
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR THESIS

Jan Kundrát

IMAP E-mail Client

Department of Software Engineering

Supervisor: Mgr. Vlastimil Babka

Study Program: Computer Science, Programming

2009

I’d like to thank my supervisor, Mgr. Vlastimil Babka, for his numerous
advices during the writing of this thesis, Ms. Anna Adamcová for her great
patience and support, and my parents for supporting my studies.

I hereby declare that I wrote this thesis myself using the referenced sources
only. I also agree with lending and publishing of this thesis.

Prague, May 29, 2009 Jan Kundrát

2

Contents

1 Introduction 7

1.1 Motivation . 7
1.2 Structure of the thesis . 8

2 IMAP and Related Technologies 9

2.1 Basic Concepts . 9
2.2 IMAP-specific Attributes . 10
2.3 MIME . 12

2.3.1 Message as a Container 12
2.3.2 International Characters in Messages 13
2.3.3 MIME Support in IMAP 13

2.4 IMAP Protocol Flow . 14
2.4.1 Commands and responses 14
2.4.2 Mailbox Synchronization 15
2.4.3 Changes to Mailbox 16
2.4.4 Fetching and Manipulating Messages 17
2.4.5 Queries Against Other Mailboxes 18
2.4.6 Searching, Sorting and Threading 18
2.4.7 Manipulating Mailboxes 18
2.4.8 Session termination 19
2.4.9 IMAP Extensions . 19

2.5 Other Methods of Mail Store Access 20
2.5.1 POP3 . 20
2.5.2 MAPI . 20
2.5.3 Webmail . 20
2.5.4 IMAP Criticism . 21

3

3 Trojita Design 23

3.1 Overview . 23
3.2 Model-View Architecture . 25
3.3 Parser . 26

3.3.1 Low-level Parser . 26
3.3.2 Parser . 27

3.4 Cache . 28
3.5 Streams . 28
3.6 Model in Detail . 29

3.6.1 The Tree . 29
3.6.2 Proxy Models . 32
3.6.3 Offline and Expensive Network Mode 33

3.7 Message View . 33
3.7.1 Network Manager . 34
3.7.2 Widget Factory . 35
3.7.3 HTML Mail . 36

3.8 GUI . 36

4 Other IMAP Implementations 38

4.1 Alpine 2.0 . 38
4.2 Mutt 1.5.19 . 39
4.3 KMail 3.5 . 39
4.4 Mozilla Thunderbird 2.0 . 40
4.5 Mailody . 41
4.6 Outlook Express . 42
4.7 Windows Live Mail . 43
4.8 Trojita . 43

5 User’s Guide 45

5.1 About Trojita . 45
5.2 Installation . 45

5.2.1 Prerequisites . 45
5.2.2 Obtaining source code 46
5.2.3 Installing . 46

5.3 Using Trojita . 47
5.3.1 Configuration . 47
5.3.2 Basic usage . 48
5.3.3 Managing Messages and Mailboxes 49

4

5.3.4 Message Composition 50
5.3.5 Checking Mail . 50

5.4 Advanced usage . 50
5.4.1 Partial Message Fetching 50
5.4.2 Offline Mode . 50
5.4.3 Expensive Network 50
5.4.4 Online Mode . 51
5.4.5 Local Cache . 51
5.4.6 Full Tree View . 52

6 Conclusion 53

Bibliography 55

A Contents of the CD 59

5

Název práce: IMAP E-mail Client
Autor: Jan Kundrát
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı bakalářské práce: Mgr. Vlastimil Babka
E-mail vedoućıho: Vlastimil.Babka@mff.cuni.cz

Abstrakt: Předložená práce popisuje implementaci pokročilého klienta pro
práci s poštou pomoćı protokolu IMAP. Hlavńım zaměřeńım je podpora
relevantńıch standard̊u s d̊urazem na efektivńı implementaci; využ́ıvá se
pokročilých vlastnost́ı IMAPu, jako např́ıklad IDLE notifikaćı, parsováńı
zpráv na straně serveru či lokálńıho ukládáńı e-mail̊u s možnost́ı práce of-
fline. Spojeńı s IMAP serverem je realizováno protokolem TCP s volitelnou
možnost́ı TLS šifrováńı či přes lokálně bež́ıćı proces. Projekt umožňuje psańı
a odeśıláńı jednoduchých mail̊u, podporováno je odeśıláńı pomoćı protokolu
SMTP a sendmailem. Ćılová platforma je framework Qt na Linuxu, avšak
aplikace je portovatelná i na jiné platformy.

Kĺıčová slova: IMAP, e-mail, MIME, Qt, SMTP

Title: IMAP E-mail Client
Author: Jan Kundrát
Department: Department of Software Engineering
Supervisor: Mgr. Vlastimil Babka
Supervisor’s e-mail address: Vlastimil.Babka@mff.cuni.cz

Abstract: This thesis describes the implementation of an advanced IMAP
e-mail client, Trojita. Focusing on standards compliance, the client sup-
ports a wide range of IMAP features crucial for an efficient implementation
such as IDLE notifications, server-side message parsing and caching of re-
trieved body data for offline operation. Connecting to the IMAP server is
supported over TCP sockets, optionally secured via the TLS encryption, as
well as through a local process. Basic message composition and sending via
both SMTP and a local sendmail instance is supported. The target platform
is the Qt framework on Linux, but the application is reasonably portable.

Keywords: IMAP, e-mail, MIME, Qt, SMTP

6

Chapter 1

Introduction

Although being surpassed in popularity by other technologies like the World
Wide Web and peer-to-peer applications, the electronic mail is still one of the
few services that an average user can name when talking about the Internet.
There are many ways how to send and receive e-mail, some of them being
more popular than the others. In this thesis, we try to resurrect the older
approach to reading e-mail, that is, using an standalone application.

In the recent years, the improvements in the field of web browsers and
related technologies allowed rapid development of new features that were
not conceivable just five years ago. Using these new functions, the popular-
ity of web-based e-mail readers grew accordingly. However, using a proper
standalone application has numerous benefits from being able to work when
not connected to the Internet to providing a truly instant feedback, a feature
that is still somewhat missing from most of the web applications. Managing
e-mail over a standardized protocol also avoids vendor lock-in, a highly dan-
gerous phenomenon associated with using proprietary messaging solutions.
To date, the Internet Message Access Protocol [1] (or IMAP) is the only such
protocol.

1.1 Motivation

Implementing an IMAP client is far from trivial. While there are certainly
numerous stable and widely-used Mail User Agents on the market, none of
them fulfills all the expectations of reasonable performance and efficiency.
Indeed, most of these applications started as MUAs speaking the POP3
protocol only, adding support for IMAP later on. Typically, this support

7

was implemented long since the initial design phase of the product was
completed, resulting in suboptimal design choices [2]. Therefore, we believe
there is still a place on the market for a stable, highly performing IMAP
e-mail application.

1.2 Structure of the thesis

In the following chapter, we provide a gentle introduction to the world of
IMAP and related standards such as MIME. Chapter 3 explains some of
the design choices made during the development process of Trojita, as well
as elaborates on the internal application architecture and structure. An
overview of other IMAP implementations on the market is provided in chap-
ter 4, including a comparison about how well they operate when compared to
Trojita. The User’s Guide is available in chapter 5. Finally, the whole thesis
is concluded by a wrap-up providing an overview of what we implemented
and how the result is usable.

8

Chapter 2

IMAP and Related

Technologies

Electronic mail, or a SMTP-mail, is a public service suitable for automated
message exchange among connected entities. Interoperability is guaranteed
by several Internet standards, usually codified in the form of RFC docu-
ments. Subject to these standards are various protocols specifying the rules
of what entities can communicate to each other as well as definition of the
format of all transmitted messages. In this section, we provide a gentle in-
troduction to the numerous standards which deal with this highly complex
topic.

2.1 Basic Concepts

An email message, or a RFC-8221 message, consists of three parts: Envelope,
Header and Body. The envelope is the only relevant part for mail exchange
among Internet hosts; it includes basic information like addresses of the
sender and recipient. A header provides more detailed metadata about the
message, from human-readable sender addresses and message route traces
to user-defined fields. Some pieces of this information are used when the
original delivery fails for some reason, like the Return-Path header. The
header also serves as a basis for an IMAP envelope data which is explained
later in chapter 2.2. Finally, a message body is what an average user typically

1As defined by the RFC 822 standard and subsequently modified by RFC 2822 [3] and
others

9

refers to as “the e-mail”. It might contain just a plain US-ASCII text, an
HTML message with embedded images or it could be a recursively defined
entity with rich tree structure.

An IMAP server is a host in the Internet which provides access to local
mail store via the standard protocol, IMAP4rev1 in this case. The IMAP
server might be located in an employer’s data center or on the user’s laptop,
for example.

An MTA2 or an SMTP Server is an Internet host whose purpose is de-
livery of the RFC 2822 mail. MTAs in the Internet communicate with each
other, determining routing information from MX-records3 in the DNS. As a
common practice nowadays, these servers also accept outgoing e-mail from
their own users, provided the connection is properly authenticated, either
by simple fact that it originates from a trusted network or that the user has
provided her credentials, typically as a user name and password combination
or in the form of an X.509 certificate.

A Mailbox or a Mail Folder is a place on the IMAP server where the
messages are logically stored. A mailbox might contain number of child
mailboxes if the server implementation allows it. Certain IMAP servers have
to be told in advance whether the mailbox just being created is supposed to
contain only other mailboxes or only regular e-mail messages, while others
allow free mixing of both.

2.2 IMAP-specific Attributes

A message in the IMAP sense is immutable, that is, its contents (e.g., header,
structure of the body or the actual message parts) cannot change, ever. Each
message also has mutable attributes, the most important being flags.

Messages in a remote IMAP mailbox are identified by two partially in-
dependent numbers, the sequence number and the UID. Sequence numbers
start at one and are consecutive, that is, they dynamically change when
a message in the middle of the mailbox is removed. This means that one
particular message can have multiple sequence numbers assigned over time
and that one sequence number can refer to totally unrelated messages, as
the numbering changes.

2Mail Transfer Agent
3Mail eXchange, a special record in the Domain Name Service which specifies what

servers are responsible for accepting all incoming e-mail for the particular domain

10

On the other hand, the UIDs work differently. When a message is de-
livered to the mailbox, it receives a UID one greater than the previous one.
After the UID is assigned, it will never change for that particular message,
and the mailbox remembers the biggest assigned UID so far. This means
that UIDs are never recycled over the normal life span of a mailbox and they
can be used as a persistent identifier to one message in a particular mailbox.

