Adjust path to test databases for tests
[sqlcipher.git] / src / date.c
blob8b2f2fa71763cc5bfa05b61596b48e2d9890897a
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 ** SQLite processes all times and dates as julian day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
40 ** Jean Meeus
41 ** Astronomical Algorithms, 2nd Edition, 1998
42 ** ISBM 0-943396-61-1
43 ** Willmann-Bell, Inc
44 ** Richmond, Virginia (USA)
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute. The substitute function itself is
56 ** defined in "os_win.c".
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm *__cdecl localtime(const time_t *);
61 #endif
64 ** A structure for holding a single date and time.
66 typedef struct DateTime DateTime;
67 struct DateTime {
68 sqlite3_int64 iJD; /* The julian day number times 86400000 */
69 int Y, M, D; /* Year, month, and day */
70 int h, m; /* Hour and minutes */
71 int tz; /* Timezone offset in minutes */
72 double s; /* Seconds */
73 char validYMD; /* True (1) if Y,M,D are valid */
74 char validHMS; /* True (1) if h,m,s are valid */
75 char validJD; /* True (1) if iJD is valid */
76 char validTZ; /* True (1) if tz is valid */
77 char tzSet; /* Timezone was set explicitly */
82 ** Convert zDate into one or more integers according to the conversion
83 ** specifier zFormat.
85 ** zFormat[] contains 4 characters for each integer converted, except for
86 ** the last integer which is specified by three characters. The meaning
87 ** of a four-character format specifiers ABCD is:
89 ** A: number of digits to convert. Always "2" or "4".
90 ** B: minimum value. Always "0" or "1".
91 ** C: maximum value, decoded as:
92 ** a: 12
93 ** b: 14
94 ** c: 24
95 ** d: 31
96 ** e: 59
97 ** f: 9999
98 ** D: the separator character, or \000 to indicate this is the
99 ** last number to convert.
101 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
102 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
103 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
104 ** the 2-digit day which is the last integer in the set.
106 ** The function returns the number of successful conversions.
108 static int getDigits(const char *zDate, const char *zFormat, ...){
109 /* The aMx[] array translates the 3rd character of each format
110 ** spec into a max size: a b c d e f */
111 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
112 va_list ap;
113 int cnt = 0;
114 char nextC;
115 va_start(ap, zFormat);
117 char N = zFormat[0] - '0';
118 char min = zFormat[1] - '0';
119 int val = 0;
120 u16 max;
122 assert( zFormat[2]>='a' && zFormat[2]<='f' );
123 max = aMx[zFormat[2] - 'a'];
124 nextC = zFormat[3];
125 val = 0;
126 while( N-- ){
127 if( !sqlite3Isdigit(*zDate) ){
128 goto end_getDigits;
130 val = val*10 + *zDate - '0';
131 zDate++;
133 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
134 goto end_getDigits;
136 *va_arg(ap,int*) = val;
137 zDate++;
138 cnt++;
139 zFormat += 4;
140 }while( nextC );
141 end_getDigits:
142 va_end(ap);
143 return cnt;
147 ** Parse a timezone extension on the end of a date-time.
148 ** The extension is of the form:
150 ** (+/-)HH:MM
152 ** Or the "zulu" notation:
154 ** Z
156 ** If the parse is successful, write the number of minutes
157 ** of change in p->tz and return 0. If a parser error occurs,
158 ** return non-zero.
160 ** A missing specifier is not considered an error.
162 static int parseTimezone(const char *zDate, DateTime *p){
163 int sgn = 0;
164 int nHr, nMn;
165 int c;
166 while( sqlite3Isspace(*zDate) ){ zDate++; }
167 p->tz = 0;
168 c = *zDate;
169 if( c=='-' ){
170 sgn = -1;
171 }else if( c=='+' ){
172 sgn = +1;
173 }else if( c=='Z' || c=='z' ){
174 zDate++;
175 goto zulu_time;
176 }else{
177 return c!=0;
179 zDate++;
180 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
181 return 1;
183 zDate += 5;
184 p->tz = sgn*(nMn + nHr*60);
185 zulu_time:
186 while( sqlite3Isspace(*zDate) ){ zDate++; }
187 p->tzSet = 1;
188 return *zDate!=0;
192 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
193 ** The HH, MM, and SS must each be exactly 2 digits. The
194 ** fractional seconds FFFF can be one or more digits.
