocation strategy. Once the space map cannot satisfy
64 * an allocation of this size then it switches to using more
65 * aggressive strategy (i.e search by size rather than offset).
67 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
70 * The minimum free space, in percent, which must be available
71 * in a space map to continue allocations in a first-fit fashion.
72 * Once the space_map's free space drops below this level we dynamically
73 * switch to using best-fit allocations.
75 int metaslab_df_free_pct = 4;
78 * A metaslab is considered "free" if it contains a contiguous
79 * segment which is greater than metaslab_min_alloc_size.
81 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
84 * Max number of space_maps to prefetch.
86 int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
89 * Percentage bonus multiplier for metaslabs that are in the bonus area.
91 int metaslab_smo_bonus_pct = 150;
94 * ==========================================================================
95 * Metaslab classes
96 * ==========================================================================
98 metaslab_class_t *
99 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
101 metaslab_class_t *mc;
103 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
105 mc->mc_spa = spa;
106 mc->mc_rotor = NULL;
107 mc->mc_ops = ops;
109 return (mc);
112 void
113 metaslab_class_destroy(metaslab_class_t *mc)
115 ASSERT(mc->mc_rotor == NULL);
116 ASSERT(mc->mc_alloc == 0);
117 ASSERT(mc->mc_deferred == 0);
118 ASSERT(mc->mc_space == 0);
119 ASSERT(mc->mc_dspace == 0);
121 kmem_free(mc, sizeof (metaslab_class_t));
125 metaslab_class_validate(metaslab_class_t *mc)
127 metaslab_group_t *mg;
128 vdev_t *vd;
131 * Must hold one of the spa_config locks.
133 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
134 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
136 if ((mg = mc->mc_rotor) == NULL)
137 return (0);
139 do {
140 vd = mg->mg_vd;
141 ASSERT(vd->vdev_mg != NULL);
142 ASSERT3P(vd->vdev_top, ==, vd);
143 ASSERT3P(mg->mg_class, ==, mc);
144 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
145 } while ((mg = mg->mg_next) != mc->mc_rotor);
147 return (0);
150 void
151 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
152 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
154 atomic_add_64(&mc->mc_alloc, alloc_delta);
155 atomic_add_64(&mc->mc_deferred, defer_delta);
156 atomic_add_64(&mc->mc_space, space_delta);
157 atomic_add_64(&mc->mc_dspace, dspace_delta);
160 uint64_t
161 metaslab_class_get_alloc(metaslab_class_t *mc)
163 return (mc->mc_alloc);
166 uint64_t
167 metaslab_class_get_deferred(metaslab_class_t *mc)
169 return (mc->mc_deferred);
172 uint64_t
173 metaslab_class_get_space(metaslab_class_t *mc)
175 return (mc->mc_space);
178 uint64_t
179 metaslab_class_get_dspace(metaslab_class_t *mc)
181 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
185 * ==========================================================================
186 * Metaslab groups
187 * ==========================================================================
189 static int
190 metaslab_compare(const void *x1, const void *x2)
192 const metaslab_t *m1 = x1;
193 const metaslab_t *m2 = x2;
195 if (m1->ms_weight < m2->ms_weight)
196 return (1);
197 if (m1->ms_weight > m2->ms_weight)
198 return (-1);
201 * If the weights are identical, use the offset to force uniqueness.
203 if (m1->ms_map.sm_start < m2->ms_map.sm_start)
204 return (-1);
205 if (m1->ms_map.sm_start > m2->ms_map.sm_start)
206 return (1);
208 ASSERT3P(m1, ==, m2);
210 return (0);
213 metaslab_group_t *
214 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
216 metaslab_group_t *mg;
218 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
219 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
220 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
221 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
222 mg->mg_vd = vd;
223 mg->mg_class = mc;
224 mg->mg_activation_count = 0;
226 return (mg);
229 void
230 metaslab_group_destroy(metaslab_group_t *mg)
232 ASSERT(mg->mg_prev == NULL);
233 ASSERT(mg->mg_next == NULL);
235 * We may have gone below zero with the activation count
236 * either because we never activated in the first place or
237 * because we're done, and possibly removing the vdev.