Sometimes a non-standard situation might happen, e.g., when a third-
party accessed the mailbox data behind the back of the IMAP server. Per-
haps the user tried a utility program that removes huge attachment from an
otherwise valuable message, or a spam classifier modified message headers
directly, bypassing standard mechanisms for proper flagging. In any such
case, the IMAP guarantee of immutable nature of the messages does not
hold, and a compliant IMAP server has to communicate this problem to all
clients. The UIDVALIDITY mailbox attribute serves this purpose. When-
ever the UIDVALIDITY changes, a compliant client is required to throw
away any cached information about a mailbox because the UID assignment
starts over again.

UID and UIDVALIDITY combined together form a 64bit integer which
is absolutely guaranteed to be a unique identifier for any message in the
given mailbox – if the IMAP client once retrieved any immutable part from
mailbox A with this 64bit identifier, subsequent queries for the part identified
by the same 64bit number in the same mailbox can be satisfied from the
client’s cache.

It should be noted that this UID/UIDNEXT numbering is strictly per-
mailbox and not per-server, and that different users accessing the same server
might see the same 64bit number for totally unrelated messages. While
RFC 3501 [1] strongly recommends that UIDVALIDITY should be kept
constant if at all possible, a compliant IMAP client has to deal with UID-
VALIDITY changes nonetheless.

The IMAP envelope is a data structure holding interesting values deter-
mined mostly from various message headers. It is not the same thing as the
SMTP envelope, which typically stores less information.

The Internal date holds a time stamp about when the message was deliv-
ered to the IMAP server. Size attribute is the number of octets required for
storing a full copy of message in RFC 2822 format. Body structure represents
the tree-like structure of the MIME message.

The IMAP flags is an attribute holding a set of zero or more named
tokens associated with the message. A flag can be either permanent or

11

session-only. Permanent flags are stored in the mailbox itself, while the
session-only flags disappear on a subsequent reconnect to the mailbox. Some
of the flags are defined by the RFC 3501 standard itself, others are added by
various recommendations and extension standards. An IMAP server might
allow IMAP clients to store their own message flags. A special means of
communicating this via the protocol exist4.

Finally, message contents itself is distributed in form of message texts.
Clients are free to choose from retrieving MIME message parts separately
or as one blob.

2.3 MIME

Multipurpose Internet Mail Extensions [4], [5], [6], or just MIME, is a set
of standards for extending the old SMTP mail from 7bit ASCII texts to
rich multimedia contents. Parts of the standard deal with encapsulation of
non-ASCII characters in message headers, as well as providing instructions
about how to embed non-textual data in e-mail messages.

2.3.1 Message as a Container

An important aspect of MIME is its introduction of an internal structure
to e-mail message bodies. Previously, a message body was just a plain text,
while since the codification of this standard, it became possible to exchange
more structured information. Contemporary users are probably familiar
with HTML e-mails containing embedded images and a PDF attachment for
seamless printing. Users routinely send e-mails with attached photographs
from their holidays, or an archive containing business presentation.

MIME standard achieves this by defining a content type for message
bodies. This content type, usually set by an RFC 2822 header of a message,
determines how a compliant mail client displays the message. The old-school
non-MIME mails have a default MIME type of text/plain, an unformatted
text in 7bit US-ASCII encoding.

Another portion of the standard defines generic-purpose containers, i.e.,
abstract content types which contains other message parts within. Using
these containers, a message can suddenly evolve from an unstructured blob
of text to a deep tree of unrelated body parts.

4The PERMANENTFLAGS response code

12

Most of these containers are defined in RFC 2045 [4] and 2046 [5], one
was added in RFC 2387 [7].

The multipart/alternative encoding provides a mean of transmitting
a message that comes in several different formats, but each of them contains
the same data. The MUA is expected to pick one of the underlying parts
and display it, perhaps allowing the user to override this selection as a nice
bonus.

The multipart/mixed is a generic catch-all MIME type for multipart
messages. If a compliant MUA sees a multipart content type that it can
not recognize, it should behave as if it was the mixed multipart. A typical
action is showing all embedded parts next to each other.

There are several more content types defined, but describing them in
detail is out of scope for this thesis.

2.3.2 International Characters in Messages

Original SMTP mail as defined by RFC 822 is suitable only for transferring
7bit data. Nowadays, 8bit transport channels are far more common, both for
representation of international characters and for transfers of binary data.
Therefore, the MIME family defines transfer encodings for conversion of
generic 8bit binary data into a 7bit character stream and a portable way of
expressing national characters using 7bit ASCII characters only.

For the former, two standard encodings are available, the Quoted print-

able and Base64 (as well as a “fake” binary or 8bit encoding for transport of
binary data over less restrictive tunnels), the latter is supported by a similar
approach, as defined in RFC 2047 [6].

2.3.3 MIME Support in IMAP

A large part of work involving the MIME support can be performed by the
IMAP server. This is especially true for message structure parsing, where
the IMAP specification provisions ways to explore the “tree” of a message,
as well as methods for retrieving the resulting body parts separately (and
even including byte ranges for more convenient download).

The IMAP protocol does not, however, handle the rest of MIME support,
nor much of other header parsing. While it is common to ask the server for
just a named subset of RFC 2822 mail headers, the returned data are not
pre-parsed in any way. Therefore, much of the work from coalescing several

13

header parts to decoding international character data is left as an exercise
to the client.

Fortunately, various message attributes in the IMAP protocol can serve
as a substitute for parsing the RFC 2822 headers. Sender and recipient data
is available from the IMAP ENVELOPE, message size as RFC822.SIZE, IMAP
itself provides extensions for message threading [8], etc.

2.4 IMAP Protocol Flow

Upon a successful connection to a remote IMAP server, client might choose
to authenticate itself if the server has not already pre-authenticated it auto-
matically under a particular user account. After that or in case the authen-
tication is not required, the connection enters the authenticated state. In
this phase, no mailbox is selected and only a subset of commands is valid.
Clients can, for example, ask for listings of the mailbox tree, get quick in-
formation about number of messages in a particular mailbox or otherwise
manage mailboxes as a whole. They have to, however, select a mailbox in
order to do anything else, like retrieving messages or marking them as read.

A mailbox can be opened as read-only or for both reading and writing,
provided the authenticated user has sufficient privileges. Retrieving mes-
sages can be done in both modes, but write operations (like storing a new
message to the mailbox or manipulating the message flags) require read-
write access.

2.4.1 Commands and responses

IMAP is a line-oriented text protocol. Anything that a server sends to its
client is called a response while all data flowing in the opposite direction
are known as commands. Each command generated by client begins with a
unique identifier called tag which is followed by the actual command iden-
tifier. Most commands also accept (or require) a parameter which might
be a string literal, a number, an atom, a parenthesized list of other types,
etc. Transmission of generic string literals requires an explicit confirmation
from the server unless the LITERAL+ [9] extension is active. Support for
this extension is crucial for good performance, as if absent, most commands
would be delayed by at least network round-trip-time and no support for
pipelining of such commands would be possible. Clients are free to issue

14

several commands without waiting for their completion, subject to certain
ambiguity rules5.

Each command usually leads to at least one server response, the tagged

reply. This response contains the same tag as the client sent in the original
command, allowing the client to find out whether command failed or suc-
ceeded. Some commands may result in sending further replies, the untagged

replies. An important detail of the protocol is that such untagged replies are
allowed to occur at almost any time during the conversation and not only
as a result of a particular command. A compliant client must be prepared
for this situation and handle it correctly, for there is no difference between
those unilaterally generated and “requested” replies.

Each tagged reply indicates a completion of a particular command. If
the command succeeded, an OK status is received, if it failed, server returns
a NO. Should the server had troubles figuring out the client’s intention, a
BAD response is returned. More fine-grained control over results is achieved
via response codes, textual entities with strictly defined meaning. Examples
of such response codes are “mailbox opened in read-only mode”, “specified
character set no supported” or “please show this error message to the user”.

2.4.2 Mailbox Synchronization

For efficiency reasons, each client usually keeps some data in its persistent
cache. Good candidates for caching are message texts, a copy of body struc-
ture or perhaps even flags from the previous session. Because some server
replies, namely the EXPUNGE which informs the client that a message has
been removed from the mailbox, refer to messages only by their sequence
numbers and clients usually identify messages by UIDs in order to allow mes-
sage texts caching, a compliant client has also to keep its UID-to-sequence
number mapping up-to-speed with the server. Doing so for just a visible
(in the GUI) part of the mailbox might seem tempting, but the risks in-
volved therein (like not knowing what to purge from local cache as a result
of received EXPUNGE without extra FETCH) are high and usually outweigh
possible initial savings.

An IMAP server fully conforming to RFC 3501 is required to sent a
few “status” replies when a mailbox is selected. Interesting fields for the
mailbox synchronization are updates on UIDVALIDITY, UIDNEXT and
EXISTS. After receiving all three, client has enough information to decide

5See section 5.5 of RFC 3501

15

about what actions are necessary to bring the particular mailbox back to
a fully synchronized state. Clients only have to deal with mutable message
attributes, which are the sequence number, the UID number and message
flags.

If the UIDVALIDITY value changed, the client is required to throw away
any data it might have in its local cache that refers to this particular mailbox.
Some UIDs might have changed, message parts got modified or the client
just happens to talk to a buggy server implementation. This situation is
then identical to syncing form an initial state where client has no knowledge
about the target mailbox. In the following text, we will assume that the
UIDVALIDITY value is the same as on the previous synchronization.

If the UIDNEXT value did not change either, no messages were delivered
to the mailbox since the last time. If the EXISTS number is the same as
well, there have been no changes at all and the only item to re-synchronize
are message flags. If the EXISTS number changed, some messages were per-
manently removed. Clients usually re-fetch their UID-to-sequences mapping
as a whole, but implementations which prefer to transfer the lowest amount
of data over the number of iterations over the network could use an algo-
rithm similar to binary search to find out which regions of the UID mapping
were left intact and which require re-synchronization.

If the UIDNEXT changed6 and the ∆UID is the same as ∆EXISTS,
some new messages arrived, but none were deleted and the client only has
to ask for UIDs of these new messages (and FLAGS for all messages in the
mailbox). If the increments of UIDNEXT and EXISTS differ, a fallback to
generic synchronizing approach where client retrieves UIDs of all messages
in the mailbox is necessary. It is also reasonable to transfer flags as a part
of this step.

If there were no cached information or a UIDVALIDITY change occurred,
clients would typically fetch a complete UID mapping and message flags.

After performing these steps and having received all relevant replies,
the client is in a fully synchronized state and ready for receiving mailbox
updates.

