Adjust path to test databases for tests
[sqlcipher.git] / src / select.c
blob199e13f113609c856c064866cb1f8bfc2aad2b17
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25 (S)->zSelName,(S)),\
26 sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39 u8 isTnct; /* True if the DISTINCT keyword is present */
40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor; /* Cursor number for the sorter */
54 int regReturn; /* Register holding block-output return address */
55 int labelBkOut; /* Start label for the block-output subroutine */
56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68 while( p ){
69 Select *pPrior = p->pPrior;
70 sqlite3ExprListDelete(db, p->pEList);
71 sqlite3SrcListDelete(db, p->pSrc);
72 sqlite3ExprDelete(db, p->pWhere);
73 sqlite3ExprListDelete(db, p->pGroupBy);
74 sqlite3ExprDelete(db, p->pHaving);
75 sqlite3ExprListDelete(db, p->pOrderBy);
76 sqlite3ExprDelete(db, p->pLimit);
77 sqlite3ExprDelete(db, p->pOffset);
78 if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79 if( bFree ) sqlite3DbFree(db, p);
80 p = pPrior;
81 bFree = 1;
86 ** Initialize a SelectDest structure.
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89 pDest->eDest = (u8)eDest;
90 pDest->iSDParm = iParm;
91 pDest->zAffSdst = 0;
92 pDest->iSdst = 0;
93 pDest->nSdst = 0;
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
101 Select *sqlite3SelectNew(
102 Parse *pParse, /* Parsing context */
103 ExprList *pEList, /* which columns to include in the result */
104 SrcList *pSrc, /* the FROM clause -- which tables to scan */
105 Expr *pWhere, /* the WHERE clause */
106 ExprList *pGroupBy, /* the GROUP BY clause */
107 Expr *pHaving, /* the HAVING clause */
108 ExprList *pOrderBy, /* the ORDER BY clause */
109 u32 selFlags, /* Flag parameters, such as SF_Distinct */
110 Expr *pLimit, /* LIMIT value. NULL means not used */
111 Expr *pOffset /* OFFSET value. NULL means no offset */
113 Select *pNew;
114 Select standin;
115 sqlite3 *db = pParse->db;
116 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
117 if( pNew==0 ){
118 assert( db->mallocFailed );
119 pNew = &standin;
121 if( pEList==0 ){
122 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
124 pNew->pEList = pEList;
125 pNew->op = TK_SELECT;
126 pNew->selFlags = selFlags;
127 pNew->iLimit = 0;
128 pNew->iOffset = 0;
129 #if SELECTTRACE_ENABLED
130 pNew->zSelName[0] = 0;
131 #endif
132 pNew->addrOpenEphm[0] = -1;
133 pNew->addrOpenEphm[1] = -1;
134 pNew->nSelectRow = 0;
135 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
136 pNew->pSrc = pSrc;
137 pNew->pWhere = pWhere;
138 pNew->pGroupBy = pGroupBy;
139 pNew->pHaving = pHaving;
140 pNew->pOrderBy = pOrderBy;
141 pNew->pPrior = 0;
142 pNew->pNext = 0;
143 pNew->pLimit = pLimit;
144 pNew->pOffset = pOffset;
145 pNew->pWith = 0;
146 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
147 if( db->mallocFailed ) {
148 clearSelect(db, pNew, pNew!=&standin);
149 pNew = 0;
150 }else{
151 assert( pNew->pSrc!=0 || pParse->nErr>0 );
153 assert( pNew!=&standin );
154 return pNew;
157 #if SELECTTRACE_ENABLED
159 ** Set the name of a Select object
161 void sqlite3SelectSetName(Select *p, const char *zName){
162 if( p && zName ){
163 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
166 #endif
170 ** Delete the given Select structure and all of its substructures.
172 void sqlite3SelectDelete(sqlite3 *db, Select *p){
173 if( p ) clearSelect(db, p, 1);
177 ** Return a pointer to the right-most SELECT statement in a compound.
179 static Select *findRightmost(Select *p){
180 while( p->pNext ) p = p->pNext;
181 return p;
185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
186 ** type of join. Return an integer constant that expresses that type
187 ** in terms of the following bit values:
189 ** JT_INNER
190 ** JT_CROSS
191 ** JT_OUTER
192 ** JT_NATURAL
193 ** JT_LEFT
194 ** JT_RIGHT
196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
198 ** If an illegal or unsupported join type is seen, then still return
199 ** a join type, but put an error in the pParse structure.
201 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
202 int jointype = 0;
203 Token *apAll[3];
204 Token *p;
205 /* 0123456789 123456789 123456789 123 */
206 static const char zKeyText[] = "naturaleftouterightfullinnercross";
207 static const struct {
208 u8 i; /* Beginning of keyword text in zKeyText[] */
209 u8 nChar; /* Length of the keyword in characters */
210 u8 code; /* Join type mask */
211 } aKeyword[] = {
212 /* natural */ { 0, 7, JT_NATURAL },
213 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
214 /* outer */ { 10, 5, JT_OUTER },
215 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
216 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
217 /* inner */ { 23, 5, JT_INNER },
218 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
220 int i, j;
221 apAll[0] = pA;
222 apAll[1] = pB;
223 apAll[2] = pC;
224 for(i=0; i<3 && apAll[i]; i++){
225 p = apAll[i];
226 for(j=0; j<ArraySize(aKeyword); j++){
227 if( p->n==aKeyword[j].nChar
228 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
229 jointype |= aKeyword[j].code;
230 break;
233 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
234 if( j>=ArraySize(aKeyword) ){
235 jointype |= JT_ERROR;
236 break;
240 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
241 (jointype & JT_ERROR)!=0
243 const char *zSp = " ";
244 assert( pB!=0 );
245 if( pC==0 ){ zSp++; }
246 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
247 "%T %T%s%T", pA, pB, zSp, pC);
248 jointype = JT_INNER;
249 }else if( (jointype & JT_OUTER)!=0
250 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
251 sqlite3ErrorMsg(pParse,
252 "RIGHT and FULL OUTER JOINs are not currently supported");
253 jointype = JT_INNER;
255 return jointype;
259 ** Return the index of a column in a table. Return -1 if the column
260 ** is not contained in the table.
262 static int columnIndex(Table *pTab, const char *zCol){
263 int i;
264 for(i=0; i<pTab->nCol; i++){
265 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
267 return -1;
271 ** Search the first N tables in pSrc, from left to right, looking for a
272 ** table that has a column named zCol.
274 ** When found, set *piTab and *piCol to the table index and column index
275 ** of the matching column and return TRUE.
277 ** If not found, return FALSE.
279 static int tableAndColumnIndex(
280 SrcList *pSrc, /* Array of tables to search */
281 int N, /* Number of tables in pSrc->a[] to search */
282 const char *zCol, /* Name of the column we are looking for */
283 int *piTab, /* Write index of pSrc->a[] here */
284 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
286 int i; /* For looping over tables in pSrc */
287 int iCol; /* Index of column matching zCol */
289 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
290 for(i=0; i<N; i++){
291 iCol = columnIndex(pSrc->a[i].pTab, zCol);
292 if( iCol>=0 ){
293 if( piTab ){
294 *piTab = i;
295 *piCol = iCol;
297 return 1;
300 return 0;
304 ** This function is used to add terms implied by JOIN syntax to the
305 ** WHERE clause expression of a SELECT statement. The new term, which
306 ** is ANDed with the existing WHERE clause, is of the form:
308 ** (tab1.col1 = tab2.col2)
310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
312 ** column iColRight of tab2.
314 static void addWhereTerm(
315 Parse *pParse, /* Parsing context */
316 SrcList *pSrc, /* List of tables in FROM clause */
317 int iLeft, /* Index of first table to join in pSrc */
318 int iColLeft, /* Index of column in first table */
319 int iRight, /* Index of second table in pSrc */
320 int iColRight, /* Index of column in second table */
321 int isOuterJoin, /* True if this is an OUTER join */
322 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
324 sqlite3 *db = pParse->db;
325 Expr *pE1;
326 Expr *pE2;
327 Expr *pEq;
329 assert( iLeft<iRight );
330 assert( pSrc->nSrc>iRight );
331 assert( pSrc->a[iLeft].pTab );
332 assert( pSrc->a[iRight].pTab );
334 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
335 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
337 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
338 if( pEq && isOuterJoin ){
339 ExprSetProperty(pEq, EP_FromJoin);
340 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
341 ExprSetVVAProperty(pEq, EP_NoReduce);
342 pEq->iRightJoinTable = (i16)pE2->iTable;
344 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
348 ** Set the EP_FromJoin property on all terms of the given expression.
349 ** And set the Expr.iRightJoinTable to iTable for every term in the
350 ** expression.
352 ** The EP_FromJoin property is used on terms of an expression to tell
353 ** the LEFT OUTER JOIN processing logic that this term is part of the
354 ** join restriction specified in the ON or USING clause and not a part
355 ** of the more general WHERE clause. These terms are moved over to the
356 ** WHERE clause during join processing but we need to remember that they
357 ** originated in the ON or USING clause.
359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
360 ** expression depends on table iRightJoinTable even if that table is not
361 ** explicitly mentioned in the expression. That information is needed
362 ** for cases like this:
364 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
366 ** The where clause needs to defer the handling of the t1.x=5
367 ** term until after the t2 loop of the join. In that way, a
368 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
369 ** defer the handling of t1.x=5, it will be processed immediately
370 ** after the t1 loop and rows with t1.x!=5 will never appear in
371 ** the output, which is incorrect.
373 static void setJoinExpr(Expr *p, int iTable){
374 while( p ){
375 ExprSetProperty(p, EP_FromJoin);
376 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
377 ExprSetVVAProperty(p, EP_NoReduce);
378 p->iRightJoinTable = (i16)iTable;
379 if( p->op==TK_FUNCTION && p->x.pList ){
380 int i;
381 for(i=0; i<p->x.pList->nExpr; i++){
382 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
385 setJoinExpr(p->pLeft, iTable);
386 p = p->pRight;
391 ** This routine processes the join information for a SELECT statement.
392 ** ON and USING clauses are converted into extra terms of the WHERE clause.
393 ** NATURAL joins also create extra WHERE clause terms.
395 ** The terms of a FROM clause are contained in the Select.pSrc structure.
396 ** The left most table is the first entry in Select.pSrc. The right-most
397 ** table is the last entry. The join operator is held in the entry to
398 ** the left. Thus entry 0 contains the join operator for the join between
399 ** entries 0 and 1. Any ON or USING clauses associated with the join are
400 ** also attached to the left entry.
402 ** This routine returns the number of errors encountered.
404 static int sqliteProcessJoin(Parse *pParse, Select *p){
405 SrcList *pSrc; /* All tables in the FROM clause */
406 int i, j; /* Loop counters */
407 struct SrcList_item *pLeft; /* Left table being joined */
408 struct SrcList_item *pRight; /* Right table being joined */
410 pSrc = p->pSrc;
411 pLeft = &pSrc->a[0];
412 pRight = &pLeft[1];
413 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
414 Table *pLeftTab = pLeft->pTab;
415 Table *pRightTab = pRight->pTab;
416 int isOuter;
418 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
419 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
421 /* When the NATURAL keyword is present, add WHERE clause terms for
422 ** every column that the two tables have in common.
424 if( pRight->fg.jointype & JT_NATURAL ){
425 if( pRight->pOn || pRight->pUsing ){
426 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
427 "an ON or USING clause", 0);
428 return 1;
430 for(j=0; j<pRightTab->nCol; j++){
431 char *zName; /* Name of column in the right table */
432 int iLeft; /* Matching left table */
433 int iLeftCol; /* Matching column in the left table */
435 zName = pRightTab->aCol[j].zName;
436 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
437 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
438 isOuter, &p->pWhere);
443 /* Disallow both ON and USING clauses in the same join
445 if( pRight->pOn && pRight->pUsing ){
446 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
447 "clauses in the same join");
448 return 1;
451 /* Add the ON clause to the end of the WHERE clause, connected by
452 ** an AND operator.
454 if( pRight->pOn ){
455 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
456 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
457 pRight->pOn = 0;
460 /* Create extra terms on the WHERE clause for each column named
461 ** in the USING clause. Example: If the two tables to be joined are
462 ** A and B and the USING clause names X, Y, and Z, then add this
463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
464 ** Report an error if any column mentioned in the USING clause is
465 ** not contained in both tables to be joined.
467 if( pRight->pUsing ){
468 IdList *pList = pRight->pUsing;
469 for(j=0; j<pList->nId; j++){
470 char *zName; /* Name of the term in the USING clause */
471 int iLeft; /* Table on the left with matching column name */
472 int iLeftCol; /* Column number of matching column on the left */
473 int iRightCol; /* Column number of matching column on the right */
475 zName = pList->a[j].zName;
476 iRightCol = columnIndex(pRightTab, zName);
477 if( iRightCol<0
478 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
480 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
481 "not present in both tables", zName);
482 return 1;
484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
485 isOuter, &p->pWhere);
489 return 0;
492 /* Forward reference */
493 static KeyInfo *keyInfoFromExprList(
494 Parse *pParse, /* Parsing context */
495 ExprList *pList, /* Form the KeyInfo object from this ExprList */
496 int iStart, /* Begin with this column of pList */
497 int nExtra /* Add this many extra columns to the end */
501 ** Generate code that will push the record in registers regData
502 ** through regData+nData-1 onto the sorter.
504 static void pushOntoSorter(
505 Parse *pParse, /* Parser context */
506 SortCtx *pSort, /* Information about the ORDER BY clause */
507 Select *pSelect, /* The whole SELECT statement */
508 int regData, /* First register holding data to be sorted */
509 int regOrigData, /* First register holding data before packing */
510 int nData, /* Number of elements in the data array */
511 int nPrefixReg /* No. of reg prior to regData available for use */
513 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
514 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
515 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
516 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
517 int regBase; /* Regs for sorter record */
518 int regRecord = ++pParse->nMem; /* Assembled sorter record */
519 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
520 int op; /* Opcode to add sorter record to sorter */
521 int iLimit; /* LIMIT counter */
523 assert( bSeq==0 || bSeq==1 );
524 assert( nData==1 || regData==regOrigData );
525 if( nPrefixReg ){
526 assert( nPrefixReg==nExpr+bSeq );
527 regBase = regData - nExpr - bSeq;
528 }else{
529 regBase = pParse->nMem + 1;
530 pParse->nMem += nBase;
532 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
533 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
534 pSort->labelDone = sqlite3VdbeMakeLabel(v);
535 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
536 SQLITE_ECEL_DUP|SQLITE_ECEL_REF);
537 if( bSeq ){
538 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
540 if( nPrefixReg==0 ){
541 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
544 if( nOBSat>0 ){
545 int regPrevKey; /* The first nOBSat columns of the previous row */
546 int addrFirst; /* Address of the OP_IfNot opcode */
547 int addrJmp; /* Address of the OP_Jump opcode */
548 VdbeOp *pOp; /* Opcode that opens the sorter */
549 int nKey; /* Number of sorting key columns, including OP_Sequence */
550 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
552 regPrevKey = pParse->nMem+1;
553 pParse->nMem += pSort->nOBSat;
554 nKey = nExpr - pSort->nOBSat + bSeq;
555 if( bSeq ){
556 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
557 }else{
558 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
560 VdbeCoverage(v);
561 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
562 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
563 if( pParse->db->mallocFailed ) return;
564 pOp->p2 = nKey + nData;
565 pKI = pOp->p4.pKeyInfo;
566 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
567 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
568 testcase( pKI->nXField>2 );
569 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
570 pKI->nXField-1);
571 addrJmp = sqlite3VdbeCurrentAddr(v);
572 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
573 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
574 pSort->regReturn = ++pParse->nMem;
575 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
576 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
577 if( iLimit ){
578 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
579 VdbeCoverage(v);
581 sqlite3VdbeJumpHere(v, addrFirst);
582 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
583 sqlite3VdbeJumpHere(v, addrJmp);
585 if( pSort->sortFlags & SORTFLAG_UseSorter ){
586 op = OP_SorterInsert;
587 }else{
588 op = OP_IdxInsert;
590 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
591 if( iLimit ){
592 int addr;
593 int r1 = 0;
594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
596 ** fills up, delete the least entry in the sorter after each insert.
597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v);
599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600 if( pSort->bOrderedInnerLoop ){
601 r1 = ++pParse->nMem;
602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603 VdbeComment((v, "seq"));
605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606 if( pSort->bOrderedInnerLoop ){
607 /* If the inner loop is driven by an index such that values from
608 ** the same iteration of the inner loop are in sorted order, then
609 ** immediately jump to the next iteration of an inner loop if the
610 ** entry from the current iteration does not fit into the top
611 ** LIMIT+OFFSET entries of the sorter. */
612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615 VdbeCoverage(v);
617 sqlite3VdbeJumpHere(v, addr);
622 ** Add code to implement the OFFSET
624 static void codeOffset(
625 Vdbe *v, /* Generate code into this VM */
626 int iOffset, /* Register holding the offset counter */
627 int iContinue /* Jump here to skip the current record */
629 if( iOffset>0 ){
630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631 VdbeComment((v, "OFFSET"));
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry. iTab is a sorting index that holds previously
638 ** seen combinations of the N values. A new entry is made in iTab
639 ** if the current N values are new.
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
644 static void codeDistinct(
645 Parse *pParse, /* Parsing and code generating context */
646 int iTab, /* A sorting index used to test for distinctness */
647 int addrRepeat, /* Jump to here if not distinct */
648 int N, /* Number of elements */
649 int iMem /* First element */
651 Vdbe *v;
652 int r1;
654 v = pParse->pVdbe;
655 r1 = sqlite3GetTempReg(pParse);
656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
659 sqlite3ReleaseTempReg(pParse, r1);
663 ** This routine generates the code for the inside of the inner loop
664 ** of a SELECT.
666 ** If srcTab is negative, then the pEList expressions
667 ** are evaluated in order to get the data for this row. If srcTab is
668 ** zero or more, then data is pulled from srcTab and pEList is used only
669 ** to get number columns and the datatype for each column.
671 static void selectInnerLoop(
672 Parse *pParse, /* The parser context */
673 Select *p, /* The complete select statement being coded */
674 ExprList *pEList, /* List of values being extracted */
675 int srcTab, /* Pull data from this table */
676 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
677 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
678 SelectDest *pDest, /* How to dispose of the results */
679 int iContinue, /* Jump here to continue with next row */
680 int iBreak /* Jump here to break out of the inner loop */
682 Vdbe *v = pParse->pVdbe;
683 int i;
684 int hasDistinct; /* True if the DISTINCT keyword is present */
685 int regResult; /* Start of memory holding result set */
686 int eDest = pDest->eDest; /* How to dispose of results */
687 int iParm = pDest->iSDParm; /* First argument to disposal method */
688 int nResultCol; /* Number of result columns */
689 int nPrefixReg = 0; /* Number of extra registers before regResult */
691 assert( v );
692 assert( pEList!=0 );
693 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
694 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
695 if( pSort==0 && !hasDistinct ){
696 assert( iContinue!=0 );
697 codeOffset(v, p->iOffset, iContinue);
700 /* Pull the requested columns.
702 nResultCol = pEList->nExpr;
704 if( pDest->iSdst==0 ){
705 if( pSort ){
706 nPrefixReg = pSort->pOrderBy->nExpr;
707 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
708 pParse->nMem += nPrefixReg;
710 pDest->iSdst = pParse->nMem+1;
711 pParse->nMem += nResultCol;
712 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
713 /* This is an error condition that can result, for example, when a SELECT
714 ** on the right-hand side of an INSERT contains more result columns than
715 ** there are columns in the table on the left. The error will be caught
716 ** and reported later. But we need to make sure enough memory is allocated
717 ** to avoid other spurious errors in the meantime. */
718 pParse->nMem += nResultCol;
720 pDest->nSdst = nResultCol;
721 regResult = pDest->iSdst;
722 if( srcTab>=0 ){
723 for(i=0; i<nResultCol; i++){
724 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
725 VdbeComment((v, "%s", pEList->a[i].zName));
727 }else if( eDest!=SRT_Exists ){
728 /* If the destination is an EXISTS(...) expression, the actual
729 ** values returned by the SELECT are not required.
731 u8 ecelFlags;
732 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
733 ecelFlags = SQLITE_ECEL_DUP;
734 }else{
735 ecelFlags = 0;
737 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags);
740 /* If the DISTINCT keyword was present on the SELECT statement
741 ** and this row has been seen before, then do not make this row
742 ** part of the result.
744 if( hasDistinct ){
745 switch( pDistinct->eTnctType ){
746 case WHERE_DISTINCT_ORDERED: {
747 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
748 int iJump; /* Jump destination */
749 int regPrev; /* Previous row content */
751 /* Allocate space for the previous row */
752 regPrev = pParse->nMem+1;
753 pParse->nMem += nResultCol;
755 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
756 ** sets the MEM_Cleared bit on the first register of the
757 ** previous value. This will cause the OP_Ne below to always
758 ** fail on the first iteration of the loop even if the first
759 ** row is all NULLs.