196 ** Return 1 if there is a parsing error and 0 on success.
198 static int parseHhMmSs(const char *zDate, DateTime *p){
199 int h, m, s;
200 double ms = 0.0;
201 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
202 return 1;
204 zDate += 5;
205 if( *zDate==':' ){
206 zDate++;
207 if( getDigits(zDate, "20e", &s)!=1 ){
208 return 1;
210 zDate += 2;
211 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
212 double rScale = 1.0;
213 zDate++;
214 while( sqlite3Isdigit(*zDate) ){
215 ms = ms*10.0 + *zDate - '0';
216 rScale *= 10.0;
217 zDate++;
219 ms /= rScale;
221 }else{
222 s = 0;
224 p->validJD = 0;
225 p->validHMS = 1;
226 p->h = h;
227 p->m = m;
228 p->s = s + ms;
229 if( parseTimezone(zDate, p) ) return 1;
230 p->validTZ = (p->tz!=0)?1:0;
231 return 0;
235 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
236 ** that the YYYY-MM-DD is according to the Gregorian calendar.
238 ** Reference: Meeus page 61
240 static void computeJD(DateTime *p){
241 int Y, M, D, A, B, X1, X2;
243 if( p->validJD ) return;
244 if( p->validYMD ){
245 Y = p->Y;
246 M = p->M;
247 D = p->D;
248 }else{
249 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
250 M = 1;
251 D = 1;
253 if( M<=2 ){
254 Y--;
255 M += 12;
257 A = Y/100;
258 B = 2 - A + (A/4);
259 X1 = 36525*(Y+4716)/100;
260 X2 = 306001*(M+1)/10000;
261 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
262 p->validJD = 1;
263 if( p->validHMS ){
264 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
265 if( p->validTZ ){
266 p->iJD -= p->tz*60000;
267 p->validYMD = 0;
268 p->validHMS = 0;
269 p->validTZ = 0;
275 ** Parse dates of the form
277 ** YYYY-MM-DD HH:MM:SS.FFF
278 ** YYYY-MM-DD HH:MM:SS
279 ** YYYY-MM-DD HH:MM
280 ** YYYY-MM-DD
282 ** Write the result into the DateTime structure and return 0
283 ** on success and 1 if the input string is not a well-formed
284 ** date.
286 static int parseYyyyMmDd(const char *zDate, DateTime *p){
287 int Y, M, D, neg;
289 if( zDate[0]=='-' ){
290 zDate++;
291 neg = 1;
292 }else{
293 neg = 0;
295 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
296 return 1;
298 zDate += 10;
299 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
300 if( parseHhMmSs(zDate, p)==0 ){
301 /* We got the time */
302 }else if( *zDate==0 ){
303 p->validHMS = 0;
304 }else{
305 return 1;
307 p->validJD = 0;
308 p->validYMD = 1;
309 p->Y = neg ? -Y : Y;
310 p->M = M;
311 p->D = D;
312 if( p->validTZ ){
313 computeJD(p);
315 return 0;
319 ** Set the time to the current time reported by the VFS.
321 ** Return the number of errors.
323 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
324 p->iJD = sqlite3StmtCurrentTime(context);
325 if( p->iJD>0 ){
326 p->validJD = 1;
327 return 0;
328 }else{
329 return 1;
334 ** Attempt to parse the given string into a julian day number. Return
335 ** the number of errors.
337 ** The following are acceptable forms for the input string:
339 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
340 ** DDDD.DD
341 ** now
343 ** In the first form, the +/-HH:MM is always optional. The fractional
344 ** seconds extension (the ".FFF") is optional. The seconds portion
345 ** (":SS.FFF") is option. The year and date can be omitted as long
346 ** as there is a time string. The time string can be omitted as long
347 ** as there is a year and date.
349 static int parseDateOrTime(
350 sqlite3_context *context,
351 const char *zDate,
352 DateTime *p
354 double r;
355 if( parseYyyyMmDd(zDate,p)==0 ){
356 return 0;
357 }else if( parseHhMmSs(zDate, p)==0 ){
358 return 0;
359 }else if( sqlite3StrICmp(zDate,"now")==0){
360 return setDateTimeToCurrent(context, p);
361 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
362 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
363 p->validJD = 1;
364 return 0;
366 return 1;
370 ** Compute the Year, Month, and Day from the julian day number.