2.4.3 Changes to Mailbox

The mailbox that is selected is typically of some interest to the user. The
original IMAP RFC mandated that all clients must be prepared for receiving

6It could only grow up, because UID numbers are strictly ascending

16

updates about number of messages contained therein, removal of old ones
and deliver of new, but due to the lack of support by clients at that time,
this feature was rarely fully utilized. Instead, the NOOP command was
widely used as a polling check for new messages. However, this had all the
disadvantages of a polling-based approach, especially unnecessary increase
of network traffic, lower possibility to enter deep sleep for battery powered
devices and even delays in mail delivery, for some clients were rather hesitant
to poll for changes too often. A solution to this problem is presented in
RFC 2177 [10] where client enters a special mode (which is syntactically
similar to synchronizing literals that are used when support for LITERAL+
[9] is absent) to tell the server that it can really send real-time notifications
to the client.

Changes to the number of messages in the mailbox are communicated
mainly by two kinds of untagged replies, EXISTS and EXPUNGE. The
EXPUNGE reply contains a sequence number of the message that has been
permanently removed from the mailbox and immediately causes all messages
with sequence number higher than the message being deleted to decrement
their assigned sequence numbers by one. This means that clients have to
work with sequence numbers, unless they are prepared to update their UID
map on each expunge, which would be a rather expensive approach. The
EXISTS reply is used to inform the client that new message was delivered,
or it could follow an EXPUNGE to provide a redundant information to the
client about number of messages in the mail store. Under no circumstances
could it be used to decrease the number of messages in current mailbox, as
this is already handled by EXPUNGE.

2.4.4 Fetching and Manipulating Messages

Once selected, messages in the mailbox can be queried and downloaded to
the client. The FETCH command serves for retrieving all data from body
structures and IMAP envelopes to actual message parts. Message flags are
updated by the STORE command and its variants. Existing messages can
be copied to other mailboxes with the COPY command, new messages can
be stored into a mail folder by the APPEND command.

17

2.4.5 Queries Against Other Mailboxes

Because most graphical MUAs want to show the user more than one mailbox
at a time, at least in a collapsed view with counts of new or unread messages,
and frequent switching among several mailboxes is not a cheap operation,
IMAP also provides a command for determining state of other than currently
selected mailbox, the STATUS command. Using this command for querying
state of a currently selected mailbox is explicitly forbidden by the RFC, for a
conforming client already has all required information to compute all possible
message counts. Another reason for disallowing STATUS on current mailbox
is that in some server implementations, this operation might cause a process
to open the mailbox once more which might in turn provide inconsistent
results and confuse the client even more.

2.4.6 Searching, Sorting and Threading

Even the base specification of the IMAP protocol provides facilities for
searching the messages stored in current mailbox. This was extended over
time by ways to request specific message ordering or threading [8]. Most
e-mail clients therefore do not need to have all message bodies and headers
fetched and available in a local cache in order to allow their users to search
through messages. However, this searching and sorting is not available in
offline clients which have to implement their own code for such purposes, or
disallow these operations when network access is disabled.

The following revisions also specified certain extensions related to the
internationalization of e-mail traffic. For example, searching for non-ASCII
characters in messages would be very hard using the bare-bone SEARCH
command only, as each message in mailbox can be stored in one of the
myriad encodings available in the MIME standard. Subsequent revisions to
IMAP therefore defined support for more intelligent searches which support
unified searching through messages that arrived in different character sets.

2.4.7 Manipulating Mailboxes

Due to some historic reasons (especially the old versions of SMTP protocol
being 7bit), IMAP does not use any standard encoding for mailbox names.
Instead, a modified version of UTF-7 called simply modified UTF-7 is man-
dated. The standard does not specify what to do if the other side uses

18

8bit data in mailbox name, but most implementations nowadays fall back
to UTF-8, which is arguably a good thing to do.

Mailboxes can be created, deleted and renamed by IMAP clients. If
the server supports it, they form a tree hierarchy. Some servers distinguish
between mailboxes for storing messages and those that contain only other
mailboxes, while other implementations allow free mixing of both. Unfortu-
nately there is no reliable way to tell to which class the target server belongs,
but provisions are given about how to create a folder for message and how for
other mailboxes. If mailboxes form a tree, the server implementation speci-
fies which character is used as a hierarchy delimiter. Most common choices
in today’s mainstream IMAP servers are dot (.) which is common among
servers exporting Maildir folders and slash (/) as used by servers exporting
traditional mbox UNIX mail store. This inconsistence might lead to user
confusion, but cannot be avoided without breaking backward compatibility.

2.4.8 Session termination

IMAP session ends when the server sends the client an untagged BYE re-
sponse. This might be caused either by client’s request via the LOGOUT

command or by an auto-logout timer on the server side. Server implemen-
tations are required to allow at least 30 minutes of inactivity before sending
this reply7.

2.4.9 IMAP Extensions

The IMAP protocol also has support for extending its functionality. Ex-
tensions can add new commands, replies and reply codes and even change
basic aspects of the protocol, as demonstrated by the introduction of non-
synchronizing literals in RFC 2088 [9]. Support for these extensions is
strictly voluntary, though, and each compliant IMAP protocol entity has
to function properly even when talking to an implementation supporting
bare IMAP4rev1 as specified by RFC 3051.

7Many real networks, however, enforce much stricter policies with shorter timers. Real
world client implementations therefore send keep-alive messages once in a few minutes to
avoid connection termination.

19

2.5 Other Methods of Mail Store Access

IMAP is not the only protocol for accessing mails stored on a remote server.
In this section, we will introduce some of the alternatives and discuss their
advantages and disadvantages when compared to IMAP.

2.5.1 POP3

The main difference between IMAP and POP38 protocol is their philosophy
— IMAP was designed for scenarios where user leaves all her e-mail at
a central place which has authoritative answer about what messages are
supposed to “be there” while POP3 expects their users to download all e-
mail to a computer where the POP3 client runs and then permanently remove

the original messages from the server. Upon each reconnect, the POP3 client
downloads and deletes all new messages again. This fundamental difference
leads to troubles when the user wants to use POP3 in situations it was not
designed for – a classic example is accessing one mailbox from two places
over time, like a work computer and a laptop at home. While there are
certain ways to work around these POP3 design limitations which allow
leaving a copy of each message on the POP3 server, they all remain just
hot fixes instead of providing a proper and reliable solution. An excellent
comparison of these two paradigms is available from Grey’s paper [11].

2.5.2 MAPI

A proprietary protocol from Microsoft whose documentation got recently
opened for public access after a pressure from both government an non-
government organisations. It has some nice features comparable to IMAP,
but offers no real advantage besides tight integration with other Exchange
services (which might or actually might not be considered an advantage).
Implementations from other parties than the original vendor are scarce.

2.5.3 Webmail

Several years ago, a boom of online services from well-known companies like
Google or regional Internet portals grew in popularity. Despite inherent

8Post Office Protocol version 3

20

limitations of web-based user interfaces, most “casual” users of e-mail, espe-
cially the second “home mailboxes” of regular employees, are today hosted
and accessed via a webmail interface. Although hardly any of these services
offers any guarantee about availability or performing backups, regular users
typically are not concerned about these issues. Reliability of these services
is, on the other hand, typically greater than that of a typical home PC with
aging hardware, and friendliness of the UI improved with advent of recent
web technologies.

2.5.4 IMAP Criticism

During more than 20 years of the IMAP history, the standard has certainly
accumulated some aging dust. A typical example are the synchronizing lit-
erals, originally the only way to send more complex data to the server, which
require explicit server’s acknowledgment before continuation. Given a typi-
cal GPRS connection which is still common in many countries, a latency of
500 ms can delay all interaction with the IMAP server considerably. Many
similar aspects were fixed by subsequent modifications to the standard, oth-
ers are rather unfixable design limitations.

A fine example of such limitation, at least when perceived by the con-
temporary optics, is the concept of mailboxes. Online messaging services
like GMail introduced a new way of thinking about messages – previously
a message would belong to exactly one mailbox and if the user wanted to
have it available from two places (perhaps in “work related” and “mailing
list” folders), she would have to store two copies. IMAP has no concept of a
“link” between two messages. When one of them is flagged, the other copy
is left intact. Another prehistoric feature of IMAP is its modified UTF-7 en-
coding which is not used anywhere else besides the IMAP protocol. Another
point – IMAP usually does a good job in shielding the client implementation
from the need to parse all MIME data, but certain pieces remain, like the
RFC 2822 headers with international characters.

Some authors also criticize the protocol on basis of its complexity and
being loosely-defined in certain aspects. An example is the IDLE [10] ex-
tension, which adds an explicit mode indicating to the server that the client
is really ready to process any updates to mailbox state, while the original
RFC mandated the client to be in such condition all the time. Most common
MUAs also have troubles with getting all side-corners of IMAP right.

That being said, the IMAP is the only widely implemented standard for

21

accessing an online or disconnected mail store. It has certain deficiencies,
but all in all, it is a perfectly usable protocol.

22

Chapter 3

Trojita Design

As evidenced by numerous available MUAs on the market, there are many
possible ways on how to implement a usable e-mail client. In this chapter,
we explain some design choices behind Trojita.

3.1 Overview

Trojita is composed of several logically decoupled layers of independent com-
ponents, see figure 3.1 on page 24. Communication between them adheres
to a strictly defined interface.

On the top of the hierarchy lies the GUI. This part is what the user
interacts with; it provides views showing all mailboxes on a server, a list
of messages in the currently selected mailbox and the contents of the e-
mail messages themselves. The GUI is based on the Qt framework, making
use of various standard components. A substantial part is based on the
Interview framework [12] and the WebKit [13] as well as certain custom
widgets, especially the Message View (section 3.7).

The GUI is fed with data by the Model, a model-view implementation
created with the Qt item views. This part works in close collaboration with
the IMAP server. It is responsible for processing server replies, building a
representation of data stored on the remote host and sending commands to
the server in response to user actions. Most of the IMAP protocol logic is
concentrated on this layer.

The Model is assisted by a Cache. The cache provides persistent storage
for certain data which are convenient to be present on next invocation of the
application. Examples of such data include message parts or mailbox state

23

GUI

Model

Parser

Low�Level Parser

Stream

Signals/Slots and
Function Calls

Responses Commands

Bytes

Tokens

Bytes

Cache
Raw
Data

Figure 3.1: A diagram showing the Trojita architecture

information which allows a quick resynchronization after a reconnect. While
the role of the cache and the data stored therein is not critical for Trojita’s
operation, having a local cache can considerably speed up the runtime. A
layer serving a similar purpose is common among other e-mail clients as well.

Beneath the Model is the IMAP Parser, a component converting the
stream of data flowing from the server into structured (and as the name
suggests, parsed) data. The parser is assisted by a Low-level parser, an
entity responsible for analysing the byte stream into tokens of data such as

24

strings or numbers.
Finally, all network I/O is managed by a Stream and associated classes

which provide a consistent interface for managing connections to the remote
server.

