Ensure that sqlite3AuthRead() is only call for TK_COLUMN and TK_TRIGGER
[sqlite.git] / src / select.c
blob529df0f949994184cc2e8198dde49e3bc7931c4f
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
25 sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38 u8 isTnct; /* True if the DISTINCT keyword is present */
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
66 int iECursor; /* Cursor number for the sorter */
67 int regReturn; /* Register holding block-output return address */
68 int labelBkOut; /* Start label for the block-output subroutine */
69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70 int labelDone; /* Jump here when done, ex: LIMIT reached */
71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74 u8 nDefer; /* Number of valid entries in aDefer[] */
75 struct DeferredCsr {
76 Table *pTab; /* Table definition */
77 int iCsr; /* Cursor number for table */
78 int nKey; /* Number of PK columns for table pTab (>=1) */
79 } aDefer[4];
80 #endif
81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
86 ** Delete all the content of a Select structure. Deallocate the structure
87 ** itself only if bFree is true.
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90 while( p ){
91 Select *pPrior = p->pPrior;
92 sqlite3ExprListDelete(db, p->pEList);
93 sqlite3SrcListDelete(db, p->pSrc);
94 sqlite3ExprDelete(db, p->pWhere);
95 sqlite3ExprListDelete(db, p->pGroupBy);
96 sqlite3ExprDelete(db, p->pHaving);
97 sqlite3ExprListDelete(db, p->pOrderBy);
98 sqlite3ExprDelete(db, p->pLimit);
99 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
100 if( bFree ) sqlite3DbFreeNN(db, p);
101 p = pPrior;
102 bFree = 1;
107 ** Initialize a SelectDest structure.
109 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
110 pDest->eDest = (u8)eDest;
111 pDest->iSDParm = iParm;
112 pDest->zAffSdst = 0;
113 pDest->iSdst = 0;
114 pDest->nSdst = 0;
119 ** Allocate a new Select structure and return a pointer to that
120 ** structure.
122 Select *sqlite3SelectNew(
123 Parse *pParse, /* Parsing context */
124 ExprList *pEList, /* which columns to include in the result */
125 SrcList *pSrc, /* the FROM clause -- which tables to scan */
126 Expr *pWhere, /* the WHERE clause */
127 ExprList *pGroupBy, /* the GROUP BY clause */
128 Expr *pHaving, /* the HAVING clause */
129 ExprList *pOrderBy, /* the ORDER BY clause */
130 u32 selFlags, /* Flag parameters, such as SF_Distinct */
131 Expr *pLimit /* LIMIT value. NULL means not used */
133 Select *pNew;
134 Select standin;
135 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
136 if( pNew==0 ){
137 assert( pParse->db->mallocFailed );
138 pNew = &standin;
140 if( pEList==0 ){
141 pEList = sqlite3ExprListAppend(pParse, 0,
142 sqlite3Expr(pParse->db,TK_ASTERISK,0));
144 pNew->pEList = pEList;
145 pNew->op = TK_SELECT;
146 pNew->selFlags = selFlags;
147 pNew->iLimit = 0;
148 pNew->iOffset = 0;
149 #if SELECTTRACE_ENABLED
150 pNew->zSelName[0] = 0;
151 #endif
152 pNew->addrOpenEphm[0] = -1;
153 pNew->addrOpenEphm[1] = -1;
154 pNew->nSelectRow = 0;
155 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
156 pNew->pSrc = pSrc;
157 pNew->pWhere = pWhere;
158 pNew->pGroupBy = pGroupBy;
159 pNew->pHaving = pHaving;
160 pNew->pOrderBy = pOrderBy;
161 pNew->pPrior = 0;
162 pNew->pNext = 0;
163 pNew->pLimit = pLimit;
164 pNew->pWith = 0;
165 if( pParse->db->mallocFailed ) {
166 clearSelect(pParse->db, pNew, pNew!=&standin);
167 pNew = 0;
168 }else{
169 assert( pNew->pSrc!=0 || pParse->nErr>0 );
171 assert( pNew!=&standin );
172 return pNew;
175 #if SELECTTRACE_ENABLED
177 ** Set the name of a Select object
179 void sqlite3SelectSetName(Select *p, const char *zName){
180 if( p && zName ){
181 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
184 #endif
188 ** Delete the given Select structure and all of its substructures.
190 void sqlite3SelectDelete(sqlite3 *db, Select *p){
191 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
195 ** Return a pointer to the right-most SELECT statement in a compound.
197 static Select *findRightmost(Select *p){
198 while( p->pNext ) p = p->pNext;
199 return p;
203 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
204 ** type of join. Return an integer constant that expresses that type
205 ** in terms of the following bit values:
207 ** JT_INNER
208 ** JT_CROSS
209 ** JT_OUTER
210 ** JT_NATURAL
211 ** JT_LEFT
212 ** JT_RIGHT
214 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
216 ** If an illegal or unsupported join type is seen, then still return
217 ** a join type, but put an error in the pParse structure.
219 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
220 int jointype = 0;
221 Token *apAll[3];
222 Token *p;
223 /* 0123456789 123456789 123456789 123 */
224 static const char zKeyText[] = "naturaleftouterightfullinnercross";
225 static const struct {
226 u8 i; /* Beginning of keyword text in zKeyText[] */
227 u8 nChar; /* Length of the keyword in characters */
228 u8 code; /* Join type mask */
229 } aKeyword[] = {
230 /* natural */ { 0, 7, JT_NATURAL },
231 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
232 /* outer */ { 10, 5, JT_OUTER },
233 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
234 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
235 /* inner */ { 23, 5, JT_INNER },
236 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
238 int i, j;
239 apAll[0] = pA;
240 apAll[1] = pB;
241 apAll[2] = pC;
242 for(i=0; i<3 && apAll[i]; i++){
243 p = apAll[i];
244 for(j=0; j<ArraySize(aKeyword); j++){
245 if( p->n==aKeyword[j].nChar
246 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
247 jointype |= aKeyword[j].code;
248 break;
251 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
252 if( j>=ArraySize(aKeyword) ){
253 jointype |= JT_ERROR;
254 break;
258 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
259 (jointype & JT_ERROR)!=0
261 const char *zSp = " ";
262 assert( pB!=0 );
263 if( pC==0 ){ zSp++; }
264 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
265 "%T %T%s%T", pA, pB, zSp, pC);
266 jointype = JT_INNER;
267 }else if( (jointype & JT_OUTER)!=0
268 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
269 sqlite3ErrorMsg(pParse,
270 "RIGHT and FULL OUTER JOINs are not currently supported");
271 jointype = JT_INNER;
273 return jointype;
277 ** Return the index of a column in a table. Return -1 if the column
278 ** is not contained in the table.
280 static int columnIndex(Table *pTab, const char *zCol){
281 int i;
282 for(i=0; i<pTab->nCol; i++){
283 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
285 return -1;
289 ** Search the first N tables in pSrc, from left to right, looking for a
290 ** table that has a column named zCol.
292 ** When found, set *piTab and *piCol to the table index and column index
293 ** of the matching column and return TRUE.
295 ** If not found, return FALSE.
297 static int tableAndColumnIndex(
298 SrcList *pSrc, /* Array of tables to search */
299 int N, /* Number of tables in pSrc->a[] to search */
300 const char *zCol, /* Name of the column we are looking for */
301 int *piTab, /* Write index of pSrc->a[] here */
302 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
304 int i; /* For looping over tables in pSrc */
305 int iCol; /* Index of column matching zCol */
307 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
308 for(i=0; i<N; i++){
309 iCol = columnIndex(pSrc->a[i].pTab, zCol);
310 if( iCol>=0 ){
311 if( piTab ){
312 *piTab = i;
313 *piCol = iCol;
315 return 1;
318 return 0;
322 ** This function is used to add terms implied by JOIN syntax to the
323 ** WHERE clause expression of a SELECT statement. The new term, which
324 ** is ANDed with the existing WHERE clause, is of the form:
326 ** (tab1.col1 = tab2.col2)
328 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
329 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
330 ** column iColRight of tab2.
332 static void addWhereTerm(
333 Parse *pParse, /* Parsing context */
334 SrcList *pSrc, /* List of tables in FROM clause */
335 int iLeft, /* Index of first table to join in pSrc */
336 int iColLeft, /* Index of column in first table */
337 int iRight, /* Index of second table in pSrc */
338 int iColRight, /* Index of column in second table */
339 int isOuterJoin, /* True if this is an OUTER join */
340 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
342 sqlite3 *db = pParse->db;
343 Expr *pE1;
344 Expr *pE2;
345 Expr *pEq;
347 assert( iLeft<iRight );
348 assert( pSrc->nSrc>iRight );
349 assert( pSrc->a[iLeft].pTab );
350 assert( pSrc->a[iRight].pTab );
352 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
353 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
355 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
356 if( pEq && isOuterJoin ){
357 ExprSetProperty(pEq, EP_FromJoin);
358 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
359 ExprSetVVAProperty(pEq, EP_NoReduce);
360 pEq->iRightJoinTable = (i16)pE2->iTable;
362 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
366 ** Set the EP_FromJoin property on all terms of the given expression.
367 ** And set the Expr.iRightJoinTable to iTable for every term in the
368 ** expression.
370 ** The EP_FromJoin property is used on terms of an expression to tell
371 ** the LEFT OUTER JOIN processing logic that this term is part of the
372 ** join restriction specified in the ON or USING clause and not a part
373 ** of the more general WHERE clause. These terms are moved over to the
374 ** WHERE clause during join processing but we need to remember that they
375 ** originated in the ON or USING clause.
377 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
378 ** expression depends on table iRightJoinTable even if that table is not
379 ** explicitly mentioned in the expression. That information is needed
380 ** for cases like this:
382 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
384 ** The where clause needs to defer the handling of the t1.x=5
385 ** term until after the t2 loop of the join. In that way, a
386 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
387 ** defer the handling of t1.x=5, it will be processed immediately
388 ** after the t1 loop and rows with t1.x!=5 will never appear in
389 ** the output, which is incorrect.
391 static void setJoinExpr(Expr *p, int iTable){
392 while( p ){
393 ExprSetProperty(p, EP_FromJoin);
394 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
395 ExprSetVVAProperty(p, EP_NoReduce);
396 p->iRightJoinTable = (i16)iTable;
397 if( p->op==TK_FUNCTION && p->x.pList ){
398 int i;
399 for(i=0; i<p->x.pList->nExpr; i++){
400 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
403 setJoinExpr(p->pLeft, iTable);
404 p = p->pRight;
408 /* Undo the work of setJoinExpr(). In the expression tree p, convert every
409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
414 static void unsetJoinExpr(Expr *p, int iTable){
415 while( p ){
416 if( ExprHasProperty(p, EP_FromJoin)
417 && (iTable<0 || p->iRightJoinTable==iTable) ){
418 ExprClearProperty(p, EP_FromJoin);
420 if( p->op==TK_FUNCTION && p->x.pList ){
421 int i;
422 for(i=0; i<p->x.pList->nExpr; i++){
423 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
426 unsetJoinExpr(p->pLeft, iTable);
427 p = p->pRight;
432 ** This routine processes the join information for a SELECT statement.
433 ** ON and USING clauses are converted into extra terms of the WHERE clause.
434 ** NATURAL joins also create extra WHERE clause terms.
436 ** The terms of a FROM clause are contained in the Select.pSrc structure.
437 ** The left most table is the first entry in Select.pSrc. The right-most
438 ** table is the last entry. The join operator is held in the entry to
439 ** the left. Thus entry 0 contains the join operator for the join between
440 ** entries 0 and 1. Any ON or USING clauses associated with the join are
441 ** also attached to the left entry.
443 ** This routine returns the number of errors encountered.
445 static int sqliteProcessJoin(Parse *pParse, Select *p){
446 SrcList *pSrc; /* All tables in the FROM clause */
447 int i, j; /* Loop counters */
448 struct SrcList_item *pLeft; /* Left table being joined */
449 struct SrcList_item *pRight; /* Right table being joined */
451 pSrc = p->pSrc;
452 pLeft = &pSrc->a[0];
453 pRight = &pLeft[1];
454 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
455 Table *pRightTab = pRight->pTab;
456 int isOuter;
458 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
459 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
461 /* When the NATURAL keyword is present, add WHERE clause terms for
462 ** every column that the two tables have in common.
464 if( pRight->fg.jointype & JT_NATURAL ){
465 if( pRight->pOn || pRight->pUsing ){
466 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
467 "an ON or USING clause", 0);
468 return 1;
470 for(j=0; j<pRightTab->nCol; j++){
471 char *zName; /* Name of column in the right table */
472 int iLeft; /* Matching left table */
473 int iLeftCol; /* Matching column in the left table */
475 zName = pRightTab->aCol[j].zName;
476 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
477 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
478 isOuter, &p->pWhere);
483 /* Disallow both ON and USING clauses in the same join
485 if( pRight->pOn && pRight->pUsing ){
486 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
487 "clauses in the same join");
488 return 1;
491 /* Add the ON clause to the end of the WHERE clause, connected by
492 ** an AND operator.
494 if( pRight->pOn ){
495 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
496 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
497 pRight->pOn = 0;
500 /* Create extra terms on the WHERE clause for each column named
501 ** in the USING clause. Example: If the two tables to be joined are
502 ** A and B and the USING clause names X, Y, and Z, then add this
503 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
504 ** Report an error if any column mentioned in the USING clause is
505 ** not contained in both tables to be joined.
507 if( pRight->pUsing ){
508 IdList *pList = pRight->pUsing;
509 for(j=0; j<pList->nId; j++){
510 char *zName; /* Name of the term in the USING clause */
511 int iLeft; /* Table on the left with matching column name */
512 int iLeftCol; /* Column number of matching column on the left */
513 int iRightCol; /* Column number of matching column on the right */
515 zName = pList->a[j].zName;
516 iRightCol = columnIndex(pRightTab, zName);
517 if( iRightCol<0
518 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
520 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
521 "not present in both tables", zName);
522 return 1;
524 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
525 isOuter, &p->pWhere);
529 return 0;
532 /* Forward reference */
533 static KeyInfo *keyInfoFromExprList(
534 Parse *pParse, /* Parsing context */
535 ExprList *pList, /* Form the KeyInfo object from this ExprList */
536 int iStart, /* Begin with this column of pList */
537 int nExtra /* Add this many extra columns to the end */
541 ** An instance of this object holds information (beyond pParse and pSelect)
542 ** needed to load the next result row that is to be added to the sorter.
544 typedef struct RowLoadInfo RowLoadInfo;
545 struct RowLoadInfo {
546 int regResult; /* Store results in array of registers here */
547 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549 ExprList *pExtra; /* Extra columns needed by sorter refs */
550 int regExtraResult; /* Where to load the extra columns */
551 #endif
555 ** This routine does the work of loading query data into an array of
556 ** registers so that it can be added to the sorter.
558 static void innerLoopLoadRow(
559 Parse *pParse, /* Statement under construction */
560 Select *pSelect, /* The query being coded */
561 RowLoadInfo *pInfo /* Info needed to complete the row load */
563 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
564 0, pInfo->ecelFlags);
565 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
566 if( pInfo->pExtra ){
567 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
568 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
570 #endif
574 ** Code the OP_MakeRecord instruction that generates the entry to be
575 ** added into the sorter.
577 ** Return the register in which the result is stored.
579 static int makeSorterRecord(
580 Parse *pParse,
581 SortCtx *pSort,
582 Select *pSelect,
583 int regBase,
584 int nBase
586 int nOBSat = pSort->nOBSat;
587 Vdbe *v = pParse->pVdbe;
588 int regOut = ++pParse->nMem;
589 if( pSort->pDeferredRowLoad ){
590 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
592 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
593 return regOut;
597 ** Generate code that will push the record in registers regData
598 ** through regData+nData-1 onto the sorter.
600 static void pushOntoSorter(
601 Parse *pParse, /* Parser context */
602 SortCtx *pSort, /* Information about the ORDER BY clause */
603 Select *pSelect, /* The whole SELECT statement */
604 int regData, /* First register holding data to be sorted */
605 int regOrigData, /* First register holding data before packing */
606 int nData, /* Number of elements in the regData data array */
607 int nPrefixReg /* No. of reg prior to regData available for use */
609 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
610 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
611 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
612 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
613 int regBase; /* Regs for sorter record */
614 int regRecord = 0; /* Assembled sorter record */
615 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
616 int op; /* Opcode to add sorter record to sorter */
617 int iLimit; /* LIMIT counter */
618 int iSkip = 0; /* End of the sorter insert loop */
620 assert( bSeq==0 || bSeq==1 );
622 /* Three cases:
623 ** (1) The data to be sorted has already been packed into a Record
624 ** by a prior OP_MakeRecord. In this case nData==1 and regData
625 ** will be completely unrelated to regOrigData.
626 ** (2) All output columns are included in the sort record. In that
627 ** case regData==regOrigData.
628 ** (3) Some output columns are omitted from the sort record due to
629 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
630 ** SQLITE_ECEL_OMITREF optimization, or due to the
631 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
632 ** regOrigData is 0 to prevent this routine from trying to copy
633 ** values that might not yet exist.
635 assert( nData==1 || regData==regOrigData || regOrigData==0 );
637 if( nPrefixReg ){
638 assert( nPrefixReg==nExpr+bSeq );
639 regBase = regData - nPrefixReg;
640 }else{
641 regBase = pParse->nMem + 1;
642 pParse->nMem += nBase;
644 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
645 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
646 pSort->labelDone = sqlite3VdbeMakeLabel(v);
647 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
648 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
649 if( bSeq ){
650 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
652 if( nPrefixReg==0 && nData>0 ){
653 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
655 if( nOBSat>0 ){
656 int regPrevKey; /* The first nOBSat columns of the previous row */
657 int addrFirst; /* Address of the OP_IfNot opcode */
658 int addrJmp; /* Address of the OP_Jump opcode */
659 VdbeOp *pOp; /* Opcode that opens the sorter */
660 int nKey; /* Number of sorting key columns, including OP_Sequence */
661 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
663 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
664 regPrevKey = pParse->nMem+1;
665 pParse->nMem += pSort->nOBSat;
666 nKey = nExpr - pSort->nOBSat + bSeq;
667 if( bSeq ){
668 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
669 }else{
670 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
672 VdbeCoverage(v);
673 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
674 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
675 if( pParse->db->mallocFailed ) return;
676 pOp->p2 = nKey + nData;
677 pKI = pOp->p4.pKeyInfo;
678 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
679 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
680 testcase( pKI->nAllField > pKI->nKeyField+2 );
681 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
682 pKI->nAllField-pKI->nKeyField-1);
683 addrJmp = sqlite3VdbeCurrentAddr(v);
684 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
685 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
686 pSort->regReturn = ++pParse->nMem;
687 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
688 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
689 if( iLimit ){
690 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
691 VdbeCoverage(v);
693 sqlite3VdbeJumpHere(v, addrFirst);
694 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
695 sqlite3VdbeJumpHere(v, addrJmp);
697 if( iLimit ){
698 /* At this point the values for the new sorter entry are stored
699 ** in an array of registers. They need to be composed into a record
700 ** and inserted into the sorter if either (a) there are currently
701 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
702 ** the largest record currently in the sorter. If (b) is true and there
703 ** are already LIMIT+OFFSET items in the sorter, delete the largest
704 ** entry before inserting the new one. This way there are never more
705 ** than LIMIT+OFFSET items in the sorter.
707 ** If the new record does not need to be inserted into the sorter,
708 ** jump to the next iteration of the loop. Or, if the
709 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
710 ** loop delivers items in sorted order, jump to the next iteration
711 ** of the outer loop.
713 int iCsr = pSort->iECursor;
714 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
715 VdbeCoverage(v);
716 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
717 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
718 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
719 VdbeCoverage(v);
720 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
722 if( regRecord==0 ){
723 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
725 if( pSort->sortFlags & SORTFLAG_UseSorter ){
726 op = OP_SorterInsert;
727 }else{
728 op = OP_IdxInsert;
730 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
731 regBase+nOBSat, nBase-nOBSat);
732 if( iSkip ){
733 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
734 sqlite3VdbeChangeP2(v, iSkip,
735 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
740 ** Add code to implement the OFFSET
742 static void codeOffset(
743 Vdbe *v, /* Generate code into this VM */
744 int iOffset, /* Register holding the offset counter */
745 int iContinue /* Jump here to skip the current record */
747 if( iOffset>0 ){
748 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
749 VdbeComment((v, "OFFSET"));
754 ** Add code that will check to make sure the N registers starting at iMem
755 ** form a distinct entry. iTab is a sorting index that holds previously
756 ** seen combinations of the N values. A new entry is made in iTab
757 ** if the current N values are new.
759 ** A jump to addrRepeat is made and the N+1 values are popped from the
760 ** stack if the top N elements are not distinct.
762 static void codeDistinct(
763 Parse *pParse, /* Parsing and code generating context */
764 int iTab, /* A sorting index used to test for distinctness */
765 int addrRepeat, /* Jump to here if not distinct */
766 int N, /* Number of elements */
767 int iMem /* First element */
769 Vdbe *v;
770 int r1;
772 v = pParse->pVdbe;
773 r1 = sqlite3GetTempReg(pParse);
774 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
775 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
776 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
777 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
778 sqlite3ReleaseTempReg(pParse, r1);
781 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
783 ** This function is called as part of inner-loop generation for a SELECT
784 ** statement with an ORDER BY that is not optimized by an index. It
785 ** determines the expressions, if any, that the sorter-reference
786 ** optimization should be used for. The sorter-reference optimization
787 ** is used for SELECT queries like:
789 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
791 ** If the optimization is used for expression "bigblob", then instead of
792 ** storing values read from that column in the sorter records, the PK of
793 ** the row from table t1 is stored instead. Then, as records are extracted from
794 ** the sorter to return to the user, the required value of bigblob is
795 ** retrieved directly from table t1. If the values are very large, this
796 ** can be more efficient than storing them directly in the sorter records.
798 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
799 ** for which the sorter-reference optimization should be enabled.
800 ** Additionally, the pSort->aDefer[] array is populated with entries
801 ** for all cursors required to evaluate all selected expressions. Finally.
802 ** output variable (*ppExtra) is set to an expression list containing
803 ** expressions for all extra PK values that should be stored in the
804 ** sorter records.
806 static void selectExprDefer(
807 Parse *pParse, /* Leave any error here */
808 SortCtx *pSort, /* Sorter context */
809 ExprList *pEList, /* Expressions destined for sorter */
810 ExprList **ppExtra /* Expressions to append to sorter record */
812 int i;
813 int nDefer = 0;
814 ExprList *pExtra = 0;
815 for(i=0; i<pEList->nExpr; i++){
816 struct ExprList_item *pItem = &pEList->a[i];
817 if( pItem->u.x.iOrderByCol==0 ){
818 Expr *pExpr = pItem->pExpr;
819 Table *pTab = pExpr->pTab;
820 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
821 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
823 int j;
824 for(j=0; j<nDefer; j++){
825 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
827 if( j==nDefer ){
828 if( nDefer==ArraySize(pSort->aDefer) ){
829 continue;
830 }else{
831 int nKey = 1;
832 int k;
833 Index *pPk = 0;
834 if( !HasRowid(pTab) ){
835 pPk = sqlite3PrimaryKeyIndex(pTab);
836 nKey = pPk->nKeyCol;
838 for(k=0; k<nKey; k++){
839 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
840 if( pNew ){
841 pNew->iTable = pExpr->iTable;
842 pNew->pTab = pExpr->pTab;
843 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
844 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
847 pSort->aDefer[nDefer].pTab = pExpr->pTab;
848 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
849 pSort->aDefer[nDefer].nKey = nKey;
850 nDefer++;
853 pItem->bSorterRef = 1;
857 pSort->nDefer = (u8)nDefer;
858 *ppExtra = pExtra;
860 #endif
863 ** This routine generates the code for the inside of the inner loop
864 ** of a SELECT.