761 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
762 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
763 pOp->opcode = OP_Null;
764 pOp->p1 = 1;
765 pOp->p2 = regPrev;
767 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
768 for(i=0; i<nResultCol; i++){
769 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
770 if( i<nResultCol-1 ){
771 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
772 VdbeCoverage(v);
773 }else{
774 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
775 VdbeCoverage(v);
777 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
778 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
780 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
781 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
782 break;
785 case WHERE_DISTINCT_UNIQUE: {
786 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
787 break;
790 default: {
791 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
792 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
793 regResult);
794 break;
797 if( pSort==0 ){
798 codeOffset(v, p->iOffset, iContinue);
802 switch( eDest ){
803 /* In this mode, write each query result to the key of the temporary
804 ** table iParm.
806 #ifndef SQLITE_OMIT_COMPOUND_SELECT
807 case SRT_Union: {
808 int r1;
809 r1 = sqlite3GetTempReg(pParse);
810 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
811 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
812 sqlite3ReleaseTempReg(pParse, r1);
813 break;
816 /* Construct a record from the query result, but instead of
817 ** saving that record, use it as a key to delete elements from
818 ** the temporary table iParm.
820 case SRT_Except: {
821 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
822 break;
824 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
826 /* Store the result as data using a unique key.
828 case SRT_Fifo:
829 case SRT_DistFifo:
830 case SRT_Table:
831 case SRT_EphemTab: {
832 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
833 testcase( eDest==SRT_Table );
834 testcase( eDest==SRT_EphemTab );
835 testcase( eDest==SRT_Fifo );
836 testcase( eDest==SRT_DistFifo );
837 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
838 #ifndef SQLITE_OMIT_CTE
839 if( eDest==SRT_DistFifo ){
840 /* If the destination is DistFifo, then cursor (iParm+1) is open
841 ** on an ephemeral index. If the current row is already present
842 ** in the index, do not write it to the output. If not, add the
843 ** current row to the index and proceed with writing it to the
844 ** output table as well. */
845 int addr = sqlite3VdbeCurrentAddr(v) + 4;
846 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
847 VdbeCoverage(v);
848 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
849 assert( pSort==0 );
851 #endif
852 if( pSort ){
853 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
854 }else{
855 int r2 = sqlite3GetTempReg(pParse);
856 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
857 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
858 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
859 sqlite3ReleaseTempReg(pParse, r2);
861 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
862 break;
865 #ifndef SQLITE_OMIT_SUBQUERY
866 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
867 ** then there should be a single item on the stack. Write this
868 ** item into the set table with bogus data.
870 case SRT_Set: {
871 if( pSort ){
872 /* At first glance you would think we could optimize out the
873 ** ORDER BY in this case since the order of entries in the set
874 ** does not matter. But there might be a LIMIT clause, in which
875 ** case the order does matter */
876 pushOntoSorter(
877 pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg);
878 }else{
879 int r1 = sqlite3GetTempReg(pParse);
880 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
881 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
882 r1, pDest->zAffSdst, nResultCol);
883 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
884 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
885 sqlite3ReleaseTempReg(pParse, r1);
887 break;
890 /* If any row exist in the result set, record that fact and abort.
892 case SRT_Exists: {
893 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
894 /* The LIMIT clause will terminate the loop for us */
895 break;
898 /* If this is a scalar select that is part of an expression, then
899 ** store the results in the appropriate memory cell or array of
900 ** memory cells and break out of the scan loop.
902 case SRT_Mem: {
903 assert( nResultCol==pDest->nSdst );
904 if( pSort ){
905 pushOntoSorter(
906 pParse, pSort, p, regResult, regResult, nResultCol, nPrefixReg);
907 }else{
908 assert( regResult==iParm );
909 /* The LIMIT clause will jump out of the loop for us */
911 break;
913 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
915 case SRT_Coroutine: /* Send data to a co-routine */
916 case SRT_Output: { /* Return the results */
917 testcase( eDest==SRT_Coroutine );
918 testcase( eDest==SRT_Output );
919 if( pSort ){
920 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol,
921 nPrefixReg);
922 }else if( eDest==SRT_Coroutine ){
923 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
924 }else{
925 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
926 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
928 break;
931 #ifndef SQLITE_OMIT_CTE
932 /* Write the results into a priority queue that is order according to
933 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
934 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
935 ** pSO->nExpr columns, then make sure all keys are unique by adding a
936 ** final OP_Sequence column. The last column is the record as a blob.
938 case SRT_DistQueue:
939 case SRT_Queue: {
940 int nKey;
941 int r1, r2, r3;
942 int addrTest = 0;
943 ExprList *pSO;
944 pSO = pDest->pOrderBy;
945 assert( pSO );
946 nKey = pSO->nExpr;
947 r1 = sqlite3GetTempReg(pParse);
948 r2 = sqlite3GetTempRange(pParse, nKey+2);
949 r3 = r2+nKey+1;
950 if( eDest==SRT_DistQueue ){
951 /* If the destination is DistQueue, then cursor (iParm+1) is open
952 ** on a second ephemeral index that holds all values every previously
953 ** added to the queue. */
954 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
955 regResult, nResultCol);
956 VdbeCoverage(v);
958 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
959 if( eDest==SRT_DistQueue ){
960 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
961 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
963 for(i=0; i<nKey; i++){
964 sqlite3VdbeAddOp2(v, OP_SCopy,
965 regResult + pSO->a[i].u.x.iOrderByCol - 1,
966 r2+i);
968 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
969 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
970 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
971 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
972 sqlite3ReleaseTempReg(pParse, r1);
973 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
974 break;
976 #endif /* SQLITE_OMIT_CTE */
980 #if !defined(SQLITE_OMIT_TRIGGER)
981 /* Discard the results. This is used for SELECT statements inside
982 ** the body of a TRIGGER. The purpose of such selects is to call
983 ** user-defined functions that have side effects. We do not care
984 ** about the actual results of the select.
986 default: {
987 assert( eDest==SRT_Discard );
988 break;
990 #endif
993 /* Jump to the end of the loop if the LIMIT is reached. Except, if
994 ** there is a sorter, in which case the sorter has already limited
995 ** the output for us.
997 if( pSort==0 && p->iLimit ){
998 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1003 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1004 ** X extra columns.
1006 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1007 int nExtra = (N+X)*(sizeof(CollSeq*)+1);
1008 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1009 if( p ){
1010 p->aSortOrder = (u8*)&p->aColl[N+X];
1011 p->nField = (u16)N;
1012 p->nXField = (u16)X;
1013 p->enc = ENC(db);
1014 p->db = db;
1015 p->nRef = 1;
1016 memset(&p[1], 0, nExtra);
1017 }else{
1018 sqlite3OomFault(db);
1020 return p;
1024 ** Deallocate a KeyInfo object
1026 void sqlite3KeyInfoUnref(KeyInfo *p){
1027 if( p ){
1028 assert( p->nRef>0 );
1029 p->nRef--;
1030 if( p->nRef==0 ) sqlite3DbFree(p->db, p);
1035 ** Make a new pointer to a KeyInfo object
1037 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1038 if( p ){
1039 assert( p->nRef>0 );
1040 p->nRef++;
1042 return p;
1045 #ifdef SQLITE_DEBUG
1047 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1048 ** can only be changed if this is just a single reference to the object.
1050 ** This routine is used only inside of assert() statements.
1052 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1053 #endif /* SQLITE_DEBUG */
1056 ** Given an expression list, generate a KeyInfo structure that records
1057 ** the collating sequence for each expression in that expression list.
1059 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1060 ** KeyInfo structure is appropriate for initializing a virtual index to
1061 ** implement that clause. If the ExprList is the result set of a SELECT
1062 ** then the KeyInfo structure is appropriate for initializing a virtual
1063 ** index to implement a DISTINCT test.
1065 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1066 ** function is responsible for seeing that this structure is eventually
1067 ** freed.
1069 static KeyInfo *keyInfoFromExprList(
1070 Parse *pParse, /* Parsing context */
1071 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1072 int iStart, /* Begin with this column of pList */
1073 int nExtra /* Add this many extra columns to the end */
1075 int nExpr;
1076 KeyInfo *pInfo;
1077 struct ExprList_item *pItem;
1078 sqlite3 *db = pParse->db;
1079 int i;
1081 nExpr = pList->nExpr;
1082 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1083 if( pInfo ){
1084 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1085 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1086 CollSeq *pColl;
1087 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1088 if( !pColl ) pColl = db->pDfltColl;
1089 pInfo->aColl[i-iStart] = pColl;
1090 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1093 return pInfo;
1097 ** Name of the connection operator, used for error messages.
1099 static const char *selectOpName(int id){
1100 char *z;
1101 switch( id ){
1102 case TK_ALL: z = "UNION ALL"; break;
1103 case TK_INTERSECT: z = "INTERSECT"; break;
1104 case TK_EXCEPT: z = "EXCEPT"; break;
1105 default: z = "UNION"; break;
1107 return z;
1110 #ifndef SQLITE_OMIT_EXPLAIN
1112 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1113 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1114 ** where the caption is of the form:
1116 ** "USE TEMP B-TREE FOR xxx"
1118 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1119 ** is determined by the zUsage argument.
1121 static void explainTempTable(Parse *pParse, const char *zUsage){
1122 if( pParse->explain==2 ){
1123 Vdbe *v = pParse->pVdbe;
1124 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1125 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1130 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1131 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1132 ** in sqlite3Select() to assign values to structure member variables that
1133 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1134 ** code with #ifndef directives.
1136 # define explainSetInteger(a, b) a = b
1138 #else
1139 /* No-op versions of the explainXXX() functions and macros. */
1140 # define explainTempTable(y,z)
1141 # define explainSetInteger(y,z)
1142 #endif
1144 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1146 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1147 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1148 ** where the caption is of one of the two forms:
1150 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1151 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1153 ** where iSub1 and iSub2 are the integers passed as the corresponding
1154 ** function parameters, and op is the text representation of the parameter
1155 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1156 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1157 ** false, or the second form if it is true.
1159 static void explainComposite(
1160 Parse *pParse, /* Parse context */
1161 int op, /* One of TK_UNION, TK_EXCEPT etc. */
1162 int iSub1, /* Subquery id 1 */
1163 int iSub2, /* Subquery id 2 */
1164 int bUseTmp /* True if a temp table was used */
1166 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1167 if( pParse->explain==2 ){
1168 Vdbe *v = pParse->pVdbe;
1169 char *zMsg = sqlite3MPrintf(
1170 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1171 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1173 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1176 #else
1177 /* No-op versions of the explainXXX() functions and macros. */
1178 # define explainComposite(v,w,x,y,z)
1179 #endif
1182 ** If the inner loop was generated using a non-null pOrderBy argument,
1183 ** then the results were placed in a sorter. After the loop is terminated
1184 ** we need to run the sorter and output the results. The following
1185 ** routine generates the code needed to do that.
1187 static void generateSortTail(
1188 Parse *pParse, /* Parsing context */
1189 Select *p, /* The SELECT statement */
1190 SortCtx *pSort, /* Information on the ORDER BY clause */
1191 int nColumn, /* Number of columns of data */
1192 SelectDest *pDest /* Write the sorted results here */
1194 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1195 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1196 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1197 int addr;
1198 int addrOnce = 0;
1199 int iTab;
1200 ExprList *pOrderBy = pSort->pOrderBy;
1201 int eDest = pDest->eDest;
1202 int iParm = pDest->iSDParm;
1203 int regRow;
1204 int regRowid;
1205 int nKey;
1206 int iSortTab; /* Sorter cursor to read from */
1207 int nSortData; /* Trailing values to read from sorter */
1208 int i;
1209 int bSeq; /* True if sorter record includes seq. no. */
1210 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1211 struct ExprList_item *aOutEx = p->pEList->a;
1212 #endif
1214 assert( addrBreak<0 );
1215 if( pSort->labelBkOut ){
1216 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1217 sqlite3VdbeGoto(v, addrBreak);
1218 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1220 iTab = pSort->iECursor;
1221 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1222 regRowid = 0;
1223 regRow = pDest->iSdst;
1224 nSortData = nColumn;
1225 }else{
1226 regRowid = sqlite3GetTempReg(pParse);
1227 regRow = sqlite3GetTempRange(pParse, nColumn);
1228 nSortData = nColumn;
1230 nKey = pOrderBy->nExpr - pSort->nOBSat;
1231 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1232 int regSortOut = ++pParse->nMem;
1233 iSortTab = pParse->nTab++;
1234 if( pSort->labelBkOut ){
1235 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1237 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1238 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1239 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1240 VdbeCoverage(v);
1241 codeOffset(v, p->iOffset, addrContinue);
1242 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1243 bSeq = 0;
1244 }else{
1245 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1246 codeOffset(v, p->iOffset, addrContinue);
1247 iSortTab = iTab;
1248 bSeq = 1;
1250 for(i=0; i<nSortData; i++){
1251 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1252 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1254 switch( eDest ){
1255 case SRT_EphemTab: {
1256 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1257 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1258 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1259 break;
1261 #ifndef SQLITE_OMIT_SUBQUERY
1262 case SRT_Set: {
1263 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1264 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1265 pDest->zAffSdst, nColumn);
1266 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1267 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1268 break;
1270 case SRT_Mem: {
1271 /* The LIMIT clause will terminate the loop for us */
1272 break;
1274 #endif
1275 default: {
1276 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1277 testcase( eDest==SRT_Output );
1278 testcase( eDest==SRT_Coroutine );
1279 if( eDest==SRT_Output ){
1280 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1281 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1282 }else{
1283 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1285 break;
1288 if( regRowid ){
1289 if( eDest==SRT_Set ){
1290 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1291 }else{
1292 sqlite3ReleaseTempReg(pParse, regRow);
1294 sqlite3ReleaseTempReg(pParse, regRowid);
1296 /* The bottom of the loop
1298 sqlite3VdbeResolveLabel(v, addrContinue);
1299 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1300 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1301 }else{
1302 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1304 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1305 sqlite3VdbeResolveLabel(v, addrBreak);
1309 ** Return a pointer to a string containing the 'declaration type' of the
1310 ** expression pExpr. The string may be treated as static by the caller.
1312 ** Also try to estimate the size of the returned value and return that
1313 ** result in *pEstWidth.
1315 ** The declaration type is the exact datatype definition extracted from the
1316 ** original CREATE TABLE statement if the expression is a column. The
1317 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1318 ** is considered a column can be complex in the presence of subqueries. The
1319 ** result-set expression in all of the following SELECT statements is
1320 ** considered a column by this function.
1322 ** SELECT col FROM tbl;
1323 ** SELECT (SELECT col FROM tbl;
1324 ** SELECT (SELECT col FROM tbl);
1325 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1327 ** The declaration type for any expression other than a column is NULL.
1329 ** This routine has either 3 or 6 parameters depending on whether or not
1330 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1332 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1333 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1334 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1335 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1336 #endif
1337 static const char *columnTypeImpl(
1338 NameContext *pNC,
1339 Expr *pExpr,
1340 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1341 const char **pzOrigDb,
1342 const char **pzOrigTab,
1343 const char **pzOrigCol,
1344 #endif
1345 u8 *pEstWidth
1347 char const *zType = 0;
1348 int j;
1349 u8 estWidth = 1;
1350 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1351 char const *zOrigDb = 0;
1352 char const *zOrigTab = 0;
1353 char const *zOrigCol = 0;
1354 #endif
1356 assert( pExpr!=0 );
1357 assert( pNC->pSrcList!=0 );
1358 switch( pExpr->op ){
1359 case TK_AGG_COLUMN:
1360 case TK_COLUMN: {
1361 /* The expression is a column. Locate the table the column is being
1362 ** extracted from in NameContext.pSrcList. This table may be real
1363 ** database table or a subquery.
1365 Table *pTab = 0; /* Table structure column is extracted from */
1366 Select *pS = 0; /* Select the column is extracted from */
1367 int iCol = pExpr->iColumn; /* Index of column in pTab */
1368 testcase( pExpr->op==TK_AGG_COLUMN );
1369 testcase( pExpr->op==TK_COLUMN );
1370 while( pNC && !pTab ){
1371 SrcList *pTabList = pNC->pSrcList;
1372 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1373 if( j<pTabList->nSrc ){
1374 pTab = pTabList->a[j].pTab;
1375 pS = pTabList->a[j].pSelect;
1376 }else{
1377 pNC = pNC->pNext;
1381 if( pTab==0 ){
1382 /* At one time, code such as "SELECT new.x" within a trigger would
1383 ** cause this condition to run. Since then, we have restructured how
1384 ** trigger code is generated and so this condition is no longer
1385 ** possible. However, it can still be true for statements like
1386 ** the following:
1388 ** CREATE TABLE t1(col INTEGER);
1389 ** SELECT (SELECT t1.col) FROM FROM t1;
1391 ** when columnType() is called on the expression "t1.col" in the
1392 ** sub-select. In this case, set the column type to NULL, even
1393 ** though it should really be "INTEGER".
1395 ** This is not a problem, as the column type of "t1.col" is never
1396 ** used. When columnType() is called on the expression
1397 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1398 ** branch below. */
1399 break;
1402 assert( pTab && pExpr->pTab==pTab );
1403 if( pS ){
1404 /* The "table" is actually a sub-select or a view in the FROM clause
1405 ** of the SELECT statement. Return the declaration type and origin
1406 ** data for the result-set column of the sub-select.
1408 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1409 /* If iCol is less than zero, then the expression requests the
1410 ** rowid of the sub-select or view. This expression is legal (see
1411 ** test case misc2.2.2) - it always evaluates to NULL.
1413 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1414 ** caught already by name resolution.
1416 NameContext sNC;
1417 Expr *p = pS->pEList->a[iCol].pExpr;
1418 sNC.pSrcList = pS->pSrc;
1419 sNC.pNext = pNC;
1420 sNC.pParse = pNC->pParse;
1421 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1423 }else if( pTab->pSchema ){
1424 /* A real table */
1425 assert( !pS );
1426 if( iCol<0 ) iCol = pTab->iPKey;
1427 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1428 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1429 if( iCol<0 ){
1430 zType = "INTEGER";
1431 zOrigCol = "rowid";
1432 }else{
1433 zOrigCol = pTab->aCol[iCol].zName;
1434 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1435 estWidth = pTab->aCol[iCol].szEst;
1437 zOrigTab = pTab->zName;
1438 if( pNC->pParse ){
1439 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1440 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1442 #else
1443 if( iCol<0 ){
1444 zType = "INTEGER";
1445 }else{
1446 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1447 estWidth = pTab->aCol[iCol].szEst;
1449 #endif
1451 break;
1453 #ifndef SQLITE_OMIT_SUBQUERY
1454 case TK_SELECT: {
1455 /* The expression is a sub-select. Return the declaration type and
1456 ** origin info for the single column in the result set of the SELECT
1457 ** statement.
1459 NameContext sNC;
1460 Select *pS = pExpr->x.pSelect;
1461 Expr *p = pS->pEList->a[0].pExpr;
1462 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1463 sNC.pSrcList = pS->pSrc;
1464 sNC.pNext = pNC;
1465 sNC.pParse = pNC->pParse;
1466 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1467 break;
1469 #endif
1472 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1473 if( pzOrigDb ){
1474 assert( pzOrigTab && pzOrigCol );
1475 *pzOrigDb = zOrigDb;
1476 *pzOrigTab = zOrigTab;
1477 *pzOrigCol = zOrigCol;
1479 #endif
1480 if( pEstWidth ) *pEstWidth = estWidth;
1481 return zType;
1485 ** Generate code that will tell the VDBE the declaration types of columns
1486 ** in the result set.
1488 static void generateColumnTypes(
1489 Parse *pParse, /* Parser context */
1490 SrcList *pTabList, /* List of tables */
1491 ExprList *pEList /* Expressions defining the result set */
1493 #ifndef SQLITE_OMIT_DECLTYPE
1494 Vdbe *v = pParse->pVdbe;
1495 int i;
1496 NameContext sNC;
1497 sNC.pSrcList = pTabList;
1498 sNC.pParse = pParse;
1499 for(i=0; i<pEList->nExpr; i++){
1500 Expr *p = pEList->a[i].pExpr;
1501 const char *zType;
1502 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1503 const char *zOrigDb = 0;
1504 const char *zOrigTab = 0;
1505 const char *zOrigCol = 0;
1506 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1508 /* The vdbe must make its own copy of the column-type and other
1509 ** column specific strings, in case the schema is reset before this
1510 ** virtual machine is deleted.
1512 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1513 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1514 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1515 #else
1516 zType = columnType(&sNC, p, 0, 0, 0, 0);
1517 #endif
1518 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1520 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1524 ** Generate code that will tell the VDBE the names of columns
1525 ** in the result set. This information is used to provide the
1526 ** azCol[] values in the callback.