3.2 Model-View Architecture

Trojita’s heart, the Model, implements an interface of the QAbstractItem-
Model, a variant of the well-known Model-View-Controller design pattern.
This architecture provides natural separation between how data are stored
and how they are displayed. In case of Trojita, we went a bit ahead com-
pared to the common approach and made essentially everything just a node,
a part in one big tree which exports all data available on the server. This tree
then contains all mailboxes, all messages stored in them and even the mes-
sage structure and actual message body parts as its nodes. Several filtering

models provide more user-oriented view, like “all mailboxes” or “messages
in a mailbox”. An alternative to this one-big-tree approach were separate
models for list of mailboxes and for each opened mailbox. While the lat-
ter might make more sense at a first glance and from the perspective of
a reader who just went through the IMAP protocol standard, subsequent
analysis suggests that one big model actually fits the situation better, unless
we wanted to deal with nasty issues that would immediately pop up as a
result of sharing one Parser instance among several Models facing several
mailboxes. The upper layers are not affected by this decision, as they use a
strictly defined model-view interface for actual data retrieval.

The model-view architecture subsequently affects how Trojita and her
Model operate. Upon successful startup, for example, Trojita will not exe-
cute many IMAP commands besides making sure that a connection to the
remote IMAP server enters the authenticated state. This might involve is-
suing a STARTTLS command for establishing a secure channel, optional user
authentication, etc., but none of tasks like mailbox listing or even opening
some of them. This listing is only fetched as a result of a call from the GUI
which asks the model what should be shown in the view representing a list
of mailboxes.

After the list of mailboxes is received and processed, the model tells all
the attached views that its layout has changed and that the views should
update what they show to the user. The views react by requesting more
information from the Model, e.g., a number of unread messages or a total

25

message count for each visible mailbox.
When a user clicks on a particular mailbox, another view is pointed to

a subset of the big model, now containing a list of messages in the mailbox.
Again, the action of clicking to the mailbox does not involve any direct action
in the model itself; the mailbox synchronization is initiated only after the
new view asks the model about how many messages to show, and then for
more data concerning those messages that are visible in the current viewport.

One important feature implemented in Trojita which is absent from most
e-mail clients (especially those whose data model was designed with only
POP3 in mind) is delayed on-demand fetching with an intelligent preloading.
Suppose a user has a big mailbox with more than 30,000 e-mail messages.
A naive client would open a connection to the server, select the mailbox and
then fetch envelopes for all messages in the mailbox. Most of these messages
would never be shown to the user, though, as thirty thousands messages is
too much to be displayed on one screen. What Trojita does is, however,
more clever – it creates thirty thousand of fake entries in the Model, each
displaying a loading. . . sign, and ask for the real data only for those that
are actually visible (with some read-ahead and read-behind for increased
efficiency). This effectively minimizes the amount of network traffic as well
as the local cache size and the load on the remote IMAP server, while the
user barely notices any slowdown.

Being the central part of Trojita, the Model and related components is
described in section 3.6 at the end of this chapter.

3.3 Parser

The Parser is responsible for converting raw network replies into data suit-
able for processing by the Model.

3.3.1 Low-level Parser

Certain low-level tasks like extraction of a string literal from the input stream
are offloaded to a lower-level class, the LowLevelParser. Reading raw, un-
structured byte stream as the input, its job is to extract a certain field and
return it in the specified form. The resulting type of this tokenizing is not,
however, determined by the LowLevelParser itself, but by the upper layers.
LowLevelParser thus works as a dumb context-free extractor rather than a
full parser. Should an error occur (for example when the higher-level code

26

requests an integer, but the data at the current offset are textual), an excep-
tion is thrown. Examples of functions implemented in the LowLevelParser
are getAtom()1, parseList()2 or getNString()3. Details about their im-
plementation are available in the Doxygen documentation.

3.3.2 Parser

The Parser listens to events from the underlying Socket, sending queued
commands to the server and processing incoming data as they arrive. Dur-
ing the development of Trojita (and thanks to being the first component to
be actually implemented), design of the Parser changed several times. Orig-
inally it started as a threaded implementation due to certain concerns about
interactivity and network I/O, but after encountering some issues with Qt’s
handling of asynchronous event signalling and a recommendation from one
of the core Qt developers, it was refactored into a single-threaded state ma-
chine with a more conservative handling of the network I/O, which closely
mimics common Qt idioms.

When a reply from the server arrives, Parser instructs the auxiliary
LowLevelParser instance to read tokens from the byte stream. These tokens
are then used to build a complex AbstractResponse instance on-the-fly.
Due to the limitations of polymorphism in C++ and concerns about object
lifetime and ownership, the Parser makes heavy use of C++ smart pointers,
as introduced in the TR1 [14]. An alternative would be to use smart pointer
implementation from the Qt framework, the QSharedPointer. It provides
a similar interface, so the possibility of eliminating a dependency on TR1
implementation is open for further consideration.

This part of Trojita has an extensive unit test coverage based both on
real-world traffic and artificial corner cases. Error handling is implemented
via exceptions. Being a class derived from QObject, the Parser uses signals
and slots for communication with the rest of the application – incoming data
are read and parsed in code connected to the readyRead() signal from the
underlying socket and availability of processed server replies is announced
by emission of responseReceived() signal. The responses themselves are

1For reading an atom, which is usually used for transmission of integer values or ASCII
words not containing “complicated” characters like spaces

2For retrieving a parenthesized list of other items. The other items might be atoms,
string literals or even nested lists.

3getNString() returns string as parsed by getAString() and adds special handling
for NIL items.

27

not serialized to the Qt’s event delivery system, though, but remain stored
in an internal queue in the Parser which provides queue-like semantics for
accessing them.

3.4 Cache

A main purpose of the Cache is providing a persistent copy of certain useful
data for speeding up mailbox re-synchronization upon a subsequent select
as well as storing already requested message structure and message body
parts.

Trojita is ready for multiple cache implementations. The implementation
and interface are properly separated – an abstract class4 specifies the only
required methods of interaction between the Model and the Cache.

A simple cache implementation storing all data in operational memory
with an optional possibility of persistent data store on the disk is provided.
As no object life management or partial updates of the on-disk representa-
tion are implemented in this simple cache, it is not recommended for produc-
tion use. Advanced caching implementations are expected to be developed
after the thesis is finished. Candidates include using an sqlite database or an
Qt caching object from WebKit, the QNetworkDiskCache. One reason for
developing a simple, in-house caching solution is the fact that the Qt caching
framework was introduced only in Qt 4.5 while Trojita still supports build-
ing against the 4.4 release, albeit with reduced feature set. Therefore, it was
deemed that a simple custom caching framework is worth the extra work.

3.5 Streams

The Qt framework already provides an implementation of an entity with
support for sequential reading and writing as well as informing the rest of
the application about the availability of new data. However, no unified
interface for reporting errors is provided. Therefore, most of the classes in
the Stream sub-library are just thin wrappers around various QIODevice

subclasses, adding unified signals and functions for error handling.
Trojita includes support for communication over unencrypted TCP sock-

4Imap::Mailbox::AbstractCache as defined in Imap/Model/Cache.h

28

ets, over a connection secured by SSL5/TLS6 with the possibility to defer
the SSL/TLS negotiation to a later point during the IMAP conversation7,
and finally over a UNIX pipe to a local process. For the latter, two im-
plementations are actually included, first one being a wrapper around the
QProcess from Qt and the other a standalone class making direct use of
POSIX syscalls. The standalone implementation is no longer necessary, but
was used in an earlier implementation of the Parser which made heavy use of
nested calls to QIODevice’s waitForReadyRead() method. This usage led to
hard-to-debug failures in the networking code when using other QIODevices
than QTcpSocket. After a communication with Qt Software support per-
sonnel [15], it was suggested to abandon these nested waitForReadyRead()
calls and follow an approach common to Qt applications which simply ig-
nore the availability of new data until there is enough bytes to process a
whole response at once. In addition to more obvious and cleaner code, this
eliminated the need for blocking I/O and subsequently any advantages of
a threaded design of the Parser. Therefore, multithreading was abandoned
and a new single-threaded network handler was implemented.

3.6 Model in Detail

The Model is the most complex part of Trojita. It is responsible for correctly
figuring out the meaning of various IMAP server replies, requesting further
data as they are to be shown to the user, managing a pool of connections to
opened mailboxes as well as handling of certain non-standard situations.

3.6.1 The Tree

Being an implementation of QAbstractItemModel, the Model has to pro-
vide an interface through which the attached views and proxy models8 can
operate.

As most of other complex implementations of the QAbstractItemModel
which provide a tree view with deep hierarchy, the Model maintains an

5Secure Socket Layers
6Transport Layer Security
7The STARTTLS command, cf. section 6.2.1 of RFC 3501 [1]
8Proxy models are auxiliary models which do not supply their own data, but instead

provide a filtered and modified view of data published by the parent model. More on this
topic is explained in section 3.6.2.

29

internal tree of classes representing different entities in the big tree. These
entities are:

TreeItem An abstract parent class providing a common interface for all
specialized implementations

TreeItemMailbox A class representing a remote mailbox on the IMAP
server. Children of the mailbox are other mailboxes and a list of mes-

sages.

TreeItemMsgList A container holding all messages in the mailbox

TreeItemMessage One message in a particular mailbox

TreeItemPart One MIME body part of a message

Each of the mentioned classes contains enough information to be able
to handle all delegated operations related to the Interview framework. For
example, when the Model is asked for a displayable textual data for a par-
ticular index, it delegates the query to the corresponding TreeItem instance
using virtual methods. The target instance then decides about what is ac-

tually requested and how to retrieve that data. Certain requests might be
satisfied from the data already stored in the TreeItem instance itself while
other require a query against the IMAP server. If the latter happens, the
TreeItem asks the Model to submit a request to the IMAP server and returns
some temporary data in response to the original request which most likely
originated from the GUI. A typical temporary representation is a translated
form of “loading. . . ” or a question mark. As soon as the real data arrive
from the server, the view is asked to update the display with new value.

To illustrate this rather complex theory on a concrete example, suppose
a view just scrolled to a new message in the mailbox. The view obtained
a model index9 from the Model and called the Model’s data() function
to find out what should be displayed on screen. This function call was
immediately propagated to the newly created TreeItemMessage instance.
As the message just arrived to the mailbox, the class didn’t have time to
request more data about it yet. The TreeItemMessage instance is therefore
in an initial state indicating that no attempt to load the data from the

9A temporary index used for referring to certain item in the Model. The model index
is a standard term from the Qt Interview framework, and as such is not described in detail
in this thesis. Readers are referred to excellent Qt online documentation for details.