866 ** If srcTab is negative, then the p->pEList expressions
867 ** are evaluated in order to get the data for this row. If srcTab is
868 ** zero or more, then data is pulled from srcTab and p->pEList is used only
869 ** to get the number of columns and the collation sequence for each column.
871 static void selectInnerLoop(
872 Parse *pParse, /* The parser context */
873 Select *p, /* The complete select statement being coded */
874 int srcTab, /* Pull data from this table if non-negative */
875 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
876 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
877 SelectDest *pDest, /* How to dispose of the results */
878 int iContinue, /* Jump here to continue with next row */
879 int iBreak /* Jump here to break out of the inner loop */
881 Vdbe *v = pParse->pVdbe;
882 int i;
883 int hasDistinct; /* True if the DISTINCT keyword is present */
884 int eDest = pDest->eDest; /* How to dispose of results */
885 int iParm = pDest->iSDParm; /* First argument to disposal method */
886 int nResultCol; /* Number of result columns */
887 int nPrefixReg = 0; /* Number of extra registers before regResult */
888 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
890 /* Usually, regResult is the first cell in an array of memory cells
891 ** containing the current result row. In this case regOrig is set to the
892 ** same value. However, if the results are being sent to the sorter, the
893 ** values for any expressions that are also part of the sort-key are omitted
894 ** from this array. In this case regOrig is set to zero. */
895 int regResult; /* Start of memory holding current results */
896 int regOrig; /* Start of memory holding full result (or 0) */
898 assert( v );
899 assert( p->pEList!=0 );
900 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
901 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
902 if( pSort==0 && !hasDistinct ){
903 assert( iContinue!=0 );
904 codeOffset(v, p->iOffset, iContinue);
907 /* Pull the requested columns.
909 nResultCol = p->pEList->nExpr;
911 if( pDest->iSdst==0 ){
912 if( pSort ){
913 nPrefixReg = pSort->pOrderBy->nExpr;
914 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
915 pParse->nMem += nPrefixReg;
917 pDest->iSdst = pParse->nMem+1;
918 pParse->nMem += nResultCol;
919 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
920 /* This is an error condition that can result, for example, when a SELECT
921 ** on the right-hand side of an INSERT contains more result columns than
922 ** there are columns in the table on the left. The error will be caught
923 ** and reported later. But we need to make sure enough memory is allocated
924 ** to avoid other spurious errors in the meantime. */
925 pParse->nMem += nResultCol;
927 pDest->nSdst = nResultCol;
928 regOrig = regResult = pDest->iSdst;
929 if( srcTab>=0 ){
930 for(i=0; i<nResultCol; i++){
931 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
932 VdbeComment((v, "%s", p->pEList->a[i].zName));
934 }else if( eDest!=SRT_Exists ){
935 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
936 ExprList *pExtra = 0;
937 #endif
938 /* If the destination is an EXISTS(...) expression, the actual
939 ** values returned by the SELECT are not required.
941 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
942 ExprList *pEList;
943 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
944 ecelFlags = SQLITE_ECEL_DUP;
945 }else{
946 ecelFlags = 0;
948 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
949 /* For each expression in p->pEList that is a copy of an expression in
950 ** the ORDER BY clause (pSort->pOrderBy), set the associated
951 ** iOrderByCol value to one more than the index of the ORDER BY
952 ** expression within the sort-key that pushOntoSorter() will generate.
953 ** This allows the p->pEList field to be omitted from the sorted record,
954 ** saving space and CPU cycles. */
955 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
957 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
958 int j;
959 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
960 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
963 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
964 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
965 if( pExtra && pParse->db->mallocFailed==0 ){
966 /* If there are any extra PK columns to add to the sorter records,
967 ** allocate extra memory cells and adjust the OpenEphemeral
968 ** instruction to account for the larger records. This is only
969 ** required if there are one or more WITHOUT ROWID tables with
970 ** composite primary keys in the SortCtx.aDefer[] array. */
971 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
972 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
973 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
974 pParse->nMem += pExtra->nExpr;
976 #endif
978 /* Adjust nResultCol to account for columns that are omitted
979 ** from the sorter by the optimizations in this branch */
980 pEList = p->pEList;
981 for(i=0; i<pEList->nExpr; i++){
982 if( pEList->a[i].u.x.iOrderByCol>0
983 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
984 || pEList->a[i].bSorterRef
985 #endif
987 nResultCol--;
988 regOrig = 0;
992 testcase( regOrig );
993 testcase( eDest==SRT_Set );
994 testcase( eDest==SRT_Mem );
995 testcase( eDest==SRT_Coroutine );
996 testcase( eDest==SRT_Output );
997 assert( eDest==SRT_Set || eDest==SRT_Mem
998 || eDest==SRT_Coroutine || eDest==SRT_Output );
1000 sRowLoadInfo.regResult = regResult;
1001 sRowLoadInfo.ecelFlags = ecelFlags;
1002 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1003 sRowLoadInfo.pExtra = pExtra;
1004 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1005 if( pExtra ) nResultCol += pExtra->nExpr;
1006 #endif
1007 if( p->iLimit
1008 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1009 && nPrefixReg>0
1011 assert( pSort!=0 );
1012 assert( hasDistinct==0 );
1013 pSort->pDeferredRowLoad = &sRowLoadInfo;
1014 regOrig = 0;
1015 }else{
1016 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1020 /* If the DISTINCT keyword was present on the SELECT statement
1021 ** and this row has been seen before, then do not make this row
1022 ** part of the result.
1024 if( hasDistinct ){
1025 switch( pDistinct->eTnctType ){
1026 case WHERE_DISTINCT_ORDERED: {
1027 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
1028 int iJump; /* Jump destination */
1029 int regPrev; /* Previous row content */
1031 /* Allocate space for the previous row */
1032 regPrev = pParse->nMem+1;
1033 pParse->nMem += nResultCol;
1035 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1036 ** sets the MEM_Cleared bit on the first register of the
1037 ** previous value. This will cause the OP_Ne below to always
1038 ** fail on the first iteration of the loop even if the first
1039 ** row is all NULLs.
1041 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1042 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1043 pOp->opcode = OP_Null;
1044 pOp->p1 = 1;
1045 pOp->p2 = regPrev;
1047 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1048 for(i=0; i<nResultCol; i++){
1049 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1050 if( i<nResultCol-1 ){
1051 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1052 VdbeCoverage(v);
1053 }else{
1054 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1055 VdbeCoverage(v);
1057 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1058 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1060 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1061 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1062 break;
1065 case WHERE_DISTINCT_UNIQUE: {
1066 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1067 break;
1070 default: {
1071 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1072 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1073 regResult);
1074 break;
1077 if( pSort==0 ){
1078 codeOffset(v, p->iOffset, iContinue);
1082 switch( eDest ){
1083 /* In this mode, write each query result to the key of the temporary
1084 ** table iParm.
1086 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1087 case SRT_Union: {
1088 int r1;
1089 r1 = sqlite3GetTempReg(pParse);
1090 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1091 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1092 sqlite3ReleaseTempReg(pParse, r1);
1093 break;
1096 /* Construct a record from the query result, but instead of
1097 ** saving that record, use it as a key to delete elements from
1098 ** the temporary table iParm.
1100 case SRT_Except: {
1101 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1102 break;
1104 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1106 /* Store the result as data using a unique key.
1108 case SRT_Fifo:
1109 case SRT_DistFifo:
1110 case SRT_Table:
1111 case SRT_EphemTab: {
1112 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1113 testcase( eDest==SRT_Table );
1114 testcase( eDest==SRT_EphemTab );
1115 testcase( eDest==SRT_Fifo );
1116 testcase( eDest==SRT_DistFifo );
1117 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1118 #ifndef SQLITE_OMIT_CTE
1119 if( eDest==SRT_DistFifo ){
1120 /* If the destination is DistFifo, then cursor (iParm+1) is open
1121 ** on an ephemeral index. If the current row is already present
1122 ** in the index, do not write it to the output. If not, add the
1123 ** current row to the index and proceed with writing it to the
1124 ** output table as well. */
1125 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1126 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1127 VdbeCoverage(v);
1128 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1129 assert( pSort==0 );
1131 #endif
1132 if( pSort ){
1133 assert( regResult==regOrig );
1134 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1135 }else{
1136 int r2 = sqlite3GetTempReg(pParse);
1137 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1138 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1139 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1140 sqlite3ReleaseTempReg(pParse, r2);
1142 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1143 break;
1146 #ifndef SQLITE_OMIT_SUBQUERY
1147 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1148 ** then there should be a single item on the stack. Write this
1149 ** item into the set table with bogus data.
1151 case SRT_Set: {
1152 if( pSort ){
1153 /* At first glance you would think we could optimize out the
1154 ** ORDER BY in this case since the order of entries in the set
1155 ** does not matter. But there might be a LIMIT clause, in which
1156 ** case the order does matter */
1157 pushOntoSorter(
1158 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1159 }else{
1160 int r1 = sqlite3GetTempReg(pParse);
1161 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1162 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1163 r1, pDest->zAffSdst, nResultCol);
1164 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1165 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1166 sqlite3ReleaseTempReg(pParse, r1);
1168 break;
1171 /* If any row exist in the result set, record that fact and abort.
1173 case SRT_Exists: {
1174 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1175 /* The LIMIT clause will terminate the loop for us */
1176 break;
1179 /* If this is a scalar select that is part of an expression, then
1180 ** store the results in the appropriate memory cell or array of
1181 ** memory cells and break out of the scan loop.
1183 case SRT_Mem: {
1184 if( pSort ){
1185 assert( nResultCol<=pDest->nSdst );
1186 pushOntoSorter(
1187 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1188 }else{
1189 assert( nResultCol==pDest->nSdst );
1190 assert( regResult==iParm );
1191 /* The LIMIT clause will jump out of the loop for us */
1193 break;
1195 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1197 case SRT_Coroutine: /* Send data to a co-routine */
1198 case SRT_Output: { /* Return the results */
1199 testcase( eDest==SRT_Coroutine );
1200 testcase( eDest==SRT_Output );
1201 if( pSort ){
1202 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1203 nPrefixReg);
1204 }else if( eDest==SRT_Coroutine ){
1205 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1206 }else{
1207 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1208 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1210 break;
1213 #ifndef SQLITE_OMIT_CTE
1214 /* Write the results into a priority queue that is order according to
1215 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1216 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1217 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1218 ** final OP_Sequence column. The last column is the record as a blob.
1220 case SRT_DistQueue:
1221 case SRT_Queue: {
1222 int nKey;
1223 int r1, r2, r3;
1224 int addrTest = 0;
1225 ExprList *pSO;
1226 pSO = pDest->pOrderBy;
1227 assert( pSO );
1228 nKey = pSO->nExpr;
1229 r1 = sqlite3GetTempReg(pParse);
1230 r2 = sqlite3GetTempRange(pParse, nKey+2);
1231 r3 = r2+nKey+1;
1232 if( eDest==SRT_DistQueue ){
1233 /* If the destination is DistQueue, then cursor (iParm+1) is open
1234 ** on a second ephemeral index that holds all values every previously
1235 ** added to the queue. */
1236 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1237 regResult, nResultCol);
1238 VdbeCoverage(v);
1240 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1241 if( eDest==SRT_DistQueue ){
1242 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1243 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1245 for(i=0; i<nKey; i++){
1246 sqlite3VdbeAddOp2(v, OP_SCopy,
1247 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1248 r2+i);
1250 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1251 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1252 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1253 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1254 sqlite3ReleaseTempReg(pParse, r1);
1255 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1256 break;
1258 #endif /* SQLITE_OMIT_CTE */
1262 #if !defined(SQLITE_OMIT_TRIGGER)
1263 /* Discard the results. This is used for SELECT statements inside
1264 ** the body of a TRIGGER. The purpose of such selects is to call
1265 ** user-defined functions that have side effects. We do not care
1266 ** about the actual results of the select.
1268 default: {
1269 assert( eDest==SRT_Discard );
1270 break;
1272 #endif
1275 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1276 ** there is a sorter, in which case the sorter has already limited
1277 ** the output for us.
1279 if( pSort==0 && p->iLimit ){
1280 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1285 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1286 ** X extra columns.
1288 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1289 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1290 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1291 if( p ){
1292 p->aSortOrder = (u8*)&p->aColl[N+X];
1293 p->nKeyField = (u16)N;
1294 p->nAllField = (u16)(N+X);
1295 p->enc = ENC(db);
1296 p->db = db;
1297 p->nRef = 1;
1298 memset(&p[1], 0, nExtra);
1299 }else{
1300 sqlite3OomFault(db);
1302 return p;
1306 ** Deallocate a KeyInfo object
1308 void sqlite3KeyInfoUnref(KeyInfo *p){
1309 if( p ){
1310 assert( p->nRef>0 );
1311 p->nRef--;
1312 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1317 ** Make a new pointer to a KeyInfo object
1319 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1320 if( p ){
1321 assert( p->nRef>0 );
1322 p->nRef++;
1324 return p;
1327 #ifdef SQLITE_DEBUG
1329 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1330 ** can only be changed if this is just a single reference to the object.
1332 ** This routine is used only inside of assert() statements.
1334 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1335 #endif /* SQLITE_DEBUG */
1338 ** Given an expression list, generate a KeyInfo structure that records
1339 ** the collating sequence for each expression in that expression list.
1341 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1342 ** KeyInfo structure is appropriate for initializing a virtual index to
1343 ** implement that clause. If the ExprList is the result set of a SELECT
1344 ** then the KeyInfo structure is appropriate for initializing a virtual
1345 ** index to implement a DISTINCT test.
1347 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1348 ** function is responsible for seeing that this structure is eventually
1349 ** freed.
1351 static KeyInfo *keyInfoFromExprList(
1352 Parse *pParse, /* Parsing context */
1353 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1354 int iStart, /* Begin with this column of pList */
1355 int nExtra /* Add this many extra columns to the end */
1357 int nExpr;
1358 KeyInfo *pInfo;
1359 struct ExprList_item *pItem;
1360 sqlite3 *db = pParse->db;
1361 int i;
1363 nExpr = pList->nExpr;
1364 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1365 if( pInfo ){
1366 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1367 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1368 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1369 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1372 return pInfo;
1376 ** Name of the connection operator, used for error messages.
1378 static const char *selectOpName(int id){
1379 char *z;
1380 switch( id ){
1381 case TK_ALL: z = "UNION ALL"; break;
1382 case TK_INTERSECT: z = "INTERSECT"; break;
1383 case TK_EXCEPT: z = "EXCEPT"; break;
1384 default: z = "UNION"; break;
1386 return z;
1389 #ifndef SQLITE_OMIT_EXPLAIN
1391 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1392 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1393 ** where the caption is of the form:
1395 ** "USE TEMP B-TREE FOR xxx"
1397 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1398 ** is determined by the zUsage argument.
1400 static void explainTempTable(Parse *pParse, const char *zUsage){
1401 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1405 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1406 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1407 ** in sqlite3Select() to assign values to structure member variables that
1408 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1409 ** code with #ifndef directives.
1411 # define explainSetInteger(a, b) a = b
1413 #else
1414 /* No-op versions of the explainXXX() functions and macros. */
1415 # define explainTempTable(y,z)
1416 # define explainSetInteger(y,z)
1417 #endif
1421 ** If the inner loop was generated using a non-null pOrderBy argument,
1422 ** then the results were placed in a sorter. After the loop is terminated
1423 ** we need to run the sorter and output the results. The following
1424 ** routine generates the code needed to do that.
1426 static void generateSortTail(
1427 Parse *pParse, /* Parsing context */
1428 Select *p, /* The SELECT statement */
1429 SortCtx *pSort, /* Information on the ORDER BY clause */
1430 int nColumn, /* Number of columns of data */
1431 SelectDest *pDest /* Write the sorted results here */
1433 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1434 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1435 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1436 int addr; /* Top of output loop. Jump for Next. */
1437 int addrOnce = 0;
1438 int iTab;
1439 ExprList *pOrderBy = pSort->pOrderBy;
1440 int eDest = pDest->eDest;
1441 int iParm = pDest->iSDParm;
1442 int regRow;
1443 int regRowid;
1444 int iCol;
1445 int nKey; /* Number of key columns in sorter record */
1446 int iSortTab; /* Sorter cursor to read from */
1447 int i;
1448 int bSeq; /* True if sorter record includes seq. no. */
1449 int nRefKey = 0;
1450 struct ExprList_item *aOutEx = p->pEList->a;
1452 assert( addrBreak<0 );
1453 if( pSort->labelBkOut ){
1454 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1455 sqlite3VdbeGoto(v, addrBreak);
1456 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1459 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1460 /* Open any cursors needed for sorter-reference expressions */
1461 for(i=0; i<pSort->nDefer; i++){
1462 Table *pTab = pSort->aDefer[i].pTab;
1463 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1464 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1465 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1467 #endif
1469 iTab = pSort->iECursor;
1470 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1471 regRowid = 0;
1472 regRow = pDest->iSdst;
1473 }else{
1474 regRowid = sqlite3GetTempReg(pParse);
1475 regRow = sqlite3GetTempRange(pParse, nColumn);
1477 nKey = pOrderBy->nExpr - pSort->nOBSat;
1478 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1479 int regSortOut = ++pParse->nMem;
1480 iSortTab = pParse->nTab++;
1481 if( pSort->labelBkOut ){
1482 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1484 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1485 nKey+1+nColumn+nRefKey);
1486 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1487 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1488 VdbeCoverage(v);
1489 codeOffset(v, p->iOffset, addrContinue);
1490 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1491 bSeq = 0;
1492 }else{
1493 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1494 codeOffset(v, p->iOffset, addrContinue);
1495 iSortTab = iTab;
1496 bSeq = 1;
1498 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1499 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1500 if( aOutEx[i].bSorterRef ) continue;
1501 #endif
1502 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1504 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1505 if( pSort->nDefer ){
1506 int iKey = iCol+1;
1507 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1509 for(i=0; i<pSort->nDefer; i++){
1510 int iCsr = pSort->aDefer[i].iCsr;
1511 Table *pTab = pSort->aDefer[i].pTab;
1512 int nKey = pSort->aDefer[i].nKey;
1514 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1515 if( HasRowid(pTab) ){
1516 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1517 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1518 sqlite3VdbeCurrentAddr(v)+1, regKey);
1519 }else{
1520 int k;
1521 int iJmp;
1522 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1523 for(k=0; k<nKey; k++){
1524 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1526 iJmp = sqlite3VdbeCurrentAddr(v);
1527 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1528 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1529 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1532 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1534 #endif
1535 for(i=nColumn-1; i>=0; i--){
1536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1537 if( aOutEx[i].bSorterRef ){
1538 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1539 }else
1540 #endif
1542 int iRead;
1543 if( aOutEx[i].u.x.iOrderByCol ){
1544 iRead = aOutEx[i].u.x.iOrderByCol-1;
1545 }else{
1546 iRead = iCol--;
1548 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1549 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1552 switch( eDest ){
1553 case SRT_Table:
1554 case SRT_EphemTab: {
1555 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1556 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1557 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1558 break;
1560 #ifndef SQLITE_OMIT_SUBQUERY
1561 case SRT_Set: {
1562 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1563 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1564 pDest->zAffSdst, nColumn);
1565 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1566 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1567 break;
1569 case SRT_Mem: {
1570 /* The LIMIT clause will terminate the loop for us */
1571 break;
1573 #endif
1574 default: {
1575 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1576 testcase( eDest==SRT_Output );
1577 testcase( eDest==SRT_Coroutine );
1578 if( eDest==SRT_Output ){
1579 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1580 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1581 }else{
1582 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1584 break;
1587 if( regRowid ){
1588 if( eDest==SRT_Set ){
1589 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1590 }else{
1591 sqlite3ReleaseTempReg(pParse, regRow);
1593 sqlite3ReleaseTempReg(pParse, regRowid);
1595 /* The bottom of the loop
1597 sqlite3VdbeResolveLabel(v, addrContinue);
1598 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1599 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1600 }else{
1601 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1603 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1604 sqlite3VdbeResolveLabel(v, addrBreak);
1608 ** Return a pointer to a string containing the 'declaration type' of the
1609 ** expression pExpr. The string may be treated as static by the caller.
1611 ** Also try to estimate the size of the returned value and return that
1612 ** result in *pEstWidth.
1614 ** The declaration type is the exact datatype definition extracted from the
1615 ** original CREATE TABLE statement if the expression is a column. The
1616 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1617 ** is considered a column can be complex in the presence of subqueries. The
1618 ** result-set expression in all of the following SELECT statements is
1619 ** considered a column by this function.
1621 ** SELECT col FROM tbl;
1622 ** SELECT (SELECT col FROM tbl;
1623 ** SELECT (SELECT col FROM tbl);
1624 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1626 ** The declaration type for any expression other than a column is NULL.
1628 ** This routine has either 3 or 6 parameters depending on whether or not
1629 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1631 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1632 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1633 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1634 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1635 #endif
1636 static const char *columnTypeImpl(
1637 NameContext *pNC,
1638 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1639 Expr *pExpr
1640 #else
1641 Expr *pExpr,
1642 const char **pzOrigDb,
1643 const char **pzOrigTab,
1644 const char **pzOrigCol
1645 #endif
1647 char const *zType = 0;
1648 int j;
1649 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1650 char const *zOrigDb = 0;
1651 char const *zOrigTab = 0;
1652 char const *zOrigCol = 0;
1653 #endif
1655 assert( pExpr!=0 );
1656 assert( pNC->pSrcList!=0 );
1657 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates
1658 ** are processed */
1659 switch( pExpr->op ){
1660 case TK_COLUMN: {
1661 /* The expression is a column. Locate the table the column is being
1662 ** extracted from in NameContext.pSrcList. This table may be real
1663 ** database table or a subquery.
1665 Table *pTab = 0; /* Table structure column is extracted from */
1666 Select *pS = 0; /* Select the column is extracted from */
1667 int iCol = pExpr->iColumn; /* Index of column in pTab */
1668 while( pNC && !pTab ){
1669 SrcList *pTabList = pNC->pSrcList;
1670 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1671 if( j<pTabList->nSrc ){
1672 pTab = pTabList->a[j].pTab;
1673 pS = pTabList->a[j].pSelect;
1674 }else{
1675 pNC = pNC->pNext;
1679 if( pTab==0 ){
1680 /* At one time, code such as "SELECT new.x" within a trigger would
1681 ** cause this condition to run. Since then, we have restructured how
1682 ** trigger code is generated and so this condition is no longer
1683 ** possible. However, it can still be true for statements like
1684 ** the following:
1686 ** CREATE TABLE t1(col INTEGER);
1687 ** SELECT (SELECT t1.col) FROM FROM t1;
1689 ** when columnType() is called on the expression "t1.col" in the
1690 ** sub-select. In this case, set the column type to NULL, even
1691 ** though it should really be "INTEGER".
1693 ** This is not a problem, as the column type of "t1.col" is never
1694 ** used. When columnType() is called on the expression
1695 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1696 ** branch below. */
1697 break;
1700 assert( pTab && pExpr->pTab==pTab );
1701 if( pS ){
1702 /* The "table" is actually a sub-select or a view in the FROM clause
1703 ** of the SELECT statement. Return the declaration type and origin
1704 ** data for the result-set column of the sub-select.