372 static void computeYMD(DateTime *p){
373 int Z, A, B, C, D, E, X1;
374 if( p->validYMD ) return;
375 if( !p->validJD ){
376 p->Y = 2000;
377 p->M = 1;
378 p->D = 1;
379 }else{
380 Z = (int)((p->iJD + 43200000)/86400000);
381 A = (int)((Z - 1867216.25)/36524.25);
382 A = Z + 1 + A - (A/4);
383 B = A + 1524;
384 C = (int)((B - 122.1)/365.25);
385 D = (36525*(C&32767))/100;
386 E = (int)((B-D)/30.6001);
387 X1 = (int)(30.6001*E);
388 p->D = B - D - X1;
389 p->M = E<14 ? E-1 : E-13;
390 p->Y = p->M>2 ? C - 4716 : C - 4715;
392 p->validYMD = 1;
396 ** Compute the Hour, Minute, and Seconds from the julian day number.
398 static void computeHMS(DateTime *p){
399 int s;
400 if( p->validHMS ) return;
401 computeJD(p);
402 s = (int)((p->iJD + 43200000) % 86400000);
403 p->s = s/1000.0;
404 s = (int)p->s;
405 p->s -= s;
406 p->h = s/3600;
407 s -= p->h*3600;
408 p->m = s/60;
409 p->s += s - p->m*60;
410 p->validHMS = 1;
414 ** Compute both YMD and HMS
416 static void computeYMD_HMS(DateTime *p){
417 computeYMD(p);
418 computeHMS(p);
422 ** Clear the YMD and HMS and the TZ
424 static void clearYMD_HMS_TZ(DateTime *p){
425 p->validYMD = 0;
426 p->validHMS = 0;
427 p->validTZ = 0;
430 #ifndef SQLITE_OMIT_LOCALTIME
432 ** On recent Windows platforms, the localtime_s() function is available
433 ** as part of the "Secure CRT". It is essentially equivalent to
434 ** localtime_r() available under most POSIX platforms, except that the
435 ** order of the parameters is reversed.
437 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
439 ** If the user has not indicated to use localtime_r() or localtime_s()
440 ** already, check for an MSVC build environment that provides
441 ** localtime_s().
443 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
444 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
445 #undef HAVE_LOCALTIME_S
446 #define HAVE_LOCALTIME_S 1
447 #endif
450 ** The following routine implements the rough equivalent of localtime_r()
451 ** using whatever operating-system specific localtime facility that
452 ** is available. This routine returns 0 on success and
453 ** non-zero on any kind of error.
455 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
456 ** routine will always fail.
458 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
459 ** library function localtime_r() is used to assist in the calculation of
460 ** local time.
462 static int osLocaltime(time_t *t, struct tm *pTm){
463 int rc;
464 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
465 struct tm *pX;
466 #if SQLITE_THREADSAFE>0
467 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
468 #endif
469 sqlite3_mutex_enter(mutex);
470 pX = localtime(t);
471 #ifndef SQLITE_OMIT_BUILTIN_TEST
472 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
473 #endif
474 if( pX ) *pTm = *pX;
475 sqlite3_mutex_leave(mutex);
476 rc = pX==0;
477 #else
478 #ifndef SQLITE_OMIT_BUILTIN_TEST
479 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
480 #endif
481 #if HAVE_LOCALTIME_R
482 rc = localtime_r(t, pTm)==0;
483 #else
484 rc = localtime_s(pTm, t);
485 #endif /* HAVE_LOCALTIME_R */
486 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
487 return rc;
489 #endif /* SQLITE_OMIT_LOCALTIME */
492 #ifndef SQLITE_OMIT_LOCALTIME
494 ** Compute the difference (in milliseconds) between localtime and UTC
495 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
496 ** return this value and set *pRc to SQLITE_OK.
498 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
499 ** is undefined in this case.