30

server has been performed, and thus the data() implementation does not
have any real answer to the original query. Therefore, it submits a request
to the Model asking it to fetch the IMAP envelope of the particular message.
However, the reply to this message is not guaranteed to arrive in a timely
manner and the TreeItemMessage implementation cannot afford to block
the GUI while it waits for the corresponding reply. Therefore, it returns an
empty placeholder (or some intuitive string like the loading. . . text already
mentioned) for the time being. This text is then displayed in the GUI, for
the Model does not have anything better to show to the user yet. In addition
to that, the TreeItemMessage changes its state to loading which indicates
that the remote server was already asked for the data and there is no point
in requesting it over and over again10.

In the meanwhile, the Model receives TreeItemMessage’s request for
fetching an envelope. It decides that the requested data belong to, e.g.,
message No. 666 in the mailbox. The total message count is 670 and no
messages between 660 and 670 were fetched yet. To enhance the user ex-
perience and minimize network round-trips, the Model submits a batched
request to fetch message envelopes of all these messages at once, as chances
are high that most of them will be queried for data soon anyway. As a part
of this request, they are all flagged as loading in order to prevent duplicate
fetching requests.

After a while, the response from the server arrives. As usual, the Model
delegates the actual processing of the reply to the TreeItemMailbox or
TreeItemMessage instance. The class notices that enough data for updating
its state from loading to fetched has arrived, so it marks itself as fetched and
tells the Model to broadcast this change to the attached consumers (views).
Each view, upon receiving a dataChanged() signal from the Model, asks
for the displayable data again. Model passes the data() function call to
the TreeItemMessage instance which discovers that it has the data already
available in memory and returns the real text field (like a message Subject)
this time.

The ultimate goal of this lazy population is reducing network traffic and
server load, as well as the client’s memory usage.

The delayed loading is employed in all places in the Model where possible.
For the efficiency reasons, though, certain data items which are known to
be needed shortly after each other are requested in one block. Examples of

10If the data() function concerning the same index is called again, the same placeholder
data is returned, but no further requests to the IMAP server are initiated.

31

such data are groups of the message envelope, the IMAP internal date, the
message size, the UID, the body structure and the message flags concerning
a particular message. As suggested earlier, these fields are also preloaded
for previous and following messages in a sequence.

One notable exception to this approach is building a list of mailboxes.
Due to the way the LIST response is defined11, no reliable way of request-
ing a partial listing of the mailbox tree is provided besides indicating that
the result should include mailboxes from the specified hierarchy level only.
Trojita therefore has to fetch all the names of top-level mailboxes at once.
Requesting a listing of their children is then delayed until the user clicks the
“expand” widget next to the mailbox name. Also the numbers indicating
a total message count or the number of new messages in a mailbox are not
requested for mailboxes that were not shown yet.

The tree nodes do not make use of smart pointers, instead, the par-
ent node is responsible for properly freeing all resources associated with it,
including destroying the children.

Trojita already tries to minimize the memory footprint, not fetching data
until needed, yet an empty TreeItemMessage instance is still created for each
message in the opened mailbox. The memory consumption associated with
these operations is difficult to measure12. Experiments show that opening a
mailbox with more than 43,000 messages increases the overall memory usage
by about 6.5 MB on an x86 machine. Slightly less than one third of this
memory is consumed by the QTreeView itself.

3.6.2 Proxy Models

While browsing the huge mailbox tree itself is certainly an educating expe-
rience for users wishing to become familiar with e-mail processing and the
IMAP standard, it is far from being user-friendly. Therefore, Trojita pro-
vides proxy models for presenting a more conservative view to the remote
server’s resources.

A proxy model works in close collaboration with the parent model, pro-
viding a modified and filtered view of the parent’s data to the attached
views. Trojita uses two proxy models, one for providing a list of mailboxes
and the other for listing messages in the opened mailbox. Neither of these

11Consult the RFC 3501 [1], section 7.2.2
12The increase in memory usage includes internal QTreeView data structures which

could not be eliminated even if Trojita did not create any new objects for its own purposes

32

models contain significant intelligence, as most of the hard work is already
done by the original parent Model.

3.6.3 Offline and Expensive Network Mode

In addition to the mode of operation described above, the Model can be
instructed to change its behavior in order to either reduce the network traffic
even further or to avoid any communication with the remote IMAP server
altogether. For the former, and expensive network mode is provided, the
latter is handled by an offline mode.

When offline, essentially any network traffic13 is blocked. All requests
which cannot be satisfied from the cache will fail, and the corresponding
TreeItem’s state will be changed to offline. This particular status is reflected
in the GUI in an intuitive way, mostly by changing the unknown message
subjects to offline, etc.

The expensive mode mostly eliminates various optimistic preloading, as
well as changes the operation of the message view to not show all body parts
automatically.

3.7 Message View

Rendering an e-mail message is not as simple as it seems. First problem
that the implementation has to face is the delayed on-demand loading of the
message parts. Due to the rich tree structure of MIME messages, Trojita
does not know which parts are required to be shown before an attempt
to render the message is made, and loading all of them in advance would
be not only suboptimal in terms of network utilization, but could cause
an inconvenient delay when displaying huge messages as well. Similarly,
blocking for a full delivery of all required message parts when the rendering
starts is not an option, as this process should not block the GUI.

The second problem originates in the complex nested structure of MIME
messages. There is no limit for the maximal allowed depth of the body part
nesting, so a message could have an attachment which in turn is another
message containing further complex structure, easily stretching for many
levels.

13Besides shutting down the already established connection

33

A first version implemented in Trojita dealt with the first problem, while
leaving the second one unsolved. Since that, the message view widget was
rewritten and the version presented in this thesis supports unlimited nesting
of messages.

The core of both message rendering widgets is based on the WebKit [13],
a standards compliant HTML rendering engine.

3.7.1 Network Manager

The QWebView class is a component providing the HTML rendering engine
as well as certain auxiliary infrastructure such as a client implementation of
the HTTP stack. These parts combined together contain everything required
for building an application which displays HTML pages retrieved from the
network via a standard protocol like HTTP. Messages stored on a remote
IMAP server are not, however, usually available over HTTP. Therefore, the
QWebView had to be extended in order to be usable in Trojita.

Luckily the QWebView provides a straightforward way to delegate the
network processing to a custom component via the QNetworkAccessMan-
ager interface. That custom component is then responsible for handling all
network requests that originate as part of the processing of the HTML page.

In Trojita, we created a special network manager14 whose job is to provide
an access to the message bodies stored on the remote IMAP server as well
as filter out any access to the “regular Internet”.

The reason for the former is security and spam filtering. For example,
when an HTML message contains a reference to a remote image, a naive
e-mail client which allows the retrieval of external entities via HTTP would
provide an accurate indication about when the message was read and even
confirm the very existence of the addressee’s e-mail address to the attacker.

The most interesting part of the network manager is, however, providing
an access to the body parts. When the URL to be retrieved specifies the
trojita-imap scheme and message as the “host name”, the path of the
URL is directly used as a logical address of the requested body part. If such
a part exists, an auxiliary helper structure, a subclass of QNetworkReply, is
returned which immediately requests the retrieval of the corresponding part
from the IMAP server (or the local cache, if available therein).

In an old implementation, the QNetworkReply itself was responsible for
properly handling the MIME content-type of the body part. For example,

14The MsgPartNetworkAccessmanager

34

it contained a code for selecting the preferred part among several avail-
able in the multipart/alternative, or including multiple commands in case
of multipart/mixed. This approach, however, did not scale. Therefore, the
new implementation moves this logic to the upper layer where it arguably
belongs.

The QNetworkReply subclasses in the new implementation do not handle
any formatting logic. They are, as their name indicates, just thin wrappers
dealing with raw data I/O from the TreeItemPart instance. For handling
the formatting, a new class, the PartWidgetfactory, factory was created.

3.7.2 Widget Factory

The PartWidgetfactory is a classic example of the well-known Factory

design pattern [16]. Its only public method, create(), is responsible for
returning a QWidget which is supposed to display a representation of the
actual body part.

For some “trivial”15 content-types, the factory returns an instance of a
slightly modified16 QWebView.

If the type is complex, a wrapping widget is created. A classic example of
the wrapper is the handler of multipart/alternative MIME content-type.
In this case, a QTabWidget whose tabs contain the actual nested parts is
returned. Widgets for the nested parts are obtained by a recursive call to
the create() function, solving the problem of the nested body parts in an
elegant way.

RFC 2183 [17] introduced a method for specifying whether a body part
is to be shown inline, that is, as any other regular part, or as an attach-

ment through the Content-Disposition header. If the part is an attachment,
most MUAs would not render its contents, but instead show a control for
downloading the body part to the disk. Trojita works in a similar way. Un-
fortunately, certain e-mail clients don’t distinguish among an attachment
and an inline part, labeling data such as attached ZIP files as inline. There-
fore, Trojita process the Content-Disposition header only as a suggestion if
it asks for an inline display.

15
Trivial in this context refers to a message part which could not be decomposed to

more elementary parts. Examples of trivial content-types are text/plain or image/jpeg
while examples of non-trivial ones are multipart/mixed or message/rfc822.

16The modifications include filtering of the mouse wheel events, because the widget is
supposed to be as large as required and leave implementing a scrolling view to itself to
an upper layer.

35

This part of Trojita is ready for further extensions. One particular ex-
tension which would be extremely useful to be implemented is support for
signed and encrypted messages. Signatures are currently only recognized
and indicated in the GUI, but not verified at all.

3.7.3 HTML Mail

A common format for today’s commercial e-mail messages is the HTML

mail. Building on top of the RFC 2387 [7] and RFC 2111 [18], the HTML
e-mail allows grouping HTML text and related data such as images into one
MIME message part.

Conforming to the above mentioned standards, Trojita supports the cid
URL scheme. The network access manager (see section 3.7.1) is extended
with support for those URLs – if a message part with the corresponding
Content-ID header is found among the current message bodies, it is returned
in response to a cid: URL.

An interesting fact about Trojita is that her support for the cid: URLs is
more feature-complete than that of Thunderbird/2.0.0.14 which has troubles
identifying certain body parts in some HTML messages17.

3.8 GUI

No matter how advanced the underlying engine is, if the GUI does not keep
up with the features offered or is not intuitive enough, users will switch to
a competing product.

Trojita makes use of standard widgets from the Qt library whenever
possible. Common and well-known components such as tree views builds the
core of the GUI, showing list of messages and list of mailboxes. When the
standard widgets did not exist or were not usable, new were implemented,
re-using the existing ones as much as possible.