1706 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1707 /* If iCol is less than zero, then the expression requests the
1708 ** rowid of the sub-select or view. This expression is legal (see
1709 ** test case misc2.2.2) - it always evaluates to NULL.
1711 NameContext sNC;
1712 Expr *p = pS->pEList->a[iCol].pExpr;
1713 sNC.pSrcList = pS->pSrc;
1714 sNC.pNext = pNC;
1715 sNC.pParse = pNC->pParse;
1716 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1718 }else{
1719 /* A real table or a CTE table */
1720 assert( !pS );
1721 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1722 if( iCol<0 ) iCol = pTab->iPKey;
1723 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1724 if( iCol<0 ){
1725 zType = "INTEGER";
1726 zOrigCol = "rowid";
1727 }else{
1728 zOrigCol = pTab->aCol[iCol].zName;
1729 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1731 zOrigTab = pTab->zName;
1732 if( pNC->pParse && pTab->pSchema ){
1733 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1734 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1736 #else
1737 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1738 if( iCol<0 ){
1739 zType = "INTEGER";
1740 }else{
1741 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1743 #endif
1745 break;
1747 #ifndef SQLITE_OMIT_SUBQUERY
1748 case TK_SELECT: {
1749 /* The expression is a sub-select. Return the declaration type and
1750 ** origin info for the single column in the result set of the SELECT
1751 ** statement.
1753 NameContext sNC;
1754 Select *pS = pExpr->x.pSelect;
1755 Expr *p = pS->pEList->a[0].pExpr;
1756 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1757 sNC.pSrcList = pS->pSrc;
1758 sNC.pNext = pNC;
1759 sNC.pParse = pNC->pParse;
1760 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1761 break;
1763 #endif
1766 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1767 if( pzOrigDb ){
1768 assert( pzOrigTab && pzOrigCol );
1769 *pzOrigDb = zOrigDb;
1770 *pzOrigTab = zOrigTab;
1771 *pzOrigCol = zOrigCol;
1773 #endif
1774 return zType;
1778 ** Generate code that will tell the VDBE the declaration types of columns
1779 ** in the result set.
1781 static void generateColumnTypes(
1782 Parse *pParse, /* Parser context */
1783 SrcList *pTabList, /* List of tables */
1784 ExprList *pEList /* Expressions defining the result set */
1786 #ifndef SQLITE_OMIT_DECLTYPE
1787 Vdbe *v = pParse->pVdbe;
1788 int i;
1789 NameContext sNC;
1790 sNC.pSrcList = pTabList;
1791 sNC.pParse = pParse;
1792 sNC.pNext = 0;
1793 for(i=0; i<pEList->nExpr; i++){
1794 Expr *p = pEList->a[i].pExpr;
1795 const char *zType;
1796 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1797 const char *zOrigDb = 0;
1798 const char *zOrigTab = 0;
1799 const char *zOrigCol = 0;
1800 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1802 /* The vdbe must make its own copy of the column-type and other
1803 ** column specific strings, in case the schema is reset before this
1804 ** virtual machine is deleted.
1806 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1807 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1808 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1809 #else
1810 zType = columnType(&sNC, p, 0, 0, 0);
1811 #endif
1812 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1814 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1819 ** Compute the column names for a SELECT statement.
1821 ** The only guarantee that SQLite makes about column names is that if the
1822 ** column has an AS clause assigning it a name, that will be the name used.
1823 ** That is the only documented guarantee. However, countless applications
1824 ** developed over the years have made baseless assumptions about column names
1825 ** and will break if those assumptions changes. Hence, use extreme caution
1826 ** when modifying this routine to avoid breaking legacy.
1828 ** See Also: sqlite3ColumnsFromExprList()
1830 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1831 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1832 ** applications should operate this way. Nevertheless, we need to support the
1833 ** other modes for legacy:
1835 ** short=OFF, full=OFF: Column name is the text of the expression has it
1836 ** originally appears in the SELECT statement. In
1837 ** other words, the zSpan of the result expression.
1839 ** short=ON, full=OFF: (This is the default setting). If the result
1840 ** refers directly to a table column, then the
1841 ** result column name is just the table column
1842 ** name: COLUMN. Otherwise use zSpan.
1844 ** full=ON, short=ANY: If the result refers directly to a table column,
1845 ** then the result column name with the table name
1846 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1848 static void generateColumnNames(
1849 Parse *pParse, /* Parser context */
1850 Select *pSelect /* Generate column names for this SELECT statement */
1852 Vdbe *v = pParse->pVdbe;
1853 int i;
1854 Table *pTab;
1855 SrcList *pTabList;
1856 ExprList *pEList;
1857 sqlite3 *db = pParse->db;
1858 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1859 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1861 #ifndef SQLITE_OMIT_EXPLAIN
1862 /* If this is an EXPLAIN, skip this step */
1863 if( pParse->explain ){
1864 return;
1866 #endif
1868 if( pParse->colNamesSet ) return;
1869 /* Column names are determined by the left-most term of a compound select */
1870 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1871 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1872 pTabList = pSelect->pSrc;
1873 pEList = pSelect->pEList;
1874 assert( v!=0 );
1875 assert( pTabList!=0 );
1876 pParse->colNamesSet = 1;
1877 fullName = (db->flags & SQLITE_FullColNames)!=0;
1878 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1879 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1880 for(i=0; i<pEList->nExpr; i++){
1881 Expr *p = pEList->a[i].pExpr;
1883 assert( p!=0 );
1884 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1885 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1886 if( pEList->a[i].zName ){
1887 /* An AS clause always takes first priority */
1888 char *zName = pEList->a[i].zName;
1889 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1890 }else if( srcName && p->op==TK_COLUMN ){
1891 char *zCol;
1892 int iCol = p->iColumn;
1893 pTab = p->pTab;
1894 assert( pTab!=0 );
1895 if( iCol<0 ) iCol = pTab->iPKey;
1896 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1897 if( iCol<0 ){
1898 zCol = "rowid";
1899 }else{
1900 zCol = pTab->aCol[iCol].zName;
1902 if( fullName ){
1903 char *zName = 0;
1904 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1905 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1906 }else{
1907 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1909 }else{
1910 const char *z = pEList->a[i].zSpan;
1911 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1912 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1915 generateColumnTypes(pParse, pTabList, pEList);
1919 ** Given an expression list (which is really the list of expressions
1920 ** that form the result set of a SELECT statement) compute appropriate
1921 ** column names for a table that would hold the expression list.
1923 ** All column names will be unique.
1925 ** Only the column names are computed. Column.zType, Column.zColl,
1926 ** and other fields of Column are zeroed.
1928 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1929 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1931 ** The only guarantee that SQLite makes about column names is that if the
1932 ** column has an AS clause assigning it a name, that will be the name used.
1933 ** That is the only documented guarantee. However, countless applications
1934 ** developed over the years have made baseless assumptions about column names
1935 ** and will break if those assumptions changes. Hence, use extreme caution
1936 ** when modifying this routine to avoid breaking legacy.
1938 ** See Also: generateColumnNames()
1940 int sqlite3ColumnsFromExprList(
1941 Parse *pParse, /* Parsing context */
1942 ExprList *pEList, /* Expr list from which to derive column names */
1943 i16 *pnCol, /* Write the number of columns here */
1944 Column **paCol /* Write the new column list here */
1946 sqlite3 *db = pParse->db; /* Database connection */
1947 int i, j; /* Loop counters */
1948 u32 cnt; /* Index added to make the name unique */
1949 Column *aCol, *pCol; /* For looping over result columns */
1950 int nCol; /* Number of columns in the result set */
1951 char *zName; /* Column name */
1952 int nName; /* Size of name in zName[] */
1953 Hash ht; /* Hash table of column names */
1955 sqlite3HashInit(&ht);
1956 if( pEList ){
1957 nCol = pEList->nExpr;
1958 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1959 testcase( aCol==0 );
1960 if( nCol>32767 ) nCol = 32767;
1961 }else{
1962 nCol = 0;
1963 aCol = 0;
1965 assert( nCol==(i16)nCol );
1966 *pnCol = nCol;
1967 *paCol = aCol;
1969 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1970 /* Get an appropriate name for the column
1972 if( (zName = pEList->a[i].zName)!=0 ){
1973 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1974 }else{
1975 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1976 while( pColExpr->op==TK_DOT ){
1977 pColExpr = pColExpr->pRight;
1978 assert( pColExpr!=0 );
1980 assert( pColExpr->op!=TK_AGG_COLUMN );
1981 if( pColExpr->op==TK_COLUMN ){
1982 /* For columns use the column name name */
1983 int iCol = pColExpr->iColumn;
1984 Table *pTab = pColExpr->pTab;
1985 assert( pTab!=0 );
1986 if( iCol<0 ) iCol = pTab->iPKey;
1987 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1988 }else if( pColExpr->op==TK_ID ){
1989 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1990 zName = pColExpr->u.zToken;
1991 }else{
1992 /* Use the original text of the column expression as its name */
1993 zName = pEList->a[i].zSpan;
1996 if( zName ){
1997 zName = sqlite3DbStrDup(db, zName);
1998 }else{
1999 zName = sqlite3MPrintf(db,"column%d",i+1);
2002 /* Make sure the column name is unique. If the name is not unique,
2003 ** append an integer to the name so that it becomes unique.
2005 cnt = 0;
2006 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2007 nName = sqlite3Strlen30(zName);
2008 if( nName>0 ){
2009 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2010 if( zName[j]==':' ) nName = j;
2012 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2013 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2015 pCol->zName = zName;
2016 sqlite3ColumnPropertiesFromName(0, pCol);
2017 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2018 sqlite3OomFault(db);
2021 sqlite3HashClear(&ht);
2022 if( db->mallocFailed ){
2023 for(j=0; j<i; j++){
2024 sqlite3DbFree(db, aCol[j].zName);
2026 sqlite3DbFree(db, aCol);
2027 *paCol = 0;
2028 *pnCol = 0;
2029 return SQLITE_NOMEM_BKPT;
2031 return SQLITE_OK;
2035 ** Add type and collation information to a column list based on
2036 ** a SELECT statement.
2038 ** The column list presumably came from selectColumnNamesFromExprList().
2039 ** The column list has only names, not types or collations. This
2040 ** routine goes through and adds the types and collations.
2042 ** This routine requires that all identifiers in the SELECT
2043 ** statement be resolved.
2045 void sqlite3SelectAddColumnTypeAndCollation(
2046 Parse *pParse, /* Parsing contexts */
2047 Table *pTab, /* Add column type information to this table */
2048 Select *pSelect /* SELECT used to determine types and collations */
2050 sqlite3 *db = pParse->db;
2051 NameContext sNC;
2052 Column *pCol;
2053 CollSeq *pColl;
2054 int i;
2055 Expr *p;
2056 struct ExprList_item *a;
2058 assert( pSelect!=0 );
2059 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2060 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2061 if( db->mallocFailed ) return;
2062 memset(&sNC, 0, sizeof(sNC));
2063 sNC.pSrcList = pSelect->pSrc;
2064 a = pSelect->pEList->a;
2065 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2066 const char *zType;
2067 int n, m;
2068 p = a[i].pExpr;
2069 zType = columnType(&sNC, p, 0, 0, 0);
2070 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2071 pCol->affinity = sqlite3ExprAffinity(p);
2072 if( zType ){
2073 m = sqlite3Strlen30(zType);
2074 n = sqlite3Strlen30(pCol->zName);
2075 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2076 if( pCol->zName ){
2077 memcpy(&pCol->zName[n+1], zType, m+1);
2078 pCol->colFlags |= COLFLAG_HASTYPE;
2081 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2082 pColl = sqlite3ExprCollSeq(pParse, p);
2083 if( pColl && pCol->zColl==0 ){
2084 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2087 pTab->szTabRow = 1; /* Any non-zero value works */
2091 ** Given a SELECT statement, generate a Table structure that describes
2092 ** the result set of that SELECT.
2094 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2095 Table *pTab;
2096 sqlite3 *db = pParse->db;
2097 int savedFlags;
2099 savedFlags = db->flags;
2100 db->flags &= ~SQLITE_FullColNames;
2101 db->flags |= SQLITE_ShortColNames;
2102 sqlite3SelectPrep(pParse, pSelect, 0);
2103 if( pParse->nErr ) return 0;
2104 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2105 db->flags = savedFlags;
2106 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2107 if( pTab==0 ){
2108 return 0;
2110 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2111 ** is disabled */
2112 assert( db->lookaside.bDisable );
2113 pTab->nTabRef = 1;
2114 pTab->zName = 0;
2115 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2116 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2117 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2118 pTab->iPKey = -1;
2119 if( db->mallocFailed ){
2120 sqlite3DeleteTable(db, pTab);
2121 return 0;
2123 return pTab;
2127 ** Get a VDBE for the given parser context. Create a new one if necessary.
2128 ** If an error occurs, return NULL and leave a message in pParse.
2130 Vdbe *sqlite3GetVdbe(Parse *pParse){
2131 if( pParse->pVdbe ){
2132 return pParse->pVdbe;
2134 if( pParse->pToplevel==0
2135 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2137 pParse->okConstFactor = 1;
2139 return sqlite3VdbeCreate(pParse);
2144 ** Compute the iLimit and iOffset fields of the SELECT based on the
2145 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2146 ** that appear in the original SQL statement after the LIMIT and OFFSET
2147 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2148 ** are the integer memory register numbers for counters used to compute
2149 ** the limit and offset. If there is no limit and/or offset, then
2150 ** iLimit and iOffset are negative.
2152 ** This routine changes the values of iLimit and iOffset only if
2153 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2154 ** and iOffset should have been preset to appropriate default values (zero)
2155 ** prior to calling this routine.
2157 ** The iOffset register (if it exists) is initialized to the value
2158 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2159 ** iOffset+1 is initialized to LIMIT+OFFSET.
2161 ** Only if pLimit->pLeft!=0 do the limit registers get
2162 ** redefined. The UNION ALL operator uses this property to force
2163 ** the reuse of the same limit and offset registers across multiple
2164 ** SELECT statements.
2166 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2167 Vdbe *v = 0;
2168 int iLimit = 0;
2169 int iOffset;
2170 int n;
2171 Expr *pLimit = p->pLimit;
2173 if( p->iLimit ) return;
2176 ** "LIMIT -1" always shows all rows. There is some
2177 ** controversy about what the correct behavior should be.
2178 ** The current implementation interprets "LIMIT 0" to mean
2179 ** no rows.
2181 sqlite3ExprCacheClear(pParse);
2182 if( pLimit ){
2183 assert( pLimit->op==TK_LIMIT );
2184 assert( pLimit->pLeft!=0 );
2185 p->iLimit = iLimit = ++pParse->nMem;
2186 v = sqlite3GetVdbe(pParse);
2187 assert( v!=0 );
2188 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2189 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2190 VdbeComment((v, "LIMIT counter"));
2191 if( n==0 ){
2192 sqlite3VdbeGoto(v, iBreak);
2193 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2194 p->nSelectRow = sqlite3LogEst((u64)n);
2195 p->selFlags |= SF_FixedLimit;
2197 }else{
2198 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2199 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2200 VdbeComment((v, "LIMIT counter"));
2201 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2203 if( pLimit->pRight ){
2204 p->iOffset = iOffset = ++pParse->nMem;
2205 pParse->nMem++; /* Allocate an extra register for limit+offset */
2206 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2207 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2208 VdbeComment((v, "OFFSET counter"));
2209 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2210 VdbeComment((v, "LIMIT+OFFSET"));
2215 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2217 ** Return the appropriate collating sequence for the iCol-th column of
2218 ** the result set for the compound-select statement "p". Return NULL if
2219 ** the column has no default collating sequence.
2221 ** The collating sequence for the compound select is taken from the
2222 ** left-most term of the select that has a collating sequence.
2224 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2225 CollSeq *pRet;
2226 if( p->pPrior ){
2227 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2228 }else{
2229 pRet = 0;
2231 assert( iCol>=0 );
2232 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2233 ** have been thrown during name resolution and we would not have gotten
2234 ** this far */
2235 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2236 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2238 return pRet;
2242 ** The select statement passed as the second parameter is a compound SELECT
2243 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2244 ** structure suitable for implementing the ORDER BY.
2246 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2247 ** function is responsible for ensuring that this structure is eventually
2248 ** freed.
2250 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2251 ExprList *pOrderBy = p->pOrderBy;
2252 int nOrderBy = p->pOrderBy->nExpr;
2253 sqlite3 *db = pParse->db;
2254 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2255 if( pRet ){
2256 int i;
2257 for(i=0; i<nOrderBy; i++){
2258 struct ExprList_item *pItem = &pOrderBy->a[i];
2259 Expr *pTerm = pItem->pExpr;
2260 CollSeq *pColl;
2262 if( pTerm->flags & EP_Collate ){
2263 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2264 }else{
2265 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2266 if( pColl==0 ) pColl = db->pDfltColl;
2267 pOrderBy->a[i].pExpr =
2268 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2270 assert( sqlite3KeyInfoIsWriteable(pRet) );
2271 pRet->aColl[i] = pColl;
2272 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2276 return pRet;
2279 #ifndef SQLITE_OMIT_CTE
2281 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2282 ** query of the form:
2284 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2285 ** \___________/ \_______________/
2286 ** p->pPrior p
2289 ** There is exactly one reference to the recursive-table in the FROM clause
2290 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2292 ** The setup-query runs once to generate an initial set of rows that go
2293 ** into a Queue table. Rows are extracted from the Queue table one by
2294 ** one. Each row extracted from Queue is output to pDest. Then the single
2295 ** extracted row (now in the iCurrent table) becomes the content of the
2296 ** recursive-table for a recursive-query run. The output of the recursive-query
2297 ** is added back into the Queue table. Then another row is extracted from Queue
2298 ** and the iteration continues until the Queue table is empty.
2300 ** If the compound query operator is UNION then no duplicate rows are ever
2301 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2302 ** that have ever been inserted into Queue and causes duplicates to be
2303 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2305 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2306 ** ORDER BY order and the first entry is extracted for each cycle. Without
2307 ** an ORDER BY, the Queue table is just a FIFO.
2309 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2310 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2311 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2312 ** with a positive value, then the first OFFSET outputs are discarded rather
2313 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2314 ** rows have been skipped.
2316 static void generateWithRecursiveQuery(
2317 Parse *pParse, /* Parsing context */
2318 Select *p, /* The recursive SELECT to be coded */
2319 SelectDest *pDest /* What to do with query results */
2321 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2322 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2323 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2324 Select *pSetup = p->pPrior; /* The setup query */
2325 int addrTop; /* Top of the loop */
2326 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2327 int iCurrent = 0; /* The Current table */
2328 int regCurrent; /* Register holding Current table */
2329 int iQueue; /* The Queue table */
2330 int iDistinct = 0; /* To ensure unique results if UNION */
2331 int eDest = SRT_Fifo; /* How to write to Queue */
2332 SelectDest destQueue; /* SelectDest targetting the Queue table */
2333 int i; /* Loop counter */
2334 int rc; /* Result code */
2335 ExprList *pOrderBy; /* The ORDER BY clause */
2336 Expr *pLimit; /* Saved LIMIT and OFFSET */
2337 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2339 /* Obtain authorization to do a recursive query */
2340 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2342 /* Process the LIMIT and OFFSET clauses, if they exist */
2343 addrBreak = sqlite3VdbeMakeLabel(v);
2344 p->nSelectRow = 320; /* 4 billion rows */
2345 computeLimitRegisters(pParse, p, addrBreak);
2346 pLimit = p->pLimit;
2347 regLimit = p->iLimit;
2348 regOffset = p->iOffset;
2349 p->pLimit = 0;
2350 p->iLimit = p->iOffset = 0;
2351 pOrderBy = p->pOrderBy;
2353 /* Locate the cursor number of the Current table */
2354 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2355 if( pSrc->a[i].fg.isRecursive ){
2356 iCurrent = pSrc->a[i].iCursor;
2357 break;
2361 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2362 ** the Distinct table must be exactly one greater than Queue in order
2363 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2364 iQueue = pParse->nTab++;
2365 if( p->op==TK_UNION ){
2366 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2367 iDistinct = pParse->nTab++;
2368 }else{
2369 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2371 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2373 /* Allocate cursors for Current, Queue, and Distinct. */
2374 regCurrent = ++pParse->nMem;
2375 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2376 if( pOrderBy ){
2377 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2378 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2379 (char*)pKeyInfo, P4_KEYINFO);
2380 destQueue.pOrderBy = pOrderBy;
2381 }else{
2382 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2384 VdbeComment((v, "Queue table"));
2385 if( iDistinct ){
2386 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2387 p->selFlags |= SF_UsesEphemeral;
2390 /* Detach the ORDER BY clause from the compound SELECT */
2391 p->pOrderBy = 0;
2393 /* Store the results of the setup-query in Queue. */
2394 pSetup->pNext = 0;
2395 ExplainQueryPlan((pParse, 1, "SETUP"));
2396 rc = sqlite3Select(pParse, pSetup, &destQueue);
2397 pSetup->pNext = p;
2398 if( rc ) goto end_of_recursive_query;
2400 /* Find the next row in the Queue and output that row */
2401 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2403 /* Transfer the next row in Queue over to Current */
2404 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2405 if( pOrderBy ){
2406 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2407 }else{
2408 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2410 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2412 /* Output the single row in Current */
2413 addrCont = sqlite3VdbeMakeLabel(v);
2414 codeOffset(v, regOffset, addrCont);
2415 selectInnerLoop(pParse, p, iCurrent,
2416 0, 0, pDest, addrCont, addrBreak);
2417 if( regLimit ){
2418 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2419 VdbeCoverage(v);
2421 sqlite3VdbeResolveLabel(v, addrCont);
2423 /* Execute the recursive SELECT taking the single row in Current as
2424 ** the value for the recursive-table. Store the results in the Queue.
2426 if( p->selFlags & SF_Aggregate ){
2427 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2428 }else{
2429 p->pPrior = 0;
2430 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2431 sqlite3Select(pParse, p, &destQueue);
2432 assert( p->pPrior==0 );
2433 p->pPrior = pSetup;
2436 /* Keep running the loop until the Queue is empty */
2437 sqlite3VdbeGoto(v, addrTop);
2438 sqlite3VdbeResolveLabel(v, addrBreak);
2440 end_of_recursive_query:
2441 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2442 p->pOrderBy = pOrderBy;
2443 p->pLimit = pLimit;
2444 return;
2446 #endif /* SQLITE_OMIT_CTE */
2448 /* Forward references */
2449 static int multiSelectOrderBy(
2450 Parse *pParse, /* Parsing context */
2451 Select *p, /* The right-most of SELECTs to be coded */
2452 SelectDest *pDest /* What to do with query results */
2456 ** Handle the special case of a compound-select that originates from a
2457 ** VALUES clause. By handling this as a special case, we avoid deep
2458 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2459 ** on a VALUES clause.