239 ASSERT(mg->mg_activation_count <= 0);
241 avl_destroy(&mg->mg_metaslab_tree);
242 mutex_destroy(&mg->mg_lock);
243 kmem_free(mg, sizeof (metaslab_group_t));
246 void
247 metaslab_group_activate(metaslab_group_t *mg)
249 metaslab_class_t *mc = mg->mg_class;
250 metaslab_group_t *mgprev, *mgnext;
252 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
254 ASSERT(mc->mc_rotor != mg);
255 ASSERT(mg->mg_prev == NULL);
256 ASSERT(mg->mg_next == NULL);
257 ASSERT(mg->mg_activation_count <= 0);
259 if (++mg->mg_activation_count <= 0)
260 return;
262 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
264 if ((mgprev = mc->mc_rotor) == NULL) {
265 mg->mg_prev = mg;
266 mg->mg_next = mg;
267 } else {
268 mgnext = mgprev->mg_next;
269 mg->mg_prev = mgprev;
270 mg->mg_next = mgnext;
271 mgprev->mg_next = mg;
272 mgnext->mg_prev = mg;
274 mc->mc_rotor = mg;
277 void
278 metaslab_group_passivate(metaslab_group_t *mg)
280 metaslab_class_t *mc = mg->mg_class;
281 metaslab_group_t *mgprev, *mgnext;
283 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
285 if (--mg->mg_activation_count != 0) {
286 ASSERT(mc->mc_rotor != mg);
287 ASSERT(mg->mg_prev == NULL);
288 ASSERT(mg->mg_next == NULL);
289 ASSERT(mg->mg_activation_count < 0);
290 return;
293 mgprev = mg->mg_prev;
294 mgnext = mg->mg_next;
296 if (mg == mgnext) {
297 mc->mc_rotor = NULL;
298 } else {
299 mc->mc_rotor = mgnext;
300 mgprev->mg_next = mgnext;
301 mgnext->mg_prev = mgprev;
304 mg->mg_prev = NULL;
305 mg->mg_next = NULL;
308 static void
309 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
311 mutex_enter(&mg->mg_lock);
312 ASSERT(msp->ms_group == NULL);
313 msp->ms_group = mg;
314 msp->ms_weight = 0;
315 avl_add(&mg->mg_metaslab_tree, msp);
316 mutex_exit(&mg->mg_lock);
319 static void
320 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
322 mutex_enter(&mg->mg_lock);
323 ASSERT(msp->ms_group == mg);
324 avl_remove(&mg->mg_metaslab_tree, msp);
325 msp->ms_group = NULL;
326 mutex_exit(&mg->mg_lock);
329 static void
330 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
333 * Although in principle the weight can be any value, in
334 * practice we do not use values in the range [1, 510].
336 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
337 ASSERT(MUTEX_HELD(&msp->ms_lock));
339 mutex_enter(&mg->mg_lock);
340 ASSERT(msp->ms_group == mg);
341 avl_remove(&mg->mg_metaslab_tree, msp);
342 msp->ms_weight = weight;
343 avl_add(&mg->mg_metaslab_tree, msp);
344 mutex_exit(&mg->mg_lock);
348 * ==========================================================================
349 * Common allocator routines
350 * ==========================================================================
352 static int
353 metaslab_segsize_compare(const void *x1, const void *x2)
355 const space_seg_t *s1 = x1;
356 const space_seg_t *s2 = x2;
357 uint64_t ss_size1 = s1->ss_end - s1->ss_start;
358 uint64_t ss_size2 = s2->ss_end - s2->ss_start;
360 if (ss_size1 < ss_size2)
361 return (-1);
362 if (ss_size1 > ss_size2)
363 return (1);
365 if (s1->ss_start < s2->ss_start)
366 return (-1);
367 if (s1->ss_start > s2->ss_start)
368 return (1);
370 return (0);
374 * This is a helper function that can be used by the allocator to find
375 * a suitable block to allocate. This will search the specified AVL
376 * tree looking for a block that matches the specified criteria.
378 static uint64_t
379 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
380 uint64_t align)
382 space_seg_t *ss, ssearch;
383 avl_index_t where;
385 ssearch.ss_start = *cursor;
386 ssearch.ss_end = *cursor + size;
388 ss = avl_find(t, &ssearch, &where);
389 if (ss == NULL)
390 ss = avl_nearest(t, where, AVL_AFTER);
392 while (ss != NULL) {
393 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
395 if (offset + size <= ss->ss_end) {
396 *cursor = offset + size;
397 return (offset);
399 ss = AVL_NEXT(t, ss);
403 * If we know we've searched the whole map (*cursor == 0), give up.
404 * Otherwise, reset the cursor to the beginning and try again.
406 if (*cursor == 0)
407 return (-1ULL);
409 *cursor = 0;
410 return (metaslab_block_picker(t, cursor, size, align));
413 static void
414 metaslab_pp_load(space_map_t *sm)
416 space_seg_t *ss;
418 ASSERT(sm->sm_ppd == NULL);
419 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
421 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
422 avl_create(sm->sm_pp_root, metaslab_segsize_compare,
423 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
425 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
426 avl_add(sm->sm_pp_root, ss);
429 static void
430 metaslab_pp_unload(space_map_t *sm)
432 void *cookie = NULL;
434 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
435 sm->sm_ppd = NULL;
437 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
438 /* tear down the tree */
441 avl_destroy(sm->sm_pp_root);
442 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
443 sm->sm_pp_root = NULL;
446 /* ARGSUSED */
447 static void
448 metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
450 /* No need to update cursor */
453 /* ARGSUSED */
454 static void
455 metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
457 /* No need to update cursor */
461 * Return the maximum contiguous segment within the metaslab.