An example of a well-done re-use is the Message View. Building on
already complex parts such as the WebKit and the associated helper classes,
it combines the widgets with whom the user is probably already familiar
into a big functional part. Without an unneeded user confusion, it manages
to render the MIME structure of the received message faithfully.

17For example those from the http://mon.itor.us/ monitoring service.

36

The mail composer widget closely mimics the Write New Mail window
from Mozilla Thunderbird. The recipients matrix was implemented in a
similar way, providing users with a familiar experience and reducing the
need of getting accustomed to yet another software.

Similarly, the icons indicating message state (such as being flagged for
deletion, already replied to, forwarded to another recipient, etc.) are indi-
cated by standard icons. Trojita will, thanks to the QtIconLoader [19], try
to load standard icons as per the relevant FreeDesktop.org standard [20], and
for those that are absent from the system, a built-in icon from Thunderbird
is used.

Drag and drop is used for copying and moving messages between mail-
boxes. No support for drag and drop outside of the Trojita is available yet,
mainly due to a lack of widely accepted standard MIME type for doing so.

37

Chapter 4

Other IMAP Implementations

Albeit the guarantee of interoperability is arguably the most important as-
pect of a standardization process, certain e-mail clients perform better than
the others. In this section, we try to provide a basic overview of selected
e-mail implementations.

This overview is by no means complete, for there are many more e-
mail client implementations than pages in this thesis. We therefore focus
on highlighting issues observed during the course of interoperability testing
and on a comparison with Trojita.

Each client was tested against an instance of the Dovecot IMAP server [21].
INBOX contained roughly five thousands messages, most of them were trivial
text/plain e-mails with just one line of the message body. Other mail folders
were however filed with certain testing messages representing a typical e-mail
usage of the author of this thesis. Samples include GnuPG signed mail (the
multipart/signed MIME type) and a special “MIME Torture Test” [22] mes-
sage whose purpose is to test deep MIME part nesting as well some common
decoder errors.

4.1 Alpine 2.0

Alpine [23], a successor of pine, is a console e-mail client by Mark Crispin,
the principal author of the IMAP protocol. As such, its qualities are widely
acknowledged. When coupled with the UW-imapd, an IMAP server imple-
mentation from the University of Washington from the same author, they
offer some non-standard features such as multi-mailbox search. The IMAP
part of the code base is available as the c-client, an implementation of the

38

IMAP protocol in the C programming language.
The testing process showed that Alpine performs as an online client,

that is, a client with no local persistent cache for retrieved message parts.
These parts are cached for the session life time, but any downloaded data
will be fetched again on a subsequent Alpine invocation. A nice feature of
Alpine is, on the other hand, that it does not fetch any data about messages
not currently visible on screen at all, achieving the lowest amount of initial
network traffic among all tested IMAP implementations.

As a surprise comes the marketed lack of support for the IDLE IMAP
command. Crispin argues [24] that in today’s world of NAT1, a real client
will have its connection to the server sewered by a network device much
sooner than before the 30 minutes timeout period guaranteed by the RFC,
and suggests to use NOOP-based polling instead. This opinion is arguable,
and most e-mail clients’ authors do not seem to share it.

4.2 Mutt 1.5.19

The second console e-mail client, the Mutt [25], is a popular text-based
application. Controlling its user interface is slightly less intuitive than that
of Alpine, but the advanced users praise its speed and the fact that the GUI
does not block their operations.

Similar to Alpine, the Mutt is an online client without any persistent
IMAP cache for downloaded message parts. In addition, Mutt will not issue
the IDLE IMAP command unless specifically told so in the configuration file.
As a reason for this are stated issues with certain server implementations2.
Even when IDLE is enabled, Mutt only enters this mode when showing a
list of messages in the mailbox and not when viewing one message.

4.3 KMail 3.5

Being the default e-mail client in KDE 3.5, the KMail [26] has a broad user
community. However, its IMAP support might sometimes seem a bit rusty –

1Network Address Translation
2Interestingly enough, Dovecot is blamed, while new version of Dovecot contain a

workaround claimed to “fix Mutt issues”, so figuring out which party to blame is left as
an exercise to the reader.

39

there is, for one, no support for IDLE3, and quite a number of bugs against
the IMAP implementation is reported at its Bugzilla.

In fact, the KMail contains two distinct implementations of IMAP, the
first one being an online mode and the second one a disconnected mode.
In the disconnected mode, all message bodies selected for being available
when offline are transfered and all MIME parsing is deferred to the client,
no matter what structure the e-mail message has.

In the online mode, a first surprise is KMail’s handling of the IMAP
message flags. In spite of using the proper command forms for updating

certain individual flags instead of blindly specifying the resulting state of
all flags for a particular message, the operations are apparently aimed too
wide, targeting most of the messages in the mailbox even when some of them
were not shown to the user yet. In addition, KMail needlessly introduces
its own flag names even for those flags whose names are either standardized
or their use widely supported. An example is setting both KMAILFORWARDED

and $FORWARDED flags instead of just the former, semi-standardized [27] one.
The body parts of the complex MIME message from the MIME Tor-

ture Test are retrieved separately and the rendered representation of the
message corresponds to the original body structure, which is an impressive
result that no other e-mail client in this test (besides Trojita) achieved. The
text/plain messages are, however, fetched as one compact entity along
with their headers.

Common to both implementations, the mailbox hierarchy discovery is
performed as recommended by the IMAP best-practices [28], i.e., using the
‘‘%’’ wild character instead of ‘‘*’’.

KMail 1.11.1 with KDE 4.2.1 performed in a similar way to the already
discussed version.

4.4 Mozilla Thunderbird 2.0

Mozilla Thunderbird [29] has been the e-mail client of choice for the author
of this thesis. The GUI is excellent, not only well-looking, but also extremely
convenient to use. However, its support for detecting changes to the mailbox
performed by another session leaves much to be desired – sometimes it is

3The authors state that this limitation is present due to the architecture of the KDE’s
KIO framework which does not really allow similar modes of operation but is designed
for client-initiated actions only.

40

prone to not updating the displayed state based on what is received from
the server.

Thunderbird by default shows only subscribed mailboxes, i.e., those that
were flagged by the user as interesting in some way. Their discovery is
performed using the ‘‘*’’ wild mask, which might potentially result in a
large list to fetch. On the other hand, assuming that the user did not mark
too many mailboxes is probably acceptable. The MIME parsing is deferred
to the e-mail client, as a common choice among the graphical Mail User
Agents. We assume that this is a direct result of support for other protocols
than IMAP which do not provide any form of server-side MIME support,
and the client therefore has no reason not to decompose the message itself
after receiving the full body in one part.

Thunderbird by default opens several connections to the IMAP server
and uses IDLE for asynchronous notifications about new messages in each
of them. The limit on number of concurrent connections is configurable [30],
which is probably the only reasonable approach to figuring out how many
of them will not yet be considered an abuse by the server operators4.

4.5 Mailody

Mailody [31] originally started as a standalone IMAP e-mail client, an alter-
native to KMail. During the development of KDE4, its code base became
the foundation of the IMAP support in Akonady, a framework for PIM5

information exchange in the then-upcoming KDE4 desktop.
We were unable to test the version identified as “1.5.0-beta1” on KDE

4.2.1 as it crashed with a segmentation fault each time we tried to make it
talk to our testing Dovecot instance. A similar result was observed when
trying the older 0.5.0 version on KDE 3.5.10.

From the IMAP traffic dumps obtained before the application crashed,
it is evident that while the authors of Mailody certainly thought about how
to implement IMAP properly (as documented, e.g., by an attempt to group

4Client developers might argue that leaving tens of concurrent connections to the
server open at the same time, each of them in the IDLE mode in a particular mailbox, is
actually better for the server than multiplexing the access using just one or a few of IMAP
threads. The client developers are of course right, but the server administrators usually
cannot be expected to have such a deep understanding of the IMAP protocol. Indeed,
most of them would prefer to ban such a user.

5Personal Information Management

41

a large message set to smaller parts), it is not a finished product yet. As
an example, IMAP allows packing of a contiguous sequence into an interval
specified by both boundaries. Mailody fails to use this feature, requesting the
range by enumerating all values contained therein. It also does not seem to
notice the IMAP envelope at all, fetching the corresponding headers directly.
While the latter it not an error, strictly speaking, it at least makes the reader
of the source code wonder what led to that particular choice.

Earlier versions of Mailody had troubles even with mailbox names be-
ing passed as literals instead of quoted strings. This might be caused by
the fact that the source code used rigid regular expressions for parsing of
server replies which did not account for each possible response variation.
For example, such a naive parser would have troubles recognizing a reply
containing a response code6, which is free to be present in most situations.

4.6 Outlook Express

The Outlook Express is the built-in e-mail client in various versions of Mi-
crosoft Windows. The version we tested was shipped with Windows XP,
and is the latest release of the Outlook Express ever7.

The IMAP support in the Outlook Express is suboptimal, to say the
least. An example of the “efficiency” of the protocol implementation is how
the Outlook Express behaves when the user has selected several folders to
be subscribed. At first, the application opens multiple connections to the
server. Each of these connections then changes the subscription status of
one mailbox, enters IDLE for a short time and finally terminates.

When the application opened a mailbox with roughly five thousand test
messages, it began an immediate full download of all of them. Each messages
was fetched by a dedicated command, adding one useless parameter to the
list of items to fetch, and the IDLE mode was entered and immediately
left between each two commands. That accounts for circa five thousand
attempts to enter the IDLE mode, each of them lasting several milliseconds.

The GUI part of the application leaves much to be desired, too. A
notable example is its handling of multipart/signed message parts – if
the signature is made according to MIME/OpenPGP [32], Outlook Express

6Consult Section 2.4.1 for more on the concept of response codes
7The product got re-branded to Windows Mail and subsequently to Windows Live

Mail

42

displays an empty message with two attachments, the signed body and the
signature itself. This effectively prevents most users from actually reading
the PGP-signed e-mails, as they do not expect the “real message body” to be
available as an attachment only. Another problem exists with the display
of the X-509 signed e-mails which contain a valid signature that cannot
be verified. If such a signature is found, the Outlook Express displays a
misleading warning about a possible security threat to the local computer

instead of calmly informing the user about the fact that the certificate of the
CA8 is not found and thus the signature could not be verified. An extra click
or two is needed to display the actual message body. This again presents a
big obstacle to the actual usage of the signed e-mail on the Internet, for the
Outlook Express still has a substantial market share.

4.7 Windows Live Mail

After the deprecation of the Outlook Express during the development phase
of Windows Vista, a new e-mail application called Windows Mail has been
introduced. However, it was not being shipped for a long time, as yet an-
other successor, the Windows Live Mail, got introduced. Windows Live
Mail is expected to be the e-mail application distributed with the upcoming
Windows Seven operating system.

