Snapshot of upstream SQLite 3.8.4.3
[sqlcipher.git] / src / malloc.c
blob9c11d07767df0d1e4c6ba5f8103aafc6e7de0ecd
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 #include "sqliteInt.h"
16 #include <stdarg.h>
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n);
26 #else
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30 UNUSED_PARAMETER(n);
31 return 0;
32 #endif
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
39 typedef struct ScratchFreeslot {
40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */
41 } ScratchFreeslot;
44 ** State information local to the memory allocation subsystem.
46 static SQLITE_WSD struct Mem0Global {
47 sqlite3_mutex *mutex; /* Mutex to serialize access */
50 ** The alarm callback and its arguments. The mem0.mutex lock will
51 ** be held while the callback is running. Recursive calls into
52 ** the memory subsystem are allowed, but no new callbacks will be
53 ** issued.
55 sqlite3_int64 alarmThreshold;
56 void (*alarmCallback)(void*, sqlite3_int64,int);
57 void *alarmArg;
60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
61 ** (so that a range test can be used to determine if an allocation
62 ** being freed came from pScratch) and a pointer to the list of
63 ** unused scratch allocations.
65 void *pScratchEnd;
66 ScratchFreeslot *pScratchFree;
67 u32 nScratchFree;
70 ** True if heap is nearly "full" where "full" is defined by the
71 ** sqlite3_soft_heap_limit() setting.
73 int nearlyFull;
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
76 #define mem0 GLOBAL(struct Mem0Global, mem0)
79 ** This routine runs when the memory allocator sees that the
80 ** total memory allocation is about to exceed the soft heap
81 ** limit.
83 static void softHeapLimitEnforcer(
84 void *NotUsed,
85 sqlite3_int64 NotUsed2,
86 int allocSize
88 UNUSED_PARAMETER2(NotUsed, NotUsed2);
89 sqlite3_release_memory(allocSize);
93 ** Change the alarm callback
95 static int sqlite3MemoryAlarm(
96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
97 void *pArg,
98 sqlite3_int64 iThreshold
100 int nUsed;
101 sqlite3_mutex_enter(mem0.mutex);
102 mem0.alarmCallback = xCallback;
103 mem0.alarmArg = pArg;
104 mem0.alarmThreshold = iThreshold;
105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
107 sqlite3_mutex_leave(mem0.mutex);
108 return SQLITE_OK;
111 #ifndef SQLITE_OMIT_DEPRECATED
113 ** Deprecated external interface. Internal/core SQLite code
114 ** should call sqlite3MemoryAlarm.
116 int sqlite3_memory_alarm(
117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
118 void *pArg,
119 sqlite3_int64 iThreshold
121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
123 #endif
126 ** Set the soft heap-size limit for the library. Passing a zero or
127 ** negative value indicates no limit.
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
130 sqlite3_int64 priorLimit;
131 sqlite3_int64 excess;
132 #ifndef SQLITE_OMIT_AUTOINIT
133 int rc = sqlite3_initialize();
134 if( rc ) return -1;
135 #endif
136 sqlite3_mutex_enter(mem0.mutex);
137 priorLimit = mem0.alarmThreshold;
138 sqlite3_mutex_leave(mem0.mutex);
139 if( n<0 ) return priorLimit;
140 if( n>0 ){
141 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
142 }else{
143 sqlite3MemoryAlarm(0, 0, 0);
145 excess = sqlite3_memory_used() - n;
146 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
147 return priorLimit;
149 void sqlite3_soft_heap_limit(int n){
150 if( n<0 ) n = 0;
151 sqlite3_soft_heap_limit64(n);
155 ** Initialize the memory allocation subsystem.