463 uint64_t
464 metaslab_pp_maxsize(space_map_t *sm)
466 avl_tree_t *t = sm->sm_pp_root;
467 space_seg_t *ss;
469 if (t == NULL || (ss = avl_last(t)) == NULL)
470 return (0ULL);
472 return (ss->ss_end - ss->ss_start);
476 * ==========================================================================
477 * The first-fit block allocator
478 * ==========================================================================
480 static uint64_t
481 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
483 avl_tree_t *t = &sm->sm_root;
484 uint64_t align = size & -size;
485 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
487 return (metaslab_block_picker(t, cursor, size, align));
490 /* ARGSUSED */
491 boolean_t
492 metaslab_ff_fragmented(space_map_t *sm)
494 return (B_TRUE);
497 static space_map_ops_t metaslab_ff_ops = {
498 metaslab_pp_load,
499 metaslab_pp_unload,
500 metaslab_ff_alloc,
501 metaslab_pp_claim,
502 metaslab_pp_free,
503 metaslab_pp_maxsize,
504 metaslab_ff_fragmented
508 * ==========================================================================
509 * Dynamic block allocator -
510 * Uses the first fit allocation scheme until space get low and then
511 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
512 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
513 * ==========================================================================
515 static uint64_t
516 metaslab_df_alloc(space_map_t *sm, uint64_t size)
518 avl_tree_t *t = &sm->sm_root;
519 uint64_t align = size & -size;
520 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
521 uint64_t max_size = metaslab_pp_maxsize(sm);
522 int free_pct = sm->sm_space * 100 / sm->sm_size;
524 ASSERT(MUTEX_HELD(sm->sm_lock));
525 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
527 if (max_size < size)
528 return (-1ULL);
531 * If we're running low on space switch to using the size
532 * sorted AVL tree (best-fit).
534 if (max_size < metaslab_df_alloc_threshold ||
535 free_pct < metaslab_df_free_pct) {
536 t = sm->sm_pp_root;
537 *cursor = 0;
540 return (metaslab_block_picker(t, cursor, size, 1ULL));
543 static boolean_t
544 metaslab_df_fragmented(space_map_t *sm)
546 uint64_t max_size = metaslab_pp_maxsize(sm);
547 int free_pct = sm->sm_space * 100 / sm->sm_size;
549 if (max_size >= metaslab_df_alloc_threshold &&
550 free_pct >= metaslab_df_free_pct)
551 return (B_FALSE);
553 return (B_TRUE);
556 static space_map_ops_t metaslab_df_ops = {
557 metaslab_pp_load,
558 metaslab_pp_unload,
559 metaslab_df_alloc,
560 metaslab_pp_claim,
561 metaslab_pp_free,
562 metaslab_pp_maxsize,
563 metaslab_df_fragmented
567 * ==========================================================================
568 * Other experimental allocators
569 * ==========================================================================
571 static uint64_t
572 metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
574 avl_tree_t *t = &sm->sm_root;
575 uint64_t *cursor = (uint64_t *)sm->sm_ppd;
576 uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
577 uint64_t max_size = metaslab_pp_maxsize(sm);
578 uint64_t rsize = size;
579 uint64_t offset = 0;
581 ASSERT(MUTEX_HELD(sm->sm_lock));
582 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
584 if (max_size < size)
585 return (-1ULL);
587 ASSERT3U(*extent_end, >=, *cursor);
590 * If we're running low on space switch to using the size
591 * sorted AVL tree (best-fit).
593 if ((*cursor + size) > *extent_end) {
595 t = sm->sm_pp_root;
596 *cursor = *extent_end = 0;
598 if (max_size > 2 * SPA_MAXBLOCKSIZE)
599 rsize = MIN(metaslab_min_alloc_size, max_size);
600 offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
601 if (offset != -1)
602 *cursor = offset + size;
603 } else {
604 offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
606 ASSERT3U(*cursor, <=, *extent_end);
607 return (offset);
610 static boolean_t
611 metaslab_cdf_fragmented(space_map_t *sm)
613 uint64_t max_size = metaslab_pp_maxsize(sm);
615 if (max_size > (metaslab_min_alloc_size * 10))
616 return (B_FALSE);
617 return (B_TRUE);
620 static space_map_ops_t metaslab_cdf_ops = {
621 metaslab_pp_load,
622 metaslab_pp_unload,
623 metaslab_cdf_alloc,
624 metaslab_pp_claim,
625 metaslab_pp_free,
626 metaslab_pp_maxsize,
627 metaslab_cdf_fragmented
630 uint64_t metaslab_ndf_clump_shift = 4;
632 static uint64_t
633 metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
635 avl_tree_t *t = &sm->sm_root;
636 avl_index_t where;
637 space_seg_t *ss, ssearch;
638 uint64_t hbit = highbit(size);
639 uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
640 uint64_t max_size = metaslab_pp_maxsize(sm);
642 ASSERT(MUTEX_HELD(sm->sm_lock));
643 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
645 if (max_size < size)
646 return (-1ULL);
648 ssearch.ss_start = *cursor;
649 ssearch.ss_end = *cursor + size;
651 ss = avl_find(t, &ssearch, &where);
652 if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
653 t = sm->sm_pp_root;
655 ssearch.ss_start = 0;
656 ssearch.ss_end = MIN(max_size,
657 1ULL << (hbit + metaslab_ndf_clump_shift));
658 ss = avl_find(t, &ssearch, &where);
659 if (ss == NULL)
660 ss = avl_nearest(t, where, AVL_AFTER);
661 ASSERT(ss != NULL);
664 if (ss != NULL) {
665 if (ss->ss_start + size <= ss->ss_end) {
666 *cursor = ss->ss_start + size;
667 return (ss->ss_start);
670 return (-1ULL);
673 static boolean_t
674 metaslab_ndf_fragmented(space_map_t *sm)
676 uint64_t max_size = metaslab_pp_maxsize(sm);
678 if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
679 return (B_FALSE);
680 return (B_TRUE);
684 static space_map_ops_t metaslab_ndf_ops = {
685 metaslab_pp_load,
686 metaslab_pp_unload,
687 metaslab_ndf_alloc,
688 metaslab_pp_claim,
689 metaslab_pp_free,
690 metaslab_pp_maxsize,
691 metaslab_ndf_fragmented
694 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
697 * ==========================================================================
698 * Metaslabs
699 * ==========================================================================
701 metaslab_t *
702 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
703 uint64_t start, uint64_t size, uint64_t txg)
705 vdev_t *vd = mg->mg_vd;
706 metaslab_t *msp;
708 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
709 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
711 msp->ms_smo_syncing = *smo;
714 * We create the main space map here, but we don't create the
715 * allocmaps and freemaps until metaslab_sync_done(). This serves
716 * two purposes: it allows metaslab_sync_done() to detect the
717 * addition of new space; and for debugging, it ensures that we'd
718 * data fault on any attempt to use this metaslab before it's ready.