Unfortunately, most of the issues mentioned in the section about Outlook
Express still stand. Both applications apparently use not only the same (or
remarkably similar) IMAP code, but also a not-so-different GUI layer –
while the overall appearance has certainly changed since Outlook Express,
the issues with presentation of, e.g., the PGP/MIME signed e-mail messages
persist. We will therefore end this section by an observation that the IMAP
experience is almost the same as with the Outlook Express.

4.8 Trojita

Trojita is an IMAP client with support for various mail access modes. It
can be told not to request data which were not loaded from the network yet,
supports an efficient re-synchronization mode which tries to minimize the
network traffic and tries to deal with even the most advanced MIME mes-
sages reasonably. The IMAP conversation could still be improved, though

8Certificate Authority, an entity which issues certificates to other entities

43

– for example, an initial LIST is issued even before the user is properly
authenticated.

In general, we believe that we have implemented the IMAP protocol
completely and properly. We tried to follow the IMAP RFC to the letter,
but were sometimes forced to relax our requirements a bit, for example when
talking to the Cyrus IMAP server which regularly sends replies which do not
contain a textual part at all, in spite of the protocol grammar mandating
its presence. We try to handle most situations gracefully, e.g., by resorting
to a full mailbox re-synchronization when Trojita detects that the mailbox
state changed in other ways than the server already acknowledged.

When compared to Alpine and Mutt, Trojita supports an offline message
cache which allows its operation even when the connection to the remote
IMAP server cannot be obtained. Its support for IDLE is also arguably
better than that of Mutt, entering the IDLE more often.

Comparing with the messaging platform from Microsoft would not be
fair. It is commonly accepted that the Outlook Express managed to im-
plement IMAP in such a broken way that any further comment would be
redundant.

The KMail offers a nice GUI and integration with the rest of the KDE
desktop. Its IMAP support is, however, not that polished up. If Trojita had
the GUI and related features of KMail, it would be hard to beat in terms of
usability.

Finally, Mozilla Thunderbird is quite an impressive application. Even
though we might have certain reservations to the overall Mozilla architec-
ture, the GUI is user friendly and clean, and the application just works
most of the time. In certain corner-cases, such as when working over a low-
bandwidth network connection, Trojita has potential for outperforming the
Thunderbird thanks to the employment of server-side MIME parsing. In
fact, Trojita has already bitten Thunderbird when dealing with one partic-
ular HTML-formatted message which Mozilla fails to render properly, while
Trojita handles it without any problem.

A conclusion of Trojita’s overall usability is provided in the end of the
thesis.

44

Chapter 5

User’s Guide

5.1 About Trojita

Trojita is a standards-compliant IMAP Mail User Agent. Designed with
portability and efficiency in mind, it allows the user to operate over congested
network lines with high latency, while still providing sufficient comfort.

5.2 Installation

5.2.1 Prerequisites

In order to build Trojita from source, several libraries and helper programs
are required to be present on the system.

1. CMake 2.6 or later

2. Qt 4.4 or later

3. Working implementation of the TR1 C++ standard such as GCC 4.3
or newer or the Boost libraries

A recommended version of the Qt framework [33] is at least 4.5. Trojita,
however, includes compatibility code for older versions of Qt. The minimal
supported version is Qt/4.4. Any older release cannot be supported, as the
WebKit HTML engine which we use for e-mail rendering was added during
the 4.4 development. If users choose to build against 4.4, some Trojita
features might be missing.

45

Unlike most Qt projects, Trojita uses CMake [34] instead of qmake, es-
pecially due to author’s familiarity with the former system.

Trojita makes use of some standard C++ features that were adding dur-
ing the TR1 [14] standardisation, namely the std::tr1::shared ptr smart
pointer. A working implementation of said class is required. Trojita build
system will make use of compiler’s built-in TR1 support, if available, and
resort to using Boost if the compiler does not support this extension.

Some third-party code is also bundled in the source code distribution.
A list of such products including the reason for not just using an external
library follows:

1. QwwSmtpClient [35] is a Qt SMTP client library written by Witold
Wysota. Released to public only in mid May 2009, obtaining a package
of it might prove challenging. The copy in Trojita’s codebase also
contains some fixes which did not made it to the publicly released
version yet.

2. ModelTest [36], a class for verifying certain assumptions of the Inter-
view Model-View framework of Qt. Qt Software (former Trolltech)
does not ship it with Qt sources, so Trojita includes a copy for devel-
opers’ convenience. This feature is not turned on by default in release
builds.

3. QtIconLoader [19], another helper library from Qt Software. Its pur-
pose is to provide a unified icon set, as per relevant XDG standards.

4. KCodecs [37], an implementation of UTF-7, Base64, Quoted-Printable
and related RFC 2047 standards. These functions are reasonably self-
contained, so they are bundled with Trojita instead of depending on
quite heavyweight kdelibs.

5.2.2 Obtaining source code

Source code is available from the CD (see A) attached to this thesis or online
at http://trojita.flaska.net/.

5.2.3 Installing

Unpack the source tarball, prepare the build environment and launch the
compile process by entering these commands:

46

1. tar -xf trojita-1.0.tar.bz2

2. cd trojita-1.0

3. mkdir build

4. cd build

5. cmake -DCMAKE BUILD TYPE=RelWithDebInfo .. (the .. are not a
typo)

6. make

After a while, a new binary, trojita, will appear in the build directory.
Launch it to start Trojita.

5.3 Using Trojita

5.3.1 Configuration

All configuration is, thanks to the Qt’s QSettings, stored in target platform’s
common storage location. The only supported mean of configuring Trojita
is through its built-in configuration dialog that will automatically appear on
the first run. It can also be launched any time later from the application
menu.

On the first page, user is asked to provide identity data. These are used
for composing e-mail messages.

Second page is the most important one in configuration of Trojita. It
is the place where the user tells the application which IMAP server is it
supposed to talk to, which credentials should be used for authentication,
etc.

One unusual thing which is not common among other MUAs is the choice
of how to connect to the IMAP server. Most users are probably familiar with
connections over TCP, optionally secured by SSL/TLS, but the last option,
the Local Process, is unique to Trojita. If selected, it replaces the usual TCP
connection to the IMAP server with launching a local process, which is in
turn used instead of the remote IMAP server. The most interesting use case
is to set up SSH connection to the remote server (along with proper SSH
keys) and use that as a secure, reliable and convenient way for accessing e-
mail, without having to enter passwords all the time. For example, to launch

47

an instance of Dovecot IMAP server on host mail.example.org, user should
enter ssh mail.example.org dovecot --exec-mail imap.

The last page serves for configuring the message composition and send-
ing. Trojita supports mail submission via SMTP1 and local sendmail-
compatible MSA2 application.

5.3.2 Basic usage

After the configuration is complete, the user is presented with a familiar user
interface. The left pane presents a view of remote mailboxes, or folders, on
the IMAP server. The top widget contains a list of messages in the currently
opened folder, and finally the bottom area is reserved for displaying the
actual e-mail messages.

Depending on the network parameters and server load, it might take
a while before the list of mailboxes appears. The delay is only significant
when launching Trojita for the first time, for the retrieved list of mailboxes
is cached on a persistent disk cache for later use.

After the list of mailboxes is loaded, user can click on them to open them
in the Message List widget on the upper right corner of the application win-
dow. After having selected a mailbox, the list of messages appears shortly.
Again, the loading is faster next time Trojita is launched.

Depending on user settings, Trojita typically will not transfer all message
metadata upon opening a mailbox. This feature is implemented to conserve
both server’s and client’s resources and to be nice to the network traffic. In a
typical mode, that is, when not being told to be extra-mean with resources,
Trojita fetches only metadata of those messages that are displayed on the
visible screen region, and some more to make scrolling smoother. More on
this topic is said in section 3.6 of this thesis.

Message contents is transfered on-demand only, that is, when user selects
a message for viewing. As before, all persistent contents once downloaded
from the server is cached in a persistent on-disk cache for future use. This
applies to both message metadata and the real contents of e-mails.

1Simple Mail Transfer Protocol
2Mail Submission Agent[38], a local gateway whose purpose is forwarding e-mail to

the network of MTAs

48

5.3.3 Managing Messages and Mailboxes

Messages displayed to the user are automatically marked as read after some
delay. The idea behind this feature is to allow users to peek on a particular
message, shortly judge its contents, classify it as a “process later” and then
move on to another one. This is a common approach shared with other
MUAs as well.

Manipulating with message flags (see chapter 2.2) is possible via the
context menu (appearing on the message list) as well by standard keyboard
shortcuts. The M key toggles the Read status and Delete key schedules
messages for removal.

In consistency with the usual IMAP approach (and unlike the common
modus operandi on mainstream desktop MUAs), Trojita has no concept of
Trash 3 for messages. Instead, each message can be marked as deleted. If
flagged as such, Trojita displays a graphical indicator next to the message
subject. A deleted message will not be physically removed from the mailbox
until the user explicitly requests such an action. This operation, called
expunge in the IMAP dictionary, is available from the application menu.
Expunging happens on one mailbox at a time, there is no way to tell the
IMAP server to permanently remove all deleted messages from all mailboxes.

To create new mailbox, user is expected to use the context menu on the
left mailbox view pane. Due to technical limitations, some IMAP servers
distinguish among folders that can contain other mailboxes and folders for
message store only. Additionally, there is no reliable way for the IMAP
client to tell whether the remote server is affected by this limitation or not.
Therefore, Trojita uses the same approach as other common MUAs and ask
user what kind of mailbox she wants to create.

Mailbox removal is triggered from the context menu as well. Due to the
possibly serious consequences of this action (there is no way to undelete a
removed mailbox), user is presented with a confirmation dialogue asking her
whether she is serious in her intent to remove the mailbox.

Messages can be copied or moved between mailboxes by simple drag-
and-drop operations. To place a copy of one or more messages into another
mailbox, simply select the messages to copy in the opened mailbox and then
drag them with mouse to the target mailbox. If user wants to move them

3A Trash is a mailbox that presents a view of all deleted messages. It might or might
not be a real mailbox on the server, or just a virtual folder implemented purely in the
e-mail client.

49

instead of performing a copy, she is supposed to hold the Shift key. This
behavior is determined by the Qt framework, so it might vary among the
supported platforms.

5.3.4 Message Composition

Message Composition widget is triggered by the corresponding item in the
menus. The displayed dialog should be familiar to most users.

5.3.5 Checking Mail

Trojita automatically checks the current folder for new messages. If the re-
mote server supports the IDLE extension [10], the method used is extremely
friendly to both network and server resources. In cases the server does not
support this feature, Trojita resorts to polling with all it disadvantages.

