
The tmux terminal multiplexer
Nicholas Marriott, 2011

tmux is a program which allows multiple text
terminal (TTY) processes to be created and
managed from a single text terminal. The set of
processes running in tmux may be detached from
the terminal, continue running in the background
and reattached to a different terminal without
interruption. It provides the ability to display
output on disparate terminals simultaneously and
a large set of features for management of child
terminals.

In development since 2007, from the outset tmux
was primarily developed on OpenBSD and since
mid-2009 has been part of the OpenBSD base
system.

This paper presents a brief summary of the
motivation for and history of the tmux program,
an overview of the tmux design and main data
structures, a discussion of the design decisions
behind some of the components, and a summary
of major limitations and areas for improvement.

History

tmux was started in 2007 with the aim of
producing an alternative to the GNU screen
program with some fundamental design
differences.

GNU screen is a "full-screen window
manager"[1] under sporadic development since
the 1980s[2].

tmux was created with the following differences
in mind:

• For a server-client design with all
windows managed by a single server.

• To be fully BSD-licensed.

• To aim for a consistent, modern code
style that would be easy to extend.

In addition, the following are major goals:

• Try to have sensible defaults.

• Be conservative and correct: fix bugs
quickly, fail fast on errors and limit
incorrect output to terminals.

• Provide a full command interface and

prefer the shell for scripting.

• Strive for a consistent interface:
command syntax should be identical
whether used from the shell or a key
binding.

• Try to be well documented in manpages.

• Attempt to be portable but minimise
dependencies outside the OpenBSD base
system.

tmux and OpenBSD

tmux was imported into the OpenBSD base
system in July 2009, a few months before the 4.6
release, to replace the window(1) program and is
now installed as /usr/bin/tmux.

From the outset, tmux was written with
OpenBSD code style and practices in mind and
with OpenBSD as the primary development
platform, so import into OpenBSD required
relatively few changes, mainly to strip out
portability code and add an OpenBSD-style
Makefile.

Since then, tmux has changed to reuse existing
OpenBSD code where appropriate, notably
libevent and the imsg framework discussed in
later sections. OpenBSD principles that tmux
attempts to follow include:

• Use imsg for IPC.

• Maintain a consistent code style (largely
following style(9)).

• Strive for code correctness; use safe
functions such as strlcpy(3), strlcat(3)
and strtonum(3).

• Use the ISC license.

• Attempt to provide sensible defaults;
avoid arbitrary changes to defaults
without good reason.

• Undertake code inspection and auditing
both manually and with automated tools
such as lint.

Import into OpenBSD has brought tmux to the
attention of a large and technically-proficient
user and developer base as well as allowing its
developer to work on a highly enjoyable and
interesting project beyond tmux itself.

Design Overview

This section gives a description of the tmux
design in terms of the primary data structures
and the event loop.

tmux is a server-client system. All child
processes, pseudoterminals, configuration and
data structures are managed by one server
process. The tmux server process may be
attached to by one or more client processes.
Clients have two primary roles: firstly, to transfer
the environment and terminal file descriptors to
the server; secondly, to occupy the terminal and
prevent other processes from using it until the
client exits (that is, it is detached). Clients attach
to a server through a Unix domain socket and
uses libevent[3], the OpenBSD imsg framework
and a simple binary protocol to communicate.

Attachment of a client to a tmux server

On attachment a client sends a series of
messages which transfers command line
arguments, the environment, and the stdin, stdout
and stderr file descriptors to the server. The
terminal (the client terminal) is then managed by
the server.

This design permits an important feature: all
child processes inside tmux may be displayed on
any client terminal or on multiple terminals; this
would pose considerable problems were the
processes owned by multiple server processes.

Client data structures in the server

In the server, a client and its imsg channel are
represented by a client structure which is
associated with a tty structure which represents
the client terminal. Each tty structure links to a
struct tty_term which is a container for the
terminfo(5) data required to correctly write to a
terminal. tmux intentionally limits use of the
curses API to reading terminfo entries: although
the curses API has many uses, it suffers from a
poor namespace and does not lend itself well to
use in applications managing multiple terminals.

Each client is associated with a session: this is
the client's current session. In the tmux server, a
session is a collection of links to windows and
some associated state. Sessions are linked to
windows via a tree of intermediary structures,
winlinks, which permit a window to be linked to
multiple sessions

Session and window structures

As all sessions are within a single server, a client
may be moved between several sessions during
its lifetime.