720 space_map_create(&msp->ms_map, start, size,
721 vd->vdev_ashift, &msp->ms_lock);
723 metaslab_group_add(mg, msp);
725 if (metaslab_debug && smo->smo_object != 0) {
726 mutex_enter(&msp->ms_lock);
727 VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
728 SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
729 mutex_exit(&msp->ms_lock);
733 * If we're opening an existing pool (txg == 0) or creating
734 * a new one (txg == TXG_INITIAL), all space is available now.
735 * If we're adding space to an existing pool, the new space
736 * does not become available until after this txg has synced.
738 if (txg <= TXG_INITIAL)
739 metaslab_sync_done(msp, 0);
741 if (txg != 0) {
742 vdev_dirty(vd, 0, NULL, txg);
743 vdev_dirty(vd, VDD_METASLAB, msp, txg);
746 return (msp);
749 void
750 metaslab_fini(metaslab_t *msp)
752 metaslab_group_t *mg = msp->ms_group;
754 vdev_space_update(mg->mg_vd,
755 -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
757 metaslab_group_remove(mg, msp);
759 mutex_enter(&msp->ms_lock);
761 space_map_unload(&msp->ms_map);
762 space_map_destroy(&msp->ms_map);
764 for (int t = 0; t < TXG_SIZE; t++) {
765 space_map_destroy(&msp->ms_allocmap[t]);
766 space_map_destroy(&msp->ms_freemap[t]);
769 for (int t = 0; t < TXG_DEFER_SIZE; t++)
770 space_map_destroy(&msp->ms_defermap[t]);
772 ASSERT0(msp->ms_deferspace);
774 mutex_exit(&msp->ms_lock);
775 mutex_destroy(&msp->ms_lock);
777 kmem_free(msp, sizeof (metaslab_t));
780 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
781 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
782 #define METASLAB_ACTIVE_MASK \
783 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
785 static uint64_t
786 metaslab_weight(metaslab_t *msp)
788 metaslab_group_t *mg = msp->ms_group;
789 space_map_t *sm = &msp->ms_map;
790 space_map_obj_t *smo = &msp->ms_smo;
791 vdev_t *vd = mg->mg_vd;
792 uint64_t weight, space;
794 ASSERT(MUTEX_HELD(&msp->ms_lock));
797 * The baseline weight is the metaslab's free space.
799 space = sm->sm_size - smo->smo_alloc;
800 weight = space;
803 * Modern disks have uniform bit density and constant angular velocity.
804 * Therefore, the outer recording zones are faster (higher bandwidth)
805 * than the inner zones by the ratio of outer to inner track diameter,
806 * which is typically around 2:1. We account for this by assigning
807 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
808 * In effect, this means that we'll select the metaslab with the most
809 * free bandwidth rather than simply the one with the most free space.
811 weight = 2 * weight -
812 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
813 ASSERT(weight >= space && weight <= 2 * space);
816 * For locality, assign higher weight to metaslabs which have
817 * a lower offset than what we've already activated.
819 if (sm->sm_start <= mg->mg_bonus_area)
820 weight *= (metaslab_smo_bonus_pct / 100);
821 ASSERT(weight >= space &&
822 weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
824 if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
826 * If this metaslab is one we're actively using, adjust its
827 * weight to make it preferable to any inactive metaslab so
828 * we'll polish it off.
830 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
832 return (weight);
835 static void
836 metaslab_prefetch(metaslab_group_t *mg)
838 spa_t *spa = mg->mg_vd->vdev_spa;
839 metaslab_t *msp;
840 avl_tree_t *t = &mg->mg_metaslab_tree;
841 int m;
843 mutex_enter(&mg->mg_lock);
846 * Prefetch the next potential metaslabs
848 for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
849 space_map_t *sm = &msp->ms_map;
850 space_map_obj_t *smo = &msp->ms_smo;
852 /* If we have reached our prefetch limit then we're done */
853 if (m >= metaslab_prefetch_limit)
854 break;
856 if (!sm->sm_loaded && smo->smo_object != 0) {
857 mutex_exit(&mg->mg_lock);
858 dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
859 0ULL, smo->smo_objsize);
860 mutex_enter(&mg->mg_lock);
863 mutex_exit(&mg->mg_lock);
866 static int
867 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
869 metaslab_group_t *mg = msp->ms_group;
870 space_map_t *sm = &msp->ms_map;
871 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
873 ASSERT(MUTEX_HELD(&msp->ms_lock));
875 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
876 space_map_load_wait(sm);
877 if (!sm->sm_loaded) {
878 space_map_obj_t *smo = &msp->ms_smo;
880 int error = space_map_load(sm, sm_ops, SM_FREE, smo,
881 spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
882 if (error) {
883 metaslab_group_sort(msp->ms_group, msp, 0);
884 return (error);
886 for (int t = 0; t < TXG_DEFER_SIZE; t++)
887 space_map_walk(&msp->ms_defermap[t],
888 space_map_claim, sm);
893 * Track the bonus area as we activate new metaslabs.