2461 ** Because the Select object originates from a VALUES clause:
2462 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2463 ** (2) All terms are UNION ALL
2464 ** (3) There is no ORDER BY clause
2466 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2467 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2468 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2469 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2471 static int multiSelectValues(
2472 Parse *pParse, /* Parsing context */
2473 Select *p, /* The right-most of SELECTs to be coded */
2474 SelectDest *pDest /* What to do with query results */
2476 int nRow = 1;
2477 int rc = 0;
2478 int bShowAll = p->pLimit==0;
2479 assert( p->selFlags & SF_MultiValue );
2481 assert( p->selFlags & SF_Values );
2482 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2483 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2484 if( p->pPrior==0 ) break;
2485 assert( p->pPrior->pNext==p );
2486 p = p->pPrior;
2487 nRow += bShowAll;
2488 }while(1);
2489 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2490 nRow==1 ? "" : "S"));
2491 while( p ){
2492 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2493 if( !bShowAll ) break;
2494 p->nSelectRow = nRow;
2495 p = p->pNext;
2497 return rc;
2501 ** This routine is called to process a compound query form from
2502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2503 ** INTERSECT
2505 ** "p" points to the right-most of the two queries. the query on the
2506 ** left is p->pPrior. The left query could also be a compound query
2507 ** in which case this routine will be called recursively.
2509 ** The results of the total query are to be written into a destination
2510 ** of type eDest with parameter iParm.
2512 ** Example 1: Consider a three-way compound SQL statement.
2514 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2516 ** This statement is parsed up as follows:
2518 ** SELECT c FROM t3
2519 ** |
2520 ** `-----> SELECT b FROM t2
2521 ** |
2522 ** `------> SELECT a FROM t1
2524 ** The arrows in the diagram above represent the Select.pPrior pointer.
2525 ** So if this routine is called with p equal to the t3 query, then
2526 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2528 ** Notice that because of the way SQLite parses compound SELECTs, the
2529 ** individual selects always group from left to right.
2531 static int multiSelect(
2532 Parse *pParse, /* Parsing context */
2533 Select *p, /* The right-most of SELECTs to be coded */
2534 SelectDest *pDest /* What to do with query results */
2536 int rc = SQLITE_OK; /* Success code from a subroutine */
2537 Select *pPrior; /* Another SELECT immediately to our left */
2538 Vdbe *v; /* Generate code to this VDBE */
2539 SelectDest dest; /* Alternative data destination */
2540 Select *pDelete = 0; /* Chain of simple selects to delete */
2541 sqlite3 *db; /* Database connection */
2543 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2544 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2546 assert( p && p->pPrior ); /* Calling function guarantees this much */
2547 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2548 db = pParse->db;
2549 pPrior = p->pPrior;
2550 dest = *pDest;
2551 if( pPrior->pOrderBy || pPrior->pLimit ){
2552 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2553 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2554 rc = 1;
2555 goto multi_select_end;
2558 v = sqlite3GetVdbe(pParse);
2559 assert( v!=0 ); /* The VDBE already created by calling function */
2561 /* Create the destination temporary table if necessary
2563 if( dest.eDest==SRT_EphemTab ){
2564 assert( p->pEList );
2565 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2566 dest.eDest = SRT_Table;
2569 /* Special handling for a compound-select that originates as a VALUES clause.
2571 if( p->selFlags & SF_MultiValue ){
2572 rc = multiSelectValues(pParse, p, &dest);
2573 goto multi_select_end;
2576 /* Make sure all SELECTs in the statement have the same number of elements
2577 ** in their result sets.
2579 assert( p->pEList && pPrior->pEList );
2580 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2582 #ifndef SQLITE_OMIT_CTE
2583 if( p->selFlags & SF_Recursive ){
2584 generateWithRecursiveQuery(pParse, p, &dest);
2585 }else
2586 #endif
2588 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2590 if( p->pOrderBy ){
2591 return multiSelectOrderBy(pParse, p, pDest);
2592 }else{
2594 #ifndef SQLITE_OMIT_EXPLAIN
2595 if( pPrior->pPrior==0 ){
2596 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2597 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2599 #endif
2601 /* Generate code for the left and right SELECT statements.
2603 switch( p->op ){
2604 case TK_ALL: {
2605 int addr = 0;
2606 int nLimit;
2607 assert( !pPrior->pLimit );
2608 pPrior->iLimit = p->iLimit;
2609 pPrior->iOffset = p->iOffset;
2610 pPrior->pLimit = p->pLimit;
2611 rc = sqlite3Select(pParse, pPrior, &dest);
2612 p->pLimit = 0;
2613 if( rc ){
2614 goto multi_select_end;
2616 p->pPrior = 0;
2617 p->iLimit = pPrior->iLimit;
2618 p->iOffset = pPrior->iOffset;
2619 if( p->iLimit ){
2620 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2621 VdbeComment((v, "Jump ahead if LIMIT reached"));
2622 if( p->iOffset ){
2623 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2624 p->iLimit, p->iOffset+1, p->iOffset);
2627 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2628 rc = sqlite3Select(pParse, p, &dest);
2629 testcase( rc!=SQLITE_OK );
2630 pDelete = p->pPrior;
2631 p->pPrior = pPrior;
2632 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2633 if( pPrior->pLimit
2634 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2635 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2637 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2639 if( addr ){
2640 sqlite3VdbeJumpHere(v, addr);
2642 break;
2644 case TK_EXCEPT:
2645 case TK_UNION: {
2646 int unionTab; /* Cursor number of the temp table holding result */
2647 u8 op = 0; /* One of the SRT_ operations to apply to self */
2648 int priorOp; /* The SRT_ operation to apply to prior selects */
2649 Expr *pLimit; /* Saved values of p->nLimit */
2650 int addr;
2651 SelectDest uniondest;
2653 testcase( p->op==TK_EXCEPT );
2654 testcase( p->op==TK_UNION );
2655 priorOp = SRT_Union;
2656 if( dest.eDest==priorOp ){
2657 /* We can reuse a temporary table generated by a SELECT to our
2658 ** right.
2660 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2661 unionTab = dest.iSDParm;
2662 }else{
2663 /* We will need to create our own temporary table to hold the
2664 ** intermediate results.
2666 unionTab = pParse->nTab++;
2667 assert( p->pOrderBy==0 );
2668 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2669 assert( p->addrOpenEphm[0] == -1 );
2670 p->addrOpenEphm[0] = addr;
2671 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2672 assert( p->pEList );
2675 /* Code the SELECT statements to our left
2677 assert( !pPrior->pOrderBy );
2678 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2679 rc = sqlite3Select(pParse, pPrior, &uniondest);
2680 if( rc ){
2681 goto multi_select_end;
2684 /* Code the current SELECT statement
2686 if( p->op==TK_EXCEPT ){
2687 op = SRT_Except;
2688 }else{
2689 assert( p->op==TK_UNION );
2690 op = SRT_Union;
2692 p->pPrior = 0;
2693 pLimit = p->pLimit;
2694 p->pLimit = 0;
2695 uniondest.eDest = op;
2696 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2697 selectOpName(p->op)));
2698 rc = sqlite3Select(pParse, p, &uniondest);
2699 testcase( rc!=SQLITE_OK );
2700 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2701 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2702 sqlite3ExprListDelete(db, p->pOrderBy);
2703 pDelete = p->pPrior;
2704 p->pPrior = pPrior;
2705 p->pOrderBy = 0;
2706 if( p->op==TK_UNION ){
2707 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2709 sqlite3ExprDelete(db, p->pLimit);
2710 p->pLimit = pLimit;
2711 p->iLimit = 0;
2712 p->iOffset = 0;
2714 /* Convert the data in the temporary table into whatever form
2715 ** it is that we currently need.
2717 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2718 if( dest.eDest!=priorOp ){
2719 int iCont, iBreak, iStart;
2720 assert( p->pEList );
2721 iBreak = sqlite3VdbeMakeLabel(v);
2722 iCont = sqlite3VdbeMakeLabel(v);
2723 computeLimitRegisters(pParse, p, iBreak);
2724 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2725 iStart = sqlite3VdbeCurrentAddr(v);
2726 selectInnerLoop(pParse, p, unionTab,
2727 0, 0, &dest, iCont, iBreak);
2728 sqlite3VdbeResolveLabel(v, iCont);
2729 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2730 sqlite3VdbeResolveLabel(v, iBreak);
2731 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2733 break;
2735 default: assert( p->op==TK_INTERSECT ); {
2736 int tab1, tab2;
2737 int iCont, iBreak, iStart;
2738 Expr *pLimit;
2739 int addr;
2740 SelectDest intersectdest;
2741 int r1;
2743 /* INTERSECT is different from the others since it requires
2744 ** two temporary tables. Hence it has its own case. Begin
2745 ** by allocating the tables we will need.
2747 tab1 = pParse->nTab++;
2748 tab2 = pParse->nTab++;
2749 assert( p->pOrderBy==0 );
2751 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2752 assert( p->addrOpenEphm[0] == -1 );
2753 p->addrOpenEphm[0] = addr;
2754 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2755 assert( p->pEList );
2757 /* Code the SELECTs to our left into temporary table "tab1".
2759 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2760 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2761 if( rc ){
2762 goto multi_select_end;
2765 /* Code the current SELECT into temporary table "tab2"
2767 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2768 assert( p->addrOpenEphm[1] == -1 );
2769 p->addrOpenEphm[1] = addr;
2770 p->pPrior = 0;
2771 pLimit = p->pLimit;
2772 p->pLimit = 0;
2773 intersectdest.iSDParm = tab2;
2774 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2775 selectOpName(p->op)));
2776 rc = sqlite3Select(pParse, p, &intersectdest);
2777 testcase( rc!=SQLITE_OK );
2778 pDelete = p->pPrior;
2779 p->pPrior = pPrior;
2780 if( p->nSelectRow>pPrior->nSelectRow ){
2781 p->nSelectRow = pPrior->nSelectRow;
2783 sqlite3ExprDelete(db, p->pLimit);
2784 p->pLimit = pLimit;
2786 /* Generate code to take the intersection of the two temporary
2787 ** tables.
2789 assert( p->pEList );
2790 iBreak = sqlite3VdbeMakeLabel(v);
2791 iCont = sqlite3VdbeMakeLabel(v);
2792 computeLimitRegisters(pParse, p, iBreak);
2793 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2794 r1 = sqlite3GetTempReg(pParse);
2795 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2796 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2797 VdbeCoverage(v);
2798 sqlite3ReleaseTempReg(pParse, r1);
2799 selectInnerLoop(pParse, p, tab1,
2800 0, 0, &dest, iCont, iBreak);
2801 sqlite3VdbeResolveLabel(v, iCont);
2802 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2803 sqlite3VdbeResolveLabel(v, iBreak);
2804 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2805 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2806 break;
2810 #ifndef SQLITE_OMIT_EXPLAIN
2811 if( p->pNext==0 ){
2812 ExplainQueryPlanPop(pParse);
2814 #endif
2817 /* Compute collating sequences used by
2818 ** temporary tables needed to implement the compound select.
2819 ** Attach the KeyInfo structure to all temporary tables.
2821 ** This section is run by the right-most SELECT statement only.
2822 ** SELECT statements to the left always skip this part. The right-most
2823 ** SELECT might also skip this part if it has no ORDER BY clause and
2824 ** no temp tables are required.
2826 if( p->selFlags & SF_UsesEphemeral ){
2827 int i; /* Loop counter */
2828 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2829 Select *pLoop; /* For looping through SELECT statements */
2830 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2831 int nCol; /* Number of columns in result set */
2833 assert( p->pNext==0 );
2834 nCol = p->pEList->nExpr;
2835 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2836 if( !pKeyInfo ){
2837 rc = SQLITE_NOMEM_BKPT;
2838 goto multi_select_end;
2840 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2841 *apColl = multiSelectCollSeq(pParse, p, i);
2842 if( 0==*apColl ){
2843 *apColl = db->pDfltColl;
2847 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2848 for(i=0; i<2; i++){
2849 int addr = pLoop->addrOpenEphm[i];
2850 if( addr<0 ){
2851 /* If [0] is unused then [1] is also unused. So we can
2852 ** always safely abort as soon as the first unused slot is found */
2853 assert( pLoop->addrOpenEphm[1]<0 );
2854 break;
2856 sqlite3VdbeChangeP2(v, addr, nCol);
2857 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2858 P4_KEYINFO);
2859 pLoop->addrOpenEphm[i] = -1;
2862 sqlite3KeyInfoUnref(pKeyInfo);
2865 multi_select_end:
2866 pDest->iSdst = dest.iSdst;
2867 pDest->nSdst = dest.nSdst;
2868 sqlite3SelectDelete(db, pDelete);
2869 return rc;
2871 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2874 ** Error message for when two or more terms of a compound select have different
2875 ** size result sets.
2877 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2878 if( p->selFlags & SF_Values ){
2879 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2880 }else{
2881 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2882 " do not have the same number of result columns", selectOpName(p->op));
2887 ** Code an output subroutine for a coroutine implementation of a
2888 ** SELECT statment.
2890 ** The data to be output is contained in pIn->iSdst. There are
2891 ** pIn->nSdst columns to be output. pDest is where the output should
2892 ** be sent.
2894 ** regReturn is the number of the register holding the subroutine
2895 ** return address.
2897 ** If regPrev>0 then it is the first register in a vector that
2898 ** records the previous output. mem[regPrev] is a flag that is false
2899 ** if there has been no previous output. If regPrev>0 then code is
2900 ** generated to suppress duplicates. pKeyInfo is used for comparing
2901 ** keys.
2903 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2904 ** iBreak.
2906 static int generateOutputSubroutine(
2907 Parse *pParse, /* Parsing context */
2908 Select *p, /* The SELECT statement */
2909 SelectDest *pIn, /* Coroutine supplying data */
2910 SelectDest *pDest, /* Where to send the data */
2911 int regReturn, /* The return address register */
2912 int regPrev, /* Previous result register. No uniqueness if 0 */
2913 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2914 int iBreak /* Jump here if we hit the LIMIT */
2916 Vdbe *v = pParse->pVdbe;
2917 int iContinue;
2918 int addr;
2920 addr = sqlite3VdbeCurrentAddr(v);
2921 iContinue = sqlite3VdbeMakeLabel(v);
2923 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2925 if( regPrev ){
2926 int addr1, addr2;
2927 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2928 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2929 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2930 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2931 sqlite3VdbeJumpHere(v, addr1);
2932 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2933 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2935 if( pParse->db->mallocFailed ) return 0;
2937 /* Suppress the first OFFSET entries if there is an OFFSET clause
2939 codeOffset(v, p->iOffset, iContinue);
2941 assert( pDest->eDest!=SRT_Exists );
2942 assert( pDest->eDest!=SRT_Table );
2943 switch( pDest->eDest ){
2944 /* Store the result as data using a unique key.
2946 case SRT_EphemTab: {
2947 int r1 = sqlite3GetTempReg(pParse);
2948 int r2 = sqlite3GetTempReg(pParse);
2949 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2950 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2951 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2952 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2953 sqlite3ReleaseTempReg(pParse, r2);
2954 sqlite3ReleaseTempReg(pParse, r1);
2955 break;
2958 #ifndef SQLITE_OMIT_SUBQUERY
2959 /* If we are creating a set for an "expr IN (SELECT ...)".
2961 case SRT_Set: {
2962 int r1;
2963 testcase( pIn->nSdst>1 );
2964 r1 = sqlite3GetTempReg(pParse);
2965 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2966 r1, pDest->zAffSdst, pIn->nSdst);
2967 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2968 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2969 pIn->iSdst, pIn->nSdst);
2970 sqlite3ReleaseTempReg(pParse, r1);
2971 break;
2974 /* If this is a scalar select that is part of an expression, then
2975 ** store the results in the appropriate memory cell and break out
2976 ** of the scan loop.
2978 case SRT_Mem: {
2979 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2980 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2981 /* The LIMIT clause will jump out of the loop for us */
2982 break;
2984 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2986 /* The results are stored in a sequence of registers
2987 ** starting at pDest->iSdst. Then the co-routine yields.
2989 case SRT_Coroutine: {
2990 if( pDest->iSdst==0 ){
2991 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2992 pDest->nSdst = pIn->nSdst;
2994 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2995 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2996 break;
2999 /* If none of the above, then the result destination must be
3000 ** SRT_Output. This routine is never called with any other
3001 ** destination other than the ones handled above or SRT_Output.
3003 ** For SRT_Output, results are stored in a sequence of registers.
3004 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3005 ** return the next row of result.
3007 default: {
3008 assert( pDest->eDest==SRT_Output );
3009 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3010 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
3011 break;
3015 /* Jump to the end of the loop if the LIMIT is reached.
3017 if( p->iLimit ){
3018 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3021 /* Generate the subroutine return
3023 sqlite3VdbeResolveLabel(v, iContinue);
3024 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3026 return addr;
3030 ** Alternative compound select code generator for cases when there
3031 ** is an ORDER BY clause.
3033 ** We assume a query of the following form:
3035 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3037 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3038 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3039 ** co-routines. Then run the co-routines in parallel and merge the results
3040 ** into the output. In addition to the two coroutines (called selectA and
3041 ** selectB) there are 7 subroutines:
3043 ** outA: Move the output of the selectA coroutine into the output
3044 ** of the compound query.
3046 ** outB: Move the output of the selectB coroutine into the output
3047 ** of the compound query. (Only generated for UNION and
3048 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3049 ** appears only in B.)
3051 ** AltB: Called when there is data from both coroutines and A<B.
3053 ** AeqB: Called when there is data from both coroutines and A==B.
3055 ** AgtB: Called when there is data from both coroutines and A>B.
3057 ** EofA: Called when data is exhausted from selectA.
3059 ** EofB: Called when data is exhausted from selectB.
3061 ** The implementation of the latter five subroutines depend on which
3062 ** <operator> is used:
3065 ** UNION ALL UNION EXCEPT INTERSECT
3066 ** ------------- ----------------- -------------- -----------------
3067 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3069 ** AeqB: outA, nextA nextA nextA outA, nextA
3071 ** AgtB: outB, nextB outB, nextB nextB nextB
3073 ** EofA: outB, nextB outB, nextB halt halt
3075 ** EofB: outA, nextA outA, nextA outA, nextA halt
3077 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3078 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3079 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3080 ** following nextX causes a jump to the end of the select processing.
3082 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3083 ** within the output subroutine. The regPrev register set holds the previously
3084 ** output value. A comparison is made against this value and the output
3085 ** is skipped if the next results would be the same as the previous.
3087 ** The implementation plan is to implement the two coroutines and seven
3088 ** subroutines first, then put the control logic at the bottom. Like this:
3090 ** goto Init
3091 ** coA: coroutine for left query (A)
3092 ** coB: coroutine for right query (B)
3093 ** outA: output one row of A
3094 ** outB: output one row of B (UNION and UNION ALL only)
3095 ** EofA: ...
3096 ** EofB: ...
3097 ** AltB: ...
3098 ** AeqB: ...
3099 ** AgtB: ...
3100 ** Init: initialize coroutine registers
3101 ** yield coA
3102 ** if eof(A) goto EofA
3103 ** yield coB
3104 ** if eof(B) goto EofB
3105 ** Cmpr: Compare A, B
3106 ** Jump AltB, AeqB, AgtB
3107 ** End: ...
3109 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3110 ** actually called using Gosub and they do not Return. EofA and EofB loop
3111 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3112 ** and AgtB jump to either L2 or to one of EofA or EofB.
3114 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3115 static int multiSelectOrderBy(
3116 Parse *pParse, /* Parsing context */
3117 Select *p, /* The right-most of SELECTs to be coded */
3118 SelectDest *pDest /* What to do with query results */
3120 int i, j; /* Loop counters */
3121 Select *pPrior; /* Another SELECT immediately to our left */
3122 Vdbe *v; /* Generate code to this VDBE */
3123 SelectDest destA; /* Destination for coroutine A */
3124 SelectDest destB; /* Destination for coroutine B */
3125 int regAddrA; /* Address register for select-A coroutine */
3126 int regAddrB; /* Address register for select-B coroutine */
3127 int addrSelectA; /* Address of the select-A coroutine */
3128 int addrSelectB; /* Address of the select-B coroutine */
3129 int regOutA; /* Address register for the output-A subroutine */
3130 int regOutB; /* Address register for the output-B subroutine */
3131 int addrOutA; /* Address of the output-A subroutine */
3132 int addrOutB = 0; /* Address of the output-B subroutine */
3133 int addrEofA; /* Address of the select-A-exhausted subroutine */
3134 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3135 int addrEofB; /* Address of the select-B-exhausted subroutine */
3136 int addrAltB; /* Address of the A<B subroutine */
3137 int addrAeqB; /* Address of the A==B subroutine */
3138 int addrAgtB; /* Address of the A>B subroutine */
3139 int regLimitA; /* Limit register for select-A */
3140 int regLimitB; /* Limit register for select-A */
3141 int regPrev; /* A range of registers to hold previous output */
3142 int savedLimit; /* Saved value of p->iLimit */
3143 int savedOffset; /* Saved value of p->iOffset */
3144 int labelCmpr; /* Label for the start of the merge algorithm */
3145 int labelEnd; /* Label for the end of the overall SELECT stmt */
3146 int addr1; /* Jump instructions that get retargetted */
3147 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3148 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3149 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3150 sqlite3 *db; /* Database connection */
3151 ExprList *pOrderBy; /* The ORDER BY clause */
3152 int nOrderBy; /* Number of terms in the ORDER BY clause */
3153 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
3155 assert( p->pOrderBy!=0 );
3156 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3157 db = pParse->db;
3158 v = pParse->pVdbe;
3159 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3160 labelEnd = sqlite3VdbeMakeLabel(v);
3161 labelCmpr = sqlite3VdbeMakeLabel(v);
3164 /* Patch up the ORDER BY clause
3166 op = p->op;
3167 pPrior = p->pPrior;
3168 assert( pPrior->pOrderBy==0 );
3169 pOrderBy = p->pOrderBy;
3170 assert( pOrderBy );
3171 nOrderBy = pOrderBy->nExpr;
3173 /* For operators other than UNION ALL we have to make sure that
3174 ** the ORDER BY clause covers every term of the result set. Add
3175 ** terms to the ORDER BY clause as necessary.
3177 if( op!=TK_ALL ){
3178 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3179 struct ExprList_item *pItem;
3180 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3181 assert( pItem->u.x.iOrderByCol>0 );
3182 if( pItem->u.x.iOrderByCol==i ) break;
3184 if( j==nOrderBy ){
3185 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3186 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3187 pNew->flags |= EP_IntValue;
3188 pNew->u.iValue = i;
3189 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3190 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3195 /* Compute the comparison permutation and keyinfo that is used with
3196 ** the permutation used to determine if the next
3197 ** row of results comes from selectA or selectB. Also add explicit
3198 ** collations to the ORDER BY clause terms so that when the subqueries
3199 ** to the right and the left are evaluated, they use the correct
3200 ** collation.
3202 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3203 if( aPermute ){
3204 struct ExprList_item *pItem;
3205 aPermute[0] = nOrderBy;
3206 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3207 assert( pItem->u.x.iOrderByCol>0 );
3208 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3209 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3211 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3212 }else{
3213 pKeyMerge = 0;
3216 /* Reattach the ORDER BY clause to the query.