1528 static void generateColumnNames(
1529 Parse *pParse, /* Parser context */
1530 SrcList *pTabList, /* List of tables */
1531 ExprList *pEList /* Expressions defining the result set */
1533 Vdbe *v = pParse->pVdbe;
1534 int i, j;
1535 sqlite3 *db = pParse->db;
1536 int fullNames, shortNames;
1538 #ifndef SQLITE_OMIT_EXPLAIN
1539 /* If this is an EXPLAIN, skip this step */
1540 if( pParse->explain ){
1541 return;
1543 #endif
1545 if( pParse->colNamesSet || db->mallocFailed ) return;
1546 assert( v!=0 );
1547 assert( pTabList!=0 );
1548 pParse->colNamesSet = 1;
1549 fullNames = (db->flags & SQLITE_FullColNames)!=0;
1550 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1551 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1552 for(i=0; i<pEList->nExpr; i++){
1553 Expr *p;
1554 p = pEList->a[i].pExpr;
1555 if( NEVER(p==0) ) continue;
1556 if( pEList->a[i].zName ){
1557 char *zName = pEList->a[i].zName;
1558 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1559 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
1560 Table *pTab;
1561 char *zCol;
1562 int iCol = p->iColumn;
1563 for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1564 if( pTabList->a[j].iCursor==p->iTable ) break;
1566 assert( j<pTabList->nSrc );
1567 pTab = pTabList->a[j].pTab;
1568 if( iCol<0 ) iCol = pTab->iPKey;
1569 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1570 if( iCol<0 ){
1571 zCol = "rowid";
1572 }else{
1573 zCol = pTab->aCol[iCol].zName;
1575 if( !shortNames && !fullNames ){
1576 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1577 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1578 }else if( fullNames ){
1579 char *zName = 0;
1580 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1581 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1582 }else{
1583 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1585 }else{
1586 const char *z = pEList->a[i].zSpan;
1587 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1588 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1591 generateColumnTypes(pParse, pTabList, pEList);
1595 ** Given an expression list (which is really the list of expressions
1596 ** that form the result set of a SELECT statement) compute appropriate
1597 ** column names for a table that would hold the expression list.
1599 ** All column names will be unique.
1601 ** Only the column names are computed. Column.zType, Column.zColl,
1602 ** and other fields of Column are zeroed.
1604 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1605 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1607 int sqlite3ColumnsFromExprList(
1608 Parse *pParse, /* Parsing context */
1609 ExprList *pEList, /* Expr list from which to derive column names */
1610 i16 *pnCol, /* Write the number of columns here */
1611 Column **paCol /* Write the new column list here */
1613 sqlite3 *db = pParse->db; /* Database connection */
1614 int i, j; /* Loop counters */
1615 u32 cnt; /* Index added to make the name unique */
1616 Column *aCol, *pCol; /* For looping over result columns */
1617 int nCol; /* Number of columns in the result set */
1618 Expr *p; /* Expression for a single result column */
1619 char *zName; /* Column name */
1620 int nName; /* Size of name in zName[] */
1621 Hash ht; /* Hash table of column names */
1623 sqlite3HashInit(&ht);
1624 if( pEList ){
1625 nCol = pEList->nExpr;
1626 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1627 testcase( aCol==0 );
1628 }else{
1629 nCol = 0;
1630 aCol = 0;
1632 assert( nCol==(i16)nCol );
1633 *pnCol = nCol;
1634 *paCol = aCol;
1636 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1637 /* Get an appropriate name for the column
1639 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1640 if( (zName = pEList->a[i].zName)!=0 ){
1641 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1642 }else{
1643 Expr *pColExpr = p; /* The expression that is the result column name */
1644 Table *pTab; /* Table associated with this expression */
1645 while( pColExpr->op==TK_DOT ){
1646 pColExpr = pColExpr->pRight;
1647 assert( pColExpr!=0 );
1649 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1650 /* For columns use the column name name */
1651 int iCol = pColExpr->iColumn;
1652 pTab = pColExpr->pTab;
1653 if( iCol<0 ) iCol = pTab->iPKey;
1654 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1655 }else if( pColExpr->op==TK_ID ){
1656 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1657 zName = pColExpr->u.zToken;
1658 }else{
1659 /* Use the original text of the column expression as its name */
1660 zName = pEList->a[i].zSpan;
1663 zName = sqlite3MPrintf(db, "%s", zName);
1665 /* Make sure the column name is unique. If the name is not unique,
1666 ** append an integer to the name so that it becomes unique.
1668 cnt = 0;
1669 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1670 nName = sqlite3Strlen30(zName);
1671 if( nName>0 ){
1672 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1673 if( zName[j]==':' ) nName = j;
1675 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1676 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1678 pCol->zName = zName;
1679 sqlite3ColumnPropertiesFromName(0, pCol);
1680 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1681 sqlite3OomFault(db);
1684 sqlite3HashClear(&ht);
1685 if( db->mallocFailed ){
1686 for(j=0; j<i; j++){
1687 sqlite3DbFree(db, aCol[j].zName);
1689 sqlite3DbFree(db, aCol);
1690 *paCol = 0;
1691 *pnCol = 0;
1692 return SQLITE_NOMEM_BKPT;
1694 return SQLITE_OK;
1698 ** Add type and collation information to a column list based on
1699 ** a SELECT statement.
1701 ** The column list presumably came from selectColumnNamesFromExprList().
1702 ** The column list has only names, not types or collations. This
1703 ** routine goes through and adds the types and collations.
1705 ** This routine requires that all identifiers in the SELECT
1706 ** statement be resolved.
1708 void sqlite3SelectAddColumnTypeAndCollation(
1709 Parse *pParse, /* Parsing contexts */
1710 Table *pTab, /* Add column type information to this table */
1711 Select *pSelect /* SELECT used to determine types and collations */
1713 sqlite3 *db = pParse->db;
1714 NameContext sNC;
1715 Column *pCol;
1716 CollSeq *pColl;
1717 int i;
1718 Expr *p;
1719 struct ExprList_item *a;
1720 u64 szAll = 0;
1722 assert( pSelect!=0 );
1723 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1724 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1725 if( db->mallocFailed ) return;
1726 memset(&sNC, 0, sizeof(sNC));
1727 sNC.pSrcList = pSelect->pSrc;
1728 a = pSelect->pEList->a;
1729 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1730 const char *zType;
1731 int n, m;
1732 p = a[i].pExpr;
1733 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1734 szAll += pCol->szEst;
1735 pCol->affinity = sqlite3ExprAffinity(p);
1736 if( zType && (m = sqlite3Strlen30(zType))>0 ){
1737 n = sqlite3Strlen30(pCol->zName);
1738 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1739 if( pCol->zName ){
1740 memcpy(&pCol->zName[n+1], zType, m+1);
1741 pCol->colFlags |= COLFLAG_HASTYPE;
1744 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1745 pColl = sqlite3ExprCollSeq(pParse, p);
1746 if( pColl && pCol->zColl==0 ){
1747 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1750 pTab->szTabRow = sqlite3LogEst(szAll*4);
1754 ** Given a SELECT statement, generate a Table structure that describes
1755 ** the result set of that SELECT.
1757 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1758 Table *pTab;
1759 sqlite3 *db = pParse->db;
1760 int savedFlags;
1762 savedFlags = db->flags;
1763 db->flags &= ~SQLITE_FullColNames;
1764 db->flags |= SQLITE_ShortColNames;
1765 sqlite3SelectPrep(pParse, pSelect, 0);
1766 if( pParse->nErr ) return 0;
1767 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1768 db->flags = savedFlags;
1769 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1770 if( pTab==0 ){
1771 return 0;
1773 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1774 ** is disabled */
1775 assert( db->lookaside.bDisable );
1776 pTab->nRef = 1;
1777 pTab->zName = 0;
1778 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1779 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1780 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1781 pTab->iPKey = -1;
1782 if( db->mallocFailed ){
1783 sqlite3DeleteTable(db, pTab);
1784 return 0;
1786 return pTab;
1790 ** Get a VDBE for the given parser context. Create a new one if necessary.
1791 ** If an error occurs, return NULL and leave a message in pParse.
1793 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1794 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1795 if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1);
1796 if( pParse->pToplevel==0
1797 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1799 pParse->okConstFactor = 1;
1801 return v;
1803 Vdbe *sqlite3GetVdbe(Parse *pParse){
1804 Vdbe *v = pParse->pVdbe;
1805 return v ? v : allocVdbe(pParse);
1810 ** Compute the iLimit and iOffset fields of the SELECT based on the
1811 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1812 ** that appear in the original SQL statement after the LIMIT and OFFSET
1813 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1814 ** are the integer memory register numbers for counters used to compute
1815 ** the limit and offset. If there is no limit and/or offset, then
1816 ** iLimit and iOffset are negative.
1818 ** This routine changes the values of iLimit and iOffset only if
1819 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1820 ** iOffset should have been preset to appropriate default values (zero)
1821 ** prior to calling this routine.
1823 ** The iOffset register (if it exists) is initialized to the value
1824 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1825 ** iOffset+1 is initialized to LIMIT+OFFSET.
1827 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1828 ** redefined. The UNION ALL operator uses this property to force
1829 ** the reuse of the same limit and offset registers across multiple
1830 ** SELECT statements.
1832 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1833 Vdbe *v = 0;
1834 int iLimit = 0;
1835 int iOffset;
1836 int n;
1837 if( p->iLimit ) return;
1840 ** "LIMIT -1" always shows all rows. There is some
1841 ** controversy about what the correct behavior should be.
1842 ** The current implementation interprets "LIMIT 0" to mean
1843 ** no rows.
1845 sqlite3ExprCacheClear(pParse);
1846 assert( p->pOffset==0 || p->pLimit!=0 );
1847 if( p->pLimit ){
1848 p->iLimit = iLimit = ++pParse->nMem;
1849 v = sqlite3GetVdbe(pParse);
1850 assert( v!=0 );
1851 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1852 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1853 VdbeComment((v, "LIMIT counter"));
1854 if( n==0 ){
1855 sqlite3VdbeGoto(v, iBreak);
1856 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1857 p->nSelectRow = sqlite3LogEst((u64)n);
1858 p->selFlags |= SF_FixedLimit;
1860 }else{
1861 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1862 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1863 VdbeComment((v, "LIMIT counter"));
1864 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1866 if( p->pOffset ){
1867 p->iOffset = iOffset = ++pParse->nMem;
1868 pParse->nMem++; /* Allocate an extra register for limit+offset */
1869 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1870 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1871 VdbeComment((v, "OFFSET counter"));
1872 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1873 VdbeComment((v, "LIMIT+OFFSET"));
1878 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1880 ** Return the appropriate collating sequence for the iCol-th column of
1881 ** the result set for the compound-select statement "p". Return NULL if
1882 ** the column has no default collating sequence.
1884 ** The collating sequence for the compound select is taken from the
1885 ** left-most term of the select that has a collating sequence.
1887 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1888 CollSeq *pRet;
1889 if( p->pPrior ){
1890 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1891 }else{
1892 pRet = 0;
1894 assert( iCol>=0 );
1895 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1896 ** have been thrown during name resolution and we would not have gotten
1897 ** this far */
1898 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1899 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1901 return pRet;
1905 ** The select statement passed as the second parameter is a compound SELECT
1906 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1907 ** structure suitable for implementing the ORDER BY.
1909 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1910 ** function is responsible for ensuring that this structure is eventually
1911 ** freed.
1913 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1914 ExprList *pOrderBy = p->pOrderBy;
1915 int nOrderBy = p->pOrderBy->nExpr;
1916 sqlite3 *db = pParse->db;
1917 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1918 if( pRet ){
1919 int i;
1920 for(i=0; i<nOrderBy; i++){
1921 struct ExprList_item *pItem = &pOrderBy->a[i];
1922 Expr *pTerm = pItem->pExpr;
1923 CollSeq *pColl;
1925 if( pTerm->flags & EP_Collate ){
1926 pColl = sqlite3ExprCollSeq(pParse, pTerm);
1927 }else{
1928 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1929 if( pColl==0 ) pColl = db->pDfltColl;
1930 pOrderBy->a[i].pExpr =
1931 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1933 assert( sqlite3KeyInfoIsWriteable(pRet) );
1934 pRet->aColl[i] = pColl;
1935 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1939 return pRet;
1942 #ifndef SQLITE_OMIT_CTE
1944 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1945 ** query of the form:
1947 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1948 ** \___________/ \_______________/
1949 ** p->pPrior p
1952 ** There is exactly one reference to the recursive-table in the FROM clause
1953 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1955 ** The setup-query runs once to generate an initial set of rows that go
1956 ** into a Queue table. Rows are extracted from the Queue table one by
1957 ** one. Each row extracted from Queue is output to pDest. Then the single
1958 ** extracted row (now in the iCurrent table) becomes the content of the
1959 ** recursive-table for a recursive-query run. The output of the recursive-query
1960 ** is added back into the Queue table. Then another row is extracted from Queue
1961 ** and the iteration continues until the Queue table is empty.
1963 ** If the compound query operator is UNION then no duplicate rows are ever
1964 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
1965 ** that have ever been inserted into Queue and causes duplicates to be
1966 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
1968 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1969 ** ORDER BY order and the first entry is extracted for each cycle. Without
1970 ** an ORDER BY, the Queue table is just a FIFO.
1972 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1973 ** have been output to pDest. A LIMIT of zero means to output no rows and a
1974 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
1975 ** with a positive value, then the first OFFSET outputs are discarded rather
1976 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
1977 ** rows have been skipped.
1979 static void generateWithRecursiveQuery(
1980 Parse *pParse, /* Parsing context */
1981 Select *p, /* The recursive SELECT to be coded */
1982 SelectDest *pDest /* What to do with query results */
1984 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
1985 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
1986 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
1987 Select *pSetup = p->pPrior; /* The setup query */
1988 int addrTop; /* Top of the loop */
1989 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
1990 int iCurrent = 0; /* The Current table */
1991 int regCurrent; /* Register holding Current table */
1992 int iQueue; /* The Queue table */
1993 int iDistinct = 0; /* To ensure unique results if UNION */
1994 int eDest = SRT_Fifo; /* How to write to Queue */
1995 SelectDest destQueue; /* SelectDest targetting the Queue table */
1996 int i; /* Loop counter */
1997 int rc; /* Result code */
1998 ExprList *pOrderBy; /* The ORDER BY clause */
1999 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */
2000 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2002 /* Obtain authorization to do a recursive query */
2003 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2005 /* Process the LIMIT and OFFSET clauses, if they exist */
2006 addrBreak = sqlite3VdbeMakeLabel(v);
2007 computeLimitRegisters(pParse, p, addrBreak);
2008 pLimit = p->pLimit;
2009 pOffset = p->pOffset;
2010 regLimit = p->iLimit;
2011 regOffset = p->iOffset;
2012 p->pLimit = p->pOffset = 0;
2013 p->iLimit = p->iOffset = 0;
2014 pOrderBy = p->pOrderBy;
2016 /* Locate the cursor number of the Current table */
2017 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2018 if( pSrc->a[i].fg.isRecursive ){
2019 iCurrent = pSrc->a[i].iCursor;
2020 break;
2024 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2025 ** the Distinct table must be exactly one greater than Queue in order
2026 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2027 iQueue = pParse->nTab++;
2028 if( p->op==TK_UNION ){
2029 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2030 iDistinct = pParse->nTab++;
2031 }else{
2032 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2034 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2036 /* Allocate cursors for Current, Queue, and Distinct. */
2037 regCurrent = ++pParse->nMem;
2038 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2039 if( pOrderBy ){
2040 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2041 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2042 (char*)pKeyInfo, P4_KEYINFO);
2043 destQueue.pOrderBy = pOrderBy;
2044 }else{
2045 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2047 VdbeComment((v, "Queue table"));
2048 if( iDistinct ){
2049 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2050 p->selFlags |= SF_UsesEphemeral;
2053 /* Detach the ORDER BY clause from the compound SELECT */
2054 p->pOrderBy = 0;
2056 /* Store the results of the setup-query in Queue. */
2057 pSetup->pNext = 0;
2058 rc = sqlite3Select(pParse, pSetup, &destQueue);
2059 pSetup->pNext = p;
2060 if( rc ) goto end_of_recursive_query;
2062 /* Find the next row in the Queue and output that row */
2063 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2065 /* Transfer the next row in Queue over to Current */
2066 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2067 if( pOrderBy ){
2068 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2069 }else{
2070 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2072 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2074 /* Output the single row in Current */
2075 addrCont = sqlite3VdbeMakeLabel(v);
2076 codeOffset(v, regOffset, addrCont);
2077 selectInnerLoop(pParse, p, p->pEList, iCurrent,
2078 0, 0, pDest, addrCont, addrBreak);
2079 if( regLimit ){
2080 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2081 VdbeCoverage(v);
2083 sqlite3VdbeResolveLabel(v, addrCont);
2085 /* Execute the recursive SELECT taking the single row in Current as
2086 ** the value for the recursive-table. Store the results in the Queue.
2088 if( p->selFlags & SF_Aggregate ){
2089 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2090 }else{
2091 p->pPrior = 0;
2092 sqlite3Select(pParse, p, &destQueue);
2093 assert( p->pPrior==0 );
2094 p->pPrior = pSetup;
2097 /* Keep running the loop until the Queue is empty */
2098 sqlite3VdbeGoto(v, addrTop);
2099 sqlite3VdbeResolveLabel(v, addrBreak);
2101 end_of_recursive_query:
2102 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2103 p->pOrderBy = pOrderBy;
2104 p->pLimit = pLimit;
2105 p->pOffset = pOffset;
2106 return;
2108 #endif /* SQLITE_OMIT_CTE */
2110 /* Forward references */
2111 static int multiSelectOrderBy(
2112 Parse *pParse, /* Parsing context */
2113 Select *p, /* The right-most of SELECTs to be coded */
2114 SelectDest *pDest /* What to do with query results */
2118 ** Handle the special case of a compound-select that originates from a
2119 ** VALUES clause. By handling this as a special case, we avoid deep
2120 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2121 ** on a VALUES clause.
2123 ** Because the Select object originates from a VALUES clause:
2124 ** (1) It has no LIMIT or OFFSET
2125 ** (2) All terms are UNION ALL
2126 ** (3) There is no ORDER BY clause
2128 static int multiSelectValues(
2129 Parse *pParse, /* Parsing context */
2130 Select *p, /* The right-most of SELECTs to be coded */
2131 SelectDest *pDest /* What to do with query results */
2133 Select *pPrior;
2134 int nRow = 1;
2135 int rc = 0;
2136 assert( p->selFlags & SF_MultiValue );
2138 assert( p->selFlags & SF_Values );
2139 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2140 assert( p->pLimit==0 );
2141 assert( p->pOffset==0 );
2142 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2143 if( p->pPrior==0 ) break;
2144 assert( p->pPrior->pNext==p );
2145 p = p->pPrior;
2146 nRow++;
2147 }while(1);
2148 while( p ){
2149 pPrior = p->pPrior;
2150 p->pPrior = 0;
2151 rc = sqlite3Select(pParse, p, pDest);
2152 p->pPrior = pPrior;
2153 if( rc ) break;
2154 p->nSelectRow = nRow;
2155 p = p->pNext;
2157 return rc;
2161 ** This routine is called to process a compound query form from
2162 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2163 ** INTERSECT
2165 ** "p" points to the right-most of the two queries. the query on the
2166 ** left is p->pPrior. The left query could also be a compound query
2167 ** in which case this routine will be called recursively.
2169 ** The results of the total query are to be written into a destination
2170 ** of type eDest with parameter iParm.
2172 ** Example 1: Consider a three-way compound SQL statement.
2174 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2176 ** This statement is parsed up as follows:
2178 ** SELECT c FROM t3
2179 ** |
2180 ** `-----> SELECT b FROM t2
2181 ** |
2182 ** `------> SELECT a FROM t1
2184 ** The arrows in the diagram above represent the Select.pPrior pointer.
2185 ** So if this routine is called with p equal to the t3 query, then
2186 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2188 ** Notice that because of the way SQLite parses compound SELECTs, the
2189 ** individual selects always group from left to right.
2191 static int multiSelect(
2192 Parse *pParse, /* Parsing context */
2193 Select *p, /* The right-most of SELECTs to be coded */
2194 SelectDest *pDest /* What to do with query results */
2196 int rc = SQLITE_OK; /* Success code from a subroutine */
2197 Select *pPrior; /* Another SELECT immediately to our left */
2198 Vdbe *v; /* Generate code to this VDBE */
2199 SelectDest dest; /* Alternative data destination */
2200 Select *pDelete = 0; /* Chain of simple selects to delete */
2201 sqlite3 *db; /* Database connection */
2202 #ifndef SQLITE_OMIT_EXPLAIN
2203 int iSub1 = 0; /* EQP id of left-hand query */
2204 int iSub2 = 0; /* EQP id of right-hand query */
2205 #endif
2207 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2208 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2210 assert( p && p->pPrior ); /* Calling function guarantees this much */
2211 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2212 db = pParse->db;
2213 pPrior = p->pPrior;
2214 dest = *pDest;
2215 if( pPrior->pOrderBy ){
2216 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2217 selectOpName(p->op));
2218 rc = 1;
2219 goto multi_select_end;
2221 if( pPrior->pLimit ){
2222 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2223 selectOpName(p->op));
2224 rc = 1;
2225 goto multi_select_end;
2228 v = sqlite3GetVdbe(pParse);
2229 assert( v!=0 ); /* The VDBE already created by calling function */
2231 /* Create the destination temporary table if necessary
2233 if( dest.eDest==SRT_EphemTab ){
2234 assert( p->pEList );
2235 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2236 dest.eDest = SRT_Table;
2239 /* Special handling for a compound-select that originates as a VALUES clause.