501 static sqlite3_int64 localtimeOffset(
502 DateTime *p, /* Date at which to calculate offset */
503 sqlite3_context *pCtx, /* Write error here if one occurs */
504 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */
506 DateTime x, y;
507 time_t t;
508 struct tm sLocal;
510 /* Initialize the contents of sLocal to avoid a compiler warning. */
511 memset(&sLocal, 0, sizeof(sLocal));
513 x = *p;
514 computeYMD_HMS(&x);
515 if( x.Y<1971 || x.Y>=2038 ){
516 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
517 ** works for years between 1970 and 2037. For dates outside this range,
518 ** SQLite attempts to map the year into an equivalent year within this
519 ** range, do the calculation, then map the year back.
521 x.Y = 2000;
522 x.M = 1;
523 x.D = 1;
524 x.h = 0;
525 x.m = 0;
526 x.s = 0.0;
527 } else {
528 int s = (int)(x.s + 0.5);
529 x.s = s;
531 x.tz = 0;
532 x.validJD = 0;
533 computeJD(&x);
534 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
535 if( osLocaltime(&t, &sLocal) ){
536 sqlite3_result_error(pCtx, "local time unavailable", -1);
537 *pRc = SQLITE_ERROR;
538 return 0;
540 y.Y = sLocal.tm_year + 1900;
541 y.M = sLocal.tm_mon + 1;
542 y.D = sLocal.tm_mday;
543 y.h = sLocal.tm_hour;
544 y.m = sLocal.tm_min;
545 y.s = sLocal.tm_sec;
546 y.validYMD = 1;
547 y.validHMS = 1;
548 y.validJD = 0;
549 y.validTZ = 0;
550 computeJD(&y);
551 *pRc = SQLITE_OK;
552 return y.iJD - x.iJD;
554 #endif /* SQLITE_OMIT_LOCALTIME */
557 ** Process a modifier to a date-time stamp. The modifiers are
558 ** as follows:
560 ** NNN days
561 ** NNN hours
562 ** NNN minutes
563 ** NNN.NNNN seconds
564 ** NNN months
565 ** NNN years
566 ** start of month
567 ** start of year
568 ** start of week
569 ** start of day
570 ** weekday N
571 ** unixepoch
572 ** localtime
573 ** utc
575 ** Return 0 on success and 1 if there is any kind of error. If the error
576 ** is in a system call (i.e. localtime()), then an error message is written
577 ** to context pCtx. If the error is an unrecognized modifier, no error is
578 ** written to pCtx.
580 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){
581 int rc = 1;
582 int n;
583 double r;
584 char *z, zBuf[30];
585 z = zBuf;
586 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
587 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
589 z[n] = 0;
590 switch( z[0] ){
591 #ifndef SQLITE_OMIT_LOCALTIME
592 case 'l': {
593 /* localtime
595 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
596 ** show local time.
598 if( strcmp(z, "localtime")==0 ){
599 computeJD(p);
600 p->iJD += localtimeOffset(p, pCtx, &rc);
601 clearYMD_HMS_TZ(p);
603 break;
605 #endif
606 case 'u': {
608 ** unixepoch
610 ** Treat the current value of p->iJD as the number of
611 ** seconds since 1970. Convert to a real julian day number.
613 if( strcmp(z, "unixepoch")==0 && p->validJD ){
614 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
615 clearYMD_HMS_TZ(p);
616 rc = 0;
618 #ifndef SQLITE_OMIT_LOCALTIME
619 else if( strcmp(z, "utc")==0 ){
620 if( p->tzSet==0 ){
621 sqlite3_int64 c1;
622 computeJD(p);
623 c1 = localtimeOffset(p, pCtx, &rc);
624 if( rc==SQLITE_OK ){
625 p->iJD -= c1;
626 clearYMD_HMS_TZ(p);
627 p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
629 p->tzSet = 1;
630 }else{
631 rc = SQLITE_OK;
634 #endif
635 break;
637 case 'w': {
639 ** weekday N
641 ** Move the date to the same time on the next occurrence of
642 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
643 ** date is already on the appropriate weekday, this is a no-op.
645 if( strncmp(z, "weekday ", 8)==0
646 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
647 && (n=(int)r)==r && n>=0 && r<7 ){
648 sqlite3_int64 Z;
649 computeYMD_HMS(p);
650 p->validTZ = 0;
651 p->validJD = 0;
652 computeJD(p);
653 Z = ((p->iJD + 129600000)/86400000) % 7;
654 if( Z>n ) Z -= 7;
655 p->iJD += (n - Z)*86400000;
656 clearYMD_HMS_TZ(p);
657 rc = 0;
659 break;
661 case 's': {
663 ** start of TTTTT
665 ** Move the date backwards to the beginning of the current day,
666 ** or month or year.