157 int sqlite3MallocInit(void){
158 if( sqlite3GlobalConfig.m.xMalloc==0 ){
159 sqlite3MemSetDefault();
161 memset(&mem0, 0, sizeof(mem0));
162 if( sqlite3GlobalConfig.bCoreMutex ){
163 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
165 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
166 && sqlite3GlobalConfig.nScratch>0 ){
167 int i, n, sz;
168 ScratchFreeslot *pSlot;
169 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
170 sqlite3GlobalConfig.szScratch = sz;
171 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
172 n = sqlite3GlobalConfig.nScratch;
173 mem0.pScratchFree = pSlot;
174 mem0.nScratchFree = n;
175 for(i=0; i<n-1; i++){
176 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
177 pSlot = pSlot->pNext;
179 pSlot->pNext = 0;
180 mem0.pScratchEnd = (void*)&pSlot[1];
181 }else{
182 mem0.pScratchEnd = 0;
183 sqlite3GlobalConfig.pScratch = 0;
184 sqlite3GlobalConfig.szScratch = 0;
185 sqlite3GlobalConfig.nScratch = 0;
187 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
188 || sqlite3GlobalConfig.nPage<1 ){
189 sqlite3GlobalConfig.pPage = 0;
190 sqlite3GlobalConfig.szPage = 0;
191 sqlite3GlobalConfig.nPage = 0;
193 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
197 ** Return true if the heap is currently under memory pressure - in other
198 ** words if the amount of heap used is close to the limit set by
199 ** sqlite3_soft_heap_limit().
201 int sqlite3HeapNearlyFull(void){
202 return mem0.nearlyFull;
206 ** Deinitialize the memory allocation subsystem.
208 void sqlite3MallocEnd(void){
209 if( sqlite3GlobalConfig.m.xShutdown ){
210 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
212 memset(&mem0, 0, sizeof(mem0));
216 ** Return the amount of memory currently checked out.
218 sqlite3_int64 sqlite3_memory_used(void){
219 int n, mx;
220 sqlite3_int64 res;
221 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
222 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
223 return res;
227 ** Return the maximum amount of memory that has ever been
228 ** checked out since either the beginning of this process
229 ** or since the most recent reset.
231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
232 int n, mx;
233 sqlite3_int64 res;
234 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
235 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
236 return res;
240 ** Trigger the alarm
242 static void sqlite3MallocAlarm(int nByte){
243 void (*xCallback)(void*,sqlite3_int64,int);
244 sqlite3_int64 nowUsed;
245 void *pArg;
246 if( mem0.alarmCallback==0 ) return;
247 xCallback = mem0.alarmCallback;
248 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
249 pArg = mem0.alarmArg;
250 mem0.alarmCallback = 0;
251 sqlite3_mutex_leave(mem0.mutex);
252 xCallback(pArg, nowUsed, nByte);
253 sqlite3_mutex_enter(mem0.mutex);
254 mem0.alarmCallback = xCallback;
255 mem0.alarmArg = pArg;
259 ** Do a memory allocation with statistics and alarms. Assume the
260 ** lock is already held.
262 static int mallocWithAlarm(int n, void **pp){
263 int nFull;
264 void *p;
265 assert( sqlite3_mutex_held(mem0.mutex) );
266 nFull = sqlite3GlobalConfig.m.xRoundup(n);
267 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
268 if( mem0.alarmCallback!=0 ){
269 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
270 if( nUsed >= mem0.alarmThreshold - nFull ){
271 mem0.nearlyFull = 1;
272 sqlite3MallocAlarm(nFull);
273 }else{
274 mem0.nearlyFull = 0;
277 p = sqlite3GlobalConfig.m.xMalloc(nFull);
278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
279 if( p==0 && mem0.alarmCallback ){
280 sqlite3MallocAlarm(nFull);
281 p = sqlite3GlobalConfig.m.xMalloc(nFull);
283 #endif
284 if( p ){
285 nFull = sqlite3MallocSize(p);
286 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
287 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
289 *pp = p;
290 return nFull;
294 ** Allocate memory. This routine is like sqlite3_malloc() except that it
295 ** assumes the memory subsystem has already been initialized.
297 void *sqlite3Malloc(int n){
298 void *p;
299 if( n<=0 /* IMP: R-65312-04917 */
300 || n>=0x7fffff00
302 /* A memory allocation of a number of bytes which is near the maximum
303 ** signed integer value might cause an integer overflow inside of the
304 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
305 ** 255 bytes of overhead. SQLite itself will never use anything near
306 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
307 p = 0;
308 }else if( sqlite3GlobalConfig.bMemstat ){
309 sqlite3_mutex_enter(mem0.mutex);
310 mallocWithAlarm(n, &p);
311 sqlite3_mutex_leave(mem0.mutex);
312 }else{
313 p = sqlite3GlobalConfig.m.xMalloc(n);
315 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */
316 return p;
320 ** This version of the memory allocation is for use by the application.
321 ** First make sure the memory subsystem is initialized, then do the
322 ** allocation.