2241 if( p->selFlags & SF_MultiValue ){
2242 rc = multiSelectValues(pParse, p, &dest);
2243 goto multi_select_end;
2246 /* Make sure all SELECTs in the statement have the same number of elements
2247 ** in their result sets.
2249 assert( p->pEList && pPrior->pEList );
2250 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2252 #ifndef SQLITE_OMIT_CTE
2253 if( p->selFlags & SF_Recursive ){
2254 generateWithRecursiveQuery(pParse, p, &dest);
2255 }else
2256 #endif
2258 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2260 if( p->pOrderBy ){
2261 return multiSelectOrderBy(pParse, p, pDest);
2262 }else
2264 /* Generate code for the left and right SELECT statements.
2266 switch( p->op ){
2267 case TK_ALL: {
2268 int addr = 0;
2269 int nLimit;
2270 assert( !pPrior->pLimit );
2271 pPrior->iLimit = p->iLimit;
2272 pPrior->iOffset = p->iOffset;
2273 pPrior->pLimit = p->pLimit;
2274 pPrior->pOffset = p->pOffset;
2275 explainSetInteger(iSub1, pParse->iNextSelectId);
2276 rc = sqlite3Select(pParse, pPrior, &dest);
2277 p->pLimit = 0;
2278 p->pOffset = 0;
2279 if( rc ){
2280 goto multi_select_end;
2282 p->pPrior = 0;
2283 p->iLimit = pPrior->iLimit;
2284 p->iOffset = pPrior->iOffset;
2285 if( p->iLimit ){
2286 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2287 VdbeComment((v, "Jump ahead if LIMIT reached"));
2288 if( p->iOffset ){
2289 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2290 p->iLimit, p->iOffset+1, p->iOffset);
2293 explainSetInteger(iSub2, pParse->iNextSelectId);
2294 rc = sqlite3Select(pParse, p, &dest);
2295 testcase( rc!=SQLITE_OK );
2296 pDelete = p->pPrior;
2297 p->pPrior = pPrior;
2298 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2299 if( pPrior->pLimit
2300 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2301 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2303 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2305 if( addr ){
2306 sqlite3VdbeJumpHere(v, addr);
2308 break;
2310 case TK_EXCEPT:
2311 case TK_UNION: {
2312 int unionTab; /* Cursor number of the temporary table holding result */
2313 u8 op = 0; /* One of the SRT_ operations to apply to self */
2314 int priorOp; /* The SRT_ operation to apply to prior selects */
2315 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2316 int addr;
2317 SelectDest uniondest;
2319 testcase( p->op==TK_EXCEPT );
2320 testcase( p->op==TK_UNION );
2321 priorOp = SRT_Union;
2322 if( dest.eDest==priorOp ){
2323 /* We can reuse a temporary table generated by a SELECT to our
2324 ** right.
2326 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2327 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
2328 unionTab = dest.iSDParm;
2329 }else{
2330 /* We will need to create our own temporary table to hold the
2331 ** intermediate results.
2333 unionTab = pParse->nTab++;
2334 assert( p->pOrderBy==0 );
2335 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2336 assert( p->addrOpenEphm[0] == -1 );
2337 p->addrOpenEphm[0] = addr;
2338 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2339 assert( p->pEList );
2342 /* Code the SELECT statements to our left
2344 assert( !pPrior->pOrderBy );
2345 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2346 explainSetInteger(iSub1, pParse->iNextSelectId);
2347 rc = sqlite3Select(pParse, pPrior, &uniondest);
2348 if( rc ){
2349 goto multi_select_end;
2352 /* Code the current SELECT statement
2354 if( p->op==TK_EXCEPT ){
2355 op = SRT_Except;
2356 }else{
2357 assert( p->op==TK_UNION );
2358 op = SRT_Union;
2360 p->pPrior = 0;
2361 pLimit = p->pLimit;
2362 p->pLimit = 0;
2363 pOffset = p->pOffset;
2364 p->pOffset = 0;
2365 uniondest.eDest = op;
2366 explainSetInteger(iSub2, pParse->iNextSelectId);
2367 rc = sqlite3Select(pParse, p, &uniondest);
2368 testcase( rc!=SQLITE_OK );
2369 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2370 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2371 sqlite3ExprListDelete(db, p->pOrderBy);
2372 pDelete = p->pPrior;
2373 p->pPrior = pPrior;
2374 p->pOrderBy = 0;
2375 if( p->op==TK_UNION ){
2376 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2378 sqlite3ExprDelete(db, p->pLimit);
2379 p->pLimit = pLimit;
2380 p->pOffset = pOffset;
2381 p->iLimit = 0;
2382 p->iOffset = 0;
2384 /* Convert the data in the temporary table into whatever form
2385 ** it is that we currently need.
2387 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2388 if( dest.eDest!=priorOp ){
2389 int iCont, iBreak, iStart;
2390 assert( p->pEList );
2391 if( dest.eDest==SRT_Output ){
2392 Select *pFirst = p;
2393 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2394 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2396 iBreak = sqlite3VdbeMakeLabel(v);
2397 iCont = sqlite3VdbeMakeLabel(v);
2398 computeLimitRegisters(pParse, p, iBreak);
2399 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2400 iStart = sqlite3VdbeCurrentAddr(v);
2401 selectInnerLoop(pParse, p, p->pEList, unionTab,
2402 0, 0, &dest, iCont, iBreak);
2403 sqlite3VdbeResolveLabel(v, iCont);
2404 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2405 sqlite3VdbeResolveLabel(v, iBreak);
2406 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2408 break;
2410 default: assert( p->op==TK_INTERSECT ); {
2411 int tab1, tab2;
2412 int iCont, iBreak, iStart;
2413 Expr *pLimit, *pOffset;
2414 int addr;
2415 SelectDest intersectdest;
2416 int r1;
2418 /* INTERSECT is different from the others since it requires
2419 ** two temporary tables. Hence it has its own case. Begin
2420 ** by allocating the tables we will need.
2422 tab1 = pParse->nTab++;
2423 tab2 = pParse->nTab++;
2424 assert( p->pOrderBy==0 );
2426 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2427 assert( p->addrOpenEphm[0] == -1 );
2428 p->addrOpenEphm[0] = addr;
2429 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2430 assert( p->pEList );
2432 /* Code the SELECTs to our left into temporary table "tab1".
2434 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2435 explainSetInteger(iSub1, pParse->iNextSelectId);
2436 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2437 if( rc ){
2438 goto multi_select_end;
2441 /* Code the current SELECT into temporary table "tab2"
2443 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2444 assert( p->addrOpenEphm[1] == -1 );
2445 p->addrOpenEphm[1] = addr;
2446 p->pPrior = 0;
2447 pLimit = p->pLimit;
2448 p->pLimit = 0;
2449 pOffset = p->pOffset;
2450 p->pOffset = 0;
2451 intersectdest.iSDParm = tab2;
2452 explainSetInteger(iSub2, pParse->iNextSelectId);
2453 rc = sqlite3Select(pParse, p, &intersectdest);
2454 testcase( rc!=SQLITE_OK );
2455 pDelete = p->pPrior;
2456 p->pPrior = pPrior;
2457 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2458 sqlite3ExprDelete(db, p->pLimit);
2459 p->pLimit = pLimit;
2460 p->pOffset = pOffset;
2462 /* Generate code to take the intersection of the two temporary
2463 ** tables.
2465 assert( p->pEList );
2466 if( dest.eDest==SRT_Output ){
2467 Select *pFirst = p;
2468 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2469 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2471 iBreak = sqlite3VdbeMakeLabel(v);
2472 iCont = sqlite3VdbeMakeLabel(v);
2473 computeLimitRegisters(pParse, p, iBreak);
2474 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2475 r1 = sqlite3GetTempReg(pParse);
2476 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2477 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2478 sqlite3ReleaseTempReg(pParse, r1);
2479 selectInnerLoop(pParse, p, p->pEList, tab1,
2480 0, 0, &dest, iCont, iBreak);
2481 sqlite3VdbeResolveLabel(v, iCont);
2482 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2483 sqlite3VdbeResolveLabel(v, iBreak);
2484 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2485 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2486 break;
2490 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2492 /* Compute collating sequences used by
2493 ** temporary tables needed to implement the compound select.
2494 ** Attach the KeyInfo structure to all temporary tables.
2496 ** This section is run by the right-most SELECT statement only.
2497 ** SELECT statements to the left always skip this part. The right-most
2498 ** SELECT might also skip this part if it has no ORDER BY clause and
2499 ** no temp tables are required.
2501 if( p->selFlags & SF_UsesEphemeral ){
2502 int i; /* Loop counter */
2503 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2504 Select *pLoop; /* For looping through SELECT statements */
2505 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2506 int nCol; /* Number of columns in result set */
2508 assert( p->pNext==0 );
2509 nCol = p->pEList->nExpr;
2510 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2511 if( !pKeyInfo ){
2512 rc = SQLITE_NOMEM_BKPT;
2513 goto multi_select_end;
2515 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2516 *apColl = multiSelectCollSeq(pParse, p, i);
2517 if( 0==*apColl ){
2518 *apColl = db->pDfltColl;
2522 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2523 for(i=0; i<2; i++){
2524 int addr = pLoop->addrOpenEphm[i];
2525 if( addr<0 ){
2526 /* If [0] is unused then [1] is also unused. So we can
2527 ** always safely abort as soon as the first unused slot is found */
2528 assert( pLoop->addrOpenEphm[1]<0 );
2529 break;
2531 sqlite3VdbeChangeP2(v, addr, nCol);
2532 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2533 P4_KEYINFO);
2534 pLoop->addrOpenEphm[i] = -1;
2537 sqlite3KeyInfoUnref(pKeyInfo);
2540 multi_select_end:
2541 pDest->iSdst = dest.iSdst;
2542 pDest->nSdst = dest.nSdst;
2543 sqlite3SelectDelete(db, pDelete);
2544 return rc;
2546 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2549 ** Error message for when two or more terms of a compound select have different
2550 ** size result sets.
2552 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2553 if( p->selFlags & SF_Values ){
2554 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2555 }else{
2556 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2557 " do not have the same number of result columns", selectOpName(p->op));
2562 ** Code an output subroutine for a coroutine implementation of a
2563 ** SELECT statment.
2565 ** The data to be output is contained in pIn->iSdst. There are
2566 ** pIn->nSdst columns to be output. pDest is where the output should
2567 ** be sent.
2569 ** regReturn is the number of the register holding the subroutine
2570 ** return address.
2572 ** If regPrev>0 then it is the first register in a vector that
2573 ** records the previous output. mem[regPrev] is a flag that is false
2574 ** if there has been no previous output. If regPrev>0 then code is
2575 ** generated to suppress duplicates. pKeyInfo is used for comparing
2576 ** keys.
2578 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2579 ** iBreak.
2581 static int generateOutputSubroutine(
2582 Parse *pParse, /* Parsing context */
2583 Select *p, /* The SELECT statement */
2584 SelectDest *pIn, /* Coroutine supplying data */
2585 SelectDest *pDest, /* Where to send the data */
2586 int regReturn, /* The return address register */
2587 int regPrev, /* Previous result register. No uniqueness if 0 */
2588 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2589 int iBreak /* Jump here if we hit the LIMIT */
2591 Vdbe *v = pParse->pVdbe;
2592 int iContinue;
2593 int addr;
2595 addr = sqlite3VdbeCurrentAddr(v);
2596 iContinue = sqlite3VdbeMakeLabel(v);
2598 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2600 if( regPrev ){
2601 int addr1, addr2;
2602 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2603 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2604 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2605 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2606 sqlite3VdbeJumpHere(v, addr1);
2607 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2608 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2610 if( pParse->db->mallocFailed ) return 0;
2612 /* Suppress the first OFFSET entries if there is an OFFSET clause
2614 codeOffset(v, p->iOffset, iContinue);
2616 assert( pDest->eDest!=SRT_Exists );
2617 assert( pDest->eDest!=SRT_Table );
2618 switch( pDest->eDest ){
2619 /* Store the result as data using a unique key.
2621 case SRT_EphemTab: {
2622 int r1 = sqlite3GetTempReg(pParse);
2623 int r2 = sqlite3GetTempReg(pParse);
2624 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2625 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2626 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2627 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2628 sqlite3ReleaseTempReg(pParse, r2);
2629 sqlite3ReleaseTempReg(pParse, r1);
2630 break;
2633 #ifndef SQLITE_OMIT_SUBQUERY
2634 /* If we are creating a set for an "expr IN (SELECT ...)".
2636 case SRT_Set: {
2637 int r1;
2638 testcase( pIn->nSdst>1 );
2639 r1 = sqlite3GetTempReg(pParse);
2640 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2641 r1, pDest->zAffSdst, pIn->nSdst);
2642 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2643 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2644 sqlite3ReleaseTempReg(pParse, r1);
2645 break;
2648 /* If this is a scalar select that is part of an expression, then
2649 ** store the results in the appropriate memory cell and break out
2650 ** of the scan loop.
2652 case SRT_Mem: {
2653 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2654 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2655 /* The LIMIT clause will jump out of the loop for us */
2656 break;
2658 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2660 /* The results are stored in a sequence of registers
2661 ** starting at pDest->iSdst. Then the co-routine yields.
2663 case SRT_Coroutine: {
2664 if( pDest->iSdst==0 ){
2665 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2666 pDest->nSdst = pIn->nSdst;
2668 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2669 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2670 break;
2673 /* If none of the above, then the result destination must be
2674 ** SRT_Output. This routine is never called with any other
2675 ** destination other than the ones handled above or SRT_Output.
2677 ** For SRT_Output, results are stored in a sequence of registers.
2678 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2679 ** return the next row of result.
2681 default: {
2682 assert( pDest->eDest==SRT_Output );
2683 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2684 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2685 break;
2689 /* Jump to the end of the loop if the LIMIT is reached.
2691 if( p->iLimit ){
2692 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2695 /* Generate the subroutine return
2697 sqlite3VdbeResolveLabel(v, iContinue);
2698 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2700 return addr;
2704 ** Alternative compound select code generator for cases when there
2705 ** is an ORDER BY clause.
2707 ** We assume a query of the following form:
2709 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2711 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2712 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2713 ** co-routines. Then run the co-routines in parallel and merge the results
2714 ** into the output. In addition to the two coroutines (called selectA and
2715 ** selectB) there are 7 subroutines:
2717 ** outA: Move the output of the selectA coroutine into the output
2718 ** of the compound query.
2720 ** outB: Move the output of the selectB coroutine into the output
2721 ** of the compound query. (Only generated for UNION and
2722 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2723 ** appears only in B.)
2725 ** AltB: Called when there is data from both coroutines and A<B.
2727 ** AeqB: Called when there is data from both coroutines and A==B.
2729 ** AgtB: Called when there is data from both coroutines and A>B.
2731 ** EofA: Called when data is exhausted from selectA.
2733 ** EofB: Called when data is exhausted from selectB.
2735 ** The implementation of the latter five subroutines depend on which
2736 ** <operator> is used:
2739 ** UNION ALL UNION EXCEPT INTERSECT
2740 ** ------------- ----------------- -------------- -----------------
2741 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2743 ** AeqB: outA, nextA nextA nextA outA, nextA
2745 ** AgtB: outB, nextB outB, nextB nextB nextB
2747 ** EofA: outB, nextB outB, nextB halt halt
2749 ** EofB: outA, nextA outA, nextA outA, nextA halt
2751 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2752 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2753 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2754 ** following nextX causes a jump to the end of the select processing.
2756 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2757 ** within the output subroutine. The regPrev register set holds the previously
2758 ** output value. A comparison is made against this value and the output
2759 ** is skipped if the next results would be the same as the previous.
2761 ** The implementation plan is to implement the two coroutines and seven
2762 ** subroutines first, then put the control logic at the bottom. Like this:
2764 ** goto Init
2765 ** coA: coroutine for left query (A)
2766 ** coB: coroutine for right query (B)
2767 ** outA: output one row of A
2768 ** outB: output one row of B (UNION and UNION ALL only)
2769 ** EofA: ...
2770 ** EofB: ...
2771 ** AltB: ...
2772 ** AeqB: ...
2773 ** AgtB: ...
2774 ** Init: initialize coroutine registers
2775 ** yield coA
2776 ** if eof(A) goto EofA
2777 ** yield coB
2778 ** if eof(B) goto EofB
2779 ** Cmpr: Compare A, B
2780 ** Jump AltB, AeqB, AgtB
2781 ** End: ...
2783 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2784 ** actually called using Gosub and they do not Return. EofA and EofB loop
2785 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2786 ** and AgtB jump to either L2 or to one of EofA or EofB.
2788 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2789 static int multiSelectOrderBy(
2790 Parse *pParse, /* Parsing context */
2791 Select *p, /* The right-most of SELECTs to be coded */
2792 SelectDest *pDest /* What to do with query results */
2794 int i, j; /* Loop counters */
2795 Select *pPrior; /* Another SELECT immediately to our left */
2796 Vdbe *v; /* Generate code to this VDBE */
2797 SelectDest destA; /* Destination for coroutine A */
2798 SelectDest destB; /* Destination for coroutine B */
2799 int regAddrA; /* Address register for select-A coroutine */
2800 int regAddrB; /* Address register for select-B coroutine */
2801 int addrSelectA; /* Address of the select-A coroutine */
2802 int addrSelectB; /* Address of the select-B coroutine */
2803 int regOutA; /* Address register for the output-A subroutine */
2804 int regOutB; /* Address register for the output-B subroutine */
2805 int addrOutA; /* Address of the output-A subroutine */
2806 int addrOutB = 0; /* Address of the output-B subroutine */
2807 int addrEofA; /* Address of the select-A-exhausted subroutine */
2808 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2809 int addrEofB; /* Address of the select-B-exhausted subroutine */
2810 int addrAltB; /* Address of the A<B subroutine */
2811 int addrAeqB; /* Address of the A==B subroutine */
2812 int addrAgtB; /* Address of the A>B subroutine */
2813 int regLimitA; /* Limit register for select-A */
2814 int regLimitB; /* Limit register for select-A */
2815 int regPrev; /* A range of registers to hold previous output */
2816 int savedLimit; /* Saved value of p->iLimit */
2817 int savedOffset; /* Saved value of p->iOffset */
2818 int labelCmpr; /* Label for the start of the merge algorithm */
2819 int labelEnd; /* Label for the end of the overall SELECT stmt */
2820 int addr1; /* Jump instructions that get retargetted */
2821 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2822 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2823 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2824 sqlite3 *db; /* Database connection */
2825 ExprList *pOrderBy; /* The ORDER BY clause */
2826 int nOrderBy; /* Number of terms in the ORDER BY clause */
2827 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2828 #ifndef SQLITE_OMIT_EXPLAIN
2829 int iSub1; /* EQP id of left-hand query */
2830 int iSub2; /* EQP id of right-hand query */
2831 #endif
2833 assert( p->pOrderBy!=0 );
2834 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2835 db = pParse->db;
2836 v = pParse->pVdbe;
2837 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2838 labelEnd = sqlite3VdbeMakeLabel(v);
2839 labelCmpr = sqlite3VdbeMakeLabel(v);
2842 /* Patch up the ORDER BY clause
2844 op = p->op;
2845 pPrior = p->pPrior;
2846 assert( pPrior->pOrderBy==0 );
2847 pOrderBy = p->pOrderBy;
2848 assert( pOrderBy );
2849 nOrderBy = pOrderBy->nExpr;
2851 /* For operators other than UNION ALL we have to make sure that
2852 ** the ORDER BY clause covers every term of the result set. Add
2853 ** terms to the ORDER BY clause as necessary.
2855 if( op!=TK_ALL ){
2856 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2857 struct ExprList_item *pItem;
2858 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2859 assert( pItem->u.x.iOrderByCol>0 );
2860 if( pItem->u.x.iOrderByCol==i ) break;
2862 if( j==nOrderBy ){
2863 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2864 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2865 pNew->flags |= EP_IntValue;
2866 pNew->u.iValue = i;
2867 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2868 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2873 /* Compute the comparison permutation and keyinfo that is used with
2874 ** the permutation used to determine if the next
2875 ** row of results comes from selectA or selectB. Also add explicit
2876 ** collations to the ORDER BY clause terms so that when the subqueries
2877 ** to the right and the left are evaluated, they use the correct
2878 ** collation.
2880 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2881 if( aPermute ){
2882 struct ExprList_item *pItem;
2883 aPermute[0] = nOrderBy;
2884 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2885 assert( pItem->u.x.iOrderByCol>0 );
2886 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2887 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2889 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2890 }else{
2891 pKeyMerge = 0;
2894 /* Reattach the ORDER BY clause to the query.