895 if (sm->sm_start > mg->mg_bonus_area) {
896 mutex_enter(&mg->mg_lock);
897 mg->mg_bonus_area = sm->sm_start;
898 mutex_exit(&mg->mg_lock);
901 metaslab_group_sort(msp->ms_group, msp,
902 msp->ms_weight | activation_weight);
904 ASSERT(sm->sm_loaded);
905 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
907 return (0);
910 static void
911 metaslab_passivate(metaslab_t *msp, uint64_t size)
914 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
915 * this metaslab again. In that case, it had better be empty,
916 * or we would be leaving space on the table.
918 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
919 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
920 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
924 * Write a metaslab to disk in the context of the specified transaction group.
926 void
927 metaslab_sync(metaslab_t *msp, uint64_t txg)
929 vdev_t *vd = msp->ms_group->mg_vd;
930 spa_t *spa = vd->vdev_spa;
931 objset_t *mos = spa_meta_objset(spa);
932 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
933 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
934 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
935 space_map_t *sm = &msp->ms_map;
936 space_map_obj_t *smo = &msp->ms_smo_syncing;
937 dmu_buf_t *db;
938 dmu_tx_t *tx;
940 ASSERT(!vd->vdev_ishole);
942 if (allocmap->sm_space == 0 && freemap->sm_space == 0)
943 return;
946 * The only state that can actually be changing concurrently with
947 * metaslab_sync() is the metaslab's ms_map. No other thread can
948 * be modifying this txg's allocmap, freemap, freed_map, or smo.
949 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
950 * We drop it whenever we call into the DMU, because the DMU
951 * can call down to us (e.g. via zio_free()) at any time.
954 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
956 if (smo->smo_object == 0) {
957 ASSERT(smo->smo_objsize == 0);
958 ASSERT(smo->smo_alloc == 0);
959 smo->smo_object = dmu_object_alloc(mos,
960 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
961 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
962 ASSERT(smo->smo_object != 0);
963 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
964 (sm->sm_start >> vd->vdev_ms_shift),
965 sizeof (uint64_t), &smo->smo_object, tx);
968 mutex_enter(&msp->ms_lock);
970 space_map_walk(freemap, space_map_add, freed_map);
972 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
973 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
975 * The in-core space map representation is twice as compact
976 * as the on-disk one, so it's time to condense the latter
977 * by generating a pure allocmap from first principles.
979 * This metaslab is 100% allocated,
980 * minus the content of the in-core map (sm),
981 * minus what's been freed this txg (freed_map),
982 * minus deferred frees (ms_defermap[]),
983 * minus allocations from txgs in the future
984 * (because they haven't been committed yet).
986 space_map_vacate(allocmap, NULL, NULL);
987 space_map_vacate(freemap, NULL, NULL);
989 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
991 space_map_walk(sm, space_map_remove, allocmap);
992 space_map_walk(freed_map, space_map_remove, allocmap);
994 for (int t = 0; t < TXG_DEFER_SIZE; t++)
995 space_map_walk(&msp->ms_defermap[t],
996 space_map_remove, allocmap);
998 for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
999 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
1000 space_map_remove, allocmap);
1002 mutex_exit(&msp->ms_lock);
1003 space_map_truncate(smo, mos, tx);
1004 mutex_enter(&msp->ms_lock);
1007 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
1008 space_map_sync(freemap, SM_FREE, smo, mos, tx);
1010 mutex_exit(&msp->ms_lock);
1012 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1013 dmu_buf_will_dirty(db, tx);
1014 ASSERT3U(db->db_size, >=, sizeof (*smo));
1015 bcopy(smo, db->db_data, sizeof (*smo));
1016 dmu_buf_rele(db, FTAG);
1018 dmu_tx_commit(tx);
1022 * Called after a transaction group has completely synced to mark
1023 * all of the metaslab's free space as usable.
1025 void
1026 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1028 space_map_obj_t *smo = &msp->ms_smo;
1029 space_map_obj_t *smosync = &msp->ms_smo_syncing;
1030 space_map_t *sm = &msp->ms_map;
1031 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1032 space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1033 metaslab_group_t *mg = msp->ms_group;
1034 vdev_t *vd = mg->mg_vd;
1035 int64_t alloc_delta, defer_delta;
1037 ASSERT(!vd->vdev_ishole);
1039 mutex_enter(&msp->ms_lock);
1042 * If this metaslab is just becoming available, initialize its
1043 * allocmaps and freemaps and add its capacity to the vdev.