668 if( strncmp(z, "start of ", 9)!=0 ) break;
669 z += 9;
670 computeYMD(p);
671 p->validHMS = 1;
672 p->h = p->m = 0;
673 p->s = 0.0;
674 p->validTZ = 0;
675 p->validJD = 0;
676 if( strcmp(z,"month")==0 ){
677 p->D = 1;
678 rc = 0;
679 }else if( strcmp(z,"year")==0 ){
680 computeYMD(p);
681 p->M = 1;
682 p->D = 1;
683 rc = 0;
684 }else if( strcmp(z,"day")==0 ){
685 rc = 0;
687 break;
689 case '+':
690 case '-':
691 case '0':
692 case '1':
693 case '2':
694 case '3':
695 case '4':
696 case '5':
697 case '6':
698 case '7':
699 case '8':
700 case '9': {
701 double rRounder;
702 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
703 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
704 rc = 1;
705 break;
707 if( z[n]==':' ){
708 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
709 ** specified number of hours, minutes, seconds, and fractional seconds
710 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
711 ** omitted.
713 const char *z2 = z;
714 DateTime tx;
715 sqlite3_int64 day;
716 if( !sqlite3Isdigit(*z2) ) z2++;
717 memset(&tx, 0, sizeof(tx));
718 if( parseHhMmSs(z2, &tx) ) break;
719 computeJD(&tx);
720 tx.iJD -= 43200000;
721 day = tx.iJD/86400000;
722 tx.iJD -= day*86400000;
723 if( z[0]=='-' ) tx.iJD = -tx.iJD;
724 computeJD(p);
725 clearYMD_HMS_TZ(p);
726 p->iJD += tx.iJD;
727 rc = 0;
728 break;
730 z += n;
731 while( sqlite3Isspace(*z) ) z++;
732 n = sqlite3Strlen30(z);
733 if( n>10 || n<3 ) break;
734 if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
735 computeJD(p);
736 rc = 0;
737 rRounder = r<0 ? -0.5 : +0.5;
738 if( n==3 && strcmp(z,"day")==0 ){
739 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
740 }else if( n==4 && strcmp(z,"hour")==0 ){
741 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
742 }else if( n==6 && strcmp(z,"minute")==0 ){
743 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
744 }else if( n==6 && strcmp(z,"second")==0 ){
745 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
746 }else if( n==5 && strcmp(z,"month")==0 ){
747 int x, y;
748 computeYMD_HMS(p);
749 p->M += (int)r;
750 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
751 p->Y += x;
752 p->M -= x*12;
753 p->validJD = 0;
754 computeJD(p);
755 y = (int)r;
756 if( y!=r ){
757 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
759 }else if( n==4 && strcmp(z,"year")==0 ){
760 int y = (int)r;
761 computeYMD_HMS(p);
762 p->Y += y;
763 p->validJD = 0;
764 computeJD(p);
765 if( y!=r ){
766 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
768 }else{
769 rc = 1;
771 clearYMD_HMS_TZ(p);
772 break;
774 default: {
775 break;
778 return rc;
782 ** Process time function arguments. argv[0] is a date-time stamp.
783 ** argv[1] and following are modifiers. Parse them all and write
784 ** the resulting time into the DateTime structure p. Return 0
785 ** on success and 1 if there are any errors.
787 ** If there are zero parameters (if even argv[0] is undefined)
788 ** then assume a default value of "now" for argv[0].
790 static int isDate(
791 sqlite3_context *context,
792 int argc,
793 sqlite3_value **argv,
794 DateTime *p
796 int i;
797 const unsigned char *z;
798 int eType;
799 memset(p, 0, sizeof(*p));
800 if( argc==0 ){
801 return setDateTimeToCurrent(context, p);
803 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
804 || eType==SQLITE_INTEGER ){
805 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
806 p->validJD = 1;
807 }else{
808 z = sqlite3_value_text(argv[0]);
809 if( !z || parseDateOrTime(context, (char*)z, p) ){
810 return 1;
813 for(i=1; i<argc; i++){
814 z = sqlite3_value_text(argv[i]);
815 if( z==0 || parseModifier(context, (char*)z, p) ) return 1;
817 return 0;
822 ** The following routines implement the various date and time functions
823 ** of SQLite.