A window in tmux is a collection of rectangular
panes each of which is associated with a cell in
the window's layout. Each pane is connected to
the master side of a pseudoterminal and
associated with an internal screen which
represents the current pseudoterminal state. The
screen is a grid of text cells and associated state
(such as the cursor position) which is updated as
the child process produces output and is used to
display full pane state when required, such as

Te
rm

in
al

Client

Te
rm

in
al

Client

Unix
domain
socket

Server

xte
rm

 te
rm

info

struct
tty_term

struct
client

struct
client

struct
client

w
svt25

 te
rm

info

struct
tty_term

struct
tty

struct
tty

struct
tty

imsg

imsg

imsg

struct
session

winlink 0

winlink 1

winlink 99

struct
window

struct
window

when a pane is first shown on a terminal after a
client is attached. This screen together with the
pseudoterminal used to update it is the primary
mechanism allowing a child process to continue
running without any client terminals.

Window and pane structures
The main consequences of this design is that
panes are present only in one window at a time;
this was omitted in the interests of code
simplicity when panes were implemented.

The tmux server is driven by the libevent event-
driven programming library. Clients, their
associated terminals, and window panes have
buffer events associated with them. Buffer events
are a libevent construct which automatically read
and write between a buffer and a file descriptor.
In addition, events are recorded for a variety of
timers and other purposes.

For example, the main flow of input data is
driven by a libevent buffer event callback on the
master side of the pseudoterminal associated
with a pane.

Flow of input data

This delivers the data into a state machine parser
for vt100 escape sequences based on the design
published by Paul Williams[4]. The output from
the state machine is series of function calls to
update the screen associated with the pane and
any client terminals currently displaying the
pane.

tmux and libevent

libevent is an event-driven programming library
originally written by Niels Provos. The project is

now maintained by Provos and Nick Mathewson.
Currently OpenBSD includes libevent 1.4 in the
base system.

tmux switched to libevent in late 2009 from a
custom poll(2) loop. The main reason for this
was to simplify the code - the poll loop was
becoming increasing complex to deal with a
large number of clients, windows, timers and
other events. tmux is naturally event driven and
fits well with the libevent model - much of the
work is reading and writing to file descriptors so
buffer events, previously mentioned, were very
attractive and replaced custom buffer functions.

Use of libevent has been largely successful but it
has had some difficulties. Many of these have
been related to portability.

tmux uses libevent primarily on pseudoterminal
file descriptors or those of other special devices
and these have been found not to be well
supported by the high-performance event
mechanisms preferred by libevent. For example:

• epoll on Linux doesn't support /dev/null.
This is a difficulty as tmux now passes all
client stdio file descriptors into the server
and adds them to libevent.

• Likewise, kqueue on OpenBSD didn't
support /dev/null.

• OpenBSD and FreeBSD kqueue had a
bug when used on terminals (some
missing wakeup calls). OpenBSD also
lacked support for FIONREAD which is
used by libevent.

• OS X kqueue and poll do not support
anything except socket file descriptors.

To work around this, the portable version of
tmux forces libevent to revert to poll or select on
platforms with known problems.

The imsg Framework

The OpenBSD imsg framework[5] is a small API
intended to provide reliable and secure IPC over
Unix domain sockets. First written for the
OpenBSD bgpd program and later moved to
libutil, it is widely used by OpenBSD privilege
separated daemons. tmux switched to imsg for
message passing between client and server after
import into OpenBSD for several reasons:

window

layout

pane 0

pane 1

pane 2

pty
child

process

screen

input
state

machine

pseudo
terminal

re
a

d
ca

llb
a

ck

client
terminal

window
pane

screen

• Code reduction. imsg allowed custom
code for IPC to be eliminated.

• Reliability. imsg is well established and
tested.

• A simple API for file descriptor passing.

Portability

As well as OpenBSD, tmux also runs on Linux,
Solaris, FreeBSD and NetBSD, HP-UX and
AIX. A portable CVS tree is maintained on
SourceForge and synced regularly with the
OpenBSD tree by a long time tmux contributor
(Tiago Cunha). SourceForge also hosts the
portable tmux mailing lists and file repository.

tmux has not presented major portability
challenges so far - the codebase is relatively
small and has dependencies which are
themselves portable (such as libevent) or small
and easy to emulate (such as the strlcpy and
asprintf functions). Even pty allocation has not
been a major problem - the *BSDs and Linux
include the forkpty function and this is easily
emulated on other platforms (/dev/ptm on HP-
UX and Solaris and /dev/ptc on AIX).