2896 p->pOrderBy = pOrderBy;
2897 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2899 /* Allocate a range of temporary registers and the KeyInfo needed
2900 ** for the logic that removes duplicate result rows when the
2901 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2903 if( op==TK_ALL ){
2904 regPrev = 0;
2905 }else{
2906 int nExpr = p->pEList->nExpr;
2907 assert( nOrderBy>=nExpr || db->mallocFailed );
2908 regPrev = pParse->nMem+1;
2909 pParse->nMem += nExpr+1;
2910 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2911 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2912 if( pKeyDup ){
2913 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2914 for(i=0; i<nExpr; i++){
2915 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2916 pKeyDup->aSortOrder[i] = 0;
2921 /* Separate the left and the right query from one another
2923 p->pPrior = 0;
2924 pPrior->pNext = 0;
2925 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2926 if( pPrior->pPrior==0 ){
2927 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2930 /* Compute the limit registers */
2931 computeLimitRegisters(pParse, p, labelEnd);
2932 if( p->iLimit && op==TK_ALL ){
2933 regLimitA = ++pParse->nMem;
2934 regLimitB = ++pParse->nMem;
2935 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2936 regLimitA);
2937 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2938 }else{
2939 regLimitA = regLimitB = 0;
2941 sqlite3ExprDelete(db, p->pLimit);
2942 p->pLimit = 0;
2943 sqlite3ExprDelete(db, p->pOffset);
2944 p->pOffset = 0;
2946 regAddrA = ++pParse->nMem;
2947 regAddrB = ++pParse->nMem;
2948 regOutA = ++pParse->nMem;
2949 regOutB = ++pParse->nMem;
2950 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2951 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2953 /* Generate a coroutine to evaluate the SELECT statement to the
2954 ** left of the compound operator - the "A" select.
2956 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2957 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2958 VdbeComment((v, "left SELECT"));
2959 pPrior->iLimit = regLimitA;
2960 explainSetInteger(iSub1, pParse->iNextSelectId);
2961 sqlite3Select(pParse, pPrior, &destA);
2962 sqlite3VdbeEndCoroutine(v, regAddrA);
2963 sqlite3VdbeJumpHere(v, addr1);
2965 /* Generate a coroutine to evaluate the SELECT statement on
2966 ** the right - the "B" select
2968 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2969 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2970 VdbeComment((v, "right SELECT"));
2971 savedLimit = p->iLimit;
2972 savedOffset = p->iOffset;
2973 p->iLimit = regLimitB;
2974 p->iOffset = 0;
2975 explainSetInteger(iSub2, pParse->iNextSelectId);
2976 sqlite3Select(pParse, p, &destB);
2977 p->iLimit = savedLimit;
2978 p->iOffset = savedOffset;
2979 sqlite3VdbeEndCoroutine(v, regAddrB);
2981 /* Generate a subroutine that outputs the current row of the A
2982 ** select as the next output row of the compound select.
2984 VdbeNoopComment((v, "Output routine for A"));
2985 addrOutA = generateOutputSubroutine(pParse,
2986 p, &destA, pDest, regOutA,
2987 regPrev, pKeyDup, labelEnd);
2989 /* Generate a subroutine that outputs the current row of the B
2990 ** select as the next output row of the compound select.
2992 if( op==TK_ALL || op==TK_UNION ){
2993 VdbeNoopComment((v, "Output routine for B"));
2994 addrOutB = generateOutputSubroutine(pParse,
2995 p, &destB, pDest, regOutB,
2996 regPrev, pKeyDup, labelEnd);
2998 sqlite3KeyInfoUnref(pKeyDup);
3000 /* Generate a subroutine to run when the results from select A
3001 ** are exhausted and only data in select B remains.
3003 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3004 addrEofA_noB = addrEofA = labelEnd;
3005 }else{
3006 VdbeNoopComment((v, "eof-A subroutine"));
3007 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3008 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3009 VdbeCoverage(v);
3010 sqlite3VdbeGoto(v, addrEofA);
3011 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3014 /* Generate a subroutine to run when the results from select B
3015 ** are exhausted and only data in select A remains.
3017 if( op==TK_INTERSECT ){
3018 addrEofB = addrEofA;
3019 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3020 }else{
3021 VdbeNoopComment((v, "eof-B subroutine"));
3022 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3023 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3024 sqlite3VdbeGoto(v, addrEofB);
3027 /* Generate code to handle the case of A<B
3029 VdbeNoopComment((v, "A-lt-B subroutine"));
3030 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3031 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3032 sqlite3VdbeGoto(v, labelCmpr);
3034 /* Generate code to handle the case of A==B
3036 if( op==TK_ALL ){
3037 addrAeqB = addrAltB;
3038 }else if( op==TK_INTERSECT ){
3039 addrAeqB = addrAltB;
3040 addrAltB++;
3041 }else{
3042 VdbeNoopComment((v, "A-eq-B subroutine"));
3043 addrAeqB =
3044 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3045 sqlite3VdbeGoto(v, labelCmpr);
3048 /* Generate code to handle the case of A>B
3050 VdbeNoopComment((v, "A-gt-B subroutine"));
3051 addrAgtB = sqlite3VdbeCurrentAddr(v);
3052 if( op==TK_ALL || op==TK_UNION ){
3053 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3055 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3056 sqlite3VdbeGoto(v, labelCmpr);
3058 /* This code runs once to initialize everything.
3060 sqlite3VdbeJumpHere(v, addr1);
3061 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3062 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3064 /* Implement the main merge loop
3066 sqlite3VdbeResolveLabel(v, labelCmpr);
3067 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3068 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3069 (char*)pKeyMerge, P4_KEYINFO);
3070 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3071 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3073 /* Jump to the this point in order to terminate the query.
3075 sqlite3VdbeResolveLabel(v, labelEnd);
3077 /* Set the number of output columns
3079 if( pDest->eDest==SRT_Output ){
3080 Select *pFirst = pPrior;
3081 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3082 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3085 /* Reassembly the compound query so that it will be freed correctly
3086 ** by the calling function */
3087 if( p->pPrior ){
3088 sqlite3SelectDelete(db, p->pPrior);
3090 p->pPrior = pPrior;
3091 pPrior->pNext = p;
3093 /*** TBD: Insert subroutine calls to close cursors on incomplete
3094 **** subqueries ****/
3095 explainComposite(pParse, p->op, iSub1, iSub2, 0);
3096 return pParse->nErr!=0;
3098 #endif
3100 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3101 /* Forward Declarations */
3102 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3103 static void substSelect(sqlite3*, Select *, int, ExprList*, int);
3106 ** Scan through the expression pExpr. Replace every reference to
3107 ** a column in table number iTable with a copy of the iColumn-th
3108 ** entry in pEList. (But leave references to the ROWID column
3109 ** unchanged.)
3111 ** This routine is part of the flattening procedure. A subquery
3112 ** whose result set is defined by pEList appears as entry in the
3113 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3114 ** FORM clause entry is iTable. This routine make the necessary
3115 ** changes to pExpr so that it refers directly to the source table
3116 ** of the subquery rather the result set of the subquery.
3118 static Expr *substExpr(
3119 sqlite3 *db, /* Report malloc errors to this connection */
3120 Expr *pExpr, /* Expr in which substitution occurs */
3121 int iTable, /* Table to be substituted */
3122 ExprList *pEList /* Substitute expressions */
3124 if( pExpr==0 ) return 0;
3125 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3126 if( pExpr->iColumn<0 ){
3127 pExpr->op = TK_NULL;
3128 }else{
3129 Expr *pNew;
3130 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3131 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3132 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3133 sqlite3ExprDelete(db, pExpr);
3134 pExpr = pNew;
3136 }else{
3137 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3138 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3139 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3140 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1);
3141 }else{
3142 substExprList(db, pExpr->x.pList, iTable, pEList);
3145 return pExpr;
3147 static void substExprList(
3148 sqlite3 *db, /* Report malloc errors here */
3149 ExprList *pList, /* List to scan and in which to make substitutes */
3150 int iTable, /* Table to be substituted */
3151 ExprList *pEList /* Substitute values */
3153 int i;
3154 if( pList==0 ) return;
3155 for(i=0; i<pList->nExpr; i++){
3156 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3159 static void substSelect(
3160 sqlite3 *db, /* Report malloc errors here */
3161 Select *p, /* SELECT statement in which to make substitutions */
3162 int iTable, /* Table to be replaced */
3163 ExprList *pEList, /* Substitute values */
3164 int doPrior /* Do substitutes on p->pPrior too */
3166 SrcList *pSrc;
3167 struct SrcList_item *pItem;
3168 int i;
3169 if( !p ) return;
3171 substExprList(db, p->pEList, iTable, pEList);
3172 substExprList(db, p->pGroupBy, iTable, pEList);
3173 substExprList(db, p->pOrderBy, iTable, pEList);
3174 p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3175 p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3176 pSrc = p->pSrc;
3177 assert( pSrc!=0 );
3178 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3179 substSelect(db, pItem->pSelect, iTable, pEList, 1);
3180 if( pItem->fg.isTabFunc ){
3181 substExprList(db, pItem->u1.pFuncArg, iTable, pEList);
3184 }while( doPrior && (p = p->pPrior)!=0 );
3186 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3188 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3190 ** This routine attempts to flatten subqueries as a performance optimization.
3191 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3193 ** To understand the concept of flattening, consider the following
3194 ** query:
3196 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3198 ** The default way of implementing this query is to execute the
3199 ** subquery first and store the results in a temporary table, then
3200 ** run the outer query on that temporary table. This requires two
3201 ** passes over the data. Furthermore, because the temporary table
3202 ** has no indices, the WHERE clause on the outer query cannot be
3203 ** optimized.
3205 ** This routine attempts to rewrite queries such as the above into
3206 ** a single flat select, like this:
3208 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3210 ** The code generated for this simplification gives the same result
3211 ** but only has to scan the data once. And because indices might
3212 ** exist on the table t1, a complete scan of the data might be
3213 ** avoided.
3215 ** Flattening is only attempted if all of the following are true:
3217 ** (1) The subquery and the outer query do not both use aggregates.
3219 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join
3220 ** and (2b) the outer query does not use subqueries other than the one
3221 ** FROM-clause subquery that is a candidate for flattening. (2b is
3222 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3224 ** (3) The subquery is not the right operand of a left outer join
3225 ** (Originally ticket #306. Strengthened by ticket #3300)
3227 ** (4) The subquery is not DISTINCT.
3229 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3230 ** sub-queries that were excluded from this optimization. Restriction
3231 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3233 ** (6) The subquery does not use aggregates or the outer query is not
3234 ** DISTINCT.
3236 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3237 ** A FROM clause, consider adding a FROM close with the special
3238 ** table sqlite_once that consists of a single row containing a
3239 ** single NULL.
3241 ** (8) The subquery does not use LIMIT or the outer query is not a join.
3243 ** (9) The subquery does not use LIMIT or the outer query does not use
3244 ** aggregates.
3246 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3247 ** accidently carried the comment forward until 2014-09-15. Original
3248 ** text: "The subquery does not use aggregates or the outer query
3249 ** does not use LIMIT."
3251 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
3253 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3254 ** a separate restriction deriving from ticket #350.
3256 ** (13) The subquery and outer query do not both use LIMIT.
3258 ** (14) The subquery does not use OFFSET.
3260 ** (15) The outer query is not part of a compound select or the
3261 ** subquery does not have a LIMIT clause.
3262 ** (See ticket #2339 and ticket [02a8e81d44]).
3264 ** (16) The outer query is not an aggregate or the subquery does
3265 ** not contain ORDER BY. (Ticket #2942) This used to not matter
3266 ** until we introduced the group_concat() function.
3268 ** (17) The sub-query is not a compound select, or it is a UNION ALL
3269 ** compound clause made up entirely of non-aggregate queries, and
3270 ** the parent query:
3272 ** * is not itself part of a compound select,
3273 ** * is not an aggregate or DISTINCT query, and
3274 ** * is not a join
3276 ** The parent and sub-query may contain WHERE clauses. Subject to
3277 ** rules (11), (13) and (14), they may also contain ORDER BY,
3278 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3279 ** operator other than UNION ALL because all the other compound
3280 ** operators have an implied DISTINCT which is disallowed by
3281 ** restriction (4).
3283 ** Also, each component of the sub-query must return the same number
3284 ** of result columns. This is actually a requirement for any compound
3285 ** SELECT statement, but all the code here does is make sure that no
3286 ** such (illegal) sub-query is flattened. The caller will detect the
3287 ** syntax error and return a detailed message.
3289 ** (18) If the sub-query is a compound select, then all terms of the
3290 ** ORDER by clause of the parent must be simple references to
3291 ** columns of the sub-query.
3293 ** (19) The subquery does not use LIMIT or the outer query does not
3294 ** have a WHERE clause.
3296 ** (20) If the sub-query is a compound select, then it must not use
3297 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3298 ** somewhat by saying that the terms of the ORDER BY clause must
3299 ** appear as unmodified result columns in the outer query. But we
3300 ** have other optimizations in mind to deal with that case.
3302 ** (21) The subquery does not use LIMIT or the outer query is not
3303 ** DISTINCT. (See ticket [752e1646fc]).
3305 ** (22) The subquery is not a recursive CTE.
3307 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3308 ** compound query. This restriction is because transforming the
3309 ** parent to a compound query confuses the code that handles
3310 ** recursive queries in multiSelect().
3312 ** (24) The subquery is not an aggregate that uses the built-in min() or
3313 ** or max() functions. (Without this restriction, a query like:
3314 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3315 ** return the value X for which Y was maximal.)
3318 ** In this routine, the "p" parameter is a pointer to the outer query.
3319 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3320 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3322 ** If flattening is not attempted, this routine is a no-op and returns 0.
3323 ** If flattening is attempted this routine returns 1.
3325 ** All of the expression analysis must occur on both the outer query and
3326 ** the subquery before this routine runs.
3328 static int flattenSubquery(
3329 Parse *pParse, /* Parsing context */
3330 Select *p, /* The parent or outer SELECT statement */
3331 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3332 int isAgg, /* True if outer SELECT uses aggregate functions */
3333 int subqueryIsAgg /* True if the subquery uses aggregate functions */
3335 const char *zSavedAuthContext = pParse->zAuthContext;
3336 Select *pParent; /* Current UNION ALL term of the other query */
3337 Select *pSub; /* The inner query or "subquery" */
3338 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3339 SrcList *pSrc; /* The FROM clause of the outer query */
3340 SrcList *pSubSrc; /* The FROM clause of the subquery */
3341 ExprList *pList; /* The result set of the outer query */
3342 int iParent; /* VDBE cursor number of the pSub result set temp table */
3343 int i; /* Loop counter */
3344 Expr *pWhere; /* The WHERE clause */
3345 struct SrcList_item *pSubitem; /* The subquery */
3346 sqlite3 *db = pParse->db;
3348 /* Check to see if flattening is permitted. Return 0 if not.
3350 assert( p!=0 );
3351 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
3352 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3353 pSrc = p->pSrc;
3354 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3355 pSubitem = &pSrc->a[iFrom];
3356 iParent = pSubitem->iCursor;
3357 pSub = pSubitem->pSelect;
3358 assert( pSub!=0 );
3359 if( subqueryIsAgg ){
3360 if( isAgg ) return 0; /* Restriction (1) */
3361 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */
3362 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3363 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3364 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3366 return 0; /* Restriction (2b) */
3370 pSubSrc = pSub->pSrc;
3371 assert( pSubSrc );
3372 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3373 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3374 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3375 ** became arbitrary expressions, we were forced to add restrictions (13)
3376 ** and (14). */
3377 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3378 if( pSub->pOffset ) return 0; /* Restriction (14) */
3379 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3380 return 0; /* Restriction (15) */
3382 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3383 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
3384 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3385 return 0; /* Restrictions (8)(9) */
3387 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3388 return 0; /* Restriction (6) */
3390 if( p->pOrderBy && pSub->pOrderBy ){
3391 return 0; /* Restriction (11) */
3393 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3394 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3395 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3396 return 0; /* Restriction (21) */
3398 testcase( pSub->selFlags & SF_Recursive );
3399 testcase( pSub->selFlags & SF_MinMaxAgg );
3400 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3401 return 0; /* Restrictions (22) and (24) */
3403 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3404 return 0; /* Restriction (23) */
3407 /* OBSOLETE COMMENT 1:
3408 ** Restriction 3: If the subquery is a join, make sure the subquery is
3409 ** not used as the right operand of an outer join. Examples of why this
3410 ** is not allowed:
3412 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3414 ** If we flatten the above, we would get
3416 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3418 ** which is not at all the same thing.
3420 ** OBSOLETE COMMENT 2:
3421 ** Restriction 12: If the subquery is the right operand of a left outer
3422 ** join, make sure the subquery has no WHERE clause.
3423 ** An examples of why this is not allowed:
3425 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3427 ** If we flatten the above, we would get
3429 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3431 ** But the t2.x>0 test will always fail on a NULL row of t2, which
3432 ** effectively converts the OUTER JOIN into an INNER JOIN.
3434 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3435 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3436 ** is fraught with danger. Best to avoid the whole thing. If the
3437 ** subquery is the right term of a LEFT JOIN, then do not flatten.
3439 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3440 return 0;
3443 /* Restriction 17: If the sub-query is a compound SELECT, then it must
3444 ** use only the UNION ALL operator. And none of the simple select queries
3445 ** that make up the compound SELECT are allowed to be aggregate or distinct
3446 ** queries.
3448 if( pSub->pPrior ){
3449 if( pSub->pOrderBy ){
3450 return 0; /* Restriction 20 */
3452 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3453 return 0;
3455 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3456 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3457 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3458 assert( pSub->pSrc!=0 );
3459 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3460 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3461 || (pSub1->pPrior && pSub1->op!=TK_ALL)
3462 || pSub1->pSrc->nSrc<1
3464 return 0;
3466 testcase( pSub1->pSrc->nSrc>1 );
3469 /* Restriction 18. */
3470 if( p->pOrderBy ){
3471 int ii;
3472 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3473 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3478 /***** If we reach this point, flattening is permitted. *****/
3479 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3480 pSub->zSelName, pSub, iFrom));
3482 /* Authorize the subquery */
3483 pParse->zAuthContext = pSubitem->zName;
3484 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3485 testcase( i==SQLITE_DENY );
3486 pParse->zAuthContext = zSavedAuthContext;
3488 /* If the sub-query is a compound SELECT statement, then (by restrictions
3489 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3490 ** be of the form:
3492 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3494 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3495 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3496 ** OFFSET clauses and joins them to the left-hand-side of the original
3497 ** using UNION ALL operators. In this case N is the number of simple
3498 ** select statements in the compound sub-query.
3500 ** Example:
3502 ** SELECT a+1 FROM (
3503 ** SELECT x FROM tab
3504 ** UNION ALL
3505 ** SELECT y FROM tab
3506 ** UNION ALL
3507 ** SELECT abs(z*2) FROM tab2
3508 ** ) WHERE a!=5 ORDER BY 1
3510 ** Transformed into:
3512 ** SELECT x+1 FROM tab WHERE x+1!=5
3513 ** UNION ALL
3514 ** SELECT y+1 FROM tab WHERE y+1!=5
3515 ** UNION ALL
3516 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3517 ** ORDER BY 1
3519 ** We call this the "compound-subquery flattening".
3521 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3522 Select *pNew;
3523 ExprList *pOrderBy = p->pOrderBy;
3524 Expr *pLimit = p->pLimit;
3525 Expr *pOffset = p->pOffset;
3526 Select *pPrior = p->pPrior;
3527 p->pOrderBy = 0;
3528 p->pSrc = 0;
3529 p->pPrior = 0;
3530 p->pLimit = 0;
3531 p->pOffset = 0;
3532 pNew = sqlite3SelectDup(db, p, 0);
3533 sqlite3SelectSetName(pNew, pSub->zSelName);
3534 p->pOffset = pOffset;
3535 p->pLimit = pLimit;
3536 p->pOrderBy = pOrderBy;
3537 p->pSrc = pSrc;
3538 p->op = TK_ALL;
3539 if( pNew==0 ){
3540 p->pPrior = pPrior;
3541 }else{
3542 pNew->pPrior = pPrior;
3543 if( pPrior ) pPrior->pNext = pNew;
3544 pNew->pNext = p;
3545 p->pPrior = pNew;
3546 SELECTTRACE(2,pParse,p,
3547 ("compound-subquery flattener creates %s.%p as peer\n",
3548 pNew->zSelName, pNew));
3550 if( db->mallocFailed ) return 1;
3553 /* Begin flattening the iFrom-th entry of the FROM clause
3554 ** in the outer query.
3556 pSub = pSub1 = pSubitem->pSelect;
3558 /* Delete the transient table structure associated with the
3559 ** subquery
3561 sqlite3DbFree(db, pSubitem->zDatabase);
3562 sqlite3DbFree(db, pSubitem->zName);
3563 sqlite3DbFree(db, pSubitem->zAlias);
3564 pSubitem->zDatabase = 0;
3565 pSubitem->zName = 0;
3566 pSubitem->zAlias = 0;
3567 pSubitem->pSelect = 0;
3569 /* Defer deleting the Table object associated with the
3570 ** subquery until code generation is
3571 ** complete, since there may still exist Expr.pTab entries that
3572 ** refer to the subquery even after flattening. Ticket #3346.