3218 p->pOrderBy = pOrderBy;
3219 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3221 /* Allocate a range of temporary registers and the KeyInfo needed
3222 ** for the logic that removes duplicate result rows when the
3223 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3225 if( op==TK_ALL ){
3226 regPrev = 0;
3227 }else{
3228 int nExpr = p->pEList->nExpr;
3229 assert( nOrderBy>=nExpr || db->mallocFailed );
3230 regPrev = pParse->nMem+1;
3231 pParse->nMem += nExpr+1;
3232 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3233 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3234 if( pKeyDup ){
3235 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3236 for(i=0; i<nExpr; i++){
3237 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3238 pKeyDup->aSortOrder[i] = 0;
3243 /* Separate the left and the right query from one another
3245 p->pPrior = 0;
3246 pPrior->pNext = 0;
3247 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3248 if( pPrior->pPrior==0 ){
3249 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3252 /* Compute the limit registers */
3253 computeLimitRegisters(pParse, p, labelEnd);
3254 if( p->iLimit && op==TK_ALL ){
3255 regLimitA = ++pParse->nMem;
3256 regLimitB = ++pParse->nMem;
3257 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3258 regLimitA);
3259 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3260 }else{
3261 regLimitA = regLimitB = 0;
3263 sqlite3ExprDelete(db, p->pLimit);
3264 p->pLimit = 0;
3266 regAddrA = ++pParse->nMem;
3267 regAddrB = ++pParse->nMem;
3268 regOutA = ++pParse->nMem;
3269 regOutB = ++pParse->nMem;
3270 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3271 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3273 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3275 /* Generate a coroutine to evaluate the SELECT statement to the
3276 ** left of the compound operator - the "A" select.
3278 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3279 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3280 VdbeComment((v, "left SELECT"));
3281 pPrior->iLimit = regLimitA;
3282 ExplainQueryPlan((pParse, 1, "LEFT"));
3283 sqlite3Select(pParse, pPrior, &destA);
3284 sqlite3VdbeEndCoroutine(v, regAddrA);
3285 sqlite3VdbeJumpHere(v, addr1);
3287 /* Generate a coroutine to evaluate the SELECT statement on
3288 ** the right - the "B" select
3290 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3291 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3292 VdbeComment((v, "right SELECT"));
3293 savedLimit = p->iLimit;
3294 savedOffset = p->iOffset;
3295 p->iLimit = regLimitB;
3296 p->iOffset = 0;
3297 ExplainQueryPlan((pParse, 1, "RIGHT"));
3298 sqlite3Select(pParse, p, &destB);
3299 p->iLimit = savedLimit;
3300 p->iOffset = savedOffset;
3301 sqlite3VdbeEndCoroutine(v, regAddrB);
3303 /* Generate a subroutine that outputs the current row of the A
3304 ** select as the next output row of the compound select.
3306 VdbeNoopComment((v, "Output routine for A"));
3307 addrOutA = generateOutputSubroutine(pParse,
3308 p, &destA, pDest, regOutA,
3309 regPrev, pKeyDup, labelEnd);
3311 /* Generate a subroutine that outputs the current row of the B
3312 ** select as the next output row of the compound select.
3314 if( op==TK_ALL || op==TK_UNION ){
3315 VdbeNoopComment((v, "Output routine for B"));
3316 addrOutB = generateOutputSubroutine(pParse,
3317 p, &destB, pDest, regOutB,
3318 regPrev, pKeyDup, labelEnd);
3320 sqlite3KeyInfoUnref(pKeyDup);
3322 /* Generate a subroutine to run when the results from select A
3323 ** are exhausted and only data in select B remains.
3325 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3326 addrEofA_noB = addrEofA = labelEnd;
3327 }else{
3328 VdbeNoopComment((v, "eof-A subroutine"));
3329 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3330 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3331 VdbeCoverage(v);
3332 sqlite3VdbeGoto(v, addrEofA);
3333 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3336 /* Generate a subroutine to run when the results from select B
3337 ** are exhausted and only data in select A remains.
3339 if( op==TK_INTERSECT ){
3340 addrEofB = addrEofA;
3341 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3342 }else{
3343 VdbeNoopComment((v, "eof-B subroutine"));
3344 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3345 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3346 sqlite3VdbeGoto(v, addrEofB);
3349 /* Generate code to handle the case of A<B
3351 VdbeNoopComment((v, "A-lt-B subroutine"));
3352 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3353 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3354 sqlite3VdbeGoto(v, labelCmpr);
3356 /* Generate code to handle the case of A==B
3358 if( op==TK_ALL ){
3359 addrAeqB = addrAltB;
3360 }else if( op==TK_INTERSECT ){
3361 addrAeqB = addrAltB;
3362 addrAltB++;
3363 }else{
3364 VdbeNoopComment((v, "A-eq-B subroutine"));
3365 addrAeqB =
3366 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3367 sqlite3VdbeGoto(v, labelCmpr);
3370 /* Generate code to handle the case of A>B
3372 VdbeNoopComment((v, "A-gt-B subroutine"));
3373 addrAgtB = sqlite3VdbeCurrentAddr(v);
3374 if( op==TK_ALL || op==TK_UNION ){
3375 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3377 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3378 sqlite3VdbeGoto(v, labelCmpr);
3380 /* This code runs once to initialize everything.
3382 sqlite3VdbeJumpHere(v, addr1);
3383 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3384 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3386 /* Implement the main merge loop
3388 sqlite3VdbeResolveLabel(v, labelCmpr);
3389 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3390 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3391 (char*)pKeyMerge, P4_KEYINFO);
3392 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3393 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3395 /* Jump to the this point in order to terminate the query.
3397 sqlite3VdbeResolveLabel(v, labelEnd);
3399 /* Reassembly the compound query so that it will be freed correctly
3400 ** by the calling function */
3401 if( p->pPrior ){
3402 sqlite3SelectDelete(db, p->pPrior);
3404 p->pPrior = pPrior;
3405 pPrior->pNext = p;
3407 /*** TBD: Insert subroutine calls to close cursors on incomplete
3408 **** subqueries ****/
3409 ExplainQueryPlanPop(pParse);
3410 return pParse->nErr!=0;
3412 #endif
3414 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3416 /* An instance of the SubstContext object describes an substitution edit
3417 ** to be performed on a parse tree.
3419 ** All references to columns in table iTable are to be replaced by corresponding
3420 ** expressions in pEList.
3422 typedef struct SubstContext {
3423 Parse *pParse; /* The parsing context */
3424 int iTable; /* Replace references to this table */
3425 int iNewTable; /* New table number */
3426 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3427 ExprList *pEList; /* Replacement expressions */
3428 } SubstContext;
3430 /* Forward Declarations */
3431 static void substExprList(SubstContext*, ExprList*);
3432 static void substSelect(SubstContext*, Select*, int);
3435 ** Scan through the expression pExpr. Replace every reference to
3436 ** a column in table number iTable with a copy of the iColumn-th
3437 ** entry in pEList. (But leave references to the ROWID column
3438 ** unchanged.)
3440 ** This routine is part of the flattening procedure. A subquery
3441 ** whose result set is defined by pEList appears as entry in the
3442 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3443 ** FORM clause entry is iTable. This routine makes the necessary
3444 ** changes to pExpr so that it refers directly to the source table
3445 ** of the subquery rather the result set of the subquery.
3447 static Expr *substExpr(
3448 SubstContext *pSubst, /* Description of the substitution */
3449 Expr *pExpr /* Expr in which substitution occurs */
3451 if( pExpr==0 ) return 0;
3452 if( ExprHasProperty(pExpr, EP_FromJoin)
3453 && pExpr->iRightJoinTable==pSubst->iTable
3455 pExpr->iRightJoinTable = pSubst->iNewTable;
3457 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3458 if( pExpr->iColumn<0 ){
3459 pExpr->op = TK_NULL;
3460 }else{
3461 Expr *pNew;
3462 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3463 Expr ifNullRow;
3464 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3465 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3466 if( sqlite3ExprIsVector(pCopy) ){
3467 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3468 }else{
3469 sqlite3 *db = pSubst->pParse->db;
3470 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3471 memset(&ifNullRow, 0, sizeof(ifNullRow));
3472 ifNullRow.op = TK_IF_NULL_ROW;
3473 ifNullRow.pLeft = pCopy;
3474 ifNullRow.iTable = pSubst->iNewTable;
3475 pCopy = &ifNullRow;
3477 pNew = sqlite3ExprDup(db, pCopy, 0);
3478 if( pNew && pSubst->isLeftJoin ){
3479 ExprSetProperty(pNew, EP_CanBeNull);
3481 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3482 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3483 ExprSetProperty(pNew, EP_FromJoin);
3485 sqlite3ExprDelete(db, pExpr);
3486 pExpr = pNew;
3489 }else{
3490 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3491 pExpr->iTable = pSubst->iNewTable;
3493 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3494 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3495 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3496 substSelect(pSubst, pExpr->x.pSelect, 1);
3497 }else{
3498 substExprList(pSubst, pExpr->x.pList);
3501 return pExpr;
3503 static void substExprList(
3504 SubstContext *pSubst, /* Description of the substitution */
3505 ExprList *pList /* List to scan and in which to make substitutes */
3507 int i;
3508 if( pList==0 ) return;
3509 for(i=0; i<pList->nExpr; i++){
3510 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3513 static void substSelect(
3514 SubstContext *pSubst, /* Description of the substitution */
3515 Select *p, /* SELECT statement in which to make substitutions */
3516 int doPrior /* Do substitutes on p->pPrior too */
3518 SrcList *pSrc;
3519 struct SrcList_item *pItem;
3520 int i;
3521 if( !p ) return;
3523 substExprList(pSubst, p->pEList);
3524 substExprList(pSubst, p->pGroupBy);
3525 substExprList(pSubst, p->pOrderBy);
3526 p->pHaving = substExpr(pSubst, p->pHaving);
3527 p->pWhere = substExpr(pSubst, p->pWhere);
3528 pSrc = p->pSrc;
3529 assert( pSrc!=0 );
3530 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3531 substSelect(pSubst, pItem->pSelect, 1);
3532 if( pItem->fg.isTabFunc ){
3533 substExprList(pSubst, pItem->u1.pFuncArg);
3536 }while( doPrior && (p = p->pPrior)!=0 );
3538 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3540 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3542 ** This routine attempts to flatten subqueries as a performance optimization.
3543 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3545 ** To understand the concept of flattening, consider the following
3546 ** query:
3548 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3550 ** The default way of implementing this query is to execute the
3551 ** subquery first and store the results in a temporary table, then
3552 ** run the outer query on that temporary table. This requires two
3553 ** passes over the data. Furthermore, because the temporary table
3554 ** has no indices, the WHERE clause on the outer query cannot be
3555 ** optimized.
3557 ** This routine attempts to rewrite queries such as the above into
3558 ** a single flat select, like this:
3560 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3562 ** The code generated for this simplification gives the same result
3563 ** but only has to scan the data once. And because indices might
3564 ** exist on the table t1, a complete scan of the data might be
3565 ** avoided.
3567 ** Flattening is subject to the following constraints:
3569 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3570 ** The subquery and the outer query cannot both be aggregates.
3572 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3573 ** (2) If the subquery is an aggregate then
3574 ** (2a) the outer query must not be a join and
3575 ** (2b) the outer query must not use subqueries
3576 ** other than the one FROM-clause subquery that is a candidate
3577 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3578 ** from 2015-02-09.)
3580 ** (3) If the subquery is the right operand of a LEFT JOIN then
3581 ** (3a) the subquery may not be a join and
3582 ** (3b) the FROM clause of the subquery may not contain a virtual
3583 ** table and
3584 ** (3c) the outer query may not be an aggregate.
3586 ** (4) The subquery can not be DISTINCT.
3588 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3589 ** sub-queries that were excluded from this optimization. Restriction
3590 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3592 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3593 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3595 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3596 ** A FROM clause, consider adding a FROM clause with the special
3597 ** table sqlite_once that consists of a single row containing a
3598 ** single NULL.
3600 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3602 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3604 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3605 ** accidently carried the comment forward until 2014-09-15. Original
3606 ** constraint: "If the subquery is aggregate then the outer query
3607 ** may not use LIMIT."
3609 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3611 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3612 ** a separate restriction deriving from ticket #350.
3614 ** (13) The subquery and outer query may not both use LIMIT.
3616 ** (14) The subquery may not use OFFSET.
3618 ** (15) If the outer query is part of a compound select, then the
3619 ** subquery may not use LIMIT.
3620 ** (See ticket #2339 and ticket [02a8e81d44]).
3622 ** (16) If the outer query is aggregate, then the subquery may not
3623 ** use ORDER BY. (Ticket #2942) This used to not matter
3624 ** until we introduced the group_concat() function.
3626 ** (17) If the subquery is a compound select, then
3627 ** (17a) all compound operators must be a UNION ALL, and
3628 ** (17b) no terms within the subquery compound may be aggregate
3629 ** or DISTINCT, and
3630 ** (17c) every term within the subquery compound must have a FROM clause
3631 ** (17d) the outer query may not be
3632 ** (17d1) aggregate, or
3633 ** (17d2) DISTINCT, or
3634 ** (17d3) a join.
3636 ** The parent and sub-query may contain WHERE clauses. Subject to
3637 ** rules (11), (13) and (14), they may also contain ORDER BY,
3638 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3639 ** operator other than UNION ALL because all the other compound
3640 ** operators have an implied DISTINCT which is disallowed by
3641 ** restriction (4).
3643 ** Also, each component of the sub-query must return the same number
3644 ** of result columns. This is actually a requirement for any compound
3645 ** SELECT statement, but all the code here does is make sure that no
3646 ** such (illegal) sub-query is flattened. The caller will detect the
3647 ** syntax error and return a detailed message.
3649 ** (18) If the sub-query is a compound select, then all terms of the
3650 ** ORDER BY clause of the parent must be simple references to
3651 ** columns of the sub-query.
3653 ** (19) If the subquery uses LIMIT then the outer query may not
3654 ** have a WHERE clause.
3656 ** (20) If the sub-query is a compound select, then it must not use
3657 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3658 ** somewhat by saying that the terms of the ORDER BY clause must
3659 ** appear as unmodified result columns in the outer query. But we
3660 ** have other optimizations in mind to deal with that case.
3662 ** (21) If the subquery uses LIMIT then the outer query may not be
3663 ** DISTINCT. (See ticket [752e1646fc]).
3665 ** (22) The subquery may not be a recursive CTE.
3667 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3668 ** a recursive CTE, then the sub-query may not be a compound query.
3669 ** This restriction is because transforming the
3670 ** parent to a compound query confuses the code that handles
3671 ** recursive queries in multiSelect().
3673 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3674 ** The subquery may not be an aggregate that uses the built-in min() or
3675 ** or max() functions. (Without this restriction, a query like:
3676 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3677 ** return the value X for which Y was maximal.)
3680 ** In this routine, the "p" parameter is a pointer to the outer query.
3681 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3682 ** uses aggregates.
3684 ** If flattening is not attempted, this routine is a no-op and returns 0.
3685 ** If flattening is attempted this routine returns 1.
3687 ** All of the expression analysis must occur on both the outer query and
3688 ** the subquery before this routine runs.
3690 static int flattenSubquery(
3691 Parse *pParse, /* Parsing context */
3692 Select *p, /* The parent or outer SELECT statement */
3693 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3694 int isAgg /* True if outer SELECT uses aggregate functions */
3696 const char *zSavedAuthContext = pParse->zAuthContext;
3697 Select *pParent; /* Current UNION ALL term of the other query */
3698 Select *pSub; /* The inner query or "subquery" */
3699 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3700 SrcList *pSrc; /* The FROM clause of the outer query */
3701 SrcList *pSubSrc; /* The FROM clause of the subquery */
3702 int iParent; /* VDBE cursor number of the pSub result set temp table */
3703 int iNewParent = -1;/* Replacement table for iParent */
3704 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3705 int i; /* Loop counter */
3706 Expr *pWhere; /* The WHERE clause */
3707 struct SrcList_item *pSubitem; /* The subquery */
3708 sqlite3 *db = pParse->db;
3710 /* Check to see if flattening is permitted. Return 0 if not.
3712 assert( p!=0 );
3713 assert( p->pPrior==0 );
3714 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3715 pSrc = p->pSrc;
3716 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3717 pSubitem = &pSrc->a[iFrom];
3718 iParent = pSubitem->iCursor;
3719 pSub = pSubitem->pSelect;
3720 assert( pSub!=0 );
3722 pSubSrc = pSub->pSrc;
3723 assert( pSubSrc );
3724 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3725 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3726 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3727 ** became arbitrary expressions, we were forced to add restrictions (13)
3728 ** and (14). */
3729 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3730 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3731 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3732 return 0; /* Restriction (15) */
3734 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3735 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3736 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3737 return 0; /* Restrictions (8)(9) */
3739 if( p->pOrderBy && pSub->pOrderBy ){
3740 return 0; /* Restriction (11) */
3742 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3743 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3744 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3745 return 0; /* Restriction (21) */
3747 if( pSub->selFlags & (SF_Recursive) ){
3748 return 0; /* Restrictions (22) */
3752 ** If the subquery is the right operand of a LEFT JOIN, then the
3753 ** subquery may not be a join itself (3a). Example of why this is not
3754 ** allowed:
3756 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3758 ** If we flatten the above, we would get
3760 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3762 ** which is not at all the same thing.
3764 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3765 ** query cannot be an aggregate. (3c) This is an artifact of the way
3766 ** aggregates are processed - there is no mechanism to determine if
3767 ** the LEFT JOIN table should be all-NULL.
3769 ** See also tickets #306, #350, and #3300.
3771 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3772 isLeftJoin = 1;
3773 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3774 /* (3a) (3c) (3b) */
3775 return 0;
3778 #ifdef SQLITE_EXTRA_IFNULLROW
3779 else if( iFrom>0 && !isAgg ){
3780 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3781 ** every reference to any result column from subquery in a join, even
3782 ** though they are not necessary. This will stress-test the OP_IfNullRow
3783 ** opcode. */
3784 isLeftJoin = -1;
3786 #endif
3788 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3789 ** use only the UNION ALL operator. And none of the simple select queries
3790 ** that make up the compound SELECT are allowed to be aggregate or distinct
3791 ** queries.
3793 if( pSub->pPrior ){
3794 if( pSub->pOrderBy ){
3795 return 0; /* Restriction (20) */
3797 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3798 return 0; /* (17d1), (17d2), or (17d3) */
3800 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3801 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3802 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3803 assert( pSub->pSrc!=0 );
3804 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3805 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3806 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3807 || pSub1->pSrc->nSrc<1 /* (17c) */
3809 return 0;
3811 testcase( pSub1->pSrc->nSrc>1 );
3814 /* Restriction (18). */
3815 if( p->pOrderBy ){
3816 int ii;
3817 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3818 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3823 /* Ex-restriction (23):
3824 ** The only way that the recursive part of a CTE can contain a compound
3825 ** subquery is for the subquery to be one term of a join. But if the
3826 ** subquery is a join, then the flattening has already been stopped by
3827 ** restriction (17d3)
3829 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3831 /***** If we reach this point, flattening is permitted. *****/
3832 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3833 pSub->zSelName, pSub, iFrom));
3835 /* Authorize the subquery */
3836 pParse->zAuthContext = pSubitem->zName;
3837 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3838 testcase( i==SQLITE_DENY );
3839 pParse->zAuthContext = zSavedAuthContext;
3841 /* If the sub-query is a compound SELECT statement, then (by restrictions
3842 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3843 ** be of the form:
3845 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3847 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3848 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3849 ** OFFSET clauses and joins them to the left-hand-side of the original
3850 ** using UNION ALL operators. In this case N is the number of simple
3851 ** select statements in the compound sub-query.
3853 ** Example:
3855 ** SELECT a+1 FROM (
3856 ** SELECT x FROM tab
3857 ** UNION ALL
3858 ** SELECT y FROM tab
3859 ** UNION ALL
3860 ** SELECT abs(z*2) FROM tab2
3861 ** ) WHERE a!=5 ORDER BY 1
3863 ** Transformed into:
3865 ** SELECT x+1 FROM tab WHERE x+1!=5
3866 ** UNION ALL
3867 ** SELECT y+1 FROM tab WHERE y+1!=5
3868 ** UNION ALL
3869 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3870 ** ORDER BY 1
3872 ** We call this the "compound-subquery flattening".
3874 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3875 Select *pNew;
3876 ExprList *pOrderBy = p->pOrderBy;
3877 Expr *pLimit = p->pLimit;
3878 Select *pPrior = p->pPrior;
3879 p->pOrderBy = 0;
3880 p->pSrc = 0;
3881 p->pPrior = 0;
3882 p->pLimit = 0;
3883 pNew = sqlite3SelectDup(db, p, 0);
3884 sqlite3SelectSetName(pNew, pSub->zSelName);
3885 p->pLimit = pLimit;
3886 p->pOrderBy = pOrderBy;
3887 p->pSrc = pSrc;
3888 p->op = TK_ALL;
3889 if( pNew==0 ){
3890 p->pPrior = pPrior;
3891 }else{
3892 pNew->pPrior = pPrior;
3893 if( pPrior ) pPrior->pNext = pNew;
3894 pNew->pNext = p;
3895 p->pPrior = pNew;
3896 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3897 " creates %s.%p as peer\n",pNew->zSelName, pNew));
3899 if( db->mallocFailed ) return 1;
3902 /* Begin flattening the iFrom-th entry of the FROM clause
3903 ** in the outer query.
3905 pSub = pSub1 = pSubitem->pSelect;
3907 /* Delete the transient table structure associated with the
3908 ** subquery
3910 sqlite3DbFree(db, pSubitem->zDatabase);
3911 sqlite3DbFree(db, pSubitem->zName);
3912 sqlite3DbFree(db, pSubitem->zAlias);
3913 pSubitem->zDatabase = 0;
3914 pSubitem->zName = 0;
3915 pSubitem->zAlias = 0;
3916 pSubitem->pSelect = 0;
3918 /* Defer deleting the Table object associated with the
3919 ** subquery until code generation is
3920 ** complete, since there may still exist Expr.pTab entries that
3921 ** refer to the subquery even after flattening. Ticket #3346.
3923 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3925 if( ALWAYS(pSubitem->pTab!=0) ){
3926 Table *pTabToDel = pSubitem->pTab;
3927 if( pTabToDel->nTabRef==1 ){
3928 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3929 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3930 pToplevel->pZombieTab = pTabToDel;
3931 }else{
3932 pTabToDel->nTabRef--;
3934 pSubitem->pTab = 0;
3937 /* The following loop runs once for each term in a compound-subquery
3938 ** flattening (as described above). If we are doing a different kind
3939 ** of flattening - a flattening other than a compound-subquery flattening -
3940 ** then this loop only runs once.
3942 ** This loop moves all of the FROM elements of the subquery into the
3943 ** the FROM clause of the outer query. Before doing this, remember
3944 ** the cursor number for the original outer query FROM element in
3945 ** iParent. The iParent cursor will never be used. Subsequent code
3946 ** will scan expressions looking for iParent references and replace
3947 ** those references with expressions that resolve to the subquery FROM
3948 ** elements we are now copying in.
3950 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3951 int nSubSrc;
3952 u8 jointype = 0;
3953 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3954 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3955 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3957 if( pSrc ){
3958 assert( pParent==p ); /* First time through the loop */
3959 jointype = pSubitem->fg.jointype;
3960 }else{
3961 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3962 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3963 if( pSrc==0 ){
3964 assert( db->mallocFailed );
3965 break;
3969 /* The subquery uses a single slot of the FROM clause of the outer
3970 ** query. If the subquery has more than one element in its FROM clause,
3971 ** then expand the outer query to make space for it to hold all elements
3972 ** of the subquery.
3974 ** Example:
3976 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3978 ** The outer query has 3 slots in its FROM clause. One slot of the
3979 ** outer query (the middle slot) is used by the subquery. The next
3980 ** block of code will expand the outer query FROM clause to 4 slots.
3981 ** The middle slot is expanded to two slots in order to make space
3982 ** for the two elements in the FROM clause of the subquery.