324 void *sqlite3_malloc(int n){
325 #ifndef SQLITE_OMIT_AUTOINIT
326 if( sqlite3_initialize() ) return 0;
327 #endif
328 return sqlite3Malloc(n);
332 ** Each thread may only have a single outstanding allocation from
333 ** xScratchMalloc(). We verify this constraint in the single-threaded
334 ** case by setting scratchAllocOut to 1 when an allocation
335 ** is outstanding clearing it when the allocation is freed.
337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
338 static int scratchAllocOut = 0;
339 #endif
343 ** Allocate memory that is to be used and released right away.
344 ** This routine is similar to alloca() in that it is not intended
345 ** for situations where the memory might be held long-term. This
346 ** routine is intended to get memory to old large transient data
347 ** structures that would not normally fit on the stack of an
348 ** embedded processor.
350 void *sqlite3ScratchMalloc(int n){
351 void *p;
352 assert( n>0 );
354 sqlite3_mutex_enter(mem0.mutex);
355 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
356 p = mem0.pScratchFree;
357 mem0.pScratchFree = mem0.pScratchFree->pNext;
358 mem0.nScratchFree--;
359 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
360 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
361 sqlite3_mutex_leave(mem0.mutex);
362 }else{
363 if( sqlite3GlobalConfig.bMemstat ){
364 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
365 n = mallocWithAlarm(n, &p);
366 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
367 sqlite3_mutex_leave(mem0.mutex);
368 }else{
369 sqlite3_mutex_leave(mem0.mutex);
370 p = sqlite3GlobalConfig.m.xMalloc(n);
372 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
374 assert( sqlite3_mutex_notheld(mem0.mutex) );
377 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
378 /* Verify that no more than two scratch allocations per thread
379 ** are outstanding at one time. (This is only checked in the
380 ** single-threaded case since checking in the multi-threaded case
381 ** would be much more complicated.) */
382 assert( scratchAllocOut<=1 );
383 if( p ) scratchAllocOut++;
384 #endif
386 return p;
388 void sqlite3ScratchFree(void *p){
389 if( p ){
391 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
392 /* Verify that no more than two scratch allocation per thread
393 ** is outstanding at one time. (This is only checked in the
394 ** single-threaded case since checking in the multi-threaded case
395 ** would be much more complicated.) */
396 assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
397 scratchAllocOut--;
398 #endif
400 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
401 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
402 ScratchFreeslot *pSlot;
403 pSlot = (ScratchFreeslot*)p;
404 sqlite3_mutex_enter(mem0.mutex);
405 pSlot->pNext = mem0.pScratchFree;
406 mem0.pScratchFree = pSlot;
407 mem0.nScratchFree++;
408 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
409 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
410 sqlite3_mutex_leave(mem0.mutex);
411 }else{
412 /* Release memory back to the heap */
413 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
414 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
415 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
416 if( sqlite3GlobalConfig.bMemstat ){
417 int iSize = sqlite3MallocSize(p);
418 sqlite3_mutex_enter(mem0.mutex);
419 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
420 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
421 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
422 sqlite3GlobalConfig.m.xFree(p);
423 sqlite3_mutex_leave(mem0.mutex);
424 }else{
425 sqlite3GlobalConfig.m.xFree(p);
432 ** TRUE if p is a lookaside memory allocation from db
434 #ifndef SQLITE_OMIT_LOOKASIDE
435 static int isLookaside(sqlite3 *db, void *p){
436 return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
438 #else
439 #define isLookaside(A,B) 0
440 #endif
443 ** Return the size of a memory allocation previously obtained from
444 ** sqlite3Malloc() or sqlite3_malloc().
446 int sqlite3MallocSize(void *p){
447 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
448 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
449 return sqlite3GlobalConfig.m.xSize(p);
451 int sqlite3DbMallocSize(sqlite3 *db, void *p){
452 assert( db!=0 );
453 assert( sqlite3_mutex_held(db->mutex) );
454 if( isLookaside(db, p) ){
455 return db->lookaside.sz;
456 }else{
457 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
458 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
459 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
460 return sqlite3GlobalConfig.m.xSize(p);
465 ** Free memory previously obtained from sqlite3Malloc().
