restores usage note on sqlite3_rekey behavior for #301 and #383
[sqlcipher.git] / src / fkey.c
blob959e994d17094df6ccb1d7855fbf4c115a07f569
1 /*
2 **
3 ** The author disclaims copyright to this source code. In place of
4 ** a legal notice, here is a blessing:
5 **
6 ** May you do good and not evil.
7 ** May you find forgiveness for yourself and forgive others.
8 ** May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
14 #include "sqliteInt.h"
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
20 ** Deferred and Immediate FKs
21 ** --------------------------
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
40 ** * When a commit fails due to a deferred foreign key constraint,
41 ** there is no way to tell which foreign constraint is not satisfied,
42 ** or which row it is not satisfied for.
44 ** * If the database contains foreign key violations when the
45 ** transaction is opened, this may cause the mechanism to malfunction.
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
50 ** INSERT operations:
52 ** I.1) For each FK for which the table is the child table, search
53 ** the parent table for a match. If none is found increment the
54 ** constraint counter.
56 ** I.2) For each FK for which the table is the parent table,
57 ** search the child table for rows that correspond to the new
58 ** row in the parent table. Decrement the counter for each row
59 ** found (as the constraint is now satisfied).
61 ** DELETE operations:
63 ** D.1) For each FK for which the table is the child table,
64 ** search the parent table for a row that corresponds to the
65 ** deleted row in the child table. If such a row is not found,
66 ** decrement the counter.
68 ** D.2) For each FK for which the table is the parent table, search
69 ** the child table for rows that correspond to the deleted row
70 ** in the parent table. For each found increment the counter.
72 ** UPDATE operations:
74 ** An UPDATE command requires that all 4 steps above are taken, but only
75 ** for FK constraints for which the affected columns are actually
76 ** modified (values must be compared at runtime).
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
102 ** Query API Notes
103 ** ---------------
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
114 ** sqlite3FkRequired() - Test to see if FK processing is required.
115 ** sqlite3FkOldmask() - Query for the set of required old.* columns.
118 ** Externally accessible module functions
119 ** --------------------------------------
121 ** sqlite3FkCheck() - Check for foreign key violations.
122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
123 ** sqlite3FkDelete() - Delete an FKey structure.
127 ** VDBE Calling Convention
128 ** -----------------------
130 ** Example:
132 ** For the following INSERT statement:
134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 ** INSERT INTO t1 VALUES(1, 2, 3.1);
137 ** Register (x): 2 (type integer)
138 ** Register (x+1): 1 (type integer)
139 ** Register (x+2): NULL (type NULL)
140 ** Register (x+3): 3.1 (type real)
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
163 ** If the required index cannot be found, either because:
165 ** 1) The named parent key columns do not exist, or
167 ** 2) The named parent key columns do exist, but are not subject to a
168 ** UNIQUE or PRIMARY KEY constraint, or
170 ** 3) No parent key columns were provided explicitly as part of the
171 ** foreign key definition, and the parent table does not have a
172 ** PRIMARY KEY, or
174 ** 4) No parent key columns were provided explicitly as part of the
175 ** foreign key definition, and the PRIMARY KEY of the parent table
176 ** consists of a different number of columns to the child key in
177 ** the child table.
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
183 int sqlite3FkLocateIndex(
184 Parse *pParse, /* Parse context to store any error in */
185 Table *pParent, /* Parent table of FK constraint pFKey */
186 FKey *pFKey, /* Foreign key to find index for */
187 Index **ppIdx, /* OUT: Unique index on parent table */
188 int **paiCol /* OUT: Map of index columns in pFKey */
190 Index *pIdx = 0; /* Value to return via *ppIdx */
191 int *aiCol = 0; /* Value to return via *paiCol */
192 int nCol = pFKey->nCol; /* Number of columns in parent key */
193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
195 /* The caller is responsible for zeroing output parameters. */
196 assert( ppIdx && *ppIdx==0 );
197 assert( !paiCol || *paiCol==0 );
198 assert( pParse );
200 /* If this is a non-composite (single column) foreign key, check if it
201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202 ** and *paiCol set to zero and return early.
204 ** Otherwise, for a composite foreign key (more than one column), allocate
205 ** space for the aiCol array (returned via output parameter *paiCol).
206 ** Non-composite foreign keys do not require the aiCol array.
208 if( nCol==1 ){
209 /* The FK maps to the IPK if any of the following are true:
211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212 ** mapped to the primary key of table pParent, or
213 ** 2) The FK is explicitly mapped to a column declared as INTEGER
214 ** PRIMARY KEY.