1045 if (freed_map->sm_size == 0) {
1046 for (int t = 0; t < TXG_SIZE; t++) {
1047 space_map_create(&msp->ms_allocmap[t], sm->sm_start,
1048 sm->sm_size, sm->sm_shift, sm->sm_lock);
1049 space_map_create(&msp->ms_freemap[t], sm->sm_start,
1050 sm->sm_size, sm->sm_shift, sm->sm_lock);
1053 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1054 space_map_create(&msp->ms_defermap[t], sm->sm_start,
1055 sm->sm_size, sm->sm_shift, sm->sm_lock);
1057 vdev_space_update(vd, 0, 0, sm->sm_size);
1060 alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1061 defer_delta = freed_map->sm_space - defer_map->sm_space;
1063 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1065 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
1066 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
1069 * If there's a space_map_load() in progress, wait for it to complete
1070 * so that we have a consistent view of the in-core space map.
1071 * Then, add defer_map (oldest deferred frees) to this map and
1072 * transfer freed_map (this txg's frees) to defer_map.
1074 space_map_load_wait(sm);
1075 space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1076 space_map_vacate(freed_map, space_map_add, defer_map);
1078 *smo = *smosync;
1080 msp->ms_deferspace += defer_delta;
1081 ASSERT3S(msp->ms_deferspace, >=, 0);
1082 ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1083 if (msp->ms_deferspace != 0) {
1085 * Keep syncing this metaslab until all deferred frees
1086 * are back in circulation.
1088 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1092 * If the map is loaded but no longer active, evict it as soon as all
1093 * future allocations have synced. (If we unloaded it now and then
1094 * loaded a moment later, the map wouldn't reflect those allocations.)
1096 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1097 int evictable = 1;
1099 for (int t = 1; t < TXG_CONCURRENT_STATES; t++)
1100 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
1101 evictable = 0;
1103 if (evictable && !metaslab_debug)
1104 space_map_unload(sm);
1107 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1109 mutex_exit(&msp->ms_lock);
1112 void
1113 metaslab_sync_reassess(metaslab_group_t *mg)
1115 vdev_t *vd = mg->mg_vd;
1116 int64_t failures = mg->mg_alloc_failures;
1119 * Re-evaluate all metaslabs which have lower offsets than the
1120 * bonus area.
1122 for (int m = 0; m < vd->vdev_ms_count; m++) {
1123 metaslab_t *msp = vd->vdev_ms[m];
1125 if (msp->ms_map.sm_start > mg->mg_bonus_area)
1126 break;
1128 mutex_enter(&msp->ms_lock);
1129 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1130 mutex_exit(&msp->ms_lock);
1133 atomic_add_64(&mg->mg_alloc_failures, -failures);
1136 * Prefetch the next potential metaslabs
1138 metaslab_prefetch(mg);
1141 static uint64_t
1142 metaslab_distance(metaslab_t *msp, dva_t *dva)
1144 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1145 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1146 uint64_t start = msp->ms_map.sm_start >> ms_shift;
1148 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1149 return (1ULL << 63);
1151 if (offset < start)
1152 return ((start - offset) << ms_shift);
1153 if (offset > start)
1154 return ((offset - start) << ms_shift);
1155 return (0);
1158 static uint64_t
1159 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1160 uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1162 spa_t *spa = mg->mg_vd->vdev_spa;
1163 metaslab_t *msp = NULL;
1164 uint64_t offset = -1ULL;
1165 avl_tree_t *t = &mg->mg_metaslab_tree;
1166 uint64_t activation_weight;
1167 uint64_t target_distance;
1168 int i;
1170 activation_weight = METASLAB_WEIGHT_PRIMARY;
1171 for (i = 0; i < d; i++) {
1172 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1173 activation_weight = METASLAB_WEIGHT_SECONDARY;
1174 break;
1178 for (;;) {
1179 boolean_t was_active;
1181 mutex_enter(&mg->mg_lock);
1182 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1183 if (msp->ms_weight < asize) {
1184 spa_dbgmsg(spa, "%s: failed to meet weight "
1185 "requirement: vdev %llu, txg %llu, mg %p, "
1186 "msp %p, psize %llu, asize %llu, "
1187 "failures %llu, weight %llu",
1188 spa_name(spa), mg->mg_vd->vdev_id, txg,
1189 mg, msp, psize, asize,
1190 mg->mg_alloc_failures, msp->ms_weight);
1191 mutex_exit(&mg->mg_lock);
1192 return (-1ULL);
1194 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1195 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1196 break;
1198 target_distance = min_distance +
1199 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1201 for (i = 0; i < d; i++)
1202 if (metaslab_distance(msp, &dva[i]) <
1203 target_distance)
1204 break;
1205 if (i == d)
1206 break;
1208 mutex_exit(&mg->mg_lock);
1209 if (msp == NULL)
1210 return (-1ULL);
1213 * If we've already reached the allowable number of failed
1214 * allocation attempts on this metaslab group then we
1215 * consider skipping it. We skip it only if we're allowed
1216 * to "fast" gang, the physical size is larger than
1217 * a gang block, and we're attempting to allocate from
1218 * the primary metaslab.
1220 if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1221 CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1222 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1223 spa_dbgmsg(spa, "%s: skipping metaslab group: "
1224 "vdev %llu, txg %llu, mg %p, psize %llu, "
1225 "asize %llu, failures %llu", spa_name(spa),
1226 mg->mg_vd->vdev_id, txg, mg, psize, asize,
1227 mg->mg_alloc_failures);
1228 return (-1ULL);
1231 mutex_enter(&msp->ms_lock);
1234 * Ensure that the metaslab we have selected is still
1235 * capable of handling our request. It's possible that
1236 * another thread may have changed the weight while we
1237 * were blocked on the metaslab lock.