467 void sqlite3_free(void *p){
468 if( p==0 ) return; /* IMP: R-49053-54554 */
469 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
470 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
471 if( sqlite3GlobalConfig.bMemstat ){
472 sqlite3_mutex_enter(mem0.mutex);
473 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
474 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
475 sqlite3GlobalConfig.m.xFree(p);
476 sqlite3_mutex_leave(mem0.mutex);
477 }else{
478 sqlite3GlobalConfig.m.xFree(p);
483 ** Free memory that might be associated with a particular database
484 ** connection.
486 void sqlite3DbFree(sqlite3 *db, void *p){
487 assert( db==0 || sqlite3_mutex_held(db->mutex) );
488 if( p==0 ) return;
489 if( db ){
490 if( db->pnBytesFreed ){
491 *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
492 return;
494 if( isLookaside(db, p) ){
495 LookasideSlot *pBuf = (LookasideSlot*)p;
496 #if SQLITE_DEBUG
497 /* Trash all content in the buffer being freed */
498 memset(p, 0xaa, db->lookaside.sz);
499 #endif
500 pBuf->pNext = db->lookaside.pFree;
501 db->lookaside.pFree = pBuf;
502 db->lookaside.nOut--;
503 return;
506 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
507 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
508 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
509 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
510 sqlite3_free(p);
514 ** Change the size of an existing memory allocation
516 void *sqlite3Realloc(void *pOld, int nBytes){
517 int nOld, nNew, nDiff;
518 void *pNew;
519 if( pOld==0 ){
520 return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
522 if( nBytes<=0 ){
523 sqlite3_free(pOld); /* IMP: R-31593-10574 */
524 return 0;
526 if( nBytes>=0x7fffff00 ){
527 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
528 return 0;
530 nOld = sqlite3MallocSize(pOld);
531 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
532 ** argument to xRealloc is always a value returned by a prior call to
533 ** xRoundup. */
534 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
535 if( nOld==nNew ){
536 pNew = pOld;
537 }else if( sqlite3GlobalConfig.bMemstat ){
538 sqlite3_mutex_enter(mem0.mutex);
539 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
540 nDiff = nNew - nOld;
541 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
542 mem0.alarmThreshold-nDiff ){
543 sqlite3MallocAlarm(nDiff);
545 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
546 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
547 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
548 if( pNew==0 && mem0.alarmCallback ){
549 sqlite3MallocAlarm(nBytes);
550 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
552 if( pNew ){
553 nNew = sqlite3MallocSize(pNew);
554 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
556 sqlite3_mutex_leave(mem0.mutex);
557 }else{
558 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
560 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
561 return pNew;
565 ** The public interface to sqlite3Realloc. Make sure that the memory
566 ** subsystem is initialized prior to invoking sqliteRealloc.
568 void *sqlite3_realloc(void *pOld, int n){
569 #ifndef SQLITE_OMIT_AUTOINIT
570 if( sqlite3_initialize() ) return 0;
571 #endif
572 return sqlite3Realloc(pOld, n);
577 ** Allocate and zero memory.
579 void *sqlite3MallocZero(int n){
580 void *p = sqlite3Malloc(n);
581 if( p ){
582 memset(p, 0, n);
584 return p;
588 ** Allocate and zero memory. If the allocation fails, make
589 ** the mallocFailed flag in the connection pointer.
591 void *sqlite3DbMallocZero(sqlite3 *db, int n){
592 void *p = sqlite3DbMallocRaw(db, n);
593 if( p ){
594 memset(p, 0, n);
596 return p;
600 ** Allocate and zero memory. If the allocation fails, make
601 ** the mallocFailed flag in the connection pointer.
603 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
604 ** failure on the same database connection) then always return 0.
605 ** Hence for a particular database connection, once malloc starts
606 ** failing, it fails consistently until mallocFailed is reset.
607 ** This is an important assumption. There are many places in the
608 ** code that do things like this:
610 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
611 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
612 ** if( b ) a[10] = 9;
614 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
615 ** that all prior mallocs (ex: "a") worked too.