216 if( pParent->iPKey>=0 ){
217 if( !zKey ) return 0;
218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
220 }else if( paiCol ){
221 assert( nCol>1 );
222 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
223 if( !aiCol ) return 1;
224 *paiCol = aiCol;
227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230 ** of columns. If each indexed column corresponds to a foreign key
231 ** column of pFKey, then this index is a winner. */
233 if( zKey==0 ){
234 /* If zKey is NULL, then this foreign key is implicitly mapped to
235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236 ** identified by the test. */
237 if( IsPrimaryKeyIndex(pIdx) ){
238 if( aiCol ){
239 int i;
240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
242 break;
244 }else{
245 /* If zKey is non-NULL, then this foreign key was declared to
246 ** map to an explicit list of columns in table pParent. Check if this
247 ** index matches those columns. Also, check that the index uses
248 ** the default collation sequences for each column. */
249 int i, j;
250 for(i=0; i<nCol; i++){
251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
252 const char *zDfltColl; /* Def. collation for column */
253 char *zIdxCol; /* Name of indexed column */
255 if( iCol<0 ) break; /* No foreign keys against expression indexes */
257 /* If the index uses a collation sequence that is different from
258 ** the default collation sequence for the column, this index is
259 ** unusable. Bail out early in this case. */
260 zDfltColl = pParent->aCol[iCol].zColl;
261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
264 zIdxCol = pParent->aCol[iCol].zName;
265 for(j=0; j<nCol; j++){
266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268 break;
271 if( j==nCol ) break;
273 if( i==nCol ) break; /* pIdx is usable */
278 if( !pIdx ){
279 if( !pParse->disableTriggers ){
280 sqlite3ErrorMsg(pParse,
281 "foreign key mismatch - \"%w\" referencing \"%w\"",
282 pFKey->pFrom->zName, pFKey->zTo);
284 sqlite3DbFree(pParse->db, aiCol);
285 return 1;
288 *ppIdx = pIdx;
289 return 0;
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
305 ** Operation | FK type | Action taken
306 ** --------------------------------------------------------------------------
307 ** INSERT immediate Increment the "immediate constraint counter".
309 ** DELETE immediate Decrement the "immediate constraint counter".
311 ** INSERT deferred Increment the "deferred constraint counter".
313 ** DELETE deferred Decrement the "deferred constraint counter".
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
318 static void fkLookupParent(
319 Parse *pParse, /* Parse context */
320 int iDb, /* Index of database housing pTab */
321 Table *pTab, /* Parent table of FK pFKey */
322 Index *pIdx, /* Unique index on parent key columns in pTab */
323 FKey *pFKey, /* Foreign key constraint */
324 int *aiCol, /* Map from parent key columns to child table columns */
325 int regData, /* Address of array containing child table row */
326 int nIncr, /* Increment constraint counter by this */
327 int isIgnore /* If true, pretend pTab contains all NULL values */
329 int i; /* Iterator variable */
330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
331 int iCur = pParse->nTab - 1; /* Cursor number to use */
332 int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */
334 sqlite3VdbeVerifyAbortable(v,
335 (!pFKey->isDeferred
336 && !(pParse->db->flags & SQLITE_DeferFKs)
337 && !pParse->pToplevel
338 && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
340 /* If nIncr is less than zero, then check at runtime if there are any
341 ** outstanding constraints to resolve. If there are not, there is no need
342 ** to check if deleting this row resolves any outstanding violations.
344 ** Check if any of the key columns in the child table row are NULL. If
345 ** any are, then the constraint is considered satisfied. No need to
346 ** search for a matching row in the parent table. */
347 if( nIncr<0 ){
348 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
349 VdbeCoverage(v);
351 for(i=0; i<pFKey->nCol; i++){
352 int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1;
353 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
356 if( isIgnore==0 ){
357 if( pIdx==0 ){
358 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
359 ** column of the parent table (table pTab). */
360 int iMustBeInt; /* Address of MustBeInt instruction */
361 int regTemp = sqlite3GetTempReg(pParse);
363 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
364 ** apply the affinity of the parent key). If this fails, then there
365 ** is no matching parent key. Before using MustBeInt, make a copy of
366 ** the value. Otherwise, the value inserted into the child key column
367 ** will have INTEGER affinity applied to it, which may not be correct. */
368 sqlite3VdbeAddOp2(v, OP_SCopy,
369 sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp);
370 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
371 VdbeCoverage(v);
373 /* If the parent table is the same as the child table, and we are about
374 ** to increment the constraint-counter (i.e. this is an INSERT operation),
375 ** then check if the row being inserted matches itself. If so, do not
376 ** increment the constraint-counter. */
377 if( pTab==pFKey->pFrom && nIncr==1 ){
378 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
379 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
382 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
383 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
384 sqlite3VdbeGoto(v, iOk);
385 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
386 sqlite3VdbeJumpHere(v, iMustBeInt);
387 sqlite3ReleaseTempReg(pParse, regTemp);
388 }else{
389 int nCol = pFKey->nCol;
390 int regTemp = sqlite3GetTempRange(pParse, nCol);
391 int regRec = sqlite3GetTempReg(pParse);
393 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
394 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
395 for(i=0; i<nCol; i++){
396 sqlite3VdbeAddOp2(v, OP_Copy,
397 sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData,
398 regTemp+i);
401 /* If the parent table is the same as the child table, and we are about
402 ** to increment the constraint-counter (i.e. this is an INSERT operation),
403 ** then check if the row being inserted matches itself. If so, do not
404 ** increment the constraint-counter.
406 ** If any of the parent-key values are NULL, then the row cannot match
407 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
408 ** of the parent-key values are NULL (at this point it is known that
409 ** none of the child key values are).