827 ** julianday( TIMESTRING, MOD, MOD, ...)
829 ** Return the julian day number of the date specified in the arguments
831 static void juliandayFunc(
832 sqlite3_context *context,
833 int argc,
834 sqlite3_value **argv
836 DateTime x;
837 if( isDate(context, argc, argv, &x)==0 ){
838 computeJD(&x);
839 sqlite3_result_double(context, x.iJD/86400000.0);
844 ** datetime( TIMESTRING, MOD, MOD, ...)
846 ** Return YYYY-MM-DD HH:MM:SS
848 static void datetimeFunc(
849 sqlite3_context *context,
850 int argc,
851 sqlite3_value **argv
853 DateTime x;
854 if( isDate(context, argc, argv, &x)==0 ){
855 char zBuf[100];
856 computeYMD_HMS(&x);
857 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
858 x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
859 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
864 ** time( TIMESTRING, MOD, MOD, ...)
866 ** Return HH:MM:SS
868 static void timeFunc(
869 sqlite3_context *context,
870 int argc,
871 sqlite3_value **argv
873 DateTime x;
874 if( isDate(context, argc, argv, &x)==0 ){
875 char zBuf[100];
876 computeHMS(&x);
877 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
878 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
883 ** date( TIMESTRING, MOD, MOD, ...)
885 ** Return YYYY-MM-DD
887 static void dateFunc(
888 sqlite3_context *context,
889 int argc,
890 sqlite3_value **argv
892 DateTime x;
893 if( isDate(context, argc, argv, &x)==0 ){
894 char zBuf[100];
895 computeYMD(&x);
896 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
897 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
902 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
904 ** Return a string described by FORMAT. Conversions as follows:
906 ** %d day of month
907 ** %f ** fractional seconds SS.SSS
908 ** %H hour 00-24
909 ** %j day of year 000-366
910 ** %J ** julian day number
911 ** %m month 01-12
912 ** %M minute 00-59
913 ** %s seconds since 1970-01-01
914 ** %S seconds 00-59
915 ** %w day of week 0-6 sunday==0
916 ** %W week of year 00-53
917 ** %Y year 0000-9999
918 ** %% %
920 static void strftimeFunc(
921 sqlite3_context *context,
922 int argc,
923 sqlite3_value **argv
925 DateTime x;
926 u64 n;
927 size_t i,j;
928 char *z;
929 sqlite3 *db;
930 const char *zFmt;
931 char zBuf[100];
932 if( argc==0 ) return;
933 zFmt = (const char*)sqlite3_value_text(argv[0]);
934 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
935 db = sqlite3_context_db_handle(context);
936 for(i=0, n=1; zFmt[i]; i++, n++){
937 if( zFmt[i]=='%' ){
938 switch( zFmt[i+1] ){
939 case 'd':
940 case 'H':
941 case 'm':
942 case 'M':
943 case 'S':
944 case 'W':
945 n++;
946 /* fall thru */
947 case 'w':
948 case '%':
949 break;
950 case 'f':
951 n += 8;
952 break;
953 case 'j':
954 n += 3;
955 break;
956 case 'Y':
957 n += 8;
958 break;
959 case 's':
960 case 'J':
961 n += 50;
962 break;
963 default:
964 return; /* ERROR. return a NULL */
966 i++;
969 testcase( n==sizeof(zBuf)-1 );
970 testcase( n==sizeof(zBuf) );
971 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
972 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
973 if( n<sizeof(zBuf) ){
974 z = zBuf;
975 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
976 sqlite3_result_error_toobig(context);
977 return;
978 }else{
979 z = sqlite3DbMallocRawNN(db, (int)n);
980 if( z==0 ){
981 sqlite3_result_error_nomem(context);
982 return;
985 computeJD(&x);
986 computeYMD_HMS(&x);
987 for(i=j=0; zFmt[i]; i++){
988 if( zFmt[i]!='%' ){
989 z[j++] = zFmt[i];
990 }else{
991 i++;
992 switch( zFmt[i] ){
993 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
994 case 'f': {
995 double s = x.s;
996 if( s>59.999 ) s = 59.999;
997 sqlite3_snprintf(7, &z[j],"%06.3f", s);
998 j += sqlite3Strlen30(&z[j]);
999 break;
1001 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
1002 case 'W': /* Fall thru */
1003 case 'j': {
1004 int nDay; /* Number of days since 1st day of year */
1005 DateTime y = x;
1006 y.validJD = 0;
1007 y.M = 1;
1008 y.D = 1;
1009 computeJD(&y);
1010 nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
1011 if( zFmt[i]=='W' ){
1012 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1013 wd = (int)(((x.iJD+43200000)/86400000)%7);
1014 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