3574 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3576 if( ALWAYS(pSubitem->pTab!=0) ){
3577 Table *pTabToDel = pSubitem->pTab;
3578 if( pTabToDel->nRef==1 ){
3579 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3580 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3581 pToplevel->pZombieTab = pTabToDel;
3582 }else{
3583 pTabToDel->nRef--;
3585 pSubitem->pTab = 0;
3588 /* The following loop runs once for each term in a compound-subquery
3589 ** flattening (as described above). If we are doing a different kind
3590 ** of flattening - a flattening other than a compound-subquery flattening -
3591 ** then this loop only runs once.
3593 ** This loop moves all of the FROM elements of the subquery into the
3594 ** the FROM clause of the outer query. Before doing this, remember
3595 ** the cursor number for the original outer query FROM element in
3596 ** iParent. The iParent cursor will never be used. Subsequent code
3597 ** will scan expressions looking for iParent references and replace
3598 ** those references with expressions that resolve to the subquery FROM
3599 ** elements we are now copying in.
3601 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3602 int nSubSrc;
3603 u8 jointype = 0;
3604 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3605 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3606 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3608 if( pSrc ){
3609 assert( pParent==p ); /* First time through the loop */
3610 jointype = pSubitem->fg.jointype;
3611 }else{
3612 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3613 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3614 if( pSrc==0 ){
3615 assert( db->mallocFailed );
3616 break;
3620 /* The subquery uses a single slot of the FROM clause of the outer
3621 ** query. If the subquery has more than one element in its FROM clause,
3622 ** then expand the outer query to make space for it to hold all elements
3623 ** of the subquery.
3625 ** Example:
3627 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3629 ** The outer query has 3 slots in its FROM clause. One slot of the
3630 ** outer query (the middle slot) is used by the subquery. The next
3631 ** block of code will expand the outer query FROM clause to 4 slots.
3632 ** The middle slot is expanded to two slots in order to make space
3633 ** for the two elements in the FROM clause of the subquery.
3635 if( nSubSrc>1 ){
3636 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3637 if( db->mallocFailed ){
3638 break;
3642 /* Transfer the FROM clause terms from the subquery into the
3643 ** outer query.
3645 for(i=0; i<nSubSrc; i++){
3646 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3647 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3648 pSrc->a[i+iFrom] = pSubSrc->a[i];
3649 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3651 pSrc->a[iFrom].fg.jointype = jointype;
3653 /* Now begin substituting subquery result set expressions for
3654 ** references to the iParent in the outer query.
3656 ** Example:
3658 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3659 ** \ \_____________ subquery __________/ /
3660 ** \_____________________ outer query ______________________________/
3662 ** We look at every expression in the outer query and every place we see
3663 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3665 pList = pParent->pEList;
3666 for(i=0; i<pList->nExpr; i++){
3667 if( pList->a[i].zName==0 ){
3668 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3669 sqlite3Dequote(zName);
3670 pList->a[i].zName = zName;
3673 if( pSub->pOrderBy ){
3674 /* At this point, any non-zero iOrderByCol values indicate that the
3675 ** ORDER BY column expression is identical to the iOrderByCol'th
3676 ** expression returned by SELECT statement pSub. Since these values
3677 ** do not necessarily correspond to columns in SELECT statement pParent,
3678 ** zero them before transfering the ORDER BY clause.
3680 ** Not doing this may cause an error if a subsequent call to this
3681 ** function attempts to flatten a compound sub-query into pParent
3682 ** (the only way this can happen is if the compound sub-query is
3683 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3684 ExprList *pOrderBy = pSub->pOrderBy;
3685 for(i=0; i<pOrderBy->nExpr; i++){
3686 pOrderBy->a[i].u.x.iOrderByCol = 0;
3688 assert( pParent->pOrderBy==0 );
3689 assert( pSub->pPrior==0 );
3690 pParent->pOrderBy = pOrderBy;
3691 pSub->pOrderBy = 0;
3693 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3694 if( subqueryIsAgg ){
3695 assert( pParent->pHaving==0 );
3696 pParent->pHaving = pParent->pWhere;
3697 pParent->pWhere = pWhere;
3698 pParent->pHaving = sqlite3ExprAnd(db,
3699 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
3701 assert( pParent->pGroupBy==0 );
3702 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3703 }else{
3704 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3706 substSelect(db, pParent, iParent, pSub->pEList, 0);
3708 /* The flattened query is distinct if either the inner or the
3709 ** outer query is distinct.
3711 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3714 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3716 ** One is tempted to try to add a and b to combine the limits. But this
3717 ** does not work if either limit is negative.
3719 if( pSub->pLimit ){
3720 pParent->pLimit = pSub->pLimit;
3721 pSub->pLimit = 0;
3725 /* Finially, delete what is left of the subquery and return
3726 ** success.
3728 sqlite3SelectDelete(db, pSub1);
3730 #if SELECTTRACE_ENABLED
3731 if( sqlite3SelectTrace & 0x100 ){
3732 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3733 sqlite3TreeViewSelect(0, p, 0);
3735 #endif
3737 return 1;
3739 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3743 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3745 ** Make copies of relevant WHERE clause terms of the outer query into
3746 ** the WHERE clause of subquery. Example:
3748 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3750 ** Transformed into:
3752 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3753 ** WHERE x=5 AND y=10;
3755 ** The hope is that the terms added to the inner query will make it more
3756 ** efficient.
3758 ** Do not attempt this optimization if:
3760 ** (1) The inner query is an aggregate. (In that case, we'd really want
3761 ** to copy the outer WHERE-clause terms onto the HAVING clause of the
3762 ** inner query. But they probably won't help there so do not bother.)
3764 ** (2) The inner query is the recursive part of a common table expression.
3766 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3767 ** close would change the meaning of the LIMIT).
3769 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3770 ** enforces this restriction since this routine does not have enough
3771 ** information to know.)
3773 ** (5) The WHERE clause expression originates in the ON or USING clause
3774 ** of a LEFT JOIN.
3776 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3777 ** terms are duplicated into the subquery.
3779 static int pushDownWhereTerms(
3780 sqlite3 *db, /* The database connection (for malloc()) */
3781 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
3782 Expr *pWhere, /* The WHERE clause of the outer query */
3783 int iCursor /* Cursor number of the subquery */
3785 Expr *pNew;
3786 int nChng = 0;
3787 Select *pX; /* For looping over compound SELECTs in pSubq */
3788 if( pWhere==0 ) return 0;
3789 for(pX=pSubq; pX; pX=pX->pPrior){
3790 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3791 testcase( pX->selFlags & SF_Aggregate );
3792 testcase( pX->selFlags & SF_Recursive );
3793 testcase( pX!=pSubq );
3794 return 0; /* restrictions (1) and (2) */
3797 if( pSubq->pLimit!=0 ){
3798 return 0; /* restriction (3) */
3800 while( pWhere->op==TK_AND ){
3801 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3802 pWhere = pWhere->pLeft;
3804 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3805 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3806 nChng++;
3807 while( pSubq ){
3808 pNew = sqlite3ExprDup(db, pWhere, 0);
3809 pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3810 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3811 pSubq = pSubq->pPrior;
3814 return nChng;
3816 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3819 ** Based on the contents of the AggInfo structure indicated by the first
3820 ** argument, this function checks if the following are true:
3822 ** * the query contains just a single aggregate function,
3823 ** * the aggregate function is either min() or max(), and
3824 ** * the argument to the aggregate function is a column value.
3826 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3827 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3828 ** list of arguments passed to the aggregate before returning.
3830 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3831 ** WHERE_ORDERBY_NORMAL is returned.
3833 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3834 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3836 *ppMinMax = 0;
3837 if( pAggInfo->nFunc==1 ){
3838 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3839 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */
3841 assert( pExpr->op==TK_AGG_FUNCTION );
3842 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3843 const char *zFunc = pExpr->u.zToken;
3844 if( sqlite3StrICmp(zFunc, "min")==0 ){
3845 eRet = WHERE_ORDERBY_MIN;
3846 *ppMinMax = pEList;
3847 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3848 eRet = WHERE_ORDERBY_MAX;
3849 *ppMinMax = pEList;
3854 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3855 return eRet;
3859 ** The select statement passed as the first argument is an aggregate query.
3860 ** The second argument is the associated aggregate-info object. This
3861 ** function tests if the SELECT is of the form:
3863 ** SELECT count(*) FROM <tbl>
3865 ** where table is a database table, not a sub-select or view. If the query
3866 ** does match this pattern, then a pointer to the Table object representing
3867 ** <tbl> is returned. Otherwise, 0 is returned.
3869 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3870 Table *pTab;
3871 Expr *pExpr;
3873 assert( !p->pGroupBy );
3875 if( p->pWhere || p->pEList->nExpr!=1
3876 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3878 return 0;
3880 pTab = p->pSrc->a[0].pTab;
3881 pExpr = p->pEList->a[0].pExpr;
3882 assert( pTab && !pTab->pSelect && pExpr );
3884 if( IsVirtual(pTab) ) return 0;
3885 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3886 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3887 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3888 if( pExpr->flags&EP_Distinct ) return 0;
3890 return pTab;
3894 ** If the source-list item passed as an argument was augmented with an
3895 ** INDEXED BY clause, then try to locate the specified index. If there
3896 ** was such a clause and the named index cannot be found, return
3897 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3898 ** pFrom->pIndex and return SQLITE_OK.
3900 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3901 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3902 Table *pTab = pFrom->pTab;
3903 char *zIndexedBy = pFrom->u1.zIndexedBy;
3904 Index *pIdx;
3905 for(pIdx=pTab->pIndex;
3906 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3907 pIdx=pIdx->pNext
3909 if( !pIdx ){
3910 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3911 pParse->checkSchema = 1;
3912 return SQLITE_ERROR;
3914 pFrom->pIBIndex = pIdx;
3916 return SQLITE_OK;
3919 ** Detect compound SELECT statements that use an ORDER BY clause with
3920 ** an alternative collating sequence.
3922 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3924 ** These are rewritten as a subquery:
3926 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3927 ** ORDER BY ... COLLATE ...
3929 ** This transformation is necessary because the multiSelectOrderBy() routine
3930 ** above that generates the code for a compound SELECT with an ORDER BY clause
3931 ** uses a merge algorithm that requires the same collating sequence on the
3932 ** result columns as on the ORDER BY clause. See ticket
3933 ** http://www.sqlite.org/src/info/6709574d2a
3935 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3936 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3937 ** there are COLLATE terms in the ORDER BY.
3939 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3940 int i;
3941 Select *pNew;
3942 Select *pX;
3943 sqlite3 *db;
3944 struct ExprList_item *a;
3945 SrcList *pNewSrc;
3946 Parse *pParse;
3947 Token dummy;
3949 if( p->pPrior==0 ) return WRC_Continue;
3950 if( p->pOrderBy==0 ) return WRC_Continue;
3951 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3952 if( pX==0 ) return WRC_Continue;
3953 a = p->pOrderBy->a;
3954 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3955 if( a[i].pExpr->flags & EP_Collate ) break;
3957 if( i<0 ) return WRC_Continue;
3959 /* If we reach this point, that means the transformation is required. */
3961 pParse = pWalker->pParse;
3962 db = pParse->db;
3963 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3964 if( pNew==0 ) return WRC_Abort;
3965 memset(&dummy, 0, sizeof(dummy));
3966 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3967 if( pNewSrc==0 ) return WRC_Abort;
3968 *pNew = *p;
3969 p->pSrc = pNewSrc;
3970 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
3971 p->op = TK_SELECT;
3972 p->pWhere = 0;
3973 pNew->pGroupBy = 0;
3974 pNew->pHaving = 0;
3975 pNew->pOrderBy = 0;
3976 p->pPrior = 0;
3977 p->pNext = 0;
3978 p->pWith = 0;
3979 p->selFlags &= ~SF_Compound;
3980 assert( (p->selFlags & SF_Converted)==0 );
3981 p->selFlags |= SF_Converted;
3982 assert( pNew->pPrior!=0 );
3983 pNew->pPrior->pNext = pNew;
3984 pNew->pLimit = 0;
3985 pNew->pOffset = 0;
3986 return WRC_Continue;
3990 ** Check to see if the FROM clause term pFrom has table-valued function
3991 ** arguments. If it does, leave an error message in pParse and return
3992 ** non-zero, since pFrom is not allowed to be a table-valued function.
3994 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
3995 if( pFrom->fg.isTabFunc ){
3996 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
3997 return 1;
3999 return 0;
4002 #ifndef SQLITE_OMIT_CTE
4004 ** Argument pWith (which may be NULL) points to a linked list of nested
4005 ** WITH contexts, from inner to outermost. If the table identified by
4006 ** FROM clause element pItem is really a common-table-expression (CTE)
4007 ** then return a pointer to the CTE definition for that table. Otherwise
4008 ** return NULL.
4010 ** If a non-NULL value is returned, set *ppContext to point to the With
4011 ** object that the returned CTE belongs to.
4013 static struct Cte *searchWith(
4014 With *pWith, /* Current innermost WITH clause */
4015 struct SrcList_item *pItem, /* FROM clause element to resolve */
4016 With **ppContext /* OUT: WITH clause return value belongs to */
4018 const char *zName;
4019 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4020 With *p;
4021 for(p=pWith; p; p=p->pOuter){
4022 int i;
4023 for(i=0; i<p->nCte; i++){
4024 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4025 *ppContext = p;
4026 return &p->a[i];
4031 return 0;
4034 /* The code generator maintains a stack of active WITH clauses
4035 ** with the inner-most WITH clause being at the top of the stack.
4037 ** This routine pushes the WITH clause passed as the second argument
4038 ** onto the top of the stack. If argument bFree is true, then this
4039 ** WITH clause will never be popped from the stack. In this case it
4040 ** should be freed along with the Parse object. In other cases, when
4041 ** bFree==0, the With object will be freed along with the SELECT
4042 ** statement with which it is associated.
4044 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4045 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4046 if( pWith ){
4047 assert( pParse->pWith!=pWith );
4048 pWith->pOuter = pParse->pWith;
4049 pParse->pWith = pWith;
4050 if( bFree ) pParse->pWithToFree = pWith;
4055 ** This function checks if argument pFrom refers to a CTE declared by
4056 ** a WITH clause on the stack currently maintained by the parser. And,
4057 ** if currently processing a CTE expression, if it is a recursive
4058 ** reference to the current CTE.
4060 ** If pFrom falls into either of the two categories above, pFrom->pTab
4061 ** and other fields are populated accordingly. The caller should check
4062 ** (pFrom->pTab!=0) to determine whether or not a successful match
4063 ** was found.
4065 ** Whether or not a match is found, SQLITE_OK is returned if no error
4066 ** occurs. If an error does occur, an error message is stored in the
4067 ** parser and some error code other than SQLITE_OK returned.
4069 static int withExpand(
4070 Walker *pWalker,
4071 struct SrcList_item *pFrom
4073 Parse *pParse = pWalker->pParse;
4074 sqlite3 *db = pParse->db;
4075 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4076 With *pWith; /* WITH clause that pCte belongs to */
4078 assert( pFrom->pTab==0 );
4080 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4081 if( pCte ){
4082 Table *pTab;
4083 ExprList *pEList;
4084 Select *pSel;
4085 Select *pLeft; /* Left-most SELECT statement */
4086 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4087 With *pSavedWith; /* Initial value of pParse->pWith */
4089 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4090 ** recursive reference to CTE pCte. Leave an error in pParse and return
4091 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4092 ** In this case, proceed. */
4093 if( pCte->zCteErr ){
4094 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4095 return SQLITE_ERROR;
4097 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4099 assert( pFrom->pTab==0 );
4100 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4101 if( pTab==0 ) return WRC_Abort;
4102 pTab->nRef = 1;
4103 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4104 pTab->iPKey = -1;
4105 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4106 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4107 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4108 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4109 assert( pFrom->pSelect );
4111 /* Check if this is a recursive CTE. */
4112 pSel = pFrom->pSelect;
4113 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4114 if( bMayRecursive ){
4115 int i;
4116 SrcList *pSrc = pFrom->pSelect->pSrc;
4117 for(i=0; i<pSrc->nSrc; i++){
4118 struct SrcList_item *pItem = &pSrc->a[i];
4119 if( pItem->zDatabase==0
4120 && pItem->zName!=0
4121 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4123 pItem->pTab = pTab;
4124 pItem->fg.isRecursive = 1;
4125 pTab->nRef++;
4126 pSel->selFlags |= SF_Recursive;
4131 /* Only one recursive reference is permitted. */
4132 if( pTab->nRef>2 ){
4133 sqlite3ErrorMsg(
4134 pParse, "multiple references to recursive table: %s", pCte->zName
4136 return SQLITE_ERROR;
4138 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4140 pCte->zCteErr = "circular reference: %s";
4141 pSavedWith = pParse->pWith;
4142 pParse->pWith = pWith;
4143 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4144 pParse->pWith = pWith;
4146 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4147 pEList = pLeft->pEList;
4148 if( pCte->pCols ){
4149 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4150 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4151 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4153 pParse->pWith = pSavedWith;
4154 return SQLITE_ERROR;
4156 pEList = pCte->pCols;
4159 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4160 if( bMayRecursive ){
4161 if( pSel->selFlags & SF_Recursive ){
4162 pCte->zCteErr = "multiple recursive references: %s";
4163 }else{
4164 pCte->zCteErr = "recursive reference in a subquery: %s";
4166 sqlite3WalkSelect(pWalker, pSel);
4168 pCte->zCteErr = 0;
4169 pParse->pWith = pSavedWith;
4172 return SQLITE_OK;
4174 #endif
4176 #ifndef SQLITE_OMIT_CTE
4178 ** If the SELECT passed as the second argument has an associated WITH
4179 ** clause, pop it from the stack stored as part of the Parse object.
4181 ** This function is used as the xSelectCallback2() callback by
4182 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4183 ** names and other FROM clause elements.
4185 static void selectPopWith(Walker *pWalker, Select *p){
4186 Parse *pParse = pWalker->pParse;
4187 With *pWith = findRightmost(p)->pWith;
4188 if( pWith!=0 ){
4189 assert( pParse->pWith==pWith );
4190 pParse->pWith = pWith->pOuter;
4193 #else
4194 #define selectPopWith 0
4195 #endif
4198 ** This routine is a Walker callback for "expanding" a SELECT statement.
4199 ** "Expanding" means to do the following:
4201 ** (1) Make sure VDBE cursor numbers have been assigned to every
4202 ** element of the FROM clause.
4204 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4205 ** defines FROM clause. When views appear in the FROM clause,
4206 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4207 ** that implements the view. A copy is made of the view's SELECT
4208 ** statement so that we can freely modify or delete that statement
4209 ** without worrying about messing up the persistent representation
4210 ** of the view.
4212 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4213 ** on joins and the ON and USING clause of joins.
4215 ** (4) Scan the list of columns in the result set (pEList) looking
4216 ** for instances of the "*" operator or the TABLE.* operator.
4217 ** If found, expand each "*" to be every column in every table
4218 ** and TABLE.* to be every column in TABLE.
4221 static int selectExpander(Walker *pWalker, Select *p){
4222 Parse *pParse = pWalker->pParse;
4223 int i, j, k;
4224 SrcList *pTabList;
4225 ExprList *pEList;
4226 struct SrcList_item *pFrom;
4227 sqlite3 *db = pParse->db;
4228 Expr *pE, *pRight, *pExpr;
4229 u16 selFlags = p->selFlags;
4231 p->selFlags |= SF_Expanded;
4232 if( db->mallocFailed ){
4233 return WRC_Abort;
4235 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4236 return WRC_Prune;
4238 pTabList = p->pSrc;
4239 pEList = p->pEList;
4240 if( pWalker->xSelectCallback2==selectPopWith ){
4241 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4244 /* Make sure cursor numbers have been assigned to all entries in
4245 ** the FROM clause of the SELECT statement.
4247 sqlite3SrcListAssignCursors(pParse, pTabList);
4249 /* Look up every table named in the FROM clause of the select. If
4250 ** an entry of the FROM clause is a subquery instead of a table or view,
4251 ** then create a transient table structure to describe the subquery.