617 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
618 void *p;
619 assert( db==0 || sqlite3_mutex_held(db->mutex) );
620 assert( db==0 || db->pnBytesFreed==0 );
621 #ifndef SQLITE_OMIT_LOOKASIDE
622 if( db ){
623 LookasideSlot *pBuf;
624 if( db->mallocFailed ){
625 return 0;
627 if( db->lookaside.bEnabled ){
628 if( n>db->lookaside.sz ){
629 db->lookaside.anStat[1]++;
630 }else if( (pBuf = db->lookaside.pFree)==0 ){
631 db->lookaside.anStat[2]++;
632 }else{
633 db->lookaside.pFree = pBuf->pNext;
634 db->lookaside.nOut++;
635 db->lookaside.anStat[0]++;
636 if( db->lookaside.nOut>db->lookaside.mxOut ){
637 db->lookaside.mxOut = db->lookaside.nOut;
639 return (void*)pBuf;
643 #else
644 if( db && db->mallocFailed ){
645 return 0;
647 #endif
648 p = sqlite3Malloc(n);
649 if( !p && db ){
650 db->mallocFailed = 1;
652 sqlite3MemdebugSetType(p, MEMTYPE_DB |
653 ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
654 return p;
658 ** Resize the block of memory pointed to by p to n bytes. If the
659 ** resize fails, set the mallocFailed flag in the connection object.
661 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
662 void *pNew = 0;
663 assert( db!=0 );
664 assert( sqlite3_mutex_held(db->mutex) );
665 if( db->mallocFailed==0 ){
666 if( p==0 ){
667 return sqlite3DbMallocRaw(db, n);
669 if( isLookaside(db, p) ){
670 if( n<=db->lookaside.sz ){
671 return p;
673 pNew = sqlite3DbMallocRaw(db, n);
674 if( pNew ){
675 memcpy(pNew, p, db->lookaside.sz);
676 sqlite3DbFree(db, p);
678 }else{
679 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
680 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
681 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
682 pNew = sqlite3_realloc(p, n);
683 if( !pNew ){
684 sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
685 db->mallocFailed = 1;
687 sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
688 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
691 return pNew;
695 ** Attempt to reallocate p. If the reallocation fails, then free p
696 ** and set the mallocFailed flag in the database connection.
698 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
699 void *pNew;
700 pNew = sqlite3DbRealloc(db, p, n);
701 if( !pNew ){
702 sqlite3DbFree(db, p);
704 return pNew;
708 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
709 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
710 ** is because when memory debugging is turned on, these two functions are
711 ** called via macros that record the current file and line number in the
712 ** ThreadData structure.
714 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
715 char *zNew;
716 size_t n;
717 if( z==0 ){
718 return 0;
720 n = sqlite3Strlen30(z) + 1;
721 assert( (n&0x7fffffff)==n );
722 zNew = sqlite3DbMallocRaw(db, (int)n);
723 if( zNew ){
724 memcpy(zNew, z, n);
726 return zNew;
728 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
729 char *zNew;
730 if( z==0 ){
731 return 0;
733 assert( (n&0x7fffffff)==n );
734 zNew = sqlite3DbMallocRaw(db, n+1);
735 if( zNew ){
736 memcpy(zNew, z, n);
737 zNew[n] = 0;
739 return zNew;
743 ** Create a string from the zFromat argument and the va_list that follows.
744 ** Store the string in memory obtained from sqliteMalloc() and make *pz
745 ** point to that string.
747 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
748 va_list ap;
749 char *z;
751 va_start(ap, zFormat);
752 z = sqlite3VMPrintf(db, zFormat, ap);
753 va_end(ap);
754 sqlite3DbFree(db, *pz);
755 *pz = z;
760 ** This function must be called before exiting any API function (i.e.
761 ** returning control to the user) that has called sqlite3_malloc or
762 ** sqlite3_realloc.
764 ** The returned value is normally a copy of the second argument to this
765 ** function. However, if a malloc() failure has occurred since the previous
766 ** invocation SQLITE_NOMEM is returned instead.
768 ** If the first argument, db, is not NULL and a malloc() error has occurred,
769 ** then the connection error-code (the value returned by sqlite3_errcode())
770 ** is set to SQLITE_NOMEM.
772 int sqlite3ApiExit(sqlite3* db, int rc){
773 /* If the db handle is not NULL, then we must hold the connection handle
774 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
775 ** is unsafe, as is the call to sqlite3Error().
777 assert( !db || sqlite3_mutex_held(db->mutex) );
778 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
779 sqlite3Error(db, SQLITE_NOMEM, 0);
780 db->mallocFailed = 0;
781 rc = SQLITE_NOMEM;
783 return rc & (db ? db->errMask : 0xff);