411 if( pTab==pFKey->pFrom && nIncr==1 ){
412 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
413 for(i=0; i<nCol; i++){
414 int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i])
415 +1+regData;
416 int iParent = 1+regData;
417 iParent += sqlite3TableColumnToStorage(pIdx->pTable,
418 pIdx->aiColumn[i]);
419 assert( pIdx->aiColumn[i]>=0 );
420 assert( aiCol[i]!=pTab->iPKey );
421 if( pIdx->aiColumn[i]==pTab->iPKey ){
422 /* The parent key is a composite key that includes the IPK column */
423 iParent = regData;
425 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
426 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
428 sqlite3VdbeGoto(v, iOk);
431 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
432 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
433 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
435 sqlite3ReleaseTempReg(pParse, regRec);
436 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
440 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
441 && !pParse->pToplevel
442 && !pParse->isMultiWrite
444 /* Special case: If this is an INSERT statement that will insert exactly
445 ** one row into the table, raise a constraint immediately instead of
446 ** incrementing a counter. This is necessary as the VM code is being
447 ** generated for will not open a statement transaction. */
448 assert( nIncr==1 );
449 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
450 OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
451 }else{
452 if( nIncr>0 && pFKey->isDeferred==0 ){
453 sqlite3MayAbort(pParse);
455 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
458 sqlite3VdbeResolveLabel(v, iOk);
459 sqlite3VdbeAddOp1(v, OP_Close, iCur);
464 ** Return an Expr object that refers to a memory register corresponding
465 ** to column iCol of table pTab.
467 ** regBase is the first of an array of register that contains the data
468 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first
469 ** column. regBase+2 holds the second column, and so forth.
471 static Expr *exprTableRegister(
472 Parse *pParse, /* Parsing and code generating context */
473 Table *pTab, /* The table whose content is at r[regBase]... */
474 int regBase, /* Contents of table pTab */
475 i16 iCol /* Which column of pTab is desired */
477 Expr *pExpr;
478 Column *pCol;
479 const char *zColl;
480 sqlite3 *db = pParse->db;
482 pExpr = sqlite3Expr(db, TK_REGISTER, 0);
483 if( pExpr ){
484 if( iCol>=0 && iCol!=pTab->iPKey ){
485 pCol = &pTab->aCol[iCol];
486 pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1;
487 pExpr->affExpr = pCol->affinity;
488 zColl = pCol->zColl;
489 if( zColl==0 ) zColl = db->pDfltColl->zName;
490 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
491 }else{
492 pExpr->iTable = regBase;
493 pExpr->affExpr = SQLITE_AFF_INTEGER;
496 return pExpr;
500 ** Return an Expr object that refers to column iCol of table pTab which
501 ** has cursor iCur.
503 static Expr *exprTableColumn(
504 sqlite3 *db, /* The database connection */
505 Table *pTab, /* The table whose column is desired */
506 int iCursor, /* The open cursor on the table */
507 i16 iCol /* The column that is wanted */
509 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
510 if( pExpr ){
511 pExpr->y.pTab = pTab;
512 pExpr->iTable = iCursor;
513 pExpr->iColumn = iCol;
515 return pExpr;
519 ** This function is called to generate code executed when a row is deleted
520 ** from the parent table of foreign key constraint pFKey and, if pFKey is
521 ** deferred, when a row is inserted into the same table. When generating
522 ** code for an SQL UPDATE operation, this function may be called twice -
523 ** once to "delete" the old row and once to "insert" the new row.
525 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
526 ** the number of FK violations in the db) or +1 when deleting one (as this
527 ** may increase the number of FK constraint problems).
529 ** The code generated by this function scans through the rows in the child
530 ** table that correspond to the parent table row being deleted or inserted.
531 ** For each child row found, one of the following actions is taken:
533 ** Operation | FK type | Action taken
534 ** --------------------------------------------------------------------------
535 ** DELETE immediate Increment the "immediate constraint counter".
536 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
537 ** throw a "FOREIGN KEY constraint failed" exception.
539 ** INSERT immediate Decrement the "immediate constraint counter".
541 ** DELETE deferred Increment the "deferred constraint counter".
542 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
543 ** throw a "FOREIGN KEY constraint failed" exception.
545 ** INSERT deferred Decrement the "deferred constraint counter".
547 ** These operations are identified in the comment at the top of this file
548 ** (fkey.c) as "I.2" and "D.2".
550 static void fkScanChildren(
551 Parse *pParse, /* Parse context */
552 SrcList *pSrc, /* The child table to be scanned */
553 Table *pTab, /* The parent table */
554 Index *pIdx, /* Index on parent covering the foreign key */
555 FKey *pFKey, /* The foreign key linking pSrc to pTab */
556 int *aiCol, /* Map from pIdx cols to child table cols */
557 int regData, /* Parent row data starts here */
558 int nIncr /* Amount to increment deferred counter by */
560 sqlite3 *db = pParse->db; /* Database handle */
561 int i; /* Iterator variable */
562 Expr *pWhere = 0; /* WHERE clause to scan with */
563 NameContext sNameContext; /* Context used to resolve WHERE clause */
564 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
565 int iFkIfZero = 0; /* Address of OP_FkIfZero */
566 Vdbe *v = sqlite3GetVdbe(pParse);
568 assert( pIdx==0 || pIdx->pTable==pTab );
569 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
570 assert( pIdx!=0 || pFKey->nCol==1 );
571 assert( pIdx!=0 || HasRowid(pTab) );
573 if( nIncr<0 ){
574 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
575 VdbeCoverage(v);
578 /* Create an Expr object representing an SQL expression like:
580 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
582 ** The collation sequence used for the comparison should be that of
583 ** the parent key columns. The affinity of the parent key column should
584 ** be applied to each child key value before the comparison takes place.
586 for(i=0; i<pFKey->nCol; i++){
587 Expr *pLeft; /* Value from parent table row */
588 Expr *pRight; /* Column ref to child table */
589 Expr *pEq; /* Expression (pLeft = pRight) */
590 i16 iCol; /* Index of column in child table */
591 const char *zCol; /* Name of column in child table */
593 iCol = pIdx ? pIdx->aiColumn[i] : -1;
594 pLeft = exprTableRegister(pParse, pTab, regData, iCol);
595 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
596 assert( iCol>=0 );
597 zCol = pFKey->pFrom->aCol[iCol].zName;
598 pRight = sqlite3Expr(db, TK_ID, zCol);
599 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
600 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
603 /* If the child table is the same as the parent table, then add terms
604 ** to the WHERE clause that prevent this entry from being scanned.