1239 if (msp->ms_weight < asize || (was_active &&
1240 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1241 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1242 mutex_exit(&msp->ms_lock);
1243 continue;
1246 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1247 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1248 metaslab_passivate(msp,
1249 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1250 mutex_exit(&msp->ms_lock);
1251 continue;
1254 if (metaslab_activate(msp, activation_weight) != 0) {
1255 mutex_exit(&msp->ms_lock);
1256 continue;
1259 if ((offset = space_map_alloc(&msp->ms_map, asize)) != -1ULL)
1260 break;
1262 atomic_inc_64(&mg->mg_alloc_failures);
1264 metaslab_passivate(msp, space_map_maxsize(&msp->ms_map));
1266 mutex_exit(&msp->ms_lock);
1269 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1270 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1272 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, asize);
1274 mutex_exit(&msp->ms_lock);
1276 return (offset);
1280 * Allocate a block for the specified i/o.
1282 static int
1283 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1284 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1286 metaslab_group_t *mg, *rotor;
1287 vdev_t *vd;
1288 int dshift = 3;
1289 int all_zero;
1290 int zio_lock = B_FALSE;
1291 boolean_t allocatable;
1292 uint64_t offset = -1ULL;
1293 uint64_t asize;
1294 uint64_t distance;
1296 ASSERT(!DVA_IS_VALID(&dva[d]));
1299 * For testing, make some blocks above a certain size be gang blocks.
1301 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1302 return (ENOSPC);
1305 * Start at the rotor and loop through all mgs until we find something.
1306 * Note that there's no locking on mc_rotor or mc_aliquot because
1307 * nothing actually breaks if we miss a few updates -- we just won't
1308 * allocate quite as evenly. It all balances out over time.
1310 * If we are doing ditto or log blocks, try to spread them across
1311 * consecutive vdevs. If we're forced to reuse a vdev before we've
1312 * allocated all of our ditto blocks, then try and spread them out on
1313 * that vdev as much as possible. If it turns out to not be possible,
1314 * gradually lower our standards until anything becomes acceptable.
1315 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1316 * gives us hope of containing our fault domains to something we're
1317 * able to reason about. Otherwise, any two top-level vdev failures
1318 * will guarantee the loss of data. With consecutive allocation,
1319 * only two adjacent top-level vdev failures will result in data loss.
1321 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1322 * ourselves on the same vdev as our gang block header. That
1323 * way, we can hope for locality in vdev_cache, plus it makes our
1324 * fault domains something tractable.
1326 if (hintdva) {
1327 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1330 * It's possible the vdev we're using as the hint no
1331 * longer exists (i.e. removed). Consult the rotor when
1332 * all else fails.
1334 if (vd != NULL) {
1335 mg = vd->vdev_mg;
1337 if (flags & METASLAB_HINTBP_AVOID &&
1338 mg->mg_next != NULL)
1339 mg = mg->mg_next;
1340 } else {
1341 mg = mc->mc_rotor;
1343 } else if (d != 0) {
1344 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1345 mg = vd->vdev_mg->mg_next;
1346 } else {
1347 mg = mc->mc_rotor;
1351 * If the hint put us into the wrong metaslab class, or into a
1352 * metaslab group that has been passivated, just follow the rotor.
1354 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1355 mg = mc->mc_rotor;
1357 rotor = mg;
1358 top:
1359 all_zero = B_TRUE;
1360 do {
1361 ASSERT(mg->mg_activation_count == 1);
1363 vd = mg->mg_vd;
1366 * Don't allocate from faulted devices.
1368 if (zio_lock) {
1369 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1370 allocatable = vdev_allocatable(vd);
1371 spa_config_exit(spa, SCL_ZIO, FTAG);
1372 } else {
1373 allocatable = vdev_allocatable(vd);
1375 if (!allocatable)
1376 goto next;
1379 * Avoid writing single-copy data to a failing vdev
1381 if ((vd->vdev_stat.vs_write_errors > 0 ||
1382 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1383 d == 0 && dshift == 3) {
1384 all_zero = B_FALSE;
1385 goto next;
1388 ASSERT(mg->mg_class == mc);
1390 distance = vd->vdev_asize >> dshift;
1391 if (distance <= (1ULL << vd->vdev_ms_shift))
1392 distance = 0;
1393 else
1394 all_zero = B_FALSE;
1396 asize = vdev_psize_to_asize(vd, psize);
1397 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1399 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1400 dva, d, flags);
1401 if (offset != -1ULL) {
1403 * If we've just selected this metaslab group,
1404 * figure out whether the corresponding vdev is
1405 * over- or under-used relative to the pool,
1406 * and set an allocation bias to even it out.
1408 if (mc->mc_aliquot == 0) {
1409 vdev_stat_t *vs = &vd->vdev_stat;
1410 int64_t vu, cu;
1412 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1413 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1416 * Calculate how much more or less we should
1417 * try to allocate from this device during
1418 * this iteration around the rotor.
1419 * For example, if a device is 80% full
1420 * and the pool is 20% full then we should
1421 * reduce allocations by 60% on this device.
1423 * mg_bias = (20 - 80) * 512K / 100 = -307K
1425 * This reduces allocations by 307K for this
1426 * iteration.