1015 j += 2;
1016 }else{
1017 sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
1018 j += 3;
1020 break;
1022 case 'J': {
1023 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
1024 j+=sqlite3Strlen30(&z[j]);
1025 break;
1027 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
1028 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
1029 case 's': {
1030 sqlite3_snprintf(30,&z[j],"%lld",
1031 (i64)(x.iJD/1000 - 21086676*(i64)10000));
1032 j += sqlite3Strlen30(&z[j]);
1033 break;
1035 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
1036 case 'w': {
1037 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
1038 break;
1040 case 'Y': {
1041 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
1042 break;
1044 default: z[j++] = '%'; break;
1048 z[j] = 0;
1049 sqlite3_result_text(context, z, -1,
1050 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
1054 ** current_time()
1056 ** This function returns the same value as time('now').
1058 static void ctimeFunc(
1059 sqlite3_context *context,
1060 int NotUsed,
1061 sqlite3_value **NotUsed2
1063 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1064 timeFunc(context, 0, 0);
1068 ** current_date()
1070 ** This function returns the same value as date('now').
1072 static void cdateFunc(
1073 sqlite3_context *context,
1074 int NotUsed,
1075 sqlite3_value **NotUsed2
1077 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1078 dateFunc(context, 0, 0);
1082 ** current_timestamp()
1084 ** This function returns the same value as datetime('now').
1086 static void ctimestampFunc(
1087 sqlite3_context *context,
1088 int NotUsed,
1089 sqlite3_value **NotUsed2
1091 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1092 datetimeFunc(context, 0, 0);
1094 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1096 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1098 ** If the library is compiled to omit the full-scale date and time
1099 ** handling (to get a smaller binary), the following minimal version
1100 ** of the functions current_time(), current_date() and current_timestamp()
1101 ** are included instead. This is to support column declarations that
1102 ** include "DEFAULT CURRENT_TIME" etc.
1104 ** This function uses the C-library functions time(), gmtime()
1105 ** and strftime(). The format string to pass to strftime() is supplied
1106 ** as the user-data for the function.
1108 static void currentTimeFunc(
1109 sqlite3_context *context,
1110 int argc,
1111 sqlite3_value **argv
1113 time_t t;
1114 char *zFormat = (char *)sqlite3_user_data(context);
1115 sqlite3_int64 iT;
1116 struct tm *pTm;
1117 struct tm sNow;
1118 char zBuf[20];
1120 UNUSED_PARAMETER(argc);
1121 UNUSED_PARAMETER(argv);
1123 iT = sqlite3StmtCurrentTime(context);
1124 if( iT<=0 ) return;
1125 t = iT/1000 - 10000*(sqlite3_int64)21086676;
1126 #if HAVE_GMTIME_R
1127 pTm = gmtime_r(&t, &sNow);
1128 #else
1129 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1130 pTm = gmtime(&t);
1131 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1132 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1133 #endif
1134 if( pTm ){
1135 strftime(zBuf, 20, zFormat, &sNow);
1136 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1139 #endif
1142 ** This function registered all of the above C functions as SQL
1143 ** functions. This should be the only routine in this file with
1144 ** external linkage.
1146 void sqlite3RegisterDateTimeFunctions(void){
1147 static FuncDef aDateTimeFuncs[] = {
1148 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1149 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ),
1150 DFUNCTION(date, -1, 0, 0, dateFunc ),
1151 DFUNCTION(time, -1, 0, 0, timeFunc ),
1152 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ),
1153 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ),
1154 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ),
1155 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1156 DFUNCTION(current_date, 0, 0, 0, cdateFunc ),
1157 #else
1158 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
1159 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
1160 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1161 #endif
1163 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));