5.4 Advanced usage

5.4.1 Partial Message Fetching

Thanks to unique features of the IMAP protocol, it is not necessary to
fetch the whole message in order to display just a fragment of it. Trojita
handles this automatically, fetching message parts on demand. It also will
not transfer message metadata (like its RFC 2822 envelope) unless really
needed.

5.4.2 Offline Mode

When put into offline mode, Trojita will prevent itself from accessing the
network at all. Users will be still able to view already transfered data, but
no checks for new messages will be performed and those that are not stored
in local offline cache will not have actual message bodies displayed until the
user selects either online or expensive network mode from the menu.

5.4.3 Expensive Network

Some users connect to their IMAP servers over a slow or otherwise unsuitable
network. Examples include dial-up connections or various mobile solutions

50

like GPRS4 where the overall convenience of having all messages immediately
available is usually held back by the need to conserve network resources. In
such environments, it might be desirable to fetch only the absolute minimum
data required to provide properly synchronized view of the remote mailbox.

In this situation, the user is expected to choose the Expensive Network

mode from the application menu. Trojita will not preload data to improve
interactivity, nor will it show all message parts by default. Upon viewing a
message, only parts smaller than a certain size are transfered automatically,
others will be loaded after clicking a button. This on-demand loading is
implemented separately for each part, allowing great flexibility for the user
to choose what is interesting and what can be ignored.

5.4.4 Online Mode

Online mode, the common mode of operation, is what users are familiar
from other IMAP clients. Trojita employs intelligent preloading of inter-
esting contents to minimize waiting times, yet does not blindly download
everything, including parts that will not be ever shown.

5.4.5 Local Cache

All data once transfered form the network5 are kept in a persistent offline
on-disk cache. If a message data is transfered twice, it means that at least
one of the following conditions was met:

1. The server could not guarantee the immutability of messages. This
might happen when some process touches on-disk data internal to the
IMAP server in a non-standard way.

2. User has changed her settings. Whenever any data used to access
the remote server changes, the only safe thing to do is to throw away
anything in the local cache and start over again.

4General packet radio service (GPRS) is a mobile data service typically offering low
bandwidth, high latency Internet connection with billing based on the amount of trans-
fered data

5Subject to some restrictions like maximal message part size and cache parameters

51

5.4.6 Full Tree View

As an optional part of the GUI, the full tree view, activated by the corre-
sponding item in the menu, provides a full view of the server contents, in-
cluding mailbox hierarchy, messages in mailboxes and mailbox parts. This
widget is a nice demonstration of a complex nature of MIME messages –
while most users are probably familiar with the concept of attachments,
the truth is that MIME defines a fully recursive structure that one mes-
sage can consist of. For example, it is perfectly possible to have a message
composed of six parts, each of them being a forwarded message, and each
of these forwarded messages being rich-structured as well. Trojita does its
best at formatting the message in a sane and familiar way, but unfortunately
some senders do not really follow the same philosophy and produce messages
whose structure leaves much to be desired.

More on this matter can be found in section 3.2.

52

Chapter 6

Conclusion

The goal of this thesis was to demonstrate that an IMAP e-mail client could
be usable, yet implement the relevant RFCs properly and behave in an
efficient way.

After an introduction to the world of IMAP and other Internet messaging
standards in the second chapter of the thesis, we described the design of
Trojita, the application implemented in this thesis, as well as provided a
comparison with other commonly used IMAP e-mail clients.

While it is evident that the GUI of Trojita is not as mature as the inter-
face of other, more established Mail User Agents such as Mozilla Thunder-
bird or the KMail, the core IMAP engine design is sound. Already offering
complete support for the IMAP4rev1 protocol as defined by RFC 3501 [1],
Trojita implements most important IMAP extensions such as IDLE [10] and
conforms to various IMAP client implementation recommendations which
accumulated over more than twenty years of the IMAP history. Special em-
phasis is placed at transferring only the required data, minimizing network
transfers as well as memory consumption. As a result of these optimizations,
Trojita operates swiftly even when faced with huge mailboxes containing tens
of thousands of e-mail messages.

Mailbox re-synchronization uses as much data from the previously recorded
mailbox state as permitted by the standards while the persistent offline cache
with a pluggable architecture allows storing of already downloaded message
parts among sessions and enables offline browsing of the remote server’s
contents when no network connection is available.

The rendering of the MIME messages provides a faithful reflection of the
MIME structure, yet sustains an acceptable level of user-friendliness.

53

A feature unique to Trojita is its support of operation over a UNIX
pipe to the local process instead of through a TCP socket. When combined
with SSH and the ssh-agent, it allows a convenient password-less operation
without sacrificing security.

Finally, Trojita, as presented in this thesis, is a result of several years of
the author’s involvement in the area of Internet messaging. Trojita, being
written in a modular way, provides a mature design platform, enabling the
convenient and rapid integration of new features. It is the ultimate goal of
the author to deliver a fully usable IMAP client aimed at advanced users
who need to work with lots of e-mail in an effective way. Therefore, he plans
to continue the maintenance of the project and develop new features in the
years to come. After the GUI is matured, whole range of possibilities for new
functions is open, from message encryption to supporting even experimental
IMAP extensions.

Thanks to its unique design which employs both well-known software
design patterns as well as new features offered by the modern Qt toolkit,
Trojita certainly has the potential of becoming a competitive IMAP client
on the open source desktop scene.

54

Bibliography

[1] Crispin, M.: Internet Message Access Protocol - Version 4rev1,
RFC 3501, March 2003,
http://tools.ietf.org/html/rfc3501

[2] Crispin, M.: Ten Commandments of How to Write an IMAP client,
September 2006, Washington,
http://www.washington.edu/imap/documentation/commndmt.txt.html

[3] Resnick, P. (editor) et al.: Internet Message Format, RFC 2822,
April 2001,
http://tools.ietf.org/html/rfc2822

[4] Freed, N., Borenstein, N.: Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies, RFC 2045,
November 1996,
http://tools.ietf.org/html/rfc2045

[5] Freed, N., Borenstein, N..: Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types, RFC 2046, November 1996,
http://tools.ietf.org/html/rfc2046

[6] Moore, K.: MIME (Multipurpose Internet Mail Extensions) Part Three:
Message Header Extensions for Non-ASCII Text, RFC 2047, Novem-
ber 1996,
http://tools.ietf.org/html/rfc2047

[7] Levinson, E.: The MIME Multipart/Related Content-type, RFC 2387,
August 1998,
http://tools.ietf.org/html/rfc2387

55

[8] Crispin, M., Murchison, K.: Internet Message Access Protocol - SORT
and THREAD Extensions, RFC 5256, June 2008,
http://tools.ietf.org/html/rfc5256

[9] Myers, J.: IMAP4 non-synchronizing literals, RFC 2088, January 1997,
http://tools.ietf.org/html/rfc2088

[10] Leiba, B.: IMAP4 IDLE command, RFC 2177, June 1997

[11] Gray, T.: Message Access Paradigms and Protocols, September 1995,
online at ftp://ftp.cac.washington.edu/mail/imap.vs.pop

[12] Qt Software: The Interview Framework,
http://doc.trolltech.com/4.5/qt4-interview.html

[13] Qt Software: QtWebKit Module,
http://doc.trolltech.com/4.5/qtwebkit.html

[14] ISO/IEC TR 19768, C++ Library Extensions

[15] QProcess could close the reading pipe, thus killing the child
process with SIGPIPE, a thread on the qt-interest mailing list,
http://lists.trolltech.com/pipermail/qt-interest/2009-May/

006341.html

[16] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Boston: Addison-Wesley,
1995

[17] Troost, R., Dorner, S., Moore, K.: Communicating Presentation Infor-
mation in Internet Messages: The Content-Disposition Header Field,
RFC 2183, August 1997,
http://tools.ietf.org/html/rfc2183

[18] Levinson, E.: Content-ID and Message-ID Uniform Resource Locators,
RFC 2111, March 1997,
http://tools.ietf.org/html/rfc2111

[19] Qt Software, February 2009,
http://labs.trolltech.com/blogs/2009/02/13/

freedesktop-icons-in-qt/

56

[20] Dawes, R., The FreeDesktop Project: Icon Naming Specification
v. 0.8.90,
http://standards.freedesktop.org/icon-naming-spec/

icon-naming-spec-0.8.90.html

[21] Dovecot, Secure IMAP server,
http://www.dovecot.org/

[22] Crispin, M.: The MIME Torture Test Mailbox,
ftp://ftp.cac.washington.edu/imap/mime-examples/

torture-test.mbox

[23] Alpine Messaging System,
http://www.washington.edu/alpine/

[24] Does pine make use of the IMAP IDLE command?, discussion board,
http://objectmix.com/pine/

206216-does-pine-make-use-imap-idle-command.html

[25] The Mutt E-mail Client,
http://www.mutt.org/

[26] KMail: Kontact Mail,
http://kontact.kde.org/kmail/

[27] Melnikov, A.: Common IMAP keywords, Expired Internet Draft,
http://tools.ietf.org/html/draft-melnikov-imap-keywords-03

[28] Sirainen, T., Cridland, D. et al.: Best Practices for Implementing an
IMAP Client, http://www.imapwiki.org/ClientImplementation

[29] Mozilla Thunderbird,
http://www.mozillamessaging.com/en-US/thunderbird/

[30] Mozilla Developer Center: IMAP,
https://developer.mozilla.org/en/IMAP

[31] Mailody,
http://www.mailody.net/

[32] Elkins, M. et al.: MIME Security with OpenPGP, RFC 3156, Au-
gust 2001
http://tools.ietf.org/html/rfc3156

57

[33] Qt Reference Documentation,
http://doc.trolltech.com/4.5/

[34] CMake Documentation,
http://www.cmake.org/cmake/help/documentation.html

[35] Wysota, W.: QwwSmtpClient released, May 2009,
http://blog.wysota.eu.org/index.php/2009/05/13/

qwwsmtpclient-released/

[36] Qt Software, ModelTest, February 2008,
http://labs.trolltech.com/page/Projects/Itemview/Modeltest

[37] The KDE Project: kdelibs,
http://api.kde.org/4.x-api/kdelibs-apidocs/

[38] Gellens, R., Klensin, J.: Message Submission, RFC 2476, Decem-
ber 1998,
http://tools.ietf.org/html/rfc2476

58

Appendix A

Contents of the CD

The attached CD-ROM is an integral part of this thesis. The contents of
the top-level trojita directory is the following:

bin Compiled binaries of Trojita suitable for running on several Linux
flavours

doc A copy of each publicly available document referenced in the bibliog-
raphy

doxygen An automatically generated API documentation of Trojita

src The source code of Trojita

thesis A printable PDF file with the text of this thesis

59