1428 mg->mg_bias = ((cu - vu) *
1429 (int64_t)mg->mg_aliquot) / 100;
1432 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1433 mg->mg_aliquot + mg->mg_bias) {
1434 mc->mc_rotor = mg->mg_next;
1435 mc->mc_aliquot = 0;
1438 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1439 DVA_SET_OFFSET(&dva[d], offset);
1440 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1441 DVA_SET_ASIZE(&dva[d], asize);
1443 return (0);
1445 next:
1446 mc->mc_rotor = mg->mg_next;
1447 mc->mc_aliquot = 0;
1448 } while ((mg = mg->mg_next) != rotor);
1450 if (!all_zero) {
1451 dshift++;
1452 ASSERT(dshift < 64);
1453 goto top;
1456 if (!allocatable && !zio_lock) {
1457 dshift = 3;
1458 zio_lock = B_TRUE;
1459 goto top;
1462 bzero(&dva[d], sizeof (dva_t));
1464 return (ENOSPC);
1468 * Free the block represented by DVA in the context of the specified
1469 * transaction group.
1471 static void
1472 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1474 uint64_t vdev = DVA_GET_VDEV(dva);
1475 uint64_t offset = DVA_GET_OFFSET(dva);
1476 uint64_t size = DVA_GET_ASIZE(dva);
1477 vdev_t *vd;
1478 metaslab_t *msp;
1480 ASSERT(DVA_IS_VALID(dva));
1482 if (txg > spa_freeze_txg(spa))
1483 return;
1485 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1486 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1487 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1488 (u_longlong_t)vdev, (u_longlong_t)offset);
1489 ASSERT(0);
1490 return;
1493 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1495 if (DVA_GET_GANG(dva))
1496 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1498 mutex_enter(&msp->ms_lock);
1500 if (now) {
1501 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1502 offset, size);
1503 space_map_free(&msp->ms_map, offset, size);
1504 } else {
1505 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1506 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1507 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
1510 mutex_exit(&msp->ms_lock);
1514 * Intent log support: upon opening the pool after a crash, notify the SPA
1515 * of blocks that the intent log has allocated for immediate write, but
1516 * which are still considered free by the SPA because the last transaction
1517 * group didn't commit yet.
1519 static int
1520 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1522 uint64_t vdev = DVA_GET_VDEV(dva);
1523 uint64_t offset = DVA_GET_OFFSET(dva);
1524 uint64_t size = DVA_GET_ASIZE(dva);
1525 vdev_t *vd;
1526 metaslab_t *msp;
1527 int error = 0;
1529 ASSERT(DVA_IS_VALID(dva));
1531 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1532 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1533 return (ENXIO);
1535 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1537 if (DVA_GET_GANG(dva))
1538 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1540 mutex_enter(&msp->ms_lock);
1542 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
1543 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
1545 if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
1546 error = ENOENT;
1548 if (error || txg == 0) { /* txg == 0 indicates dry run */
1549 mutex_exit(&msp->ms_lock);
1550 return (error);
1553 space_map_claim(&msp->ms_map, offset, size);
1555 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
1556 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1557 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1558 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1561 mutex_exit(&msp->ms_lock);
1563 return (0);
1567 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1568 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1570 dva_t *dva = bp->blk_dva;
1571 dva_t *hintdva = hintbp->blk_dva;
1572 int error = 0;
1574 ASSERT(bp->blk_birth == 0);
1575 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1577 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1579 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
1580 spa_config_exit(spa, SCL_ALLOC, FTAG);
1581 return (ENOSPC);
1584 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1585 ASSERT(BP_GET_NDVAS(bp) == 0);
1586 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1588 for (int d = 0; d < ndvas; d++) {
1589 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1590 txg, flags);
1591 if (error) {
1592 for (d--; d >= 0; d--) {
1593 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1594 bzero(&dva[d], sizeof (dva_t));
1596 spa_config_exit(spa, SCL_ALLOC, FTAG);
1597 return (error);
1600 ASSERT(error == 0);
1601 ASSERT(BP_GET_NDVAS(bp) == ndvas);
1603 spa_config_exit(spa, SCL_ALLOC, FTAG);
1605 BP_SET_BIRTH(bp, txg, txg);
1607 return (0);
1610 void
1611 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1613 const dva_t *dva = bp->blk_dva;
1614 int ndvas = BP_GET_NDVAS(bp);
1616 ASSERT(!BP_IS_HOLE(bp));
1617 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1619 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1621 for (int d = 0; d < ndvas; d++)
1622 metaslab_free_dva(spa, &dva[d], txg, now);
1624 spa_config_exit(spa, SCL_FREE, FTAG);
1628 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1630 const dva_t *dva = bp->blk_dva;
1631 int ndvas = BP_GET_NDVAS(bp);
1632 int error = 0;
1634 ASSERT(!BP_IS_HOLE(bp));
1636 if (txg != 0) {
1638 * First do a dry run to make sure all DVAs are claimable,
1639 * so we don't have to unwind from partial failures below.
1641 if ((error = metaslab_claim(spa, bp, 0)) != 0)
1642 return (error);
1645 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1647 for (int d = 0; d < ndvas; d++)
1648 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1649 break;
1651 spa_config_exit(spa, SCL_ALLOC, FTAG);
1653 ASSERT(error == 0 || txg == 0);
1655 return (error);