4253 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4254 Table *pTab;
4255 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4256 if( pFrom->fg.isRecursive ) continue;
4257 assert( pFrom->pTab==0 );
4258 #ifndef SQLITE_OMIT_CTE
4259 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4260 if( pFrom->pTab ) {} else
4261 #endif
4262 if( pFrom->zName==0 ){
4263 #ifndef SQLITE_OMIT_SUBQUERY
4264 Select *pSel = pFrom->pSelect;
4265 /* A sub-query in the FROM clause of a SELECT */
4266 assert( pSel!=0 );
4267 assert( pFrom->pTab==0 );
4268 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4269 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4270 if( pTab==0 ) return WRC_Abort;
4271 pTab->nRef = 1;
4272 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4273 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4274 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4275 pTab->iPKey = -1;
4276 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4277 pTab->tabFlags |= TF_Ephemeral;
4278 #endif
4279 }else{
4280 /* An ordinary table or view name in the FROM clause */
4281 assert( pFrom->pTab==0 );
4282 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4283 if( pTab==0 ) return WRC_Abort;
4284 if( pTab->nRef==0xffff ){
4285 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4286 pTab->zName);
4287 pFrom->pTab = 0;
4288 return WRC_Abort;
4290 pTab->nRef++;
4291 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4292 return WRC_Abort;
4294 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4295 if( IsVirtual(pTab) || pTab->pSelect ){
4296 i16 nCol;
4297 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4298 assert( pFrom->pSelect==0 );
4299 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4300 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4301 nCol = pTab->nCol;
4302 pTab->nCol = -1;
4303 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4304 pTab->nCol = nCol;
4306 #endif
4309 /* Locate the index named by the INDEXED BY clause, if any. */
4310 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4311 return WRC_Abort;
4315 /* Process NATURAL keywords, and ON and USING clauses of joins.
4317 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4318 return WRC_Abort;
4321 /* For every "*" that occurs in the column list, insert the names of
4322 ** all columns in all tables. And for every TABLE.* insert the names
4323 ** of all columns in TABLE. The parser inserted a special expression
4324 ** with the TK_ASTERISK operator for each "*" that it found in the column
4325 ** list. The following code just has to locate the TK_ASTERISK
4326 ** expressions and expand each one to the list of all columns in
4327 ** all tables.
4329 ** The first loop just checks to see if there are any "*" operators
4330 ** that need expanding.
4332 for(k=0; k<pEList->nExpr; k++){
4333 pE = pEList->a[k].pExpr;
4334 if( pE->op==TK_ASTERISK ) break;
4335 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4336 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4337 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4339 if( k<pEList->nExpr ){
4341 ** If we get here it means the result set contains one or more "*"
4342 ** operators that need to be expanded. Loop through each expression
4343 ** in the result set and expand them one by one.
4345 struct ExprList_item *a = pEList->a;
4346 ExprList *pNew = 0;
4347 int flags = pParse->db->flags;
4348 int longNames = (flags & SQLITE_FullColNames)!=0
4349 && (flags & SQLITE_ShortColNames)==0;
4351 for(k=0; k<pEList->nExpr; k++){
4352 pE = a[k].pExpr;
4353 pRight = pE->pRight;
4354 assert( pE->op!=TK_DOT || pRight!=0 );
4355 if( pE->op!=TK_ASTERISK
4356 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4358 /* This particular expression does not need to be expanded.
4360 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4361 if( pNew ){
4362 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4363 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4364 a[k].zName = 0;
4365 a[k].zSpan = 0;
4367 a[k].pExpr = 0;
4368 }else{
4369 /* This expression is a "*" or a "TABLE.*" and needs to be
4370 ** expanded. */
4371 int tableSeen = 0; /* Set to 1 when TABLE matches */
4372 char *zTName = 0; /* text of name of TABLE */
4373 if( pE->op==TK_DOT ){
4374 assert( pE->pLeft!=0 );
4375 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4376 zTName = pE->pLeft->u.zToken;
4378 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4379 Table *pTab = pFrom->pTab;
4380 Select *pSub = pFrom->pSelect;
4381 char *zTabName = pFrom->zAlias;
4382 const char *zSchemaName = 0;
4383 int iDb;
4384 if( zTabName==0 ){
4385 zTabName = pTab->zName;
4387 if( db->mallocFailed ) break;
4388 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4389 pSub = 0;
4390 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4391 continue;
4393 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4394 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4396 for(j=0; j<pTab->nCol; j++){
4397 char *zName = pTab->aCol[j].zName;
4398 char *zColname; /* The computed column name */
4399 char *zToFree; /* Malloced string that needs to be freed */
4400 Token sColname; /* Computed column name as a token */
4402 assert( zName );
4403 if( zTName && pSub
4404 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4406 continue;
4409 /* If a column is marked as 'hidden', omit it from the expanded
4410 ** result-set list unless the SELECT has the SF_IncludeHidden
4411 ** bit set.
4413 if( (p->selFlags & SF_IncludeHidden)==0
4414 && IsHiddenColumn(&pTab->aCol[j])
4416 continue;
4418 tableSeen = 1;
4420 if( i>0 && zTName==0 ){
4421 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4422 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4424 /* In a NATURAL join, omit the join columns from the
4425 ** table to the right of the join */
4426 continue;
4428 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4429 /* In a join with a USING clause, omit columns in the
4430 ** using clause from the table on the right. */
4431 continue;
4434 pRight = sqlite3Expr(db, TK_ID, zName);
4435 zColname = zName;
4436 zToFree = 0;
4437 if( longNames || pTabList->nSrc>1 ){
4438 Expr *pLeft;
4439 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4440 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4441 if( zSchemaName ){
4442 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4443 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4445 if( longNames ){
4446 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4447 zToFree = zColname;
4449 }else{
4450 pExpr = pRight;
4452 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4453 sqlite3TokenInit(&sColname, zColname);
4454 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4455 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4456 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4457 if( pSub ){
4458 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4459 testcase( pX->zSpan==0 );
4460 }else{
4461 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4462 zSchemaName, zTabName, zColname);
4463 testcase( pX->zSpan==0 );
4465 pX->bSpanIsTab = 1;
4467 sqlite3DbFree(db, zToFree);
4470 if( !tableSeen ){
4471 if( zTName ){
4472 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4473 }else{
4474 sqlite3ErrorMsg(pParse, "no tables specified");
4479 sqlite3ExprListDelete(db, pEList);
4480 p->pEList = pNew;
4482 #if SQLITE_MAX_COLUMN
4483 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4484 sqlite3ErrorMsg(pParse, "too many columns in result set");
4485 return WRC_Abort;
4487 #endif
4488 return WRC_Continue;
4492 ** No-op routine for the parse-tree walker.
4494 ** When this routine is the Walker.xExprCallback then expression trees
4495 ** are walked without any actions being taken at each node. Presumably,
4496 ** when this routine is used for Walker.xExprCallback then
4497 ** Walker.xSelectCallback is set to do something useful for every
4498 ** subquery in the parser tree.
4500 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4501 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4502 return WRC_Continue;
4506 ** This routine "expands" a SELECT statement and all of its subqueries.
4507 ** For additional information on what it means to "expand" a SELECT
4508 ** statement, see the comment on the selectExpand worker callback above.
4510 ** Expanding a SELECT statement is the first step in processing a
4511 ** SELECT statement. The SELECT statement must be expanded before
4512 ** name resolution is performed.
4514 ** If anything goes wrong, an error message is written into pParse.
4515 ** The calling function can detect the problem by looking at pParse->nErr
4516 ** and/or pParse->db->mallocFailed.
4518 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4519 Walker w;
4520 memset(&w, 0, sizeof(w));
4521 w.xExprCallback = sqlite3ExprWalkNoop;
4522 w.pParse = pParse;
4523 if( pParse->hasCompound ){
4524 w.xSelectCallback = convertCompoundSelectToSubquery;
4525 sqlite3WalkSelect(&w, pSelect);
4527 w.xSelectCallback = selectExpander;
4528 if( (pSelect->selFlags & SF_MultiValue)==0 ){
4529 w.xSelectCallback2 = selectPopWith;
4531 sqlite3WalkSelect(&w, pSelect);
4535 #ifndef SQLITE_OMIT_SUBQUERY
4537 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4538 ** interface.
4540 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4541 ** information to the Table structure that represents the result set
4542 ** of that subquery.
4544 ** The Table structure that represents the result set was constructed
4545 ** by selectExpander() but the type and collation information was omitted
4546 ** at that point because identifiers had not yet been resolved. This
4547 ** routine is called after identifier resolution.
4549 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4550 Parse *pParse;
4551 int i;
4552 SrcList *pTabList;
4553 struct SrcList_item *pFrom;
4555 assert( p->selFlags & SF_Resolved );
4556 assert( (p->selFlags & SF_HasTypeInfo)==0 );
4557 p->selFlags |= SF_HasTypeInfo;
4558 pParse = pWalker->pParse;
4559 pTabList = p->pSrc;
4560 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4561 Table *pTab = pFrom->pTab;
4562 assert( pTab!=0 );
4563 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4564 /* A sub-query in the FROM clause of a SELECT */
4565 Select *pSel = pFrom->pSelect;
4566 if( pSel ){
4567 while( pSel->pPrior ) pSel = pSel->pPrior;
4568 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4573 #endif
4577 ** This routine adds datatype and collating sequence information to
4578 ** the Table structures of all FROM-clause subqueries in a
4579 ** SELECT statement.
4581 ** Use this routine after name resolution.
4583 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4584 #ifndef SQLITE_OMIT_SUBQUERY
4585 Walker w;
4586 memset(&w, 0, sizeof(w));
4587 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4588 w.xExprCallback = sqlite3ExprWalkNoop;
4589 w.pParse = pParse;
4590 sqlite3WalkSelect(&w, pSelect);
4591 #endif
4596 ** This routine sets up a SELECT statement for processing. The
4597 ** following is accomplished:
4599 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4600 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4601 ** * ON and USING clauses are shifted into WHERE statements
4602 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4603 ** * Identifiers in expression are matched to tables.
4605 ** This routine acts recursively on all subqueries within the SELECT.
4607 void sqlite3SelectPrep(
4608 Parse *pParse, /* The parser context */
4609 Select *p, /* The SELECT statement being coded. */
4610 NameContext *pOuterNC /* Name context for container */
4612 sqlite3 *db;
4613 if( NEVER(p==0) ) return;
4614 db = pParse->db;
4615 if( db->mallocFailed ) return;
4616 if( p->selFlags & SF_HasTypeInfo ) return;
4617 sqlite3SelectExpand(pParse, p);
4618 if( pParse->nErr || db->mallocFailed ) return;
4619 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4620 if( pParse->nErr || db->mallocFailed ) return;
4621 sqlite3SelectAddTypeInfo(pParse, p);
4625 ** Reset the aggregate accumulator.
4627 ** The aggregate accumulator is a set of memory cells that hold
4628 ** intermediate results while calculating an aggregate. This
4629 ** routine generates code that stores NULLs in all of those memory
4630 ** cells.
4632 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4633 Vdbe *v = pParse->pVdbe;
4634 int i;
4635 struct AggInfo_func *pFunc;
4636 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4637 if( nReg==0 ) return;
4638 #ifdef SQLITE_DEBUG
4639 /* Verify that all AggInfo registers are within the range specified by
4640 ** AggInfo.mnReg..AggInfo.mxReg */
4641 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4642 for(i=0; i<pAggInfo->nColumn; i++){
4643 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4644 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4646 for(i=0; i<pAggInfo->nFunc; i++){
4647 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4648 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4650 #endif
4651 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4652 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4653 if( pFunc->iDistinct>=0 ){
4654 Expr *pE = pFunc->pExpr;
4655 assert( !ExprHasProperty(pE, EP_xIsSelect) );
4656 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4657 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4658 "argument");
4659 pFunc->iDistinct = -1;
4660 }else{
4661 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4662 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4663 (char*)pKeyInfo, P4_KEYINFO);
4670 ** Invoke the OP_AggFinalize opcode for every aggregate function
4671 ** in the AggInfo structure.
4673 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4674 Vdbe *v = pParse->pVdbe;
4675 int i;
4676 struct AggInfo_func *pF;
4677 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4678 ExprList *pList = pF->pExpr->x.pList;
4679 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4680 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4681 (void*)pF->pFunc, P4_FUNCDEF);
4686 ** Update the accumulator memory cells for an aggregate based on
4687 ** the current cursor position.
4689 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4690 Vdbe *v = pParse->pVdbe;
4691 int i;
4692 int regHit = 0;
4693 int addrHitTest = 0;
4694 struct AggInfo_func *pF;
4695 struct AggInfo_col *pC;
4697 pAggInfo->directMode = 1;
4698 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4699 int nArg;
4700 int addrNext = 0;
4701 int regAgg;
4702 ExprList *pList = pF->pExpr->x.pList;
4703 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4704 if( pList ){
4705 nArg = pList->nExpr;
4706 regAgg = sqlite3GetTempRange(pParse, nArg);
4707 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4708 }else{
4709 nArg = 0;
4710 regAgg = 0;
4712 if( pF->iDistinct>=0 ){
4713 addrNext = sqlite3VdbeMakeLabel(v);
4714 testcase( nArg==0 ); /* Error condition */
4715 testcase( nArg>1 ); /* Also an error */
4716 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4718 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4719 CollSeq *pColl = 0;
4720 struct ExprList_item *pItem;
4721 int j;
4722 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4723 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4724 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4726 if( !pColl ){
4727 pColl = pParse->db->pDfltColl;
4729 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4730 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4732 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4733 (void*)pF->pFunc, P4_FUNCDEF);
4734 sqlite3VdbeChangeP5(v, (u8)nArg);
4735 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4736 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4737 if( addrNext ){
4738 sqlite3VdbeResolveLabel(v, addrNext);
4739 sqlite3ExprCacheClear(pParse);
4743 /* Before populating the accumulator registers, clear the column cache.
4744 ** Otherwise, if any of the required column values are already present
4745 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4746 ** to pC->iMem. But by the time the value is used, the original register
4747 ** may have been used, invalidating the underlying buffer holding the
4748 ** text or blob value. See ticket [883034dcb5].
4750 ** Another solution would be to change the OP_SCopy used to copy cached
4751 ** values to an OP_Copy.
4753 if( regHit ){
4754 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4756 sqlite3ExprCacheClear(pParse);
4757 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4758 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4760 pAggInfo->directMode = 0;
4761 sqlite3ExprCacheClear(pParse);
4762 if( addrHitTest ){
4763 sqlite3VdbeJumpHere(v, addrHitTest);
4768 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4769 ** count(*) query ("SELECT count(*) FROM pTab").
4771 #ifndef SQLITE_OMIT_EXPLAIN
4772 static void explainSimpleCount(
4773 Parse *pParse, /* Parse context */
4774 Table *pTab, /* Table being queried */
4775 Index *pIdx /* Index used to optimize scan, or NULL */
4777 if( pParse->explain==2 ){
4778 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4779 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4780 pTab->zName,
4781 bCover ? " USING COVERING INDEX " : "",
4782 bCover ? pIdx->zName : ""
4784 sqlite3VdbeAddOp4(
4785 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4789 #else
4790 # define explainSimpleCount(a,b,c)
4791 #endif
4794 ** Generate code for the SELECT statement given in the p argument.
4796 ** The results are returned according to the SelectDest structure.
4797 ** See comments in sqliteInt.h for further information.
4799 ** This routine returns the number of errors. If any errors are
4800 ** encountered, then an appropriate error message is left in
4801 ** pParse->zErrMsg.
4803 ** This routine does NOT free the Select structure passed in. The
4804 ** calling function needs to do that.
4806 int sqlite3Select(
4807 Parse *pParse, /* The parser context */
4808 Select *p, /* The SELECT statement being coded. */
4809 SelectDest *pDest /* What to do with the query results */
4811 int i, j; /* Loop counters */
4812 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
4813 Vdbe *v; /* The virtual machine under construction */
4814 int isAgg; /* True for select lists like "count(*)" */
4815 ExprList *pEList = 0; /* List of columns to extract. */
4816 SrcList *pTabList; /* List of tables to select from */
4817 Expr *pWhere; /* The WHERE clause. May be NULL */
4818 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
4819 Expr *pHaving; /* The HAVING clause. May be NULL */
4820 int rc = 1; /* Value to return from this function */
4821 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4822 SortCtx sSort; /* Info on how to code the ORDER BY clause */
4823 AggInfo sAggInfo; /* Information used by aggregate queries */
4824 int iEnd; /* Address of the end of the query */
4825 sqlite3 *db; /* The database connection */
4827 #ifndef SQLITE_OMIT_EXPLAIN
4828 int iRestoreSelectId = pParse->iSelectId;
4829 pParse->iSelectId = pParse->iNextSelectId++;
4830 #endif
4832 db = pParse->db;
4833 if( p==0 || db->mallocFailed || pParse->nErr ){
4834 return 1;
4836 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4837 memset(&sAggInfo, 0, sizeof(sAggInfo));
4838 #if SELECTTRACE_ENABLED
4839 pParse->nSelectIndent++;
4840 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4841 if( sqlite3SelectTrace & 0x100 ){
4842 sqlite3TreeViewSelect(0, p, 0);
4844 #endif
4846 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4847 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4848 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4849 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4850 if( IgnorableOrderby(pDest) ){
4851 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4852 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4853 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
4854 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4855 /* If ORDER BY makes no difference in the output then neither does
4856 ** DISTINCT so it can be removed too. */
4857 sqlite3ExprListDelete(db, p->pOrderBy);
4858 p->pOrderBy = 0;
4859 p->selFlags &= ~SF_Distinct;
4861 sqlite3SelectPrep(pParse, p, 0);
4862 memset(&sSort, 0, sizeof(sSort));
4863 sSort.pOrderBy = p->pOrderBy;
4864 pTabList = p->pSrc;
4865 if( pParse->nErr || db->mallocFailed ){
4866 goto select_end;
4868 assert( p->pEList!=0 );
4869 isAgg = (p->selFlags & SF_Aggregate)!=0;
4870 #if SELECTTRACE_ENABLED
4871 if( sqlite3SelectTrace & 0x100 ){
4872 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4873 sqlite3TreeViewSelect(0, p, 0);
4875 #endif
4877 /* Try to flatten subqueries in the FROM clause up into the main query
4879 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4880 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4881 struct SrcList_item *pItem = &pTabList->a[i];
4882 Select *pSub = pItem->pSelect;
4883 int isAggSub;
4884 Table *pTab = pItem->pTab;
4885 if( pSub==0 ) continue;
4887 /* Catch mismatch in the declared columns of a view and the number of
4888 ** columns in the SELECT on the RHS */
4889 if( pTab->nCol!=pSub->pEList->nExpr ){
4890 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
4891 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
4892 goto select_end;
4895 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4896 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4897 /* This subquery can be absorbed into its parent. */
4898 if( isAggSub ){
4899 isAgg = 1;
4900 p->selFlags |= SF_Aggregate;
4902 i = -1;
4904 pTabList = p->pSrc;
4905 if( db->mallocFailed ) goto select_end;
4906 if( !IgnorableOrderby(pDest) ){
4907 sSort.pOrderBy = p->pOrderBy;
4910 #endif
4912 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4913 ** does not already exist */
4914 v = sqlite3GetVdbe(pParse);
4915 if( v==0 ) goto select_end;
4917 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4918 /* Handle compound SELECT statements using the separate multiSelect()
4919 ** procedure.
4921 if( p->pPrior ){
4922 rc = multiSelect(pParse, p, pDest);
4923 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4924 #if SELECTTRACE_ENABLED
4925 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4926 pParse->nSelectIndent--;
4927 #endif
4928 return rc;
4930 #endif
4932 /* Generate code for all sub-queries in the FROM clause
4934 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4935 for(i=0; i<pTabList->nSrc; i++){
4936 struct SrcList_item *pItem = &pTabList->a[i];
4937 SelectDest dest;
4938 Select *pSub = pItem->pSelect;
4939 if( pSub==0 ) continue;
4941 /* Sometimes the code for a subquery will be generated more than
4942 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4943 ** for example. In that case, do not regenerate the code to manifest
4944 ** a view or the co-routine to implement a view. The first instance
4945 ** is sufficient, though the subroutine to manifest the view does need
4946 ** to be invoked again. */
4947 if( pItem->addrFillSub ){
4948 if( pItem->fg.viaCoroutine==0 ){
4949 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4951 continue;
4954 /* Increment Parse.nHeight by the height of the largest expression
4955 ** tree referred to by this, the parent select. The child select
4956 ** may contain expression trees of at most
4957 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4958 ** more conservative than necessary, but much easier than enforcing
4959 ** an exact limit.
4961 pParse->nHeight += sqlite3SelectExprHeight(p);
4963 /* Make copies of constant WHERE-clause terms in the outer query down
4964 ** inside the subquery. This can help the subquery to run more efficiently.
4966 if( (pItem->fg.jointype & JT_OUTER)==0
4967 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4969 #if SELECTTRACE_ENABLED
4970 if( sqlite3SelectTrace & 0x100 ){
4971 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4972 sqlite3TreeViewSelect(0, p, 0);
4974 #endif
4977 /* Generate code to implement the subquery
4979 ** The subquery is implemented as a co-routine if all of these are true:
4980 ** (1) The subquery is guaranteed to be the outer loop (so that it
4981 ** does not need to be computed more than once)
4982 ** (2) The ALL keyword after SELECT is omitted. (Applications are
4983 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable
4984 ** the use of co-routines.)
4985 ** (3) Co-routines are not disabled using sqlite3_test_control()
4986 ** with SQLITE_TESTCTRL_OPTIMIZATIONS.