Up until early 2010 the tmux portable build
system was a pair of custom makefiles, one for
GNU make and one for BSD make, and a custom
shell script for configuration. This was replaced
by autoconf, mainly as providing portibility and
the build interface that users expect was
becoming complex with custom scripts.

The portable tmux contains about 4000 lines of
compatibility code, most of which was copied
from OpenBSD or portable OpenSSH with
minimal changes, and about 700 lines of the
build system.

Specific Design Examples

This section focuses on the design and
implementation of a few notable tmux
components or features.

Commands

tmux provides a large command set. Commands
are modelled after the Unix command syntax, for
example:

tmux new-window -d "emacs a_file"

Most commands have both a verbose name (such
as "new-window") and a shorter alias ("neww").

In early tmux versions, commands were matched
using a series of string comparisons; however, it
quickly became clear that this did not scale well
to the number of commands being added and a
new approach was required. The principles of
this new approach were to maximise code reuse
and as far as possible enforce user interface
consistency - the same code should be used to
parse and execute commands no matter which
mechanism was used to activate them (be it key
binding, the shell, a configuration file, or
another).

An object oriented approach was developed:
each command has a descriptor which includes
the name, alias, some flags and a set of function
pointers. The descriptors are stored together in a
lookup table; each points to a set of functions
specific to the command. When a command is
processed, the descriptor and argument vector
are passed into a factory method which parses
the arguments and allocates and returns a struct
cmd. The struct cmd contains all the information
necessary to execute a command - it is an
instance of the command. Separating parsing and
execution permits validation of syntax to take
place before the command is executed, and
allows a lot of common parsing code to be
reused.

Command execution process

Commands are executed by calling the execute
function in their descriptor with the previous
created struct cmd and a command context. This
context provides the environment in which a
command executes, including the client which
triggered the command and a set of functions
which may be used by the command to output
information or errors. These functions allow, for
example, a command triggered from a key

command
table

command
entry

parse
function

argv

struct cmd

execute
function

command
context

binding to report errors in the tmux status line,
while the same command issued from the shell
prints them to stderr.

Screens and UTF-8

A screen is a critical data structure in tmux. It is
a representation of a terminal state in a form
which can be redrawn onto another terminal. A
screen is made of ancillary information (cursor
and scroll region position, tab indexes) and a
rectangular set of cells in a grid structure
organised as an array of lines. To minimise
memory use, the size is stored with each line and
it is expanded only as far as the last used cell.
Each grid cell consists of five bytes containing
the cell attributes, flags, colours and data.

Each grid structure is split into a visible portion -
the view - and a history portion.

Grid data layout

This layout permits efficient scrolling and for the
same primitive operations to be used on lines in
both the history and the view. Operations on the
screen are largely encapsulated into primitive
operations on the grid: line scroll, move,
insertion, deletion, and so on.

Implementation of UTF-8 presented some
problems for efficient storage of the screen.
UTF-8 characters are multibyte and vary in
length, but maintaining variable length data in
grid lines would introduce considerable code
complexity. Equally, extending the data member
of each grid cell would increase memory
consumption for non-UTF-8 users.

The chosen solution was to introduce a parallel
grid for UTF-8 characters. Each cell in the UTF-
8 grid consists of a byte containing the width of
the UTF-8 character and a nine byte char array,
sufficient to contain UTF-8 sequences for any
combined character made up of three-byte UTF-

8 characters.

This solution introduces no additional overhead
for non-UTF-8 terminals but chooses efficiency
and code simplicity over memory use for UTF-8
terminals. For example, although the nine bytes
per cell seems considerable, it allows cells to be
allocated without complex variable size logic,
simplifies the code for combined characters (an
append is all that is necessary) and allows
complete combined characters to be written to a
terminal as one.

Input Parser

tmux uses a parser based on the state machine
designed by Paul Williams[4], with alterations to
limit it to 7-bit only, to support UTF-8, and for
some minor quirks seen in modern terminal
emulators. This replaced the original parser used
in early versions due to concerns about the
correctness of corner cases.

The purpose of the tmux input parser is to take a
stream of data in a form described by the
"screen" terminfo(5) entry and correctly update
both a pane's screen and any clients on what the
pane is visible. tmux reuses the "screen"
terminfo(5) entry as there is limited value in
creating a custom entry and there would be
considerable lag before it was available on all
supported platforms.

Each pane stores context associated with the
parser and as data is read from the
pseudoterminal, the state machine is transitioned
through a set of state tables to end up at dispatch
functions for C0 and C1 control sequences, CSI
escape sequences, the APC and OSI sequences,
and UTF-8 character input. In most cases, these
update some state on the screen which then
forwards as necessary to a tty command function
which updates client terminals as necessary.