3984 if( nSubSrc>1 ){
3985 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3986 if( db->mallocFailed ){
3987 break;
3991 /* Transfer the FROM clause terms from the subquery into the
3992 ** outer query.
3994 for(i=0; i<nSubSrc; i++){
3995 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3996 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3997 pSrc->a[i+iFrom] = pSubSrc->a[i];
3998 iNewParent = pSubSrc->a[i].iCursor;
3999 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4001 pSrc->a[iFrom].fg.jointype = jointype;
4003 /* Now begin substituting subquery result set expressions for
4004 ** references to the iParent in the outer query.
4006 ** Example:
4008 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4009 ** \ \_____________ subquery __________/ /
4010 ** \_____________________ outer query ______________________________/
4012 ** We look at every expression in the outer query and every place we see
4013 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4015 if( pSub->pOrderBy ){
4016 /* At this point, any non-zero iOrderByCol values indicate that the
4017 ** ORDER BY column expression is identical to the iOrderByCol'th
4018 ** expression returned by SELECT statement pSub. Since these values
4019 ** do not necessarily correspond to columns in SELECT statement pParent,
4020 ** zero them before transfering the ORDER BY clause.
4022 ** Not doing this may cause an error if a subsequent call to this
4023 ** function attempts to flatten a compound sub-query into pParent
4024 ** (the only way this can happen is if the compound sub-query is
4025 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4026 ExprList *pOrderBy = pSub->pOrderBy;
4027 for(i=0; i<pOrderBy->nExpr; i++){
4028 pOrderBy->a[i].u.x.iOrderByCol = 0;
4030 assert( pParent->pOrderBy==0 );
4031 pParent->pOrderBy = pOrderBy;
4032 pSub->pOrderBy = 0;
4034 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4035 if( isLeftJoin>0 ){
4036 setJoinExpr(pWhere, iNewParent);
4038 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4039 if( db->mallocFailed==0 ){
4040 SubstContext x;
4041 x.pParse = pParse;
4042 x.iTable = iParent;
4043 x.iNewTable = iNewParent;
4044 x.isLeftJoin = isLeftJoin;
4045 x.pEList = pSub->pEList;
4046 substSelect(&x, pParent, 0);
4049 /* The flattened query is distinct if either the inner or the
4050 ** outer query is distinct.
4052 pParent->selFlags |= pSub->selFlags & SF_Distinct;
4055 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4057 ** One is tempted to try to add a and b to combine the limits. But this
4058 ** does not work if either limit is negative.
4060 if( pSub->pLimit ){
4061 pParent->pLimit = pSub->pLimit;
4062 pSub->pLimit = 0;
4066 /* Finially, delete what is left of the subquery and return
4067 ** success.
4069 sqlite3SelectDelete(db, pSub1);
4071 #if SELECTTRACE_ENABLED
4072 if( sqlite3SelectTrace & 0x100 ){
4073 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4074 sqlite3TreeViewSelect(0, p, 0);
4076 #endif
4078 return 1;
4080 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4084 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4086 ** Make copies of relevant WHERE clause terms of the outer query into
4087 ** the WHERE clause of subquery. Example:
4089 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4091 ** Transformed into:
4093 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4094 ** WHERE x=5 AND y=10;
4096 ** The hope is that the terms added to the inner query will make it more
4097 ** efficient.
4099 ** Do not attempt this optimization if:
4101 ** (1) (** This restriction was removed on 2017-09-29. We used to
4102 ** disallow this optimization for aggregate subqueries, but now
4103 ** it is allowed by putting the extra terms on the HAVING clause.
4104 ** The added HAVING clause is pointless if the subquery lacks
4105 ** a GROUP BY clause. But such a HAVING clause is also harmless
4106 ** so there does not appear to be any reason to add extra logic
4107 ** to suppress it. **)
4109 ** (2) The inner query is the recursive part of a common table expression.
4111 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4112 ** close would change the meaning of the LIMIT).
4114 ** (4) The inner query is the right operand of a LEFT JOIN and the
4115 ** expression to be pushed down does not come from the ON clause
4116 ** on that LEFT JOIN.
4118 ** (5) The WHERE clause expression originates in the ON or USING clause
4119 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4120 ** left join. An example:
4122 ** SELECT *
4123 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4124 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4125 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4127 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4128 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4129 ** then the (1,1,NULL) row would be suppressed.
4131 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4132 ** terms are duplicated into the subquery.
4134 static int pushDownWhereTerms(
4135 Parse *pParse, /* Parse context (for malloc() and error reporting) */
4136 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
4137 Expr *pWhere, /* The WHERE clause of the outer query */
4138 int iCursor, /* Cursor number of the subquery */
4139 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
4141 Expr *pNew;
4142 int nChng = 0;
4143 if( pWhere==0 ) return 0;
4144 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
4146 #ifdef SQLITE_DEBUG
4147 /* Only the first term of a compound can have a WITH clause. But make
4148 ** sure no other terms are marked SF_Recursive in case something changes
4149 ** in the future.
4152 Select *pX;
4153 for(pX=pSubq; pX; pX=pX->pPrior){
4154 assert( (pX->selFlags & (SF_Recursive))==0 );
4157 #endif
4159 if( pSubq->pLimit!=0 ){
4160 return 0; /* restriction (3) */
4162 while( pWhere->op==TK_AND ){
4163 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4164 iCursor, isLeftJoin);
4165 pWhere = pWhere->pLeft;
4167 if( isLeftJoin
4168 && (ExprHasProperty(pWhere,EP_FromJoin)==0
4169 || pWhere->iRightJoinTable!=iCursor)
4171 return 0; /* restriction (4) */
4173 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4174 return 0; /* restriction (5) */
4176 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4177 nChng++;
4178 while( pSubq ){
4179 SubstContext x;
4180 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4181 unsetJoinExpr(pNew, -1);
4182 x.pParse = pParse;
4183 x.iTable = iCursor;
4184 x.iNewTable = iCursor;
4185 x.isLeftJoin = 0;
4186 x.pEList = pSubq->pEList;
4187 pNew = substExpr(&x, pNew);
4188 if( pSubq->selFlags & SF_Aggregate ){
4189 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4190 }else{
4191 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4193 pSubq = pSubq->pPrior;
4196 return nChng;
4198 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4201 ** The pFunc is the only aggregate function in the query. Check to see
4202 ** if the query is a candidate for the min/max optimization.
4204 ** If the query is a candidate for the min/max optimization, then set
4205 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4206 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4207 ** whether pFunc is a min() or max() function.
4209 ** If the query is not a candidate for the min/max optimization, return
4210 ** WHERE_ORDERBY_NORMAL (which must be zero).
4212 ** This routine must be called after aggregate functions have been
4213 ** located but before their arguments have been subjected to aggregate
4214 ** analysis.
4216 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4217 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
4218 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
4219 const char *zFunc; /* Name of aggregate function pFunc */
4220 ExprList *pOrderBy;
4221 u8 sortOrder;
4223 assert( *ppMinMax==0 );
4224 assert( pFunc->op==TK_AGG_FUNCTION );
4225 if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4226 zFunc = pFunc->u.zToken;
4227 if( sqlite3StrICmp(zFunc, "min")==0 ){
4228 eRet = WHERE_ORDERBY_MIN;
4229 sortOrder = SQLITE_SO_ASC;
4230 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4231 eRet = WHERE_ORDERBY_MAX;
4232 sortOrder = SQLITE_SO_DESC;
4233 }else{
4234 return eRet;
4236 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4237 assert( pOrderBy!=0 || db->mallocFailed );
4238 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4239 return eRet;
4243 ** The select statement passed as the first argument is an aggregate query.
4244 ** The second argument is the associated aggregate-info object. This
4245 ** function tests if the SELECT is of the form:
4247 ** SELECT count(*) FROM <tbl>
4249 ** where table is a database table, not a sub-select or view. If the query
4250 ** does match this pattern, then a pointer to the Table object representing
4251 ** <tbl> is returned. Otherwise, 0 is returned.
4253 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4254 Table *pTab;
4255 Expr *pExpr;
4257 assert( !p->pGroupBy );
4259 if( p->pWhere || p->pEList->nExpr!=1
4260 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4262 return 0;
4264 pTab = p->pSrc->a[0].pTab;
4265 pExpr = p->pEList->a[0].pExpr;
4266 assert( pTab && !pTab->pSelect && pExpr );
4268 if( IsVirtual(pTab) ) return 0;
4269 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4270 if( NEVER(pAggInfo->nFunc==0) ) return 0;
4271 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4272 if( pExpr->flags&EP_Distinct ) return 0;
4274 return pTab;
4278 ** If the source-list item passed as an argument was augmented with an
4279 ** INDEXED BY clause, then try to locate the specified index. If there
4280 ** was such a clause and the named index cannot be found, return
4281 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4282 ** pFrom->pIndex and return SQLITE_OK.
4284 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4285 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4286 Table *pTab = pFrom->pTab;
4287 char *zIndexedBy = pFrom->u1.zIndexedBy;
4288 Index *pIdx;
4289 for(pIdx=pTab->pIndex;
4290 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4291 pIdx=pIdx->pNext
4293 if( !pIdx ){
4294 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4295 pParse->checkSchema = 1;
4296 return SQLITE_ERROR;
4298 pFrom->pIBIndex = pIdx;
4300 return SQLITE_OK;
4303 ** Detect compound SELECT statements that use an ORDER BY clause with
4304 ** an alternative collating sequence.
4306 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4308 ** These are rewritten as a subquery:
4310 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4311 ** ORDER BY ... COLLATE ...
4313 ** This transformation is necessary because the multiSelectOrderBy() routine
4314 ** above that generates the code for a compound SELECT with an ORDER BY clause
4315 ** uses a merge algorithm that requires the same collating sequence on the
4316 ** result columns as on the ORDER BY clause. See ticket
4317 ** http://www.sqlite.org/src/info/6709574d2a
4319 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4320 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4321 ** there are COLLATE terms in the ORDER BY.
4323 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4324 int i;
4325 Select *pNew;
4326 Select *pX;
4327 sqlite3 *db;
4328 struct ExprList_item *a;
4329 SrcList *pNewSrc;
4330 Parse *pParse;
4331 Token dummy;
4333 if( p->pPrior==0 ) return WRC_Continue;
4334 if( p->pOrderBy==0 ) return WRC_Continue;
4335 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4336 if( pX==0 ) return WRC_Continue;
4337 a = p->pOrderBy->a;
4338 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4339 if( a[i].pExpr->flags & EP_Collate ) break;
4341 if( i<0 ) return WRC_Continue;
4343 /* If we reach this point, that means the transformation is required. */
4345 pParse = pWalker->pParse;
4346 db = pParse->db;
4347 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4348 if( pNew==0 ) return WRC_Abort;
4349 memset(&dummy, 0, sizeof(dummy));
4350 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4351 if( pNewSrc==0 ) return WRC_Abort;
4352 *pNew = *p;
4353 p->pSrc = pNewSrc;
4354 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4355 p->op = TK_SELECT;
4356 p->pWhere = 0;
4357 pNew->pGroupBy = 0;
4358 pNew->pHaving = 0;
4359 pNew->pOrderBy = 0;
4360 p->pPrior = 0;
4361 p->pNext = 0;
4362 p->pWith = 0;
4363 p->selFlags &= ~SF_Compound;
4364 assert( (p->selFlags & SF_Converted)==0 );
4365 p->selFlags |= SF_Converted;
4366 assert( pNew->pPrior!=0 );
4367 pNew->pPrior->pNext = pNew;
4368 pNew->pLimit = 0;
4369 return WRC_Continue;
4373 ** Check to see if the FROM clause term pFrom has table-valued function
4374 ** arguments. If it does, leave an error message in pParse and return
4375 ** non-zero, since pFrom is not allowed to be a table-valued function.
4377 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4378 if( pFrom->fg.isTabFunc ){
4379 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4380 return 1;
4382 return 0;
4385 #ifndef SQLITE_OMIT_CTE
4387 ** Argument pWith (which may be NULL) points to a linked list of nested
4388 ** WITH contexts, from inner to outermost. If the table identified by
4389 ** FROM clause element pItem is really a common-table-expression (CTE)
4390 ** then return a pointer to the CTE definition for that table. Otherwise
4391 ** return NULL.
4393 ** If a non-NULL value is returned, set *ppContext to point to the With
4394 ** object that the returned CTE belongs to.
4396 static struct Cte *searchWith(
4397 With *pWith, /* Current innermost WITH clause */
4398 struct SrcList_item *pItem, /* FROM clause element to resolve */
4399 With **ppContext /* OUT: WITH clause return value belongs to */
4401 const char *zName;
4402 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4403 With *p;
4404 for(p=pWith; p; p=p->pOuter){
4405 int i;
4406 for(i=0; i<p->nCte; i++){
4407 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4408 *ppContext = p;
4409 return &p->a[i];
4414 return 0;
4417 /* The code generator maintains a stack of active WITH clauses
4418 ** with the inner-most WITH clause being at the top of the stack.
4420 ** This routine pushes the WITH clause passed as the second argument
4421 ** onto the top of the stack. If argument bFree is true, then this
4422 ** WITH clause will never be popped from the stack. In this case it
4423 ** should be freed along with the Parse object. In other cases, when
4424 ** bFree==0, the With object will be freed along with the SELECT
4425 ** statement with which it is associated.
4427 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4428 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4429 if( pWith ){
4430 assert( pParse->pWith!=pWith );
4431 pWith->pOuter = pParse->pWith;
4432 pParse->pWith = pWith;
4433 if( bFree ) pParse->pWithToFree = pWith;
4438 ** This function checks if argument pFrom refers to a CTE declared by
4439 ** a WITH clause on the stack currently maintained by the parser. And,
4440 ** if currently processing a CTE expression, if it is a recursive
4441 ** reference to the current CTE.
4443 ** If pFrom falls into either of the two categories above, pFrom->pTab
4444 ** and other fields are populated accordingly. The caller should check
4445 ** (pFrom->pTab!=0) to determine whether or not a successful match
4446 ** was found.
4448 ** Whether or not a match is found, SQLITE_OK is returned if no error
4449 ** occurs. If an error does occur, an error message is stored in the
4450 ** parser and some error code other than SQLITE_OK returned.
4452 static int withExpand(
4453 Walker *pWalker,
4454 struct SrcList_item *pFrom
4456 Parse *pParse = pWalker->pParse;
4457 sqlite3 *db = pParse->db;
4458 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4459 With *pWith; /* WITH clause that pCte belongs to */
4461 assert( pFrom->pTab==0 );
4463 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4464 if( pCte ){
4465 Table *pTab;
4466 ExprList *pEList;
4467 Select *pSel;
4468 Select *pLeft; /* Left-most SELECT statement */
4469 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4470 With *pSavedWith; /* Initial value of pParse->pWith */
4472 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4473 ** recursive reference to CTE pCte. Leave an error in pParse and return
4474 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4475 ** In this case, proceed. */
4476 if( pCte->zCteErr ){
4477 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4478 return SQLITE_ERROR;
4480 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4482 assert( pFrom->pTab==0 );
4483 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4484 if( pTab==0 ) return WRC_Abort;
4485 pTab->nTabRef = 1;
4486 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4487 pTab->iPKey = -1;
4488 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4489 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4490 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4491 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4492 assert( pFrom->pSelect );
4494 /* Check if this is a recursive CTE. */
4495 pSel = pFrom->pSelect;
4496 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4497 if( bMayRecursive ){
4498 int i;
4499 SrcList *pSrc = pFrom->pSelect->pSrc;
4500 for(i=0; i<pSrc->nSrc; i++){
4501 struct SrcList_item *pItem = &pSrc->a[i];
4502 if( pItem->zDatabase==0
4503 && pItem->zName!=0
4504 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4506 pItem->pTab = pTab;
4507 pItem->fg.isRecursive = 1;
4508 pTab->nTabRef++;
4509 pSel->selFlags |= SF_Recursive;
4514 /* Only one recursive reference is permitted. */
4515 if( pTab->nTabRef>2 ){
4516 sqlite3ErrorMsg(
4517 pParse, "multiple references to recursive table: %s", pCte->zName
4519 return SQLITE_ERROR;
4521 assert( pTab->nTabRef==1 ||
4522 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4524 pCte->zCteErr = "circular reference: %s";
4525 pSavedWith = pParse->pWith;
4526 pParse->pWith = pWith;
4527 if( bMayRecursive ){
4528 Select *pPrior = pSel->pPrior;
4529 assert( pPrior->pWith==0 );
4530 pPrior->pWith = pSel->pWith;
4531 sqlite3WalkSelect(pWalker, pPrior);
4532 pPrior->pWith = 0;
4533 }else{
4534 sqlite3WalkSelect(pWalker, pSel);
4536 pParse->pWith = pWith;
4538 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4539 pEList = pLeft->pEList;
4540 if( pCte->pCols ){
4541 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4542 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4543 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4545 pParse->pWith = pSavedWith;
4546 return SQLITE_ERROR;
4548 pEList = pCte->pCols;
4551 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4552 if( bMayRecursive ){
4553 if( pSel->selFlags & SF_Recursive ){
4554 pCte->zCteErr = "multiple recursive references: %s";
4555 }else{
4556 pCte->zCteErr = "recursive reference in a subquery: %s";
4558 sqlite3WalkSelect(pWalker, pSel);
4560 pCte->zCteErr = 0;
4561 pParse->pWith = pSavedWith;
4564 return SQLITE_OK;
4566 #endif
4568 #ifndef SQLITE_OMIT_CTE
4570 ** If the SELECT passed as the second argument has an associated WITH
4571 ** clause, pop it from the stack stored as part of the Parse object.
4573 ** This function is used as the xSelectCallback2() callback by
4574 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4575 ** names and other FROM clause elements.
4577 static void selectPopWith(Walker *pWalker, Select *p){
4578 Parse *pParse = pWalker->pParse;
4579 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4580 With *pWith = findRightmost(p)->pWith;
4581 if( pWith!=0 ){
4582 assert( pParse->pWith==pWith );
4583 pParse->pWith = pWith->pOuter;
4587 #else
4588 #define selectPopWith 0
4589 #endif
4592 ** This routine is a Walker callback for "expanding" a SELECT statement.
4593 ** "Expanding" means to do the following:
4595 ** (1) Make sure VDBE cursor numbers have been assigned to every
4596 ** element of the FROM clause.
4598 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4599 ** defines FROM clause. When views appear in the FROM clause,
4600 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4601 ** that implements the view. A copy is made of the view's SELECT
4602 ** statement so that we can freely modify or delete that statement
4603 ** without worrying about messing up the persistent representation
4604 ** of the view.
4606 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4607 ** on joins and the ON and USING clause of joins.
4609 ** (4) Scan the list of columns in the result set (pEList) looking
4610 ** for instances of the "*" operator or the TABLE.* operator.
4611 ** If found, expand each "*" to be every column in every table
4612 ** and TABLE.* to be every column in TABLE.
4615 static int selectExpander(Walker *pWalker, Select *p){
4616 Parse *pParse = pWalker->pParse;
4617 int i, j, k;
4618 SrcList *pTabList;
4619 ExprList *pEList;
4620 struct SrcList_item *pFrom;
4621 sqlite3 *db = pParse->db;
4622 Expr *pE, *pRight, *pExpr;
4623 u16 selFlags = p->selFlags;
4624 u32 elistFlags = 0;
4626 p->selFlags |= SF_Expanded;
4627 if( db->mallocFailed ){
4628 return WRC_Abort;
4630 assert( p->pSrc!=0 );
4631 if( (selFlags & SF_Expanded)!=0 ){
4632 return WRC_Prune;
4634 pTabList = p->pSrc;
4635 pEList = p->pEList;
4636 sqlite3WithPush(pParse, p->pWith, 0);
4638 /* Make sure cursor numbers have been assigned to all entries in
4639 ** the FROM clause of the SELECT statement.
4641 sqlite3SrcListAssignCursors(pParse, pTabList);
4643 /* Look up every table named in the FROM clause of the select. If
4644 ** an entry of the FROM clause is a subquery instead of a table or view,
4645 ** then create a transient table structure to describe the subquery.
4647 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4648 Table *pTab;
4649 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4650 if( pFrom->fg.isRecursive ) continue;
4651 assert( pFrom->pTab==0 );
4652 #ifndef SQLITE_OMIT_CTE
4653 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4654 if( pFrom->pTab ) {} else
4655 #endif
4656 if( pFrom->zName==0 ){
4657 #ifndef SQLITE_OMIT_SUBQUERY
4658 Select *pSel = pFrom->pSelect;
4659 /* A sub-query in the FROM clause of a SELECT */
4660 assert( pSel!=0 );
4661 assert( pFrom->pTab==0 );
4662 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4663 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4664 if( pTab==0 ) return WRC_Abort;
4665 pTab->nTabRef = 1;
4666 if( pFrom->zAlias ){
4667 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4668 }else{
4669 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4671 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4672 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4673 pTab->iPKey = -1;
4674 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4675 pTab->tabFlags |= TF_Ephemeral;
4676 #endif
4677 }else{
4678 /* An ordinary table or view name in the FROM clause */
4679 assert( pFrom->pTab==0 );
4680 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4681 if( pTab==0 ) return WRC_Abort;
4682 if( pTab->nTabRef>=0xffff ){
4683 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4684 pTab->zName);
4685 pFrom->pTab = 0;
4686 return WRC_Abort;
4688 pTab->nTabRef++;
4689 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4690 return WRC_Abort;
4692 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4693 if( IsVirtual(pTab) || pTab->pSelect ){
4694 i16 nCol;
4695 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4696 assert( pFrom->pSelect==0 );
4697 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4698 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4699 nCol = pTab->nCol;
4700 pTab->nCol = -1;
4701 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4702 pTab->nCol = nCol;
4704 #endif
4707 /* Locate the index named by the INDEXED BY clause, if any. */
4708 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4709 return WRC_Abort;
4713 /* Process NATURAL keywords, and ON and USING clauses of joins.
4715 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4716 return WRC_Abort;
4719 /* For every "*" that occurs in the column list, insert the names of
4720 ** all columns in all tables. And for every TABLE.* insert the names
4721 ** of all columns in TABLE. The parser inserted a special expression
4722 ** with the TK_ASTERISK operator for each "*" that it found in the column
4723 ** list. The following code just has to locate the TK_ASTERISK
4724 ** expressions and expand each one to the list of all columns in
4725 ** all tables.
4727 ** The first loop just checks to see if there are any "*" operators
4728 ** that need expanding.
4730 for(k=0; k<pEList->nExpr; k++){
4731 pE = pEList->a[k].pExpr;
4732 if( pE->op==TK_ASTERISK ) break;
4733 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4734 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4735 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4736 elistFlags |= pE->flags;
4738 if( k<pEList->nExpr ){
4740 ** If we get here it means the result set contains one or more "*"
4741 ** operators that need to be expanded. Loop through each expression
4742 ** in the result set and expand them one by one.
4744 struct ExprList_item *a = pEList->a;
4745 ExprList *pNew = 0;
4746 int flags = pParse->db->flags;
4747 int longNames = (flags & SQLITE_FullColNames)!=0
4748 && (flags & SQLITE_ShortColNames)==0;
4750 for(k=0; k<pEList->nExpr; k++){
4751 pE = a[k].pExpr;
4752 elistFlags |= pE->flags;
4753 pRight = pE->pRight;
4754 assert( pE->op!=TK_DOT || pRight!=0 );
4755 if( pE->op!=TK_ASTERISK
4756 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4758 /* This particular expression does not need to be expanded.