4988 ** TODO: Are there other reasons beside (1) to use a co-routine
4989 ** implementation?
4991 if( i==0
4992 && (pTabList->nSrc==1
4993 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
4994 && (p->selFlags & SF_All)==0 /* (2) */
4995 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */
4997 /* Implement a co-routine that will return a single row of the result
4998 ** set on each invocation.
5000 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5001 pItem->regReturn = ++pParse->nMem;
5002 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5003 VdbeComment((v, "%s", pItem->pTab->zName));
5004 pItem->addrFillSub = addrTop;
5005 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5006 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5007 sqlite3Select(pParse, pSub, &dest);
5008 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5009 pItem->fg.viaCoroutine = 1;
5010 pItem->regResult = dest.iSdst;
5011 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5012 sqlite3VdbeJumpHere(v, addrTop-1);
5013 sqlite3ClearTempRegCache(pParse);
5014 }else{
5015 /* Generate a subroutine that will fill an ephemeral table with
5016 ** the content of this subquery. pItem->addrFillSub will point
5017 ** to the address of the generated subroutine. pItem->regReturn
5018 ** is a register allocated to hold the subroutine return address
5020 int topAddr;
5021 int onceAddr = 0;
5022 int retAddr;
5023 assert( pItem->addrFillSub==0 );
5024 pItem->regReturn = ++pParse->nMem;
5025 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5026 pItem->addrFillSub = topAddr+1;
5027 if( pItem->fg.isCorrelated==0 ){
5028 /* If the subquery is not correlated and if we are not inside of
5029 ** a trigger, then we only need to compute the value of the subquery
5030 ** once. */
5031 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5032 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5033 }else{
5034 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5036 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5037 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5038 sqlite3Select(pParse, pSub, &dest);
5039 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5040 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5041 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5042 VdbeComment((v, "end %s", pItem->pTab->zName));
5043 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5044 sqlite3ClearTempRegCache(pParse);
5046 if( db->mallocFailed ) goto select_end;
5047 pParse->nHeight -= sqlite3SelectExprHeight(p);
5049 #endif
5051 /* Various elements of the SELECT copied into local variables for
5052 ** convenience */
5053 pEList = p->pEList;
5054 pWhere = p->pWhere;
5055 pGroupBy = p->pGroupBy;
5056 pHaving = p->pHaving;
5057 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5059 #if SELECTTRACE_ENABLED
5060 if( sqlite3SelectTrace & 0x400 ){
5061 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5062 sqlite3TreeViewSelect(0, p, 0);
5064 #endif
5066 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5067 ** if the select-list is the same as the ORDER BY list, then this query
5068 ** can be rewritten as a GROUP BY. In other words, this:
5070 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5072 ** is transformed to:
5074 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5076 ** The second form is preferred as a single index (or temp-table) may be
5077 ** used for both the ORDER BY and DISTINCT processing. As originally
5078 ** written the query must use a temp-table for at least one of the ORDER
5079 ** BY and DISTINCT, and an index or separate temp-table for the other.
5081 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5082 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5084 p->selFlags &= ~SF_Distinct;
5085 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5086 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5087 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5088 ** original setting of the SF_Distinct flag, not the current setting */
5089 assert( sDistinct.isTnct );
5091 #if SELECTTRACE_ENABLED
5092 if( sqlite3SelectTrace & 0x400 ){
5093 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5094 sqlite3TreeViewSelect(0, p, 0);
5096 #endif
5099 /* If there is an ORDER BY clause, then create an ephemeral index to
5100 ** do the sorting. But this sorting ephemeral index might end up
5101 ** being unused if the data can be extracted in pre-sorted order.
5102 ** If that is the case, then the OP_OpenEphemeral instruction will be
5103 ** changed to an OP_Noop once we figure out that the sorting index is
5104 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5105 ** that change.
5107 if( sSort.pOrderBy ){
5108 KeyInfo *pKeyInfo;
5109 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5110 sSort.iECursor = pParse->nTab++;
5111 sSort.addrSortIndex =
5112 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5113 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5114 (char*)pKeyInfo, P4_KEYINFO
5116 }else{
5117 sSort.addrSortIndex = -1;
5120 /* If the output is destined for a temporary table, open that table.
5122 if( pDest->eDest==SRT_EphemTab ){
5123 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5126 /* Set the limiter.
5128 iEnd = sqlite3VdbeMakeLabel(v);
5129 p->nSelectRow = 320; /* 4 billion rows */
5130 computeLimitRegisters(pParse, p, iEnd);
5131 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5132 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5133 sSort.sortFlags |= SORTFLAG_UseSorter;
5136 /* Open an ephemeral index to use for the distinct set.
5138 if( p->selFlags & SF_Distinct ){
5139 sDistinct.tabTnct = pParse->nTab++;
5140 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5141 sDistinct.tabTnct, 0, 0,
5142 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5143 P4_KEYINFO);
5144 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5145 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5146 }else{
5147 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5150 if( !isAgg && pGroupBy==0 ){
5151 /* No aggregate functions and no GROUP BY clause */
5152 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5153 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5154 wctrlFlags |= p->selFlags & SF_FixedLimit;
5156 /* Begin the database scan. */
5157 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5158 p->pEList, wctrlFlags, p->nSelectRow);
5159 if( pWInfo==0 ) goto select_end;
5160 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5161 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5163 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5164 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5166 if( sSort.pOrderBy ){
5167 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5168 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5169 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5170 sSort.pOrderBy = 0;
5174 /* If sorting index that was created by a prior OP_OpenEphemeral
5175 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5176 ** into an OP_Noop.
5178 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5179 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5182 /* Use the standard inner loop. */
5183 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5184 sqlite3WhereContinueLabel(pWInfo),
5185 sqlite3WhereBreakLabel(pWInfo));
5187 /* End the database scan loop.
5189 sqlite3WhereEnd(pWInfo);
5190 }else{
5191 /* This case when there exist aggregate functions or a GROUP BY clause
5192 ** or both */
5193 NameContext sNC; /* Name context for processing aggregate information */
5194 int iAMem; /* First Mem address for storing current GROUP BY */
5195 int iBMem; /* First Mem address for previous GROUP BY */
5196 int iUseFlag; /* Mem address holding flag indicating that at least
5197 ** one row of the input to the aggregator has been
5198 ** processed */
5199 int iAbortFlag; /* Mem address which causes query abort if positive */
5200 int groupBySort; /* Rows come from source in GROUP BY order */
5201 int addrEnd; /* End of processing for this SELECT */
5202 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5203 int sortOut = 0; /* Output register from the sorter */
5204 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5206 /* Remove any and all aliases between the result set and the
5207 ** GROUP BY clause.
5209 if( pGroupBy ){
5210 int k; /* Loop counter */
5211 struct ExprList_item *pItem; /* For looping over expression in a list */
5213 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5214 pItem->u.x.iAlias = 0;
5216 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5217 pItem->u.x.iAlias = 0;
5219 assert( 66==sqlite3LogEst(100) );
5220 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5221 }else{
5222 assert( 0==sqlite3LogEst(1) );
5223 p->nSelectRow = 0;
5226 /* If there is both a GROUP BY and an ORDER BY clause and they are
5227 ** identical, then it may be possible to disable the ORDER BY clause
5228 ** on the grounds that the GROUP BY will cause elements to come out
5229 ** in the correct order. It also may not - the GROUP BY might use a
5230 ** database index that causes rows to be grouped together as required
5231 ** but not actually sorted. Either way, record the fact that the
5232 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5233 ** variable. */
5234 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5235 orderByGrp = 1;
5238 /* Create a label to jump to when we want to abort the query */
5239 addrEnd = sqlite3VdbeMakeLabel(v);
5241 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5242 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5243 ** SELECT statement.
5245 memset(&sNC, 0, sizeof(sNC));
5246 sNC.pParse = pParse;
5247 sNC.pSrcList = pTabList;
5248 sNC.pAggInfo = &sAggInfo;
5249 sAggInfo.mnReg = pParse->nMem+1;
5250 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5251 sAggInfo.pGroupBy = pGroupBy;
5252 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5253 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5254 if( pHaving ){
5255 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5257 sAggInfo.nAccumulator = sAggInfo.nColumn;
5258 for(i=0; i<sAggInfo.nFunc; i++){
5259 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5260 sNC.ncFlags |= NC_InAggFunc;
5261 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5262 sNC.ncFlags &= ~NC_InAggFunc;
5264 sAggInfo.mxReg = pParse->nMem;
5265 if( db->mallocFailed ) goto select_end;
5267 /* Processing for aggregates with GROUP BY is very different and
5268 ** much more complex than aggregates without a GROUP BY.
5270 if( pGroupBy ){
5271 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5272 int addr1; /* A-vs-B comparision jump */
5273 int addrOutputRow; /* Start of subroutine that outputs a result row */
5274 int regOutputRow; /* Return address register for output subroutine */
5275 int addrSetAbort; /* Set the abort flag and return */
5276 int addrTopOfLoop; /* Top of the input loop */
5277 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5278 int addrReset; /* Subroutine for resetting the accumulator */
5279 int regReset; /* Return address register for reset subroutine */
5281 /* If there is a GROUP BY clause we might need a sorting index to
5282 ** implement it. Allocate that sorting index now. If it turns out
5283 ** that we do not need it after all, the OP_SorterOpen instruction
5284 ** will be converted into a Noop.
5286 sAggInfo.sortingIdx = pParse->nTab++;
5287 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5288 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5289 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5290 0, (char*)pKeyInfo, P4_KEYINFO);
5292 /* Initialize memory locations used by GROUP BY aggregate processing
5294 iUseFlag = ++pParse->nMem;
5295 iAbortFlag = ++pParse->nMem;
5296 regOutputRow = ++pParse->nMem;
5297 addrOutputRow = sqlite3VdbeMakeLabel(v);
5298 regReset = ++pParse->nMem;
5299 addrReset = sqlite3VdbeMakeLabel(v);
5300 iAMem = pParse->nMem + 1;
5301 pParse->nMem += pGroupBy->nExpr;
5302 iBMem = pParse->nMem + 1;
5303 pParse->nMem += pGroupBy->nExpr;
5304 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5305 VdbeComment((v, "clear abort flag"));
5306 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5307 VdbeComment((v, "indicate accumulator empty"));
5308 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5310 /* Begin a loop that will extract all source rows in GROUP BY order.
5311 ** This might involve two separate loops with an OP_Sort in between, or
5312 ** it might be a single loop that uses an index to extract information
5313 ** in the right order to begin with.
5315 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5316 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5317 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5319 if( pWInfo==0 ) goto select_end;
5320 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5321 /* The optimizer is able to deliver rows in group by order so
5322 ** we do not have to sort. The OP_OpenEphemeral table will be
5323 ** cancelled later because we still need to use the pKeyInfo
5325 groupBySort = 0;
5326 }else{
5327 /* Rows are coming out in undetermined order. We have to push
5328 ** each row into a sorting index, terminate the first loop,
5329 ** then loop over the sorting index in order to get the output
5330 ** in sorted order
5332 int regBase;
5333 int regRecord;
5334 int nCol;
5335 int nGroupBy;
5337 explainTempTable(pParse,
5338 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5339 "DISTINCT" : "GROUP BY");
5341 groupBySort = 1;
5342 nGroupBy = pGroupBy->nExpr;
5343 nCol = nGroupBy;
5344 j = nGroupBy;
5345 for(i=0; i<sAggInfo.nColumn; i++){
5346 if( sAggInfo.aCol[i].iSorterColumn>=j ){
5347 nCol++;
5348 j++;
5351 regBase = sqlite3GetTempRange(pParse, nCol);
5352 sqlite3ExprCacheClear(pParse);
5353 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5354 j = nGroupBy;
5355 for(i=0; i<sAggInfo.nColumn; i++){
5356 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5357 if( pCol->iSorterColumn>=j ){
5358 int r1 = j + regBase;
5359 sqlite3ExprCodeGetColumnToReg(pParse,
5360 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5361 j++;
5364 regRecord = sqlite3GetTempReg(pParse);
5365 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5366 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5367 sqlite3ReleaseTempReg(pParse, regRecord);
5368 sqlite3ReleaseTempRange(pParse, regBase, nCol);
5369 sqlite3WhereEnd(pWInfo);
5370 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5371 sortOut = sqlite3GetTempReg(pParse);
5372 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5373 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5374 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5375 sAggInfo.useSortingIdx = 1;
5376 sqlite3ExprCacheClear(pParse);
5380 /* If the index or temporary table used by the GROUP BY sort
5381 ** will naturally deliver rows in the order required by the ORDER BY
5382 ** clause, cancel the ephemeral table open coded earlier.
5384 ** This is an optimization - the correct answer should result regardless.
5385 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5386 ** disable this optimization for testing purposes. */
5387 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5388 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5390 sSort.pOrderBy = 0;
5391 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5394 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5395 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5396 ** Then compare the current GROUP BY terms against the GROUP BY terms
5397 ** from the previous row currently stored in a0, a1, a2...
5399 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5400 sqlite3ExprCacheClear(pParse);
5401 if( groupBySort ){
5402 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5403 sortOut, sortPTab);
5405 for(j=0; j<pGroupBy->nExpr; j++){
5406 if( groupBySort ){
5407 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5408 }else{
5409 sAggInfo.directMode = 1;
5410 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5413 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5414 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5415 addr1 = sqlite3VdbeCurrentAddr(v);
5416 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5418 /* Generate code that runs whenever the GROUP BY changes.
5419 ** Changes in the GROUP BY are detected by the previous code
5420 ** block. If there were no changes, this block is skipped.
5422 ** This code copies current group by terms in b0,b1,b2,...
5423 ** over to a0,a1,a2. It then calls the output subroutine
5424 ** and resets the aggregate accumulator registers in preparation
5425 ** for the next GROUP BY batch.
5427 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5428 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5429 VdbeComment((v, "output one row"));
5430 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5431 VdbeComment((v, "check abort flag"));
5432 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5433 VdbeComment((v, "reset accumulator"));
5435 /* Update the aggregate accumulators based on the content of
5436 ** the current row
5438 sqlite3VdbeJumpHere(v, addr1);
5439 updateAccumulator(pParse, &sAggInfo);
5440 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5441 VdbeComment((v, "indicate data in accumulator"));
5443 /* End of the loop
5445 if( groupBySort ){
5446 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5447 VdbeCoverage(v);
5448 }else{
5449 sqlite3WhereEnd(pWInfo);
5450 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5453 /* Output the final row of result
5455 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5456 VdbeComment((v, "output final row"));
5458 /* Jump over the subroutines
5460 sqlite3VdbeGoto(v, addrEnd);
5462 /* Generate a subroutine that outputs a single row of the result
5463 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5464 ** is less than or equal to zero, the subroutine is a no-op. If
5465 ** the processing calls for the query to abort, this subroutine
5466 ** increments the iAbortFlag memory location before returning in
5467 ** order to signal the caller to abort.
5469 addrSetAbort = sqlite3VdbeCurrentAddr(v);
5470 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5471 VdbeComment((v, "set abort flag"));
5472 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5473 sqlite3VdbeResolveLabel(v, addrOutputRow);
5474 addrOutputRow = sqlite3VdbeCurrentAddr(v);
5475 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5476 VdbeCoverage(v);
5477 VdbeComment((v, "Groupby result generator entry point"));
5478 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5479 finalizeAggFunctions(pParse, &sAggInfo);
5480 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5481 selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5482 &sDistinct, pDest,
5483 addrOutputRow+1, addrSetAbort);
5484 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5485 VdbeComment((v, "end groupby result generator"));
5487 /* Generate a subroutine that will reset the group-by accumulator
5489 sqlite3VdbeResolveLabel(v, addrReset);
5490 resetAccumulator(pParse, &sAggInfo);
5491 sqlite3VdbeAddOp1(v, OP_Return, regReset);
5493 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5494 else {
5495 ExprList *pDel = 0;
5496 #ifndef SQLITE_OMIT_BTREECOUNT
5497 Table *pTab;
5498 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5499 /* If isSimpleCount() returns a pointer to a Table structure, then
5500 ** the SQL statement is of the form:
5502 ** SELECT count(*) FROM <tbl>
5504 ** where the Table structure returned represents table <tbl>.
5506 ** This statement is so common that it is optimized specially. The
5507 ** OP_Count instruction is executed either on the intkey table that
5508 ** contains the data for table <tbl> or on one of its indexes. It
5509 ** is better to execute the op on an index, as indexes are almost
5510 ** always spread across less pages than their corresponding tables.
5512 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5513 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
5514 Index *pIdx; /* Iterator variable */
5515 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
5516 Index *pBest = 0; /* Best index found so far */
5517 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
5519 sqlite3CodeVerifySchema(pParse, iDb);
5520 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5522 /* Search for the index that has the lowest scan cost.
5524 ** (2011-04-15) Do not do a full scan of an unordered index.
5526 ** (2013-10-03) Do not count the entries in a partial index.
5528 ** In practice the KeyInfo structure will not be used. It is only
5529 ** passed to keep OP_OpenRead happy.
5531 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5532 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5533 if( pIdx->bUnordered==0
5534 && pIdx->szIdxRow<pTab->szTabRow
5535 && pIdx->pPartIdxWhere==0
5536 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5538 pBest = pIdx;
5541 if( pBest ){
5542 iRoot = pBest->tnum;
5543 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5546 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5547 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5548 if( pKeyInfo ){
5549 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5551 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5552 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5553 explainSimpleCount(pParse, pTab, pBest);
5554 }else
5555 #endif /* SQLITE_OMIT_BTREECOUNT */
5557 /* Check if the query is of one of the following forms:
5559 ** SELECT min(x) FROM ...
5560 ** SELECT max(x) FROM ...
5562 ** If it is, then ask the code in where.c to attempt to sort results
5563 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5564 ** If where.c is able to produce results sorted in this order, then
5565 ** add vdbe code to break out of the processing loop after the
5566 ** first iteration (since the first iteration of the loop is
5567 ** guaranteed to operate on the row with the minimum or maximum
5568 ** value of x, the only row required).
5570 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5571 ** modify behavior as follows:
5573 ** + If the query is a "SELECT min(x)", then the loop coded by
5574 ** where.c should not iterate over any values with a NULL value
5575 ** for x.
5577 ** + The optimizer code in where.c (the thing that decides which
5578 ** index or indices to use) should place a different priority on
5579 ** satisfying the 'ORDER BY' clause than it does in other cases.
5580 ** Refer to code and comments in where.c for details.
5582 ExprList *pMinMax = 0;
5583 u8 flag = WHERE_ORDERBY_NORMAL;
5585 assert( p->pGroupBy==0 );
5586 assert( flag==0 );
5587 if( p->pHaving==0 ){
5588 flag = minMaxQuery(&sAggInfo, &pMinMax);
5590 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5592 if( flag ){
5593 pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5594 pDel = pMinMax;
5595 assert( db->mallocFailed || pMinMax!=0 );
5596 if( !db->mallocFailed ){
5597 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5598 pMinMax->a[0].pExpr->op = TK_COLUMN;
5602 /* This case runs if the aggregate has no GROUP BY clause. The
5603 ** processing is much simpler since there is only a single row
5604 ** of output.
5606 resetAccumulator(pParse, &sAggInfo);
5607 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5608 if( pWInfo==0 ){
5609 sqlite3ExprListDelete(db, pDel);
5610 goto select_end;
5612 updateAccumulator(pParse, &sAggInfo);
5613 assert( pMinMax==0 || pMinMax->nExpr==1 );
5614 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5615 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5616 VdbeComment((v, "%s() by index",
5617 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5619 sqlite3WhereEnd(pWInfo);
5620 finalizeAggFunctions(pParse, &sAggInfo);
5623 sSort.pOrderBy = 0;
5624 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5625 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5626 pDest, addrEnd, addrEnd);
5627 sqlite3ExprListDelete(db, pDel);
5629 sqlite3VdbeResolveLabel(v, addrEnd);
5631 } /* endif aggregate query */
5633 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5634 explainTempTable(pParse, "DISTINCT");
5637 /* If there is an ORDER BY clause, then we need to sort the results
5638 ** and send them to the callback one by one.
5640 if( sSort.pOrderBy ){
5641 explainTempTable(pParse,
5642 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5643 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5646 /* Jump here to skip this query
5648 sqlite3VdbeResolveLabel(v, iEnd);
5650 /* The SELECT has been coded. If there is an error in the Parse structure,
5651 ** set the return code to 1. Otherwise 0. */
5652 rc = (pParse->nErr>0);
5654 /* Control jumps to here if an error is encountered above, or upon
5655 ** successful coding of the SELECT.
5657 select_end:
5658 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5660 /* Identify column names if results of the SELECT are to be output.
5662 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5663 generateColumnNames(pParse, pTabList, pEList);
5666 sqlite3DbFree(db, sAggInfo.aCol);
5667 sqlite3DbFree(db, sAggInfo.aFunc);
5668 #if SELECTTRACE_ENABLED
5669 SELECTTRACE(1,pParse,p,("end processing\n"));
5670 pParse->nSelectIndent--;
5671 #endif
5672 return rc;