605 ** The added WHERE clause terms are like this:
607 ** $current_rowid!=rowid
608 ** NOT( $current_a==a AND $current_b==b AND ... )
610 ** The first form is used for rowid tables. The second form is used
611 ** for WITHOUT ROWID tables. In the second form, the *parent* key is
612 ** (a,b,...). Either the parent or primary key could be used to
613 ** uniquely identify the current row, but the parent key is more convenient
614 ** as the required values have already been loaded into registers
615 ** by the caller.
617 if( pTab==pFKey->pFrom && nIncr>0 ){
618 Expr *pNe; /* Expression (pLeft != pRight) */
619 Expr *pLeft; /* Value from parent table row */
620 Expr *pRight; /* Column ref to child table */
621 if( HasRowid(pTab) ){
622 pLeft = exprTableRegister(pParse, pTab, regData, -1);
623 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
624 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
625 }else{
626 Expr *pEq, *pAll = 0;
627 assert( pIdx!=0 );
628 for(i=0; i<pIdx->nKeyCol; i++){
629 i16 iCol = pIdx->aiColumn[i];
630 assert( iCol>=0 );
631 pLeft = exprTableRegister(pParse, pTab, regData, iCol);
632 pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zName);
633 pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight);
634 pAll = sqlite3ExprAnd(pParse, pAll, pEq);
636 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
638 pWhere = sqlite3ExprAnd(pParse, pWhere, pNe);
641 /* Resolve the references in the WHERE clause. */
642 memset(&sNameContext, 0, sizeof(NameContext));
643 sNameContext.pSrcList = pSrc;
644 sNameContext.pParse = pParse;
645 sqlite3ResolveExprNames(&sNameContext, pWhere);
647 /* Create VDBE to loop through the entries in pSrc that match the WHERE
648 ** clause. For each row found, increment either the deferred or immediate
649 ** foreign key constraint counter. */
650 if( pParse->nErr==0 ){
651 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
652 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
653 if( pWInfo ){
654 sqlite3WhereEnd(pWInfo);
658 /* Clean up the WHERE clause constructed above. */
659 sqlite3ExprDelete(db, pWhere);
660 if( iFkIfZero ){
661 sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero);
666 ** This function returns a linked list of FKey objects (connected by
667 ** FKey.pNextTo) holding all children of table pTab. For example,
668 ** given the following schema:
670 ** CREATE TABLE t1(a PRIMARY KEY);
671 ** CREATE TABLE t2(b REFERENCES t1(a);
673 ** Calling this function with table "t1" as an argument returns a pointer
674 ** to the FKey structure representing the foreign key constraint on table
675 ** "t2". Calling this function with "t2" as the argument would return a
676 ** NULL pointer (as there are no FK constraints for which t2 is the parent
677 ** table).
679 FKey *sqlite3FkReferences(Table *pTab){
680 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
684 ** The second argument is a Trigger structure allocated by the
685 ** fkActionTrigger() routine. This function deletes the Trigger structure
686 ** and all of its sub-components.
688 ** The Trigger structure or any of its sub-components may be allocated from
689 ** the lookaside buffer belonging to database handle dbMem.
691 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
692 if( p ){
693 TriggerStep *pStep = p->step_list;
694 sqlite3ExprDelete(dbMem, pStep->pWhere);
695 sqlite3ExprListDelete(dbMem, pStep->pExprList);
696 sqlite3SelectDelete(dbMem, pStep->pSelect);
697 sqlite3ExprDelete(dbMem, p->pWhen);
698 sqlite3DbFree(dbMem, p);
703 ** This function is called to generate code that runs when table pTab is
704 ** being dropped from the database. The SrcList passed as the second argument
705 ** to this function contains a single entry guaranteed to resolve to
706 ** table pTab.
708 ** Normally, no code is required. However, if either
710 ** (a) The table is the parent table of a FK constraint, or
711 ** (b) The table is the child table of a deferred FK constraint and it is
712 ** determined at runtime that there are outstanding deferred FK
713 ** constraint violations in the database,
715 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
716 ** the table from the database. Triggers are disabled while running this
717 ** DELETE, but foreign key actions are not.
719 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
720 sqlite3 *db = pParse->db;
721 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) ){
722 int iSkip = 0;
723 Vdbe *v = sqlite3GetVdbe(pParse);
725 assert( v ); /* VDBE has already been allocated */
726 assert( pTab->pSelect==0 ); /* Not a view */
727 if( sqlite3FkReferences(pTab)==0 ){
728 /* Search for a deferred foreign key constraint for which this table
729 ** is the child table. If one cannot be found, return without
730 ** generating any VDBE code. If one can be found, then jump over
731 ** the entire DELETE if there are no outstanding deferred constraints
732 ** when this statement is run. */
733 FKey *p;
734 for(p=pTab->pFKey; p; p=p->pNextFrom){
735 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
737 if( !p ) return;
738 iSkip = sqlite3VdbeMakeLabel(pParse);
739 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
742 pParse->disableTriggers = 1;
743 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
744 pParse->disableTriggers = 0;
746 /* If the DELETE has generated immediate foreign key constraint
747 ** violations, halt the VDBE and return an error at this point, before
748 ** any modifications to the schema are made. This is because statement
749 ** transactions are not able to rollback schema changes.