4760 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4761 if( pNew ){
4762 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4763 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4764 a[k].zName = 0;
4765 a[k].zSpan = 0;
4767 a[k].pExpr = 0;
4768 }else{
4769 /* This expression is a "*" or a "TABLE.*" and needs to be
4770 ** expanded. */
4771 int tableSeen = 0; /* Set to 1 when TABLE matches */
4772 char *zTName = 0; /* text of name of TABLE */
4773 if( pE->op==TK_DOT ){
4774 assert( pE->pLeft!=0 );
4775 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4776 zTName = pE->pLeft->u.zToken;
4778 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4779 Table *pTab = pFrom->pTab;
4780 Select *pSub = pFrom->pSelect;
4781 char *zTabName = pFrom->zAlias;
4782 const char *zSchemaName = 0;
4783 int iDb;
4784 if( zTabName==0 ){
4785 zTabName = pTab->zName;
4787 if( db->mallocFailed ) break;
4788 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4789 pSub = 0;
4790 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4791 continue;
4793 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4794 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4796 for(j=0; j<pTab->nCol; j++){
4797 char *zName = pTab->aCol[j].zName;
4798 char *zColname; /* The computed column name */
4799 char *zToFree; /* Malloced string that needs to be freed */
4800 Token sColname; /* Computed column name as a token */
4802 assert( zName );
4803 if( zTName && pSub
4804 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4806 continue;
4809 /* If a column is marked as 'hidden', omit it from the expanded
4810 ** result-set list unless the SELECT has the SF_IncludeHidden
4811 ** bit set.
4813 if( (p->selFlags & SF_IncludeHidden)==0
4814 && IsHiddenColumn(&pTab->aCol[j])
4816 continue;
4818 tableSeen = 1;
4820 if( i>0 && zTName==0 ){
4821 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4822 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4824 /* In a NATURAL join, omit the join columns from the
4825 ** table to the right of the join */
4826 continue;
4828 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4829 /* In a join with a USING clause, omit columns in the
4830 ** using clause from the table on the right. */
4831 continue;
4834 pRight = sqlite3Expr(db, TK_ID, zName);
4835 zColname = zName;
4836 zToFree = 0;
4837 if( longNames || pTabList->nSrc>1 ){
4838 Expr *pLeft;
4839 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4840 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4841 if( zSchemaName ){
4842 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4843 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4845 if( longNames ){
4846 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4847 zToFree = zColname;
4849 }else{
4850 pExpr = pRight;
4852 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4853 sqlite3TokenInit(&sColname, zColname);
4854 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4855 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4856 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4857 if( pSub ){
4858 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4859 testcase( pX->zSpan==0 );
4860 }else{
4861 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4862 zSchemaName, zTabName, zColname);
4863 testcase( pX->zSpan==0 );
4865 pX->bSpanIsTab = 1;
4867 sqlite3DbFree(db, zToFree);
4870 if( !tableSeen ){
4871 if( zTName ){
4872 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4873 }else{
4874 sqlite3ErrorMsg(pParse, "no tables specified");
4879 sqlite3ExprListDelete(db, pEList);
4880 p->pEList = pNew;
4882 if( p->pEList ){
4883 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4884 sqlite3ErrorMsg(pParse, "too many columns in result set");
4885 return WRC_Abort;
4887 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4888 p->selFlags |= SF_ComplexResult;
4891 return WRC_Continue;
4895 ** No-op routine for the parse-tree walker.
4897 ** When this routine is the Walker.xExprCallback then expression trees
4898 ** are walked without any actions being taken at each node. Presumably,
4899 ** when this routine is used for Walker.xExprCallback then
4900 ** Walker.xSelectCallback is set to do something useful for every
4901 ** subquery in the parser tree.
4903 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4904 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4905 return WRC_Continue;
4909 ** No-op routine for the parse-tree walker for SELECT statements.
4910 ** subquery in the parser tree.
4912 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4913 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4914 return WRC_Continue;
4917 #if SQLITE_DEBUG
4919 ** Always assert. This xSelectCallback2 implementation proves that the
4920 ** xSelectCallback2 is never invoked.
4922 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4923 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4924 assert( 0 );
4926 #endif
4928 ** This routine "expands" a SELECT statement and all of its subqueries.
4929 ** For additional information on what it means to "expand" a SELECT
4930 ** statement, see the comment on the selectExpand worker callback above.
4932 ** Expanding a SELECT statement is the first step in processing a
4933 ** SELECT statement. The SELECT statement must be expanded before
4934 ** name resolution is performed.
4936 ** If anything goes wrong, an error message is written into pParse.
4937 ** The calling function can detect the problem by looking at pParse->nErr
4938 ** and/or pParse->db->mallocFailed.
4940 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4941 Walker w;
4942 w.xExprCallback = sqlite3ExprWalkNoop;
4943 w.pParse = pParse;
4944 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4945 w.xSelectCallback = convertCompoundSelectToSubquery;
4946 w.xSelectCallback2 = 0;
4947 sqlite3WalkSelect(&w, pSelect);
4949 w.xSelectCallback = selectExpander;
4950 w.xSelectCallback2 = selectPopWith;
4951 sqlite3WalkSelect(&w, pSelect);
4955 #ifndef SQLITE_OMIT_SUBQUERY
4957 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4958 ** interface.
4960 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4961 ** information to the Table structure that represents the result set
4962 ** of that subquery.
4964 ** The Table structure that represents the result set was constructed
4965 ** by selectExpander() but the type and collation information was omitted
4966 ** at that point because identifiers had not yet been resolved. This
4967 ** routine is called after identifier resolution.
4969 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4970 Parse *pParse;
4971 int i;
4972 SrcList *pTabList;
4973 struct SrcList_item *pFrom;
4975 assert( p->selFlags & SF_Resolved );
4976 assert( (p->selFlags & SF_HasTypeInfo)==0 );
4977 p->selFlags |= SF_HasTypeInfo;
4978 pParse = pWalker->pParse;
4979 pTabList = p->pSrc;
4980 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4981 Table *pTab = pFrom->pTab;
4982 assert( pTab!=0 );
4983 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4984 /* A sub-query in the FROM clause of a SELECT */
4985 Select *pSel = pFrom->pSelect;
4986 if( pSel ){
4987 while( pSel->pPrior ) pSel = pSel->pPrior;
4988 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4993 #endif
4997 ** This routine adds datatype and collating sequence information to
4998 ** the Table structures of all FROM-clause subqueries in a
4999 ** SELECT statement.
5001 ** Use this routine after name resolution.
5003 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5004 #ifndef SQLITE_OMIT_SUBQUERY
5005 Walker w;
5006 w.xSelectCallback = sqlite3SelectWalkNoop;
5007 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5008 w.xExprCallback = sqlite3ExprWalkNoop;
5009 w.pParse = pParse;
5010 sqlite3WalkSelect(&w, pSelect);
5011 #endif
5016 ** This routine sets up a SELECT statement for processing. The
5017 ** following is accomplished:
5019 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5020 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5021 ** * ON and USING clauses are shifted into WHERE statements
5022 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5023 ** * Identifiers in expression are matched to tables.
5025 ** This routine acts recursively on all subqueries within the SELECT.
5027 void sqlite3SelectPrep(
5028 Parse *pParse, /* The parser context */
5029 Select *p, /* The SELECT statement being coded. */
5030 NameContext *pOuterNC /* Name context for container */
5032 assert( p!=0 || pParse->db->mallocFailed );
5033 if( pParse->db->mallocFailed ) return;
5034 if( p->selFlags & SF_HasTypeInfo ) return;
5035 sqlite3SelectExpand(pParse, p);
5036 if( pParse->nErr || pParse->db->mallocFailed ) return;
5037 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5038 if( pParse->nErr || pParse->db->mallocFailed ) return;
5039 sqlite3SelectAddTypeInfo(pParse, p);
5043 ** Reset the aggregate accumulator.
5045 ** The aggregate accumulator is a set of memory cells that hold
5046 ** intermediate results while calculating an aggregate. This
5047 ** routine generates code that stores NULLs in all of those memory
5048 ** cells.
5050 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5051 Vdbe *v = pParse->pVdbe;
5052 int i;
5053 struct AggInfo_func *pFunc;
5054 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5055 if( nReg==0 ) return;
5056 #ifdef SQLITE_DEBUG
5057 /* Verify that all AggInfo registers are within the range specified by
5058 ** AggInfo.mnReg..AggInfo.mxReg */
5059 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5060 for(i=0; i<pAggInfo->nColumn; i++){
5061 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5062 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5064 for(i=0; i<pAggInfo->nFunc; i++){
5065 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5066 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5068 #endif
5069 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5070 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5071 if( pFunc->iDistinct>=0 ){
5072 Expr *pE = pFunc->pExpr;
5073 assert( !ExprHasProperty(pE, EP_xIsSelect) );
5074 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5075 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5076 "argument");
5077 pFunc->iDistinct = -1;
5078 }else{
5079 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
5080 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5081 (char*)pKeyInfo, P4_KEYINFO);
5088 ** Invoke the OP_AggFinalize opcode for every aggregate function
5089 ** in the AggInfo structure.
5091 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5092 Vdbe *v = pParse->pVdbe;
5093 int i;
5094 struct AggInfo_func *pF;
5095 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5096 ExprList *pList = pF->pExpr->x.pList;
5097 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5098 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5099 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5104 ** Update the accumulator memory cells for an aggregate based on
5105 ** the current cursor position.
5107 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
5108 Vdbe *v = pParse->pVdbe;
5109 int i;
5110 int regHit = 0;
5111 int addrHitTest = 0;
5112 struct AggInfo_func *pF;
5113 struct AggInfo_col *pC;
5115 pAggInfo->directMode = 1;
5116 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5117 int nArg;
5118 int addrNext = 0;
5119 int regAgg;
5120 ExprList *pList = pF->pExpr->x.pList;
5121 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5122 if( pList ){
5123 nArg = pList->nExpr;
5124 regAgg = sqlite3GetTempRange(pParse, nArg);
5125 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5126 }else{
5127 nArg = 0;
5128 regAgg = 0;
5130 if( pF->iDistinct>=0 ){
5131 addrNext = sqlite3VdbeMakeLabel(v);
5132 testcase( nArg==0 ); /* Error condition */
5133 testcase( nArg>1 ); /* Also an error */
5134 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5136 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5137 CollSeq *pColl = 0;
5138 struct ExprList_item *pItem;
5139 int j;
5140 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5141 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5142 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5144 if( !pColl ){
5145 pColl = pParse->db->pDfltColl;
5147 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5148 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5150 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
5151 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5152 sqlite3VdbeChangeP5(v, (u8)nArg);
5153 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5154 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5155 if( addrNext ){
5156 sqlite3VdbeResolveLabel(v, addrNext);
5157 sqlite3ExprCacheClear(pParse);
5161 /* Before populating the accumulator registers, clear the column cache.
5162 ** Otherwise, if any of the required column values are already present
5163 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5164 ** to pC->iMem. But by the time the value is used, the original register
5165 ** may have been used, invalidating the underlying buffer holding the
5166 ** text or blob value. See ticket [883034dcb5].
5168 ** Another solution would be to change the OP_SCopy used to copy cached
5169 ** values to an OP_Copy.
5171 if( regHit ){
5172 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5174 sqlite3ExprCacheClear(pParse);
5175 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5176 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5178 pAggInfo->directMode = 0;
5179 sqlite3ExprCacheClear(pParse);
5180 if( addrHitTest ){
5181 sqlite3VdbeJumpHere(v, addrHitTest);
5186 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5187 ** count(*) query ("SELECT count(*) FROM pTab").
5189 #ifndef SQLITE_OMIT_EXPLAIN
5190 static void explainSimpleCount(
5191 Parse *pParse, /* Parse context */
5192 Table *pTab, /* Table being queried */
5193 Index *pIdx /* Index used to optimize scan, or NULL */
5195 if( pParse->explain==2 ){
5196 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5197 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5198 pTab->zName,
5199 bCover ? " USING COVERING INDEX " : "",
5200 bCover ? pIdx->zName : ""
5204 #else
5205 # define explainSimpleCount(a,b,c)
5206 #endif
5209 ** sqlite3WalkExpr() callback used by havingToWhere().
5211 ** If the node passed to the callback is a TK_AND node, return
5212 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5214 ** Otherwise, return WRC_Prune. In this case, also check if the
5215 ** sub-expression matches the criteria for being moved to the WHERE
5216 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5217 ** within the HAVING expression with a constant "1".
5219 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5220 if( pExpr->op!=TK_AND ){
5221 Select *pS = pWalker->u.pSelect;
5222 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5223 sqlite3 *db = pWalker->pParse->db;
5224 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5225 if( pNew ){
5226 Expr *pWhere = pS->pWhere;
5227 SWAP(Expr, *pNew, *pExpr);
5228 pNew = sqlite3ExprAnd(db, pWhere, pNew);
5229 pS->pWhere = pNew;
5230 pWalker->eCode = 1;
5233 return WRC_Prune;
5235 return WRC_Continue;
5239 ** Transfer eligible terms from the HAVING clause of a query, which is
5240 ** processed after grouping, to the WHERE clause, which is processed before
5241 ** grouping. For example, the query:
5243 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5245 ** can be rewritten as:
5247 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5249 ** A term of the HAVING expression is eligible for transfer if it consists
5250 ** entirely of constants and expressions that are also GROUP BY terms that
5251 ** use the "BINARY" collation sequence.
5253 static void havingToWhere(Parse *pParse, Select *p){
5254 Walker sWalker;
5255 memset(&sWalker, 0, sizeof(sWalker));
5256 sWalker.pParse = pParse;
5257 sWalker.xExprCallback = havingToWhereExprCb;
5258 sWalker.u.pSelect = p;
5259 sqlite3WalkExpr(&sWalker, p->pHaving);
5260 #if SELECTTRACE_ENABLED
5261 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5262 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5263 sqlite3TreeViewSelect(0, p, 0);
5265 #endif
5269 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5270 ** If it is, then return the SrcList_item for the prior view. If it is not,
5271 ** then return 0.
5273 static struct SrcList_item *isSelfJoinView(
5274 SrcList *pTabList, /* Search for self-joins in this FROM clause */
5275 struct SrcList_item *pThis /* Search for prior reference to this subquery */
5277 struct SrcList_item *pItem;
5278 for(pItem = pTabList->a; pItem<pThis; pItem++){
5279 if( pItem->pSelect==0 ) continue;
5280 if( pItem->fg.viaCoroutine ) continue;
5281 if( pItem->zName==0 ) continue;
5282 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5283 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5284 if( sqlite3ExprCompare(0,
5285 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5287 /* The view was modified by some other optimization such as
5288 ** pushDownWhereTerms() */
5289 continue;
5291 return pItem;
5293 return 0;
5296 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5298 ** Attempt to transform a query of the form
5300 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5302 ** Into this:
5304 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5306 ** The transformation only works if all of the following are true:
5308 ** * The subquery is a UNION ALL of two or more terms
5309 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5310 ** * The outer query is a simple count(*)
5312 ** Return TRUE if the optimization is undertaken.
5314 static int countOfViewOptimization(Parse *pParse, Select *p){
5315 Select *pSub, *pPrior;
5316 Expr *pExpr;
5317 Expr *pCount;
5318 sqlite3 *db;
5319 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5320 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5321 pExpr = p->pEList->a[0].pExpr;
5322 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5323 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5324 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5325 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5326 pSub = p->pSrc->a[0].pSelect;
5327 if( pSub==0 ) return 0; /* The FROM is a subquery */
5328 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5330 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5331 if( pSub->pWhere ) return 0; /* No WHERE clause */
5332 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5333 pSub = pSub->pPrior; /* Repeat over compound */
5334 }while( pSub );
5336 /* If we reach this point then it is OK to perform the transformation */
5338 db = pParse->db;
5339 pCount = pExpr;
5340 pExpr = 0;
5341 pSub = p->pSrc->a[0].pSelect;
5342 p->pSrc->a[0].pSelect = 0;
5343 sqlite3SrcListDelete(db, p->pSrc);
5344 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5345 while( pSub ){
5346 Expr *pTerm;
5347 pPrior = pSub->pPrior;
5348 pSub->pPrior = 0;
5349 pSub->pNext = 0;
5350 pSub->selFlags |= SF_Aggregate;
5351 pSub->selFlags &= ~SF_Compound;
5352 pSub->nSelectRow = 0;
5353 sqlite3ExprListDelete(db, pSub->pEList);
5354 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5355 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5356 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5357 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5358 if( pExpr==0 ){
5359 pExpr = pTerm;
5360 }else{
5361 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5363 pSub = pPrior;
5365 p->pEList->a[0].pExpr = pExpr;
5366 p->selFlags &= ~SF_Aggregate;
5368 #if SELECTTRACE_ENABLED
5369 if( sqlite3SelectTrace & 0x400 ){
5370 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5371 sqlite3TreeViewSelect(0, p, 0);
5373 #endif
5374 return 1;
5376 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5379 ** Generate code for the SELECT statement given in the p argument.
5381 ** The results are returned according to the SelectDest structure.
5382 ** See comments in sqliteInt.h for further information.
5384 ** This routine returns the number of errors. If any errors are
5385 ** encountered, then an appropriate error message is left in
5386 ** pParse->zErrMsg.
5388 ** This routine does NOT free the Select structure passed in. The
5389 ** calling function needs to do that.
5391 int sqlite3Select(
5392 Parse *pParse, /* The parser context */
5393 Select *p, /* The SELECT statement being coded. */
5394 SelectDest *pDest /* What to do with the query results */
5396 int i, j; /* Loop counters */
5397 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5398 Vdbe *v; /* The virtual machine under construction */
5399 int isAgg; /* True for select lists like "count(*)" */
5400 ExprList *pEList = 0; /* List of columns to extract. */
5401 SrcList *pTabList; /* List of tables to select from */
5402 Expr *pWhere; /* The WHERE clause. May be NULL */
5403 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5404 Expr *pHaving; /* The HAVING clause. May be NULL */
5405 int rc = 1; /* Value to return from this function */
5406 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5407 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5408 AggInfo sAggInfo; /* Information used by aggregate queries */
5409 int iEnd; /* Address of the end of the query */
5410 sqlite3 *db; /* The database connection */
5411 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5412 u8 minMaxFlag; /* Flag for min/max queries */
5414 db = pParse->db;
5415 v = sqlite3GetVdbe(pParse);
5416 if( p==0 || db->mallocFailed || pParse->nErr ){
5417 return 1;
5419 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5420 memset(&sAggInfo, 0, sizeof(sAggInfo));
5421 #if SELECTTRACE_ENABLED
5422 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5423 if( sqlite3SelectTrace & 0x100 ){
5424 sqlite3TreeViewSelect(0, p, 0);
5426 #endif
5428 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5429 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5430 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5431 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5432 if( IgnorableOrderby(pDest) ){
5433 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5434 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5435 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5436 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5437 /* If ORDER BY makes no difference in the output then neither does
5438 ** DISTINCT so it can be removed too. */
5439 sqlite3ExprListDelete(db, p->pOrderBy);
5440 p->pOrderBy = 0;
5441 p->selFlags &= ~SF_Distinct;
5443 sqlite3SelectPrep(pParse, p, 0);
5444 memset(&sSort, 0, sizeof(sSort));
5445 sSort.pOrderBy = p->pOrderBy;
5446 pTabList = p->pSrc;
5447 if( pParse->nErr || db->mallocFailed ){
5448 goto select_end;
5450 assert( p->pEList!=0 );
5451 isAgg = (p->selFlags & SF_Aggregate)!=0;
5452 #if SELECTTRACE_ENABLED
5453 if( sqlite3SelectTrace & 0x104 ){
5454 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5455 sqlite3TreeViewSelect(0, p, 0);
5457 #endif
5459 if( pDest->eDest==SRT_Output ){
5460 generateColumnNames(pParse, p);
5463 /* Try to various optimizations (flattening subqueries, and strength
5464 ** reduction of join operators) in the FROM clause up into the main query
5466 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5467 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5468 struct SrcList_item *pItem = &pTabList->a[i];
5469 Select *pSub = pItem->pSelect;
5470 Table *pTab = pItem->pTab;
5472 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5473 ** of the LEFT JOIN used in the WHERE clause.
5475 if( (pItem->fg.jointype & JT_LEFT)!=0
5476 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5477 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5479 SELECTTRACE(0x100,pParse,p,
5480 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5481 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5482 unsetJoinExpr(p->pWhere, pItem->iCursor);
5485 /* No futher action if this term of the FROM clause is no a subquery */
5486 if( pSub==0 ) continue;
5488 /* Catch mismatch in the declared columns of a view and the number of
5489 ** columns in the SELECT on the RHS */
5490 if( pTab->nCol!=pSub->pEList->nExpr ){
5491 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5492 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5493 goto select_end;
5496 /* Do not try to flatten an aggregate subquery.
5498 ** Flattening an aggregate subquery is only possible if the outer query
5499 ** is not a join. But if the outer query is not a join, then the subquery
5500 ** will be implemented as a co-routine and there is no advantage to
5501 ** flattening in that case.
5503 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5504 assert( pSub->pGroupBy==0 );
5506 /* If the outer query contains a "complex" result set (that is,
5507 ** if the result set of the outer query uses functions or subqueries)
5508 ** and if the subquery contains an ORDER BY clause and if
5509 ** it will be implemented as a co-routine, then do not flatten. This
5510 ** restriction allows SQL constructs like this:
5512 ** SELECT expensive_function(x)
5513 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5515 ** The expensive_function() is only computed on the 10 rows that
5516 ** are output, rather than every row of the table.
5518 ** The requirement that the outer query have a complex result set
5519 ** means that flattening does occur on simpler SQL constraints without
5520 ** the expensive_function() like:
5522 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5524 if( pSub->pOrderBy!=0
5525 && i==0
5526 && (p->selFlags & SF_ComplexResult)!=0
5527 && (pTabList->nSrc==1
5528 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5530 continue;
5533 if( flattenSubquery(pParse, p, i, isAgg) ){
5534 /* This subquery can be absorbed into its parent. */
5535 i = -1;
5537 pTabList = p->pSrc;
5538 if( db->mallocFailed ) goto select_end;
5539 if( !IgnorableOrderby(pDest) ){
5540 sSort.pOrderBy = p->pOrderBy;
5543 #endif
5545 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5546 /* Handle compound SELECT statements using the separate multiSelect()
5547 ** procedure.
5549 if( p->pPrior ){
5550 rc = multiSelect(pParse, p, pDest);
5551 #if SELECTTRACE_ENABLED
5552 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5553 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5554 sqlite3TreeViewSelect(0, p, 0);
5556 #endif
5557 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5558 return rc;
5560 #endif
5562 /* For each term in the FROM clause, do two things:
5563 ** (1) Authorized unreferenced tables
5564 ** (2) Generate code for all sub-queries
5566 for(i=0; i<pTabList->nSrc; i++){
5567 struct SrcList_item *pItem = &pTabList->a[i];
5568 SelectDest dest;
5569 Select *pSub;
5570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5571 const char *zSavedAuthContext;
5572 #endif
5574 /* Issue SQLITE_READ authorizations with a fake column name for any
5575 ** tables that are referenced but from which no values are extracted.