The tty command functions use the terminfo(5)
sequences from the tty_term structure to update
the terminal. Where sequences are not available,
they are emulated. For example, on terminals
which do not support the insert character
sequence, tmux emulates it by redrawing the
entire terminal line from the saved screen data.

Background Jobs

tmux has support for executing arbitrary shell

grid base

hsize (view first line)

hsize + sy - 1 (view last line)

commands. This is used for two purposes:

1. The if-shell and run-shell tmux
commands, which allow the user to
execute a shell command.

2. The tmux status line and some other
strings allow insertion of shell command
result with a #() sequence.

When this was first implemented, the tmux
server would block until the shell command
completed. This had a serious problem: if the
command itself executed tmux (creating a client
), the blocked server could not respond to allow
the new client to exit, leading to deadlock.

To solve this problem, the concept of
background jobs was introduced. A job is a
container for a shell command and an event.
When the job is run, the shell command is forked
and allowed to run in a separate process. If a
SIGCHLD is received, the jobs list is searched
for a matching process: if found, the job is
complete and an internal callback attached to the
job is fired. Similarly, if the event shows that the
job's stdout has closed, it is treated as complete.

Although this permits tmux commands to be
issued from jobs without blocking the server (an
important ability), it introduces an unfortunate
side effects: unintuitive behaviour when used
from the configuration file. For example, a user
might expect the sequence:

if-shell 'true' set -g default-terminal "foo"

new-window

To change the default-terminal option before
creating a new window. However, as jobs
execute asynchronously, there is no guarantee
the "true" command will be complete and the
"set" command executed before the
configuration file parser has proceeded to the
next line and parsed the next window.

Automatic Rename

Automatic window renaming is a tmux feature
which uses uses a platform-specific method to
establish the name of the process running in each
window. Compatibility wrappers aside, this is the
one piece of operating system dependent code in
tmux.

On *BSD and OS X tmux uses sysctl to retrieve
the list of processes associated with a terminal

and a set of heuristics to work out the currently
active process. On Linux and Solaris it reads the
name or command line of the process directly
from /proc.

This feature is more reliable than parsing
terminal output to guess the command the user is
running and has the advantage that it works even
for processes not started from a shell prompt.
However, it has the disadvantage of not
following remote processes, such as after ssh. In
practice this has not proven to be a major source
of complaint.

Future Work

After three years of work, tmux is a mature and
stable piece of software in wide use both as part
of OpenBSD and with the portable release.

However, there are a few major outstanding
items:

1. Panes are fixed to one window

This was a design choice made to simplify the
implementation of panes. However, this lack
limits the usability and flexibility of panes and is
frequently queried by users.

Solutions may be to collapse the pane and
window structures into one, or to introduce an
additional intermediate data structure between
windows and panes analogous to the winlink
structure between sessions and panes. However,
neither of these are trivial changes and either
would have implications for the command
interface.

2. Windows can't be bigger than smallest
terminal

tmux limits the displayed size of a window to the
size of the smallest client attached to the session
containing it - that is, it will never attempt to
make a window smaller than can be displayed by
all clients that could show it.

This requires smaller clients to be detached
before a larger can use the entire screen - an
irritation for users.

A superior solution would be to permit smaller
clients to display only a section of a larger
window and to pan with the cursor.

3. UTF-8 improvements

Although tmux supports UTF-8 terminals, its

UTF-8 support is still primitive in some other
areas, particularly of the user interface.

For example, UTF-8 support is not well
supported by the interactive command prompt
and copy and paste functions.

4. More...

As of late 2010, there are still 130 items, large
and small, on the tmux todo list, so it is certain
there will be work to do well into the future.

Notes

[1] GNU screen is available from
http://www.gnu.org/software/screen/.

[2] See the GNU screen change log at
http://git.savannah.gnu.org/cgit/screen.git/tree/sr
c/ChangeLog.

[3] The libevent site is at
http://monkey.org/~provos/libevent/.

[4] Full details of Paul Williams' parser are at
http://vt100.net/emu/dec_ansi_parser.

[5] For information see the imsg_init man page,
available online at http://www.openbsd.org/cgi-
bin/man.cgi?query=imsg_init.

	The tmux terminal multiplexer
	History
	tmux and OpenBSD
	Design Overview
	tmux and libevent
	The imsg Framework
	Portability
	Specific Design Examples
	Commands
	Screens and UTF-8
	Input Parser
	Background Jobs
	Automatic Rename

	Future Work
	Notes