751 ** If the SQLITE_DeferFKs flag is set, then this is not required, as
752 ** the statement transaction will not be rolled back even if FK
753 ** constraints are violated.
755 if( (db->flags & SQLITE_DeferFKs)==0 ){
756 sqlite3VdbeVerifyAbortable(v, OE_Abort);
757 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
758 VdbeCoverage(v);
759 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
760 OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
763 if( iSkip ){
764 sqlite3VdbeResolveLabel(v, iSkip);
771 ** The second argument points to an FKey object representing a foreign key
772 ** for which pTab is the child table. An UPDATE statement against pTab
773 ** is currently being processed. For each column of the table that is
774 ** actually updated, the corresponding element in the aChange[] array
775 ** is zero or greater (if a column is unmodified the corresponding element
776 ** is set to -1). If the rowid column is modified by the UPDATE statement
777 ** the bChngRowid argument is non-zero.
779 ** This function returns true if any of the columns that are part of the
780 ** child key for FK constraint *p are modified.
782 static int fkChildIsModified(
783 Table *pTab, /* Table being updated */
784 FKey *p, /* Foreign key for which pTab is the child */
785 int *aChange, /* Array indicating modified columns */
786 int bChngRowid /* True if rowid is modified by this update */
788 int i;
789 for(i=0; i<p->nCol; i++){
790 int iChildKey = p->aCol[i].iFrom;
791 if( aChange[iChildKey]>=0 ) return 1;
792 if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
794 return 0;
798 ** The second argument points to an FKey object representing a foreign key
799 ** for which pTab is the parent table. An UPDATE statement against pTab
800 ** is currently being processed. For each column of the table that is
801 ** actually updated, the corresponding element in the aChange[] array
802 ** is zero or greater (if a column is unmodified the corresponding element
803 ** is set to -1). If the rowid column is modified by the UPDATE statement
804 ** the bChngRowid argument is non-zero.
806 ** This function returns true if any of the columns that are part of the
807 ** parent key for FK constraint *p are modified.
809 static int fkParentIsModified(
810 Table *pTab,
811 FKey *p,
812 int *aChange,
813 int bChngRowid
815 int i;
816 for(i=0; i<p->nCol; i++){
817 char *zKey = p->aCol[i].zCol;
818 int iKey;
819 for(iKey=0; iKey<pTab->nCol; iKey++){
820 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
821 Column *pCol = &pTab->aCol[iKey];
822 if( zKey ){
823 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
824 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
825 return 1;
830 return 0;
834 ** Return true if the parser passed as the first argument is being
835 ** used to code a trigger that is really a "SET NULL" action belonging
836 ** to trigger pFKey.
838 static int isSetNullAction(Parse *pParse, FKey *pFKey){
839 Parse *pTop = sqlite3ParseToplevel(pParse);
840 if( pTop->pTriggerPrg ){
841 Trigger *p = pTop->pTriggerPrg->pTrigger;
842 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
843 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
845 return 1;
848 return 0;
852 ** This function is called when inserting, deleting or updating a row of
853 ** table pTab to generate VDBE code to perform foreign key constraint
854 ** processing for the operation.
856 ** For a DELETE operation, parameter regOld is passed the index of the
857 ** first register in an array of (pTab->nCol+1) registers containing the
858 ** rowid of the row being deleted, followed by each of the column values
859 ** of the row being deleted, from left to right. Parameter regNew is passed
860 ** zero in this case.
862 ** For an INSERT operation, regOld is passed zero and regNew is passed the
863 ** first register of an array of (pTab->nCol+1) registers containing the new
864 ** row data.
866 ** For an UPDATE operation, this function is called twice. Once before
867 ** the original record is deleted from the table using the calling convention
868 ** described for DELETE. Then again after the original record is deleted
869 ** but before the new record is inserted using the INSERT convention.
871 void sqlite3FkCheck(
872 Parse *pParse, /* Parse context */
873 Table *pTab, /* Row is being deleted from this table */
874 int regOld, /* Previous row data is stored here */
875 int regNew, /* New row data is stored here */
876 int *aChange, /* Array indicating UPDATEd columns (or 0) */
877 int bChngRowid /* True if rowid is UPDATEd */
879 sqlite3 *db = pParse->db; /* Database handle */
880 FKey *pFKey; /* Used to iterate through FKs */
881 int iDb; /* Index of database containing pTab */
882 const char *zDb; /* Name of database containing pTab */
883 int isIgnoreErrors = pParse->disableTriggers;
885 /* Exactly one of regOld and regNew should be non-zero. */
886 assert( (regOld==0)!=(regNew==0) );
888 /* If foreign-keys are disabled, this function is a no-op. */
889 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
891 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
892 zDb = db->aDb[iDb].zDbSName;
894 /* Loop through all the foreign key constraints for which pTab is the
895 ** child table (the table that the foreign key definition is part of). */
896 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
897 Table *pTo; /* Parent table of foreign key pFKey */
898 Index *pIdx = 0; /* Index on key columns in pTo */
899 int *aiFree = 0;
900 int *aiCol;
901 int iCol;
902 int i;
903 int bIgnore = 0;
905 if( aChange
906 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
907 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
909 continue;
912 /* Find the parent table of this foreign key. Also find a unique index
913 ** on the parent key columns in the parent table. If either of these
914 ** schema items cannot be located, set an error in pParse and return
915 ** early. */
916 if( pParse->disableTriggers ){
917 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
918 }else{
919 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
921 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
922 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
923 if( !isIgnoreErrors || db->mallocFailed ) return;
924 if( pTo==0 ){
925 /* If isIgnoreErrors is true, then a table is being dropped. In this
926 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
927 ** before actually dropping it in order to check FK constraints.