5576 ** Examples of where these kinds of null SQLITE_READ authorizations
5577 ** would occur:
5579 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5580 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5582 ** The fake column name is an empty string. It is possible for a table to
5583 ** have a column named by the empty string, in which case there is no way to
5584 ** distinguish between an unreferenced table and an actual reference to the
5585 ** "" column. The original design was for the fake column name to be a NULL,
5586 ** which would be unambiguous. But legacy authorization callbacks might
5587 ** assume the column name is non-NULL and segfault. The use of an empty
5588 ** string for the fake column name seems safer.
5590 if( pItem->colUsed==0 ){
5591 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5594 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5595 /* Generate code for all sub-queries in the FROM clause
5597 pSub = pItem->pSelect;
5598 if( pSub==0 ) continue;
5600 /* Sometimes the code for a subquery will be generated more than
5601 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5602 ** for example. In that case, do not regenerate the code to manifest
5603 ** a view or the co-routine to implement a view. The first instance
5604 ** is sufficient, though the subroutine to manifest the view does need
5605 ** to be invoked again. */
5606 if( pItem->addrFillSub ){
5607 if( pItem->fg.viaCoroutine==0 ){
5608 /* The subroutine that manifests the view might be a one-time routine,
5609 ** or it might need to be rerun on each iteration because it
5610 ** encodes a correlated subquery. */
5611 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5612 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5614 continue;
5617 /* Increment Parse.nHeight by the height of the largest expression
5618 ** tree referred to by this, the parent select. The child select
5619 ** may contain expression trees of at most
5620 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5621 ** more conservative than necessary, but much easier than enforcing
5622 ** an exact limit.
5624 pParse->nHeight += sqlite3SelectExprHeight(p);
5626 /* Make copies of constant WHERE-clause terms in the outer query down
5627 ** inside the subquery. This can help the subquery to run more efficiently.
5629 if( OptimizationEnabled(db, SQLITE_PushDown)
5630 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5631 (pItem->fg.jointype & JT_OUTER)!=0)
5633 #if SELECTTRACE_ENABLED
5634 if( sqlite3SelectTrace & 0x100 ){
5635 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5636 sqlite3TreeViewSelect(0, p, 0);
5638 #endif
5639 }else{
5640 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5643 zSavedAuthContext = pParse->zAuthContext;
5644 pParse->zAuthContext = pItem->zName;
5646 /* Generate code to implement the subquery
5648 ** The subquery is implemented as a co-routine if the subquery is
5649 ** guaranteed to be the outer loop (so that it does not need to be
5650 ** computed more than once)
5652 ** TODO: Are there other reasons beside (1) to use a co-routine
5653 ** implementation?
5655 if( i==0
5656 && (pTabList->nSrc==1
5657 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5659 /* Implement a co-routine that will return a single row of the result
5660 ** set on each invocation.
5662 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5664 pItem->regReturn = ++pParse->nMem;
5665 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5666 VdbeComment((v, "%s", pItem->pTab->zName));
5667 pItem->addrFillSub = addrTop;
5668 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5669 ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub));
5670 sqlite3Select(pParse, pSub, &dest);
5671 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5672 pItem->fg.viaCoroutine = 1;
5673 pItem->regResult = dest.iSdst;
5674 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5675 sqlite3VdbeJumpHere(v, addrTop-1);
5676 sqlite3ClearTempRegCache(pParse);
5677 }else{
5678 /* Generate a subroutine that will fill an ephemeral table with
5679 ** the content of this subquery. pItem->addrFillSub will point
5680 ** to the address of the generated subroutine. pItem->regReturn
5681 ** is a register allocated to hold the subroutine return address
5683 int topAddr;
5684 int onceAddr = 0;
5685 int retAddr;
5686 struct SrcList_item *pPrior;
5688 assert( pItem->addrFillSub==0 );
5689 pItem->regReturn = ++pParse->nMem;
5690 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5691 pItem->addrFillSub = topAddr+1;
5692 if( pItem->fg.isCorrelated==0 ){
5693 /* If the subquery is not correlated and if we are not inside of
5694 ** a trigger, then we only need to compute the value of the subquery
5695 ** once. */
5696 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5697 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5698 }else{
5699 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5701 pPrior = isSelfJoinView(pTabList, pItem);
5702 if( pPrior ){
5703 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5704 assert( pPrior->pSelect!=0 );
5705 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5706 }else{
5707 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5708 ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub));
5709 sqlite3Select(pParse, pSub, &dest);
5711 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5712 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5713 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5714 VdbeComment((v, "end %s", pItem->pTab->zName));
5715 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5716 sqlite3ClearTempRegCache(pParse);
5718 if( db->mallocFailed ) goto select_end;
5719 pParse->nHeight -= sqlite3SelectExprHeight(p);
5720 pParse->zAuthContext = zSavedAuthContext;
5721 #endif
5724 /* Various elements of the SELECT copied into local variables for
5725 ** convenience */
5726 pEList = p->pEList;
5727 pWhere = p->pWhere;
5728 pGroupBy = p->pGroupBy;
5729 pHaving = p->pHaving;
5730 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5732 #if SELECTTRACE_ENABLED
5733 if( sqlite3SelectTrace & 0x400 ){
5734 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5735 sqlite3TreeViewSelect(0, p, 0);
5737 #endif
5739 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5740 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5741 && countOfViewOptimization(pParse, p)
5743 if( db->mallocFailed ) goto select_end;
5744 pEList = p->pEList;
5745 pTabList = p->pSrc;
5747 #endif
5749 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5750 ** if the select-list is the same as the ORDER BY list, then this query
5751 ** can be rewritten as a GROUP BY. In other words, this:
5753 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5755 ** is transformed to:
5757 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5759 ** The second form is preferred as a single index (or temp-table) may be
5760 ** used for both the ORDER BY and DISTINCT processing. As originally
5761 ** written the query must use a temp-table for at least one of the ORDER
5762 ** BY and DISTINCT, and an index or separate temp-table for the other.
5764 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5765 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5767 p->selFlags &= ~SF_Distinct;
5768 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5769 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5770 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5771 ** original setting of the SF_Distinct flag, not the current setting */
5772 assert( sDistinct.isTnct );
5774 #if SELECTTRACE_ENABLED
5775 if( sqlite3SelectTrace & 0x400 ){
5776 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5777 sqlite3TreeViewSelect(0, p, 0);
5779 #endif
5782 /* If there is an ORDER BY clause, then create an ephemeral index to
5783 ** do the sorting. But this sorting ephemeral index might end up
5784 ** being unused if the data can be extracted in pre-sorted order.
5785 ** If that is the case, then the OP_OpenEphemeral instruction will be
5786 ** changed to an OP_Noop once we figure out that the sorting index is
5787 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5788 ** that change.
5790 if( sSort.pOrderBy ){
5791 KeyInfo *pKeyInfo;
5792 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5793 sSort.iECursor = pParse->nTab++;
5794 sSort.addrSortIndex =
5795 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5796 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5797 (char*)pKeyInfo, P4_KEYINFO
5799 }else{
5800 sSort.addrSortIndex = -1;
5803 /* If the output is destined for a temporary table, open that table.
5805 if( pDest->eDest==SRT_EphemTab ){
5806 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5809 /* Set the limiter.
5811 iEnd = sqlite3VdbeMakeLabel(v);
5812 if( (p->selFlags & SF_FixedLimit)==0 ){
5813 p->nSelectRow = 320; /* 4 billion rows */
5815 computeLimitRegisters(pParse, p, iEnd);
5816 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5817 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5818 sSort.sortFlags |= SORTFLAG_UseSorter;
5821 /* Open an ephemeral index to use for the distinct set.
5823 if( p->selFlags & SF_Distinct ){
5824 sDistinct.tabTnct = pParse->nTab++;
5825 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5826 sDistinct.tabTnct, 0, 0,
5827 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5828 P4_KEYINFO);
5829 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5830 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5831 }else{
5832 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5835 if( !isAgg && pGroupBy==0 ){
5836 /* No aggregate functions and no GROUP BY clause */
5837 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5838 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5839 wctrlFlags |= p->selFlags & SF_FixedLimit;
5841 /* Begin the database scan. */
5842 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5843 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5844 p->pEList, wctrlFlags, p->nSelectRow);
5845 if( pWInfo==0 ) goto select_end;
5846 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5847 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5849 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5850 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5852 if( sSort.pOrderBy ){
5853 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5854 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5855 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5856 sSort.pOrderBy = 0;
5860 /* If sorting index that was created by a prior OP_OpenEphemeral
5861 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5862 ** into an OP_Noop.
5864 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5865 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5868 /* Use the standard inner loop. */
5869 assert( p->pEList==pEList );
5870 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5871 sqlite3WhereContinueLabel(pWInfo),
5872 sqlite3WhereBreakLabel(pWInfo));
5874 /* End the database scan loop.
5876 sqlite3WhereEnd(pWInfo);
5877 }else{
5878 /* This case when there exist aggregate functions or a GROUP BY clause
5879 ** or both */
5880 NameContext sNC; /* Name context for processing aggregate information */
5881 int iAMem; /* First Mem address for storing current GROUP BY */
5882 int iBMem; /* First Mem address for previous GROUP BY */
5883 int iUseFlag; /* Mem address holding flag indicating that at least
5884 ** one row of the input to the aggregator has been
5885 ** processed */
5886 int iAbortFlag; /* Mem address which causes query abort if positive */
5887 int groupBySort; /* Rows come from source in GROUP BY order */
5888 int addrEnd; /* End of processing for this SELECT */
5889 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5890 int sortOut = 0; /* Output register from the sorter */
5891 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5893 /* Remove any and all aliases between the result set and the
5894 ** GROUP BY clause.
5896 if( pGroupBy ){
5897 int k; /* Loop counter */
5898 struct ExprList_item *pItem; /* For looping over expression in a list */
5900 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5901 pItem->u.x.iAlias = 0;
5903 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5904 pItem->u.x.iAlias = 0;
5906 assert( 66==sqlite3LogEst(100) );
5907 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5908 }else{
5909 assert( 0==sqlite3LogEst(1) );
5910 p->nSelectRow = 0;
5913 /* If there is both a GROUP BY and an ORDER BY clause and they are
5914 ** identical, then it may be possible to disable the ORDER BY clause
5915 ** on the grounds that the GROUP BY will cause elements to come out
5916 ** in the correct order. It also may not - the GROUP BY might use a
5917 ** database index that causes rows to be grouped together as required
5918 ** but not actually sorted. Either way, record the fact that the
5919 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5920 ** variable. */
5921 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5922 orderByGrp = 1;
5925 /* Create a label to jump to when we want to abort the query */
5926 addrEnd = sqlite3VdbeMakeLabel(v);
5928 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5929 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5930 ** SELECT statement.
5932 memset(&sNC, 0, sizeof(sNC));
5933 sNC.pParse = pParse;
5934 sNC.pSrcList = pTabList;
5935 sNC.uNC.pAggInfo = &sAggInfo;
5936 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
5937 sAggInfo.mnReg = pParse->nMem+1;
5938 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5939 sAggInfo.pGroupBy = pGroupBy;
5940 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5941 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5942 if( pHaving ){
5943 if( pGroupBy ){
5944 assert( pWhere==p->pWhere );
5945 assert( pHaving==p->pHaving );
5946 assert( pGroupBy==p->pGroupBy );
5947 havingToWhere(pParse, p);
5948 pWhere = p->pWhere;
5950 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5952 sAggInfo.nAccumulator = sAggInfo.nColumn;
5953 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5954 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5955 }else{
5956 minMaxFlag = WHERE_ORDERBY_NORMAL;
5958 for(i=0; i<sAggInfo.nFunc; i++){
5959 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5960 sNC.ncFlags |= NC_InAggFunc;
5961 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5962 sNC.ncFlags &= ~NC_InAggFunc;
5964 sAggInfo.mxReg = pParse->nMem;
5965 if( db->mallocFailed ) goto select_end;
5966 #if SELECTTRACE_ENABLED
5967 if( sqlite3SelectTrace & 0x400 ){
5968 int ii;
5969 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5970 sqlite3TreeViewSelect(0, p, 0);
5971 for(ii=0; ii<sAggInfo.nColumn; ii++){
5972 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5973 ii, sAggInfo.aCol[ii].iMem);
5974 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5976 for(ii=0; ii<sAggInfo.nFunc; ii++){
5977 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5978 ii, sAggInfo.aFunc[ii].iMem);
5979 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5982 #endif
5985 /* Processing for aggregates with GROUP BY is very different and
5986 ** much more complex than aggregates without a GROUP BY.
5988 if( pGroupBy ){
5989 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5990 int addr1; /* A-vs-B comparision jump */
5991 int addrOutputRow; /* Start of subroutine that outputs a result row */
5992 int regOutputRow; /* Return address register for output subroutine */
5993 int addrSetAbort; /* Set the abort flag and return */
5994 int addrTopOfLoop; /* Top of the input loop */
5995 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5996 int addrReset; /* Subroutine for resetting the accumulator */
5997 int regReset; /* Return address register for reset subroutine */
5999 /* If there is a GROUP BY clause we might need a sorting index to
6000 ** implement it. Allocate that sorting index now. If it turns out
6001 ** that we do not need it after all, the OP_SorterOpen instruction
6002 ** will be converted into a Noop.
6004 sAggInfo.sortingIdx = pParse->nTab++;
6005 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
6006 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6007 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6008 0, (char*)pKeyInfo, P4_KEYINFO);
6010 /* Initialize memory locations used by GROUP BY aggregate processing
6012 iUseFlag = ++pParse->nMem;
6013 iAbortFlag = ++pParse->nMem;
6014 regOutputRow = ++pParse->nMem;
6015 addrOutputRow = sqlite3VdbeMakeLabel(v);
6016 regReset = ++pParse->nMem;
6017 addrReset = sqlite3VdbeMakeLabel(v);
6018 iAMem = pParse->nMem + 1;
6019 pParse->nMem += pGroupBy->nExpr;
6020 iBMem = pParse->nMem + 1;
6021 pParse->nMem += pGroupBy->nExpr;
6022 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6023 VdbeComment((v, "clear abort flag"));
6024 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6025 VdbeComment((v, "indicate accumulator empty"));
6026 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6028 /* Begin a loop that will extract all source rows in GROUP BY order.
6029 ** This might involve two separate loops with an OP_Sort in between, or
6030 ** it might be a single loop that uses an index to extract information
6031 ** in the right order to begin with.
6033 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6034 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6035 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6036 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6038 if( pWInfo==0 ) goto select_end;
6039 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6040 /* The optimizer is able to deliver rows in group by order so
6041 ** we do not have to sort. The OP_OpenEphemeral table will be
6042 ** cancelled later because we still need to use the pKeyInfo
6044 groupBySort = 0;
6045 }else{
6046 /* Rows are coming out in undetermined order. We have to push
6047 ** each row into a sorting index, terminate the first loop,
6048 ** then loop over the sorting index in order to get the output
6049 ** in sorted order
6051 int regBase;
6052 int regRecord;
6053 int nCol;
6054 int nGroupBy;
6056 explainTempTable(pParse,
6057 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6058 "DISTINCT" : "GROUP BY");
6060 groupBySort = 1;
6061 nGroupBy = pGroupBy->nExpr;
6062 nCol = nGroupBy;
6063 j = nGroupBy;
6064 for(i=0; i<sAggInfo.nColumn; i++){
6065 if( sAggInfo.aCol[i].iSorterColumn>=j ){
6066 nCol++;
6067 j++;
6070 regBase = sqlite3GetTempRange(pParse, nCol);
6071 sqlite3ExprCacheClear(pParse);
6072 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6073 j = nGroupBy;
6074 for(i=0; i<sAggInfo.nColumn; i++){
6075 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6076 if( pCol->iSorterColumn>=j ){
6077 int r1 = j + regBase;
6078 sqlite3ExprCodeGetColumnToReg(pParse,
6079 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6080 j++;
6083 regRecord = sqlite3GetTempReg(pParse);
6084 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6085 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6086 sqlite3ReleaseTempReg(pParse, regRecord);
6087 sqlite3ReleaseTempRange(pParse, regBase, nCol);
6088 sqlite3WhereEnd(pWInfo);
6089 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6090 sortOut = sqlite3GetTempReg(pParse);
6091 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6092 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6093 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6094 sAggInfo.useSortingIdx = 1;
6095 sqlite3ExprCacheClear(pParse);
6099 /* If the index or temporary table used by the GROUP BY sort
6100 ** will naturally deliver rows in the order required by the ORDER BY
6101 ** clause, cancel the ephemeral table open coded earlier.
6103 ** This is an optimization - the correct answer should result regardless.
6104 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6105 ** disable this optimization for testing purposes. */
6106 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6107 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6109 sSort.pOrderBy = 0;
6110 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6113 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6114 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6115 ** Then compare the current GROUP BY terms against the GROUP BY terms
6116 ** from the previous row currently stored in a0, a1, a2...
6118 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6119 sqlite3ExprCacheClear(pParse);
6120 if( groupBySort ){
6121 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6122 sortOut, sortPTab);
6124 for(j=0; j<pGroupBy->nExpr; j++){
6125 if( groupBySort ){
6126 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6127 }else{
6128 sAggInfo.directMode = 1;
6129 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6132 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6133 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6134 addr1 = sqlite3VdbeCurrentAddr(v);
6135 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6137 /* Generate code that runs whenever the GROUP BY changes.
6138 ** Changes in the GROUP BY are detected by the previous code
6139 ** block. If there were no changes, this block is skipped.
6141 ** This code copies current group by terms in b0,b1,b2,...
6142 ** over to a0,a1,a2. It then calls the output subroutine
6143 ** and resets the aggregate accumulator registers in preparation
6144 ** for the next GROUP BY batch.
6146 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6147 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6148 VdbeComment((v, "output one row"));
6149 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6150 VdbeComment((v, "check abort flag"));
6151 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6152 VdbeComment((v, "reset accumulator"));
6154 /* Update the aggregate accumulators based on the content of
6155 ** the current row
6157 sqlite3VdbeJumpHere(v, addr1);
6158 updateAccumulator(pParse, &sAggInfo);
6159 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6160 VdbeComment((v, "indicate data in accumulator"));
6162 /* End of the loop
6164 if( groupBySort ){
6165 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6166 VdbeCoverage(v);
6167 }else{
6168 sqlite3WhereEnd(pWInfo);
6169 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6172 /* Output the final row of result
6174 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6175 VdbeComment((v, "output final row"));
6177 /* Jump over the subroutines
6179 sqlite3VdbeGoto(v, addrEnd);
6181 /* Generate a subroutine that outputs a single row of the result
6182 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
6183 ** is less than or equal to zero, the subroutine is a no-op. If
6184 ** the processing calls for the query to abort, this subroutine
6185 ** increments the iAbortFlag memory location before returning in
6186 ** order to signal the caller to abort.
6188 addrSetAbort = sqlite3VdbeCurrentAddr(v);
6189 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6190 VdbeComment((v, "set abort flag"));
6191 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6192 sqlite3VdbeResolveLabel(v, addrOutputRow);
6193 addrOutputRow = sqlite3VdbeCurrentAddr(v);
6194 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6195 VdbeCoverage(v);
6196 VdbeComment((v, "Groupby result generator entry point"));
6197 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6198 finalizeAggFunctions(pParse, &sAggInfo);
6199 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6200 selectInnerLoop(pParse, p, -1, &sSort,
6201 &sDistinct, pDest,
6202 addrOutputRow+1, addrSetAbort);
6203 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6204 VdbeComment((v, "end groupby result generator"));
6206 /* Generate a subroutine that will reset the group-by accumulator
6208 sqlite3VdbeResolveLabel(v, addrReset);
6209 resetAccumulator(pParse, &sAggInfo);
6210 sqlite3VdbeAddOp1(v, OP_Return, regReset);
6212 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
6213 else {
6214 #ifndef SQLITE_OMIT_BTREECOUNT
6215 Table *pTab;
6216 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6217 /* If isSimpleCount() returns a pointer to a Table structure, then
6218 ** the SQL statement is of the form:
6220 ** SELECT count(*) FROM <tbl>
6222 ** where the Table structure returned represents table <tbl>.
6224 ** This statement is so common that it is optimized specially. The
6225 ** OP_Count instruction is executed either on the intkey table that
6226 ** contains the data for table <tbl> or on one of its indexes. It
6227 ** is better to execute the op on an index, as indexes are almost
6228 ** always spread across less pages than their corresponding tables.
6230 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6231 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
6232 Index *pIdx; /* Iterator variable */
6233 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
6234 Index *pBest = 0; /* Best index found so far */
6235 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
6237 sqlite3CodeVerifySchema(pParse, iDb);
6238 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6240 /* Search for the index that has the lowest scan cost.
6242 ** (2011-04-15) Do not do a full scan of an unordered index.
6244 ** (2013-10-03) Do not count the entries in a partial index.
6246 ** In practice the KeyInfo structure will not be used. It is only
6247 ** passed to keep OP_OpenRead happy.
6249 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6250 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6251 if( pIdx->bUnordered==0
6252 && pIdx->szIdxRow<pTab->szTabRow
6253 && pIdx->pPartIdxWhere==0
6254 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6256 pBest = pIdx;
6259 if( pBest ){
6260 iRoot = pBest->tnum;
6261 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6264 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6265 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6266 if( pKeyInfo ){
6267 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6269 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6270 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6271 explainSimpleCount(pParse, pTab, pBest);
6272 }else
6273 #endif /* SQLITE_OMIT_BTREECOUNT */
6275 /* This case runs if the aggregate has no GROUP BY clause. The
6276 ** processing is much simpler since there is only a single row
6277 ** of output.
6279 assert( p->pGroupBy==0 );
6280 resetAccumulator(pParse, &sAggInfo);
6282 /* If this query is a candidate for the min/max optimization, then
6283 ** minMaxFlag will have been previously set to either
6284 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6285 ** be an appropriate ORDER BY expression for the optimization.
6287 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6288 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6290 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6291 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6292 0, minMaxFlag, 0);
6293 if( pWInfo==0 ){
6294 goto select_end;
6296 updateAccumulator(pParse, &sAggInfo);
6297 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6298 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6299 VdbeComment((v, "%s() by index",
6300 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6302 sqlite3WhereEnd(pWInfo);
6303 finalizeAggFunctions(pParse, &sAggInfo);
6306 sSort.pOrderBy = 0;
6307 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6308 selectInnerLoop(pParse, p, -1, 0, 0,
6309 pDest, addrEnd, addrEnd);
6311 sqlite3VdbeResolveLabel(v, addrEnd);
6313 } /* endif aggregate query */
6315 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6316 explainTempTable(pParse, "DISTINCT");
6319 /* If there is an ORDER BY clause, then we need to sort the results
6320 ** and send them to the callback one by one.
6322 if( sSort.pOrderBy ){
6323 explainTempTable(pParse,
6324 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6325 assert( p->pEList==pEList );
6326 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6329 /* Jump here to skip this query
6331 sqlite3VdbeResolveLabel(v, iEnd);
6333 /* The SELECT has been coded. If there is an error in the Parse structure,
6334 ** set the return code to 1. Otherwise 0. */
6335 rc = (pParse->nErr>0);
6337 /* Control jumps to here if an error is encountered above, or upon
6338 ** successful coding of the SELECT.
6340 select_end:
6341 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6342 sqlite3DbFree(db, sAggInfo.aCol);
6343 sqlite3DbFree(db, sAggInfo.aFunc);
6344 #if SELECTTRACE_ENABLED
6345 SELECTTRACE(0x1,pParse,p,("end processing\n"));
6346 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6347 sqlite3TreeViewSelect(0, p, 0);
6349 #endif
6350 ExplainQueryPlanPop(pParse);
6351 return rc;