928 ** If the parent table of an FK constraint on the current table is
929 ** missing, behave as if it is empty. i.e. decrement the relevant
930 ** FK counter for each row of the current table with non-NULL keys.
932 Vdbe *v = sqlite3GetVdbe(pParse);
933 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
934 for(i=0; i<pFKey->nCol; i++){
935 int iFromCol, iReg;
936 iFromCol = pFKey->aCol[i].iFrom;
937 iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1;
938 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
940 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
942 continue;
944 assert( pFKey->nCol==1 || (aiFree && pIdx) );
946 if( aiFree ){
947 aiCol = aiFree;
948 }else{
949 iCol = pFKey->aCol[0].iFrom;
950 aiCol = &iCol;
952 for(i=0; i<pFKey->nCol; i++){
953 if( aiCol[i]==pTab->iPKey ){
954 aiCol[i] = -1;
956 assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
957 #ifndef SQLITE_OMIT_AUTHORIZATION
958 /* Request permission to read the parent key columns. If the
959 ** authorization callback returns SQLITE_IGNORE, behave as if any
960 ** values read from the parent table are NULL. */
961 if( db->xAuth ){
962 int rcauth;
963 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
964 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
965 bIgnore = (rcauth==SQLITE_IGNORE);
967 #endif
970 /* Take a shared-cache advisory read-lock on the parent table. Allocate
971 ** a cursor to use to search the unique index on the parent key columns
972 ** in the parent table. */
973 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
974 pParse->nTab++;
976 if( regOld!=0 ){
977 /* A row is being removed from the child table. Search for the parent.
978 ** If the parent does not exist, removing the child row resolves an
979 ** outstanding foreign key constraint violation. */
980 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
982 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
983 /* A row is being added to the child table. If a parent row cannot
984 ** be found, adding the child row has violated the FK constraint.
986 ** If this operation is being performed as part of a trigger program
987 ** that is actually a "SET NULL" action belonging to this very
988 ** foreign key, then omit this scan altogether. As all child key
989 ** values are guaranteed to be NULL, it is not possible for adding
990 ** this row to cause an FK violation. */
991 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
994 sqlite3DbFree(db, aiFree);
997 /* Loop through all the foreign key constraints that refer to this table.
998 ** (the "child" constraints) */
999 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1000 Index *pIdx = 0; /* Foreign key index for pFKey */
1001 SrcList *pSrc;
1002 int *aiCol = 0;
1004 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
1005 continue;
1008 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
1009 && !pParse->pToplevel && !pParse->isMultiWrite
1011 assert( regOld==0 && regNew!=0 );
1012 /* Inserting a single row into a parent table cannot cause (or fix)
1013 ** an immediate foreign key violation. So do nothing in this case. */
1014 continue;
1017 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
1018 if( !isIgnoreErrors || db->mallocFailed ) return;
1019 continue;
1021 assert( aiCol || pFKey->nCol==1 );
1023 /* Create a SrcList structure containing the child table. We need the
1024 ** child table as a SrcList for sqlite3WhereBegin() */
1025 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1026 if( pSrc ){
1027 struct SrcList_item *pItem = pSrc->a;
1028 pItem->pTab = pFKey->pFrom;
1029 pItem->zName = pFKey->pFrom->zName;
1030 pItem->pTab->nTabRef++;
1031 pItem->iCursor = pParse->nTab++;
1033 if( regNew!=0 ){
1034 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1036 if( regOld!=0 ){
1037 int eAction = pFKey->aAction[aChange!=0];
1038 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1039 /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1040 ** action applies, then any foreign key violations caused by
1041 ** removing the parent key will be rectified by the action trigger.
1042 ** So do not set the "may-abort" flag in this case.
1044 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1045 ** may-abort flag will eventually be set on this statement anyway
1046 ** (when this function is called as part of processing the UPDATE
1047 ** within the action trigger).
1049 ** Note 2: At first glance it may seem like SQLite could simply omit
1050 ** all OP_FkCounter related scans when either CASCADE or SET NULL
1051 ** applies. The trouble starts if the CASCADE or SET NULL action
1052 ** trigger causes other triggers or action rules attached to the
1053 ** child table to fire. In these cases the fk constraint counters
1054 ** might be set incorrectly if any OP_FkCounter related scans are
1055 ** omitted. */
1056 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1057 sqlite3MayAbort(pParse);
1060 pItem->zName = 0;
1061 sqlite3SrcListDelete(db, pSrc);
1063 sqlite3DbFree(db, aiCol);
1067 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1070 ** This function is called before generating code to update or delete a
1071 ** row contained in table pTab.
1073 u32 sqlite3FkOldmask(
1074 Parse *pParse, /* Parse context */
1075 Table *pTab /* Table being modified */
1077 u32 mask = 0;
1078 if( pParse->db->flags&SQLITE_ForeignKeys ){
1079 FKey *p;
1080 int i;
1081 for(p=pTab->pFKey; p; p=p->pNextFrom){
1082 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1084 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1085 Index *pIdx = 0;
1086 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1087 if( pIdx ){
1088 for(i=0; i<pIdx->nKeyCol; i++){
1089 assert( pIdx->aiColumn[i]>=0 );
1090 mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1095 return mask;
1100 ** This function is called before generating code to update or delete a
1101 ** row contained in table pTab. If the operation is a DELETE, then
1102 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1103 ** to an array of size N, where N is the number of columns in table pTab.
1104 ** If the i'th column is not modified by the UPDATE, then the corresponding
1105 ** entry in the aChange[] array is set to -1. If the column is modified,
1106 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1107 ** UPDATE statement modifies the rowid fields of the table.
1109 ** If any foreign key processing will be required, this function returns
1110 ** non-zero. If there is no foreign key related processing, this function
1111 ** returns zero.
1113 ** For an UPDATE, this function returns 2 if:
1115 ** * There are any FKs for which pTab is the child and the parent table, or
1116 ** * the UPDATE modifies one or more parent keys for which the action is
1117 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1119 ** Or, assuming some other foreign key processing is required, 1.
1121 int sqlite3FkRequired(
1122 Parse *pParse, /* Parse context */
1123 Table *pTab, /* Table being modified */
1124 int *aChange, /* Non-NULL for UPDATE operations */
1125 int chngRowid /* True for UPDATE that affects rowid */
1127 int eRet = 0;
1128 if( pParse->db->flags&SQLITE_ForeignKeys ){
1129 if( !aChange ){
1130 /* A DELETE operation. Foreign key processing is required if the
1131 ** table in question is either the child or parent table for any
1132 ** foreign key constraint. */
1133 eRet = (sqlite3FkReferences(pTab) || pTab->pFKey);
1134 }else{
1135 /* This is an UPDATE. Foreign key processing is only required if the
1136 ** operation modifies one or more child or parent key columns. */
1137 FKey *p;
1139 /* Check if any child key columns are being modified. */
1140 for(p=pTab->pFKey; p; p=p->pNextFrom){
1141 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2;
1142 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
1143 eRet = 1;
1147 /* Check if any parent key columns are being modified. */
1148 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1149 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
1150 if( p->aAction[1]!=OE_None ) return 2;
1151 eRet = 1;
1156 return eRet;
1160 ** This function is called when an UPDATE or DELETE operation is being
1161 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1162 ** If the current operation is an UPDATE, then the pChanges parameter is
1163 ** passed a pointer to the list of columns being modified. If it is a
1164 ** DELETE, pChanges is passed a NULL pointer.
1166 ** It returns a pointer to a Trigger structure containing a trigger
1167 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1168 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1169 ** returned (these actions require no special handling by the triggers
1170 ** sub-system, code for them is created by fkScanChildren()).
1172 ** For example, if pFKey is the foreign key and pTab is table "p" in
1173 ** the following schema:
1175 ** CREATE TABLE p(pk PRIMARY KEY);
1176 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1178 ** then the returned trigger structure is equivalent to:
1180 ** CREATE TRIGGER ... DELETE ON p BEGIN
1181 ** DELETE FROM c WHERE ck = old.pk;
1182 ** END;
1184 ** The returned pointer is cached as part of the foreign key object. It
1185 ** is eventually freed along with the rest of the foreign key object by
1186 ** sqlite3FkDelete().
1188 static Trigger *fkActionTrigger(
1189 Parse *pParse, /* Parse context */
1190 Table *pTab, /* Table being updated or deleted from */
1191 FKey *pFKey, /* Foreign key to get action for */
1192 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
1194 sqlite3 *db = pParse->db; /* Database handle */
1195 int action; /* One of OE_None, OE_Cascade etc. */
1196 Trigger *pTrigger; /* Trigger definition to return */
1197 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
1199 action = pFKey->aAction[iAction];
1200 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1201 return 0;
1203 pTrigger = pFKey->apTrigger[iAction];
1205 if( action!=OE_None && !pTrigger ){
1206 char const *zFrom; /* Name of child table */
1207 int nFrom; /* Length in bytes of zFrom */
1208 Index *pIdx = 0; /* Parent key index for this FK */
1209 int *aiCol = 0; /* child table cols -> parent key cols */
1210 TriggerStep *pStep = 0; /* First (only) step of trigger program */
1211 Expr *pWhere = 0; /* WHERE clause of trigger step */
1212 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
1213 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
1214 int i; /* Iterator variable */
1215 Expr *pWhen = 0; /* WHEN clause for the trigger */
1217 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1218 assert( aiCol || pFKey->nCol==1 );
1220 for(i=0; i<pFKey->nCol; i++){
1221 Token tOld = { "old", 3 }; /* Literal "old" token */
1222 Token tNew = { "new", 3 }; /* Literal "new" token */
1223 Token tFromCol; /* Name of column in child table */
1224 Token tToCol; /* Name of column in parent table */
1225 int iFromCol; /* Idx of column in child table */
1226 Expr *pEq; /* tFromCol = OLD.tToCol */
1228 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1229 assert( iFromCol>=0 );
1230 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1231 assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1232 sqlite3TokenInit(&tToCol,
1233 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName);
1234 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName);
1236 /* Create the expression "OLD.zToCol = zFromCol". It is important
1237 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1238 ** that the affinity and collation sequence associated with the
1239 ** parent table are used for the comparison. */
1240 pEq = sqlite3PExpr(pParse, TK_EQ,
1241 sqlite3PExpr(pParse, TK_DOT,
1242 sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1243 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1244 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1246 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
1248 /* For ON UPDATE, construct the next term of the WHEN clause.
1249 ** The final WHEN clause will be like this:
1251 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1253 if( pChanges ){
1254 pEq = sqlite3PExpr(pParse, TK_IS,
1255 sqlite3PExpr(pParse, TK_DOT,
1256 sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1257 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1258 sqlite3PExpr(pParse, TK_DOT,
1259 sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1260 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
1262 pWhen = sqlite3ExprAnd(pParse, pWhen, pEq);
1265 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1266 Expr *pNew;
1267 if( action==OE_Cascade ){
1268 pNew = sqlite3PExpr(pParse, TK_DOT,
1269 sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1270 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
1271 }else if( action==OE_SetDflt ){
1272 Column *pCol = pFKey->pFrom->aCol + iFromCol;
1273 Expr *pDflt;
1274 if( pCol->colFlags & COLFLAG_GENERATED ){
1275 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1276 testcase( pCol->colFlags & COLFLAG_STORED );
1277 pDflt = 0;
1278 }else{
1279 pDflt = pCol->pDflt;
1281 if( pDflt ){
1282 pNew = sqlite3ExprDup(db, pDflt, 0);
1283 }else{
1284 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1286 }else{
1287 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1289 pList = sqlite3ExprListAppend(pParse, pList, pNew);
1290 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1293 sqlite3DbFree(db, aiCol);
1295 zFrom = pFKey->pFrom->zName;
1296 nFrom = sqlite3Strlen30(zFrom);
1298 if( action==OE_Restrict ){
1299 Token tFrom;
1300 Expr *pRaise;
1302 tFrom.z = zFrom;
1303 tFrom.n = nFrom;
1304 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1305 if( pRaise ){
1306 pRaise->affExpr = OE_Abort;
1308 pSelect = sqlite3SelectNew(pParse,
1309 sqlite3ExprListAppend(pParse, 0, pRaise),
1310 sqlite3SrcListAppend(pParse, 0, &tFrom, 0),
1311 pWhere,
1312 0, 0, 0, 0, 0
1314 pWhere = 0;
1317 /* Disable lookaside memory allocation */
1318 DisableLookaside;
1320 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1321 sizeof(Trigger) + /* struct Trigger */
1322 sizeof(TriggerStep) + /* Single step in trigger program */
1323 nFrom + 1 /* Space for pStep->zTarget */
1325 if( pTrigger ){
1326 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1327 pStep->zTarget = (char *)&pStep[1];
1328 memcpy((char *)pStep->zTarget, zFrom, nFrom);
1330 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1331 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1332 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1333 if( pWhen ){
1334 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
1335 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1339 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1340 EnableLookaside;
1342 sqlite3ExprDelete(db, pWhere);
1343 sqlite3ExprDelete(db, pWhen);
1344 sqlite3ExprListDelete(db, pList);
1345 sqlite3SelectDelete(db, pSelect);
1346 if( db->mallocFailed==1 ){
1347 fkTriggerDelete(db, pTrigger);
1348 return 0;
1350 assert( pStep!=0 );
1351 assert( pTrigger!=0 );
1353 switch( action ){
1354 case OE_Restrict:
1355 pStep->op = TK_SELECT;
1356 break;
1357 case OE_Cascade:
1358 if( !pChanges ){
1359 pStep->op = TK_DELETE;
1360 break;
1362 /* no break */ deliberate_fall_through
1363 default:
1364 pStep->op = TK_UPDATE;
1366 pStep->pTrig = pTrigger;
1367 pTrigger->pSchema = pTab->pSchema;
1368 pTrigger->pTabSchema = pTab->pSchema;
1369 pFKey->apTrigger[iAction] = pTrigger;
1370 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1373 return pTrigger;
1377 ** This function is called when deleting or updating a row to implement
1378 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1380 void sqlite3FkActions(
1381 Parse *pParse, /* Parse context */
1382 Table *pTab, /* Table being updated or deleted from */
1383 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
1384 int regOld, /* Address of array containing old row */
1385 int *aChange, /* Array indicating UPDATEd columns (or 0) */
1386 int bChngRowid /* True if rowid is UPDATEd */
1388 /* If foreign-key support is enabled, iterate through all FKs that
1389 ** refer to table pTab. If there is an action associated with the FK
1390 ** for this operation (either update or delete), invoke the associated
1391 ** trigger sub-program. */
1392 if( pParse->db->flags&SQLITE_ForeignKeys ){
1393 FKey *pFKey; /* Iterator variable */
1394 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1395 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1396 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1397 if( pAct ){
1398 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1405 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1408 ** Free all memory associated with foreign key definitions attached to
1409 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1410 ** hash table.
1412 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1413 FKey *pFKey; /* Iterator variable */
1414 FKey *pNext; /* Copy of pFKey->pNextFrom */
1416 assert( db==0 || IsVirtual(pTab)
1417 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1418 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1420 /* Remove the FK from the fkeyHash hash table. */
1421 if( !db || db->pnBytesFreed==0 ){
1422 if( pFKey->pPrevTo ){
1423 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1424 }else{
1425 void *p = (void *)pFKey->pNextTo;
1426 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1427 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1429 if( pFKey->pNextTo ){
1430 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1434 /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1435 ** classified as either immediate or deferred.
1437 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1439 /* Delete any triggers created to implement actions for this FK. */
1440 #ifndef SQLITE_OMIT_TRIGGER
1441 fkTriggerDelete(db, pFKey->apTrigger[0]);
1442 fkTriggerDelete(db, pFKey->apTrigger[1]);
1443 #endif
1445 pNext = pFKey->pNextFrom;
1446 sqlite3DbFree(db, pFKey);
1449 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */