Adjust path to test databases for tests
[sqlcipher.git] / src / build.c
blob508e747ea6dd93d730359cdada4e4274860b3355
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 for(i=0; i<pToplevel->nTableLock; i++){
63 p = &pToplevel->aTableLock[i];
64 if( p->iDb==iDb && p->iTab==iTab ){
65 p->isWriteLock = (p->isWriteLock || isWriteLock);
66 return;
70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
71 pToplevel->aTableLock =
72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
73 if( pToplevel->aTableLock ){
74 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
75 p->iDb = iDb;
76 p->iTab = iTab;
77 p->isWriteLock = isWriteLock;
78 p->zName = zName;
79 }else{
80 pToplevel->nTableLock = 0;
81 sqlite3OomFault(pToplevel->db);
86 ** Code an OP_TableLock instruction for each table locked by the
87 ** statement (configured by calls to sqlite3TableLock()).
89 static void codeTableLocks(Parse *pParse){
90 int i;
91 Vdbe *pVdbe;
93 pVdbe = sqlite3GetVdbe(pParse);
94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
96 for(i=0; i<pParse->nTableLock; i++){
97 TableLock *p = &pParse->aTableLock[i];
98 int p1 = p->iDb;
99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
100 p->zName, P4_STATIC);
103 #else
104 #define codeTableLocks(x)
105 #endif
108 ** Return TRUE if the given yDbMask object is empty - if it contains no
109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
110 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
112 #if SQLITE_MAX_ATTACHED>30
113 int sqlite3DbMaskAllZero(yDbMask m){
114 int i;
115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
116 return 1;
118 #endif
121 ** This routine is called after a single SQL statement has been
122 ** parsed and a VDBE program to execute that statement has been
123 ** prepared. This routine puts the finishing touches on the
124 ** VDBE program and resets the pParse structure for the next
125 ** parse.
127 ** Note that if an error occurred, it might be the case that
128 ** no VDBE code was generated.
130 void sqlite3FinishCoding(Parse *pParse){
131 sqlite3 *db;
132 Vdbe *v;
134 assert( pParse->pToplevel==0 );
135 db = pParse->db;
136 if( pParse->nested ) return;
137 if( db->mallocFailed || pParse->nErr ){
138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
139 return;
142 /* Begin by generating some termination code at the end of the
143 ** vdbe program
145 v = sqlite3GetVdbe(pParse);
146 assert( !pParse->isMultiWrite
147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
148 if( v ){
149 sqlite3VdbeAddOp0(v, OP_Halt);
151 #if SQLITE_USER_AUTHENTICATION
152 if( pParse->nTableLock>0 && db->init.busy==0 ){
153 sqlite3UserAuthInit(db);
154 if( db->auth.authLevel<UAUTH_User ){
155 sqlite3ErrorMsg(pParse, "user not authenticated");
156 pParse->rc = SQLITE_AUTH_USER;
157 return;
160 #endif
162 /* The cookie mask contains one bit for each database file open.
163 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
164 ** set for each database that is used. Generate code to start a
165 ** transaction on each used database and to verify the schema cookie
166 ** on each used database.
168 if( db->mallocFailed==0
169 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
171 int iDb, i;
172 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
173 sqlite3VdbeJumpHere(v, 0);
174 for(iDb=0; iDb<db->nDb; iDb++){
175 Schema *pSchema;
176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
177 sqlite3VdbeUsesBtree(v, iDb);
178 pSchema = db->aDb[iDb].pSchema;
179 sqlite3VdbeAddOp4Int(v,
180 OP_Transaction, /* Opcode */
181 iDb, /* P1 */
182 DbMaskTest(pParse->writeMask,iDb), /* P2 */
183 pSchema->schema_cookie, /* P3 */
184 pSchema->iGeneration /* P4 */
186 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
187 VdbeComment((v,
188 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
190 #ifndef SQLITE_OMIT_VIRTUALTABLE
191 for(i=0; i<pParse->nVtabLock; i++){
192 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
193 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
195 pParse->nVtabLock = 0;
196 #endif
198 /* Once all the cookies have been verified and transactions opened,
199 ** obtain the required table-locks. This is a no-op unless the
200 ** shared-cache feature is enabled.
202 codeTableLocks(pParse);
204 /* Initialize any AUTOINCREMENT data structures required.
206 sqlite3AutoincrementBegin(pParse);
208 /* Code constant expressions that where factored out of inner loops */
209 if( pParse->pConstExpr ){
210 ExprList *pEL = pParse->pConstExpr;
211 pParse->okConstFactor = 0;
212 for(i=0; i<pEL->nExpr; i++){
213 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
217 /* Finally, jump back to the beginning of the executable code. */
218 sqlite3VdbeGoto(v, 1);
223 /* Get the VDBE program ready for execution
225 if( v && pParse->nErr==0 && !db->mallocFailed ){
226 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
227 /* A minimum of one cursor is required if autoincrement is used
228 * See ticket [a696379c1f08866] */
229 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
230 sqlite3VdbeMakeReady(v, pParse);
231 pParse->rc = SQLITE_DONE;
232 }else{
233 pParse->rc = SQLITE_ERROR;
238 ** Run the parser and code generator recursively in order to generate
239 ** code for the SQL statement given onto the end of the pParse context
240 ** currently under construction. When the parser is run recursively
241 ** this way, the final OP_Halt is not appended and other initialization
242 ** and finalization steps are omitted because those are handling by the
243 ** outermost parser.
245 ** Not everything is nestable. This facility is designed to permit
246 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
247 ** care if you decide to try to use this routine for some other purposes.
249 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
250 va_list ap;
251 char *zSql;
252 char *zErrMsg = 0;
253 sqlite3 *db = pParse->db;
254 char saveBuf[PARSE_TAIL_SZ];
256 if( pParse->nErr ) return;
257 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
258 va_start(ap, zFormat);
259 zSql = sqlite3VMPrintf(db, zFormat, ap);
260 va_end(ap);
261 if( zSql==0 ){
262 return; /* A malloc must have failed */
264 pParse->nested++;
265 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
266 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
267 sqlite3RunParser(pParse, zSql, &zErrMsg);
268 sqlite3DbFree(db, zErrMsg);
269 sqlite3DbFree(db, zSql);
270 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
271 pParse->nested--;
274 #if SQLITE_USER_AUTHENTICATION
276 ** Return TRUE if zTable is the name of the system table that stores the
277 ** list of users and their access credentials.
279 int sqlite3UserAuthTable(const char *zTable){
280 return sqlite3_stricmp(zTable, "sqlite_user")==0;
282 #endif
285 ** Locate the in-memory structure that describes a particular database
286 ** table given the name of that table and (optionally) the name of the
287 ** database containing the table. Return NULL if not found.
289 ** If zDatabase is 0, all databases are searched for the table and the
290 ** first matching table is returned. (No checking for duplicate table
291 ** names is done.) The search order is TEMP first, then MAIN, then any
292 ** auxiliary databases added using the ATTACH command.
294 ** See also sqlite3LocateTable().
296 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
297 Table *p = 0;
298 int i;
300 /* All mutexes are required for schema access. Make sure we hold them. */
301 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
302 #if SQLITE_USER_AUTHENTICATION
303 /* Only the admin user is allowed to know that the sqlite_user table
304 ** exists */
305 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
306 return 0;
308 #endif
309 for(i=OMIT_TEMPDB; i<db->nDb; i++){
310 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
311 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
312 assert( sqlite3SchemaMutexHeld(db, j, 0) );
313 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
314 if( p ) break;
317 return p;
321 ** Locate the in-memory structure that describes a particular database
322 ** table given the name of that table and (optionally) the name of the
323 ** database containing the table. Return NULL if not found. Also leave an
324 ** error message in pParse->zErrMsg.
326 ** The difference between this routine and sqlite3FindTable() is that this
327 ** routine leaves an error message in pParse->zErrMsg where
328 ** sqlite3FindTable() does not.
330 Table *sqlite3LocateTable(
331 Parse *pParse, /* context in which to report errors */
332 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
333 const char *zName, /* Name of the table we are looking for */
334 const char *zDbase /* Name of the database. Might be NULL */
336 Table *p;
338 /* Read the database schema. If an error occurs, leave an error message
339 ** and code in pParse and return NULL. */
340 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
341 return 0;
344 p = sqlite3FindTable(pParse->db, zName, zDbase);
345 if( p==0 ){
346 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
347 #ifndef SQLITE_OMIT_VIRTUALTABLE
348 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
349 /* If zName is the not the name of a table in the schema created using
350 ** CREATE, then check to see if it is the name of an virtual table that
351 ** can be an eponymous virtual table. */
352 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
353 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
354 return pMod->pEpoTab;
357 #endif
358 if( (flags & LOCATE_NOERR)==0 ){
359 if( zDbase ){
360 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
361 }else{
362 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
364 pParse->checkSchema = 1;
368 return p;
372 ** Locate the table identified by *p.
374 ** This is a wrapper around sqlite3LocateTable(). The difference between
375 ** sqlite3LocateTable() and this function is that this function restricts
376 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
377 ** non-NULL if it is part of a view or trigger program definition. See
378 ** sqlite3FixSrcList() for details.
380 Table *sqlite3LocateTableItem(
381 Parse *pParse,
382 u32 flags,
383 struct SrcList_item *p
385 const char *zDb;
386 assert( p->pSchema==0 || p->zDatabase==0 );
387 if( p->pSchema ){
388 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
389 zDb = pParse->db->aDb[iDb].zDbSName;
390 }else{
391 zDb = p->zDatabase;
393 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
397 ** Locate the in-memory structure that describes
398 ** a particular index given the name of that index
399 ** and the name of the database that contains the index.
400 ** Return NULL if not found.
402 ** If zDatabase is 0, all databases are searched for the
403 ** table and the first matching index is returned. (No checking
404 ** for duplicate index names is done.) The search order is
405 ** TEMP first, then MAIN, then any auxiliary databases added
406 ** using the ATTACH command.
408 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
409 Index *p = 0;
410 int i;
411 /* All mutexes are required for schema access. Make sure we hold them. */
412 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
413 for(i=OMIT_TEMPDB; i<db->nDb; i++){
414 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
415 Schema *pSchema = db->aDb[j].pSchema;
416 assert( pSchema );
417 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
418 assert( sqlite3SchemaMutexHeld(db, j, 0) );
419 p = sqlite3HashFind(&pSchema->idxHash, zName);
420 if( p ) break;
422 return p;
426 ** Reclaim the memory used by an index
428 static void freeIndex(sqlite3 *db, Index *p){
429 #ifndef SQLITE_OMIT_ANALYZE
430 sqlite3DeleteIndexSamples(db, p);
431 #endif
432 sqlite3ExprDelete(db, p->pPartIdxWhere);
433 sqlite3ExprListDelete(db, p->aColExpr);
434 sqlite3DbFree(db, p->zColAff);
435 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
436 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
437 sqlite3_free(p->aiRowEst);
438 #endif
439 sqlite3DbFree(db, p);
443 ** For the index called zIdxName which is found in the database iDb,
444 ** unlike that index from its Table then remove the index from
445 ** the index hash table and free all memory structures associated
446 ** with the index.
448 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
449 Index *pIndex;
450 Hash *pHash;
452 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
453 pHash = &db->aDb[iDb].pSchema->idxHash;
454 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
455 if( ALWAYS(pIndex) ){
456 if( pIndex->pTable->pIndex==pIndex ){
457 pIndex->pTable->pIndex = pIndex->pNext;
458 }else{
459 Index *p;
460 /* Justification of ALWAYS(); The index must be on the list of
461 ** indices. */
462 p = pIndex->pTable->pIndex;
463 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
464 if( ALWAYS(p && p->pNext==pIndex) ){
465 p->pNext = pIndex->pNext;
468 freeIndex(db, pIndex);
470 db->flags |= SQLITE_InternChanges;
474 ** Look through the list of open database files in db->aDb[] and if
475 ** any have been closed, remove them from the list. Reallocate the
476 ** db->aDb[] structure to a smaller size, if possible.
478 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
479 ** are never candidates for being collapsed.
481 void sqlite3CollapseDatabaseArray(sqlite3 *db){
482 int i, j;
483 for(i=j=2; i<db->nDb; i++){
484 struct Db *pDb = &db->aDb[i];
485 if( pDb->pBt==0 ){
486 sqlite3DbFree(db, pDb->zDbSName);
487 pDb->zDbSName = 0;
488 continue;
490 if( j<i ){
491 db->aDb[j] = db->aDb[i];
493 j++;
495 db->nDb = j;
496 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
497 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
498 sqlite3DbFree(db, db->aDb);
499 db->aDb = db->aDbStatic;
504 ** Reset the schema for the database at index iDb. Also reset the
505 ** TEMP schema.
507 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
508 Db *pDb;
509 assert( iDb<db->nDb );
511 /* Case 1: Reset the single schema identified by iDb */
512 pDb = &db->aDb[iDb];
513 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
514 assert( pDb->pSchema!=0 );
515 sqlite3SchemaClear(pDb->pSchema);
517 /* If any database other than TEMP is reset, then also reset TEMP
518 ** since TEMP might be holding triggers that reference tables in the
519 ** other database.
521 if( iDb!=1 ){
522 pDb = &db->aDb[1];
523 assert( pDb->pSchema!=0 );
524 sqlite3SchemaClear(pDb->pSchema);
526 return;
530 ** Erase all schema information from all attached databases (including
531 ** "main" and "temp") for a single database connection.
533 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
534 int i;
535 sqlite3BtreeEnterAll(db);
536 for(i=0; i<db->nDb; i++){
537 Db *pDb = &db->aDb[i];
538 if( pDb->pSchema ){
539 sqlite3SchemaClear(pDb->pSchema);
542 db->flags &= ~SQLITE_InternChanges;
543 sqlite3VtabUnlockList(db);
544 sqlite3BtreeLeaveAll(db);
545 sqlite3CollapseDatabaseArray(db);
549 ** This routine is called when a commit occurs.
551 void sqlite3CommitInternalChanges(sqlite3 *db){
552 db->flags &= ~SQLITE_InternChanges;
556 ** Delete memory allocated for the column names of a table or view (the
557 ** Table.aCol[] array).
559 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
560 int i;
561 Column *pCol;
562 assert( pTable!=0 );
563 if( (pCol = pTable->aCol)!=0 ){
564 for(i=0; i<pTable->nCol; i++, pCol++){
565 sqlite3DbFree(db, pCol->zName);
566 sqlite3ExprDelete(db, pCol->pDflt);
567 sqlite3DbFree(db, pCol->zColl);
569 sqlite3DbFree(db, pTable->aCol);
574 ** Remove the memory data structures associated with the given
575 ** Table. No changes are made to disk by this routine.
577 ** This routine just deletes the data structure. It does not unlink
578 ** the table data structure from the hash table. But it does destroy
579 ** memory structures of the indices and foreign keys associated with
580 ** the table.
582 ** The db parameter is optional. It is needed if the Table object
583 ** contains lookaside memory. (Table objects in the schema do not use
584 ** lookaside memory, but some ephemeral Table objects do.) Or the
585 ** db parameter can be used with db->pnBytesFreed to measure the memory
586 ** used by the Table object.
588 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
589 Index *pIndex, *pNext;
590 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
592 /* Record the number of outstanding lookaside allocations in schema Tables
593 ** prior to doing any free() operations. Since schema Tables do not use
594 ** lookaside, this number should not change. */
595 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
596 db->lookaside.nOut : 0 );
598 /* Delete all indices associated with this table. */
599 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
600 pNext = pIndex->pNext;
601 assert( pIndex->pSchema==pTable->pSchema
602 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
603 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
604 char *zName = pIndex->zName;
605 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
606 &pIndex->pSchema->idxHash, zName, 0
608 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
609 assert( pOld==pIndex || pOld==0 );
611 freeIndex(db, pIndex);
614 /* Delete any foreign keys attached to this table. */
615 sqlite3FkDelete(db, pTable);
617 /* Delete the Table structure itself.
619 sqlite3DeleteColumnNames(db, pTable);
620 sqlite3DbFree(db, pTable->zName);
621 sqlite3DbFree(db, pTable->zColAff);
622 sqlite3SelectDelete(db, pTable->pSelect);
623 sqlite3ExprListDelete(db, pTable->pCheck);
624 #ifndef SQLITE_OMIT_VIRTUALTABLE
625 sqlite3VtabClear(db, pTable);
626 #endif
627 sqlite3DbFree(db, pTable);
629 /* Verify that no lookaside memory was used by schema tables */
630 assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
632 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
633 /* Do not delete the table until the reference count reaches zero. */
634 if( !pTable ) return;
635 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
636 deleteTable(db, pTable);
641 ** Unlink the given table from the hash tables and the delete the
642 ** table structure with all its indices and foreign keys.
644 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
645 Table *p;
646 Db *pDb;
648 assert( db!=0 );
649 assert( iDb>=0 && iDb<db->nDb );
650 assert( zTabName );
651 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
652 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
653 pDb = &db->aDb[iDb];
654 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
655 sqlite3DeleteTable(db, p);
656 db->flags |= SQLITE_InternChanges;
660 ** Given a token, return a string that consists of the text of that
661 ** token. Space to hold the returned string
662 ** is obtained from sqliteMalloc() and must be freed by the calling
663 ** function.
665 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
666 ** surround the body of the token are removed.
668 ** Tokens are often just pointers into the original SQL text and so
669 ** are not \000 terminated and are not persistent. The returned string
670 ** is \000 terminated and is persistent.
672 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
673 char *zName;
674 if( pName ){
675 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
676 sqlite3Dequote(zName);
677 }else{
678 zName = 0;
680 return zName;
684 ** Open the sqlite_master table stored in database number iDb for
685 ** writing. The table is opened using cursor 0.
687 void sqlite3OpenMasterTable(Parse *p, int iDb){
688 Vdbe *v = sqlite3GetVdbe(p);
689 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
690 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
691 if( p->nTab==0 ){
692 p->nTab = 1;
697 ** Parameter zName points to a nul-terminated buffer containing the name
698 ** of a database ("main", "temp" or the name of an attached db). This
699 ** function returns the index of the named database in db->aDb[], or
700 ** -1 if the named db cannot be found.
702 int sqlite3FindDbName(sqlite3 *db, const char *zName){
703 int i = -1; /* Database number */
704 if( zName ){
705 Db *pDb;
706 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
707 if( 0==sqlite3StrICmp(pDb->zDbSName, zName) ) break;
710 return i;
714 ** The token *pName contains the name of a database (either "main" or
715 ** "temp" or the name of an attached db). This routine returns the
716 ** index of the named database in db->aDb[], or -1 if the named db
717 ** does not exist.
719 int sqlite3FindDb(sqlite3 *db, Token *pName){
720 int i; /* Database number */
721 char *zName; /* Name we are searching for */
722 zName = sqlite3NameFromToken(db, pName);
723 i = sqlite3FindDbName(db, zName);
724 sqlite3DbFree(db, zName);
725 return i;
728 /* The table or view or trigger name is passed to this routine via tokens
729 ** pName1 and pName2. If the table name was fully qualified, for example:
731 ** CREATE TABLE xxx.yyy (...);
733 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
734 ** the table name is not fully qualified, i.e.:
736 ** CREATE TABLE yyy(...);
738 ** Then pName1 is set to "yyy" and pName2 is "".
740 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
741 ** pName2) that stores the unqualified table name. The index of the
742 ** database "xxx" is returned.
744 int sqlite3TwoPartName(
745 Parse *pParse, /* Parsing and code generating context */
746 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
747 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
748 Token **pUnqual /* Write the unqualified object name here */
750 int iDb; /* Database holding the object */
751 sqlite3 *db = pParse->db;
753 assert( pName2!=0 );
754 if( pName2->n>0 ){
755 if( db->init.busy ) {
756 sqlite3ErrorMsg(pParse, "corrupt database");
757 return -1;
759 *pUnqual = pName2;
760 iDb = sqlite3FindDb(db, pName1);
761 if( iDb<0 ){
762 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
763 return -1;
765 }else{
766 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0);
767 iDb = db->init.iDb;
768 *pUnqual = pName1;
770 return iDb;
774 ** This routine is used to check if the UTF-8 string zName is a legal
775 ** unqualified name for a new schema object (table, index, view or
776 ** trigger). All names are legal except those that begin with the string
777 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
778 ** is reserved for internal use.
780 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
781 if( !pParse->db->init.busy && pParse->nested==0
782 && (pParse->db->flags & SQLITE_WriteSchema)==0
783 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
784 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
785 return SQLITE_ERROR;
787 return SQLITE_OK;
791 ** Return the PRIMARY KEY index of a table
793 Index *sqlite3PrimaryKeyIndex(Table *pTab){
794 Index *p;
795 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
796 return p;
800 ** Return the column of index pIdx that corresponds to table
801 ** column iCol. Return -1 if not found.
803 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
804 int i;
805 for(i=0; i<pIdx->nColumn; i++){
806 if( iCol==pIdx->aiColumn[i] ) return i;
808 return -1;
812 ** Begin constructing a new table representation in memory. This is
813 ** the first of several action routines that get called in response
814 ** to a CREATE TABLE statement. In particular, this routine is called
815 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
816 ** flag is true if the table should be stored in the auxiliary database
817 ** file instead of in the main database file. This is normally the case
818 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
819 ** CREATE and TABLE.
821 ** The new table record is initialized and put in pParse->pNewTable.
822 ** As more of the CREATE TABLE statement is parsed, additional action
823 ** routines will be called to add more information to this record.
824 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
825 ** is called to complete the construction of the new table record.
827 void sqlite3StartTable(
828 Parse *pParse, /* Parser context */
829 Token *pName1, /* First part of the name of the table or view */
830 Token *pName2, /* Second part of the name of the table or view */
831 int isTemp, /* True if this is a TEMP table */
832 int isView, /* True if this is a VIEW */
833 int isVirtual, /* True if this is a VIRTUAL table */
834 int noErr /* Do nothing if table already exists */
836 Table *pTable;
837 char *zName = 0; /* The name of the new table */
838 sqlite3 *db = pParse->db;
839 Vdbe *v;
840 int iDb; /* Database number to create the table in */
841 Token *pName; /* Unqualified name of the table to create */
843 if( db->init.busy && db->init.newTnum==1 ){
844 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
845 iDb = db->init.iDb;
846 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
847 pName = pName1;
848 }else{
849 /* The common case */
850 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
851 if( iDb<0 ) return;
852 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
853 /* If creating a temp table, the name may not be qualified. Unless
854 ** the database name is "temp" anyway. */
855 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
856 return;
858 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
859 zName = sqlite3NameFromToken(db, pName);
861 pParse->sNameToken = *pName;
862 if( zName==0 ) return;
863 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
864 goto begin_table_error;
866 if( db->init.iDb==1 ) isTemp = 1;
867 #ifndef SQLITE_OMIT_AUTHORIZATION
868 assert( isTemp==0 || isTemp==1 );
869 assert( isView==0 || isView==1 );
871 static const u8 aCode[] = {
872 SQLITE_CREATE_TABLE,
873 SQLITE_CREATE_TEMP_TABLE,
874 SQLITE_CREATE_VIEW,
875 SQLITE_CREATE_TEMP_VIEW
877 char *zDb = db->aDb[iDb].zDbSName;
878 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
879 goto begin_table_error;
881 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
882 zName, 0, zDb) ){
883 goto begin_table_error;
886 #endif
888 /* Make sure the new table name does not collide with an existing
889 ** index or table name in the same database. Issue an error message if
890 ** it does. The exception is if the statement being parsed was passed
891 ** to an sqlite3_declare_vtab() call. In that case only the column names
892 ** and types will be used, so there is no need to test for namespace
893 ** collisions.
895 if( !IN_DECLARE_VTAB ){
896 char *zDb = db->aDb[iDb].zDbSName;
897 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
898 goto begin_table_error;
900 pTable = sqlite3FindTable(db, zName, zDb);
901 if( pTable ){
902 if( !noErr ){
903 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
904 }else{
905 assert( !db->init.busy || CORRUPT_DB );
906 sqlite3CodeVerifySchema(pParse, iDb);
908 goto begin_table_error;
910 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
911 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
912 goto begin_table_error;
916 pTable = sqlite3DbMallocZero(db, sizeof(Table));
917 if( pTable==0 ){
918 assert( db->mallocFailed );
919 pParse->rc = SQLITE_NOMEM_BKPT;
920 pParse->nErr++;
921 goto begin_table_error;
923 pTable->zName = zName;
924 pTable->iPKey = -1;
925 pTable->pSchema = db->aDb[iDb].pSchema;
926 pTable->nRef = 1;
927 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
928 assert( pParse->pNewTable==0 );
929 pParse->pNewTable = pTable;
931 /* If this is the magic sqlite_sequence table used by autoincrement,
932 ** then record a pointer to this table in the main database structure
933 ** so that INSERT can find the table easily.
935 #ifndef SQLITE_OMIT_AUTOINCREMENT
936 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
937 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
938 pTable->pSchema->pSeqTab = pTable;
940 #endif
942 /* Begin generating the code that will insert the table record into
943 ** the SQLITE_MASTER table. Note in particular that we must go ahead
944 ** and allocate the record number for the table entry now. Before any
945 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
946 ** indices to be created and the table record must come before the
947 ** indices. Hence, the record number for the table must be allocated
948 ** now.
950 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
951 int addr1;
952 int fileFormat;
953 int reg1, reg2, reg3;
954 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
955 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
956 sqlite3BeginWriteOperation(pParse, 1, iDb);
958 #ifndef SQLITE_OMIT_VIRTUALTABLE
959 if( isVirtual ){
960 sqlite3VdbeAddOp0(v, OP_VBegin);
962 #endif
964 /* If the file format and encoding in the database have not been set,
965 ** set them now.
967 reg1 = pParse->regRowid = ++pParse->nMem;
968 reg2 = pParse->regRoot = ++pParse->nMem;
969 reg3 = ++pParse->nMem;
970 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
971 sqlite3VdbeUsesBtree(v, iDb);
972 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
973 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
974 1 : SQLITE_MAX_FILE_FORMAT;
975 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
976 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
977 sqlite3VdbeJumpHere(v, addr1);
979 /* This just creates a place-holder record in the sqlite_master table.
980 ** The record created does not contain anything yet. It will be replaced
981 ** by the real entry in code generated at sqlite3EndTable().
983 ** The rowid for the new entry is left in register pParse->regRowid.
984 ** The root page number of the new table is left in reg pParse->regRoot.
985 ** The rowid and root page number values are needed by the code that
986 ** sqlite3EndTable will generate.
988 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
989 if( isView || isVirtual ){
990 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
991 }else
992 #endif
994 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
996 sqlite3OpenMasterTable(pParse, iDb);
997 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
998 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
999 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1000 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1001 sqlite3VdbeAddOp0(v, OP_Close);
1004 /* Normal (non-error) return. */
1005 return;
1007 /* If an error occurs, we jump here */
1008 begin_table_error:
1009 sqlite3DbFree(db, zName);
1010 return;
1013 /* Set properties of a table column based on the (magical)
1014 ** name of the column.
1016 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1017 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1018 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1019 pCol->colFlags |= COLFLAG_HIDDEN;
1020 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1021 pTab->tabFlags |= TF_OOOHidden;
1024 #endif
1028 ** Add a new column to the table currently being constructed.
1030 ** The parser calls this routine once for each column declaration
1031 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1032 ** first to get things going. Then this routine is called for each
1033 ** column.
1035 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1036 Table *p;
1037 int i;
1038 char *z;
1039 char *zType;
1040 Column *pCol;
1041 sqlite3 *db = pParse->db;
1042 if( (p = pParse->pNewTable)==0 ) return;
1043 #if SQLITE_MAX_COLUMN
1044 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1045 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1046 return;
1048 #endif
1049 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1050 if( z==0 ) return;
1051 memcpy(z, pName->z, pName->n);
1052 z[pName->n] = 0;
1053 sqlite3Dequote(z);
1054 for(i=0; i<p->nCol; i++){
1055 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1056 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1057 sqlite3DbFree(db, z);
1058 return;
1061 if( (p->nCol & 0x7)==0 ){
1062 Column *aNew;
1063 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1064 if( aNew==0 ){
1065 sqlite3DbFree(db, z);
1066 return;
1068 p->aCol = aNew;
1070 pCol = &p->aCol[p->nCol];
1071 memset(pCol, 0, sizeof(p->aCol[0]));
1072 pCol->zName = z;
1073 sqlite3ColumnPropertiesFromName(p, pCol);
1075 if( pType->n==0 ){
1076 /* If there is no type specified, columns have the default affinity
1077 ** 'BLOB'. */
1078 pCol->affinity = SQLITE_AFF_BLOB;
1079 pCol->szEst = 1;
1080 }else{
1081 zType = z + sqlite3Strlen30(z) + 1;
1082 memcpy(zType, pType->z, pType->n);
1083 zType[pType->n] = 0;
1084 sqlite3Dequote(zType);
1085 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1086 pCol->colFlags |= COLFLAG_HASTYPE;
1088 p->nCol++;
1089 pParse->constraintName.n = 0;
1093 ** This routine is called by the parser while in the middle of
1094 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1095 ** been seen on a column. This routine sets the notNull flag on
1096 ** the column currently under construction.
1098 void sqlite3AddNotNull(Parse *pParse, int onError){
1099 Table *p;
1100 p = pParse->pNewTable;
1101 if( p==0 || NEVER(p->nCol<1) ) return;
1102 p->aCol[p->nCol-1].notNull = (u8)onError;
1106 ** Scan the column type name zType (length nType) and return the
1107 ** associated affinity type.
1109 ** This routine does a case-independent search of zType for the
1110 ** substrings in the following table. If one of the substrings is
1111 ** found, the corresponding affinity is returned. If zType contains
1112 ** more than one of the substrings, entries toward the top of
1113 ** the table take priority. For example, if zType is 'BLOBINT',
1114 ** SQLITE_AFF_INTEGER is returned.
1116 ** Substring | Affinity
1117 ** --------------------------------
1118 ** 'INT' | SQLITE_AFF_INTEGER
1119 ** 'CHAR' | SQLITE_AFF_TEXT
1120 ** 'CLOB' | SQLITE_AFF_TEXT
1121 ** 'TEXT' | SQLITE_AFF_TEXT
1122 ** 'BLOB' | SQLITE_AFF_BLOB
1123 ** 'REAL' | SQLITE_AFF_REAL
1124 ** 'FLOA' | SQLITE_AFF_REAL
1125 ** 'DOUB' | SQLITE_AFF_REAL
1127 ** If none of the substrings in the above table are found,
1128 ** SQLITE_AFF_NUMERIC is returned.
1130 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1131 u32 h = 0;
1132 char aff = SQLITE_AFF_NUMERIC;
1133 const char *zChar = 0;
1135 assert( zIn!=0 );
1136 while( zIn[0] ){
1137 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1138 zIn++;
1139 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1140 aff = SQLITE_AFF_TEXT;
1141 zChar = zIn;
1142 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1143 aff = SQLITE_AFF_TEXT;
1144 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1145 aff = SQLITE_AFF_TEXT;
1146 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1147 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1148 aff = SQLITE_AFF_BLOB;
1149 if( zIn[0]=='(' ) zChar = zIn;
1150 #ifndef SQLITE_OMIT_FLOATING_POINT
1151 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1152 && aff==SQLITE_AFF_NUMERIC ){
1153 aff = SQLITE_AFF_REAL;
1154 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1155 && aff==SQLITE_AFF_NUMERIC ){
1156 aff = SQLITE_AFF_REAL;
1157 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1158 && aff==SQLITE_AFF_NUMERIC ){
1159 aff = SQLITE_AFF_REAL;
1160 #endif
1161 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1162 aff = SQLITE_AFF_INTEGER;
1163 break;
1167 /* If pszEst is not NULL, store an estimate of the field size. The
1168 ** estimate is scaled so that the size of an integer is 1. */
1169 if( pszEst ){
1170 *pszEst = 1; /* default size is approx 4 bytes */
1171 if( aff<SQLITE_AFF_NUMERIC ){
1172 if( zChar ){
1173 while( zChar[0] ){
1174 if( sqlite3Isdigit(zChar[0]) ){
1175 int v = 0;
1176 sqlite3GetInt32(zChar, &v);
1177 v = v/4 + 1;
1178 if( v>255 ) v = 255;
1179 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1180 break;
1182 zChar++;
1184 }else{
1185 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1189 return aff;
1193 ** The expression is the default value for the most recently added column
1194 ** of the table currently under construction.
1196 ** Default value expressions must be constant. Raise an exception if this
1197 ** is not the case.
1199 ** This routine is called by the parser while in the middle of
1200 ** parsing a CREATE TABLE statement.
1202 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1203 Table *p;
1204 Column *pCol;
1205 sqlite3 *db = pParse->db;
1206 p = pParse->pNewTable;
1207 if( p!=0 ){
1208 pCol = &(p->aCol[p->nCol-1]);
1209 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1210 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1211 pCol->zName);
1212 }else{
1213 /* A copy of pExpr is used instead of the original, as pExpr contains
1214 ** tokens that point to volatile memory. The 'span' of the expression
1215 ** is required by pragma table_info.
1217 Expr x;
1218 sqlite3ExprDelete(db, pCol->pDflt);
1219 memset(&x, 0, sizeof(x));
1220 x.op = TK_SPAN;
1221 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1222 (int)(pSpan->zEnd - pSpan->zStart));
1223 x.pLeft = pSpan->pExpr;
1224 x.flags = EP_Skip;
1225 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1226 sqlite3DbFree(db, x.u.zToken);
1229 sqlite3ExprDelete(db, pSpan->pExpr);
1233 ** Backwards Compatibility Hack:
1235 ** Historical versions of SQLite accepted strings as column names in
1236 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1238 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1239 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1241 ** This is goofy. But to preserve backwards compatibility we continue to
1242 ** accept it. This routine does the necessary conversion. It converts
1243 ** the expression given in its argument from a TK_STRING into a TK_ID
1244 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1245 ** If the epxression is anything other than TK_STRING, the expression is
1246 ** unchanged.
1248 static void sqlite3StringToId(Expr *p){
1249 if( p->op==TK_STRING ){
1250 p->op = TK_ID;
1251 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1252 p->pLeft->op = TK_ID;
1257 ** Designate the PRIMARY KEY for the table. pList is a list of names
1258 ** of columns that form the primary key. If pList is NULL, then the
1259 ** most recently added column of the table is the primary key.
1261 ** A table can have at most one primary key. If the table already has
1262 ** a primary key (and this is the second primary key) then create an
1263 ** error.
1265 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1266 ** then we will try to use that column as the rowid. Set the Table.iPKey
1267 ** field of the table under construction to be the index of the
1268 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1269 ** no INTEGER PRIMARY KEY.
1271 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1272 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1274 void sqlite3AddPrimaryKey(
1275 Parse *pParse, /* Parsing context */
1276 ExprList *pList, /* List of field names to be indexed */
1277 int onError, /* What to do with a uniqueness conflict */
1278 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1279 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1281 Table *pTab = pParse->pNewTable;
1282 Column *pCol = 0;
1283 int iCol = -1, i;
1284 int nTerm;
1285 if( pTab==0 ) goto primary_key_exit;
1286 if( pTab->tabFlags & TF_HasPrimaryKey ){
1287 sqlite3ErrorMsg(pParse,
1288 "table \"%s\" has more than one primary key", pTab->zName);
1289 goto primary_key_exit;
1291 pTab->tabFlags |= TF_HasPrimaryKey;
1292 if( pList==0 ){
1293 iCol = pTab->nCol - 1;
1294 pCol = &pTab->aCol[iCol];
1295 pCol->colFlags |= COLFLAG_PRIMKEY;
1296 nTerm = 1;
1297 }else{
1298 nTerm = pList->nExpr;
1299 for(i=0; i<nTerm; i++){
1300 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1301 assert( pCExpr!=0 );
1302 sqlite3StringToId(pCExpr);
1303 if( pCExpr->op==TK_ID ){
1304 const char *zCName = pCExpr->u.zToken;
1305 for(iCol=0; iCol<pTab->nCol; iCol++){
1306 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1307 pCol = &pTab->aCol[iCol];
1308 pCol->colFlags |= COLFLAG_PRIMKEY;
1309 break;
1315 if( nTerm==1
1316 && pCol
1317 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1318 && sortOrder!=SQLITE_SO_DESC
1320 pTab->iPKey = iCol;
1321 pTab->keyConf = (u8)onError;
1322 assert( autoInc==0 || autoInc==1 );
1323 pTab->tabFlags |= autoInc*TF_Autoincrement;
1324 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1325 }else if( autoInc ){
1326 #ifndef SQLITE_OMIT_AUTOINCREMENT
1327 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1328 "INTEGER PRIMARY KEY");
1329 #endif
1330 }else{
1331 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1332 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1333 pList = 0;
1336 primary_key_exit:
1337 sqlite3ExprListDelete(pParse->db, pList);
1338 return;
1342 ** Add a new CHECK constraint to the table currently under construction.
1344 void sqlite3AddCheckConstraint(
1345 Parse *pParse, /* Parsing context */
1346 Expr *pCheckExpr /* The check expression */
1348 #ifndef SQLITE_OMIT_CHECK
1349 Table *pTab = pParse->pNewTable;
1350 sqlite3 *db = pParse->db;
1351 if( pTab && !IN_DECLARE_VTAB
1352 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1354 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1355 if( pParse->constraintName.n ){
1356 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1358 }else
1359 #endif
1361 sqlite3ExprDelete(pParse->db, pCheckExpr);
1366 ** Set the collation function of the most recently parsed table column
1367 ** to the CollSeq given.
1369 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1370 Table *p;
1371 int i;
1372 char *zColl; /* Dequoted name of collation sequence */
1373 sqlite3 *db;
1375 if( (p = pParse->pNewTable)==0 ) return;
1376 i = p->nCol-1;
1377 db = pParse->db;
1378 zColl = sqlite3NameFromToken(db, pToken);
1379 if( !zColl ) return;
1381 if( sqlite3LocateCollSeq(pParse, zColl) ){
1382 Index *pIdx;
1383 sqlite3DbFree(db, p->aCol[i].zColl);
1384 p->aCol[i].zColl = zColl;
1386 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1387 ** then an index may have been created on this column before the
1388 ** collation type was added. Correct this if it is the case.
1390 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1391 assert( pIdx->nKeyCol==1 );
1392 if( pIdx->aiColumn[0]==i ){
1393 pIdx->azColl[0] = p->aCol[i].zColl;
1396 }else{
1397 sqlite3DbFree(db, zColl);
1402 ** This function returns the collation sequence for database native text
1403 ** encoding identified by the string zName, length nName.
1405 ** If the requested collation sequence is not available, or not available
1406 ** in the database native encoding, the collation factory is invoked to
1407 ** request it. If the collation factory does not supply such a sequence,
1408 ** and the sequence is available in another text encoding, then that is
1409 ** returned instead.
1411 ** If no versions of the requested collations sequence are available, or
1412 ** another error occurs, NULL is returned and an error message written into
1413 ** pParse.
1415 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1416 ** invokes the collation factory if the named collation cannot be found
1417 ** and generates an error message.
1419 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1421 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1422 sqlite3 *db = pParse->db;
1423 u8 enc = ENC(db);
1424 u8 initbusy = db->init.busy;
1425 CollSeq *pColl;
1427 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1428 if( !initbusy && (!pColl || !pColl->xCmp) ){
1429 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1432 return pColl;
1437 ** Generate code that will increment the schema cookie.
1439 ** The schema cookie is used to determine when the schema for the
1440 ** database changes. After each schema change, the cookie value
1441 ** changes. When a process first reads the schema it records the
1442 ** cookie. Thereafter, whenever it goes to access the database,
1443 ** it checks the cookie to make sure the schema has not changed
1444 ** since it was last read.
1446 ** This plan is not completely bullet-proof. It is possible for
1447 ** the schema to change multiple times and for the cookie to be
1448 ** set back to prior value. But schema changes are infrequent
1449 ** and the probability of hitting the same cookie value is only
1450 ** 1 chance in 2^32. So we're safe enough.
1452 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1453 ** the schema-version whenever the schema changes.
1455 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1456 sqlite3 *db = pParse->db;
1457 Vdbe *v = pParse->pVdbe;
1458 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1459 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1460 db->aDb[iDb].pSchema->schema_cookie+1);
1464 ** Measure the number of characters needed to output the given
1465 ** identifier. The number returned includes any quotes used
1466 ** but does not include the null terminator.
1468 ** The estimate is conservative. It might be larger that what is
1469 ** really needed.
1471 static int identLength(const char *z){
1472 int n;
1473 for(n=0; *z; n++, z++){
1474 if( *z=='"' ){ n++; }
1476 return n + 2;
1480 ** The first parameter is a pointer to an output buffer. The second
1481 ** parameter is a pointer to an integer that contains the offset at
1482 ** which to write into the output buffer. This function copies the
1483 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1484 ** to the specified offset in the buffer and updates *pIdx to refer
1485 ** to the first byte after the last byte written before returning.
1487 ** If the string zSignedIdent consists entirely of alpha-numeric
1488 ** characters, does not begin with a digit and is not an SQL keyword,
1489 ** then it is copied to the output buffer exactly as it is. Otherwise,
1490 ** it is quoted using double-quotes.
1492 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1493 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1494 int i, j, needQuote;
1495 i = *pIdx;
1497 for(j=0; zIdent[j]; j++){
1498 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1500 needQuote = sqlite3Isdigit(zIdent[0])
1501 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1502 || zIdent[j]!=0
1503 || j==0;
1505 if( needQuote ) z[i++] = '"';
1506 for(j=0; zIdent[j]; j++){
1507 z[i++] = zIdent[j];
1508 if( zIdent[j]=='"' ) z[i++] = '"';
1510 if( needQuote ) z[i++] = '"';
1511 z[i] = 0;
1512 *pIdx = i;
1516 ** Generate a CREATE TABLE statement appropriate for the given
1517 ** table. Memory to hold the text of the statement is obtained
1518 ** from sqliteMalloc() and must be freed by the calling function.
1520 static char *createTableStmt(sqlite3 *db, Table *p){
1521 int i, k, n;
1522 char *zStmt;
1523 char *zSep, *zSep2, *zEnd;
1524 Column *pCol;
1525 n = 0;
1526 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1527 n += identLength(pCol->zName) + 5;
1529 n += identLength(p->zName);
1530 if( n<50 ){
1531 zSep = "";
1532 zSep2 = ",";
1533 zEnd = ")";
1534 }else{
1535 zSep = "\n ";
1536 zSep2 = ",\n ";
1537 zEnd = "\n)";
1539 n += 35 + 6*p->nCol;
1540 zStmt = sqlite3DbMallocRaw(0, n);
1541 if( zStmt==0 ){
1542 sqlite3OomFault(db);
1543 return 0;
1545 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1546 k = sqlite3Strlen30(zStmt);
1547 identPut(zStmt, &k, p->zName);
1548 zStmt[k++] = '(';
1549 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1550 static const char * const azType[] = {
1551 /* SQLITE_AFF_BLOB */ "",
1552 /* SQLITE_AFF_TEXT */ " TEXT",
1553 /* SQLITE_AFF_NUMERIC */ " NUM",
1554 /* SQLITE_AFF_INTEGER */ " INT",
1555 /* SQLITE_AFF_REAL */ " REAL"
1557 int len;
1558 const char *zType;
1560 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1561 k += sqlite3Strlen30(&zStmt[k]);
1562 zSep = zSep2;
1563 identPut(zStmt, &k, pCol->zName);
1564 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1565 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1566 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1567 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1568 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1569 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1570 testcase( pCol->affinity==SQLITE_AFF_REAL );
1572 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1573 len = sqlite3Strlen30(zType);
1574 assert( pCol->affinity==SQLITE_AFF_BLOB
1575 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1576 memcpy(&zStmt[k], zType, len);
1577 k += len;
1578 assert( k<=n );
1580 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1581 return zStmt;
1585 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1586 ** on success and SQLITE_NOMEM on an OOM error.
1588 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1589 char *zExtra;
1590 int nByte;
1591 if( pIdx->nColumn>=N ) return SQLITE_OK;
1592 assert( pIdx->isResized==0 );
1593 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1594 zExtra = sqlite3DbMallocZero(db, nByte);
1595 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1596 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1597 pIdx->azColl = (const char**)zExtra;
1598 zExtra += sizeof(char*)*N;
1599 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1600 pIdx->aiColumn = (i16*)zExtra;
1601 zExtra += sizeof(i16)*N;
1602 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1603 pIdx->aSortOrder = (u8*)zExtra;
1604 pIdx->nColumn = N;
1605 pIdx->isResized = 1;
1606 return SQLITE_OK;
1610 ** Estimate the total row width for a table.
1612 static void estimateTableWidth(Table *pTab){
1613 unsigned wTable = 0;
1614 const Column *pTabCol;
1615 int i;
1616 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1617 wTable += pTabCol->szEst;
1619 if( pTab->iPKey<0 ) wTable++;
1620 pTab->szTabRow = sqlite3LogEst(wTable*4);
1624 ** Estimate the average size of a row for an index.
1626 static void estimateIndexWidth(Index *pIdx){
1627 unsigned wIndex = 0;
1628 int i;
1629 const Column *aCol = pIdx->pTable->aCol;
1630 for(i=0; i<pIdx->nColumn; i++){
1631 i16 x = pIdx->aiColumn[i];
1632 assert( x<pIdx->pTable->nCol );
1633 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1635 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1638 /* Return true if value x is found any of the first nCol entries of aiCol[]
1640 static int hasColumn(const i16 *aiCol, int nCol, int x){
1641 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1642 return 0;
1646 ** This routine runs at the end of parsing a CREATE TABLE statement that
1647 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1648 ** internal schema data structures and the generated VDBE code so that they
1649 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1650 ** Changes include:
1652 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1653 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is
1654 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical
1655 ** data storage is a covering index btree.
1656 ** (3) Bypass the creation of the sqlite_master table entry
1657 ** for the PRIMARY KEY as the primary key index is now
1658 ** identified by the sqlite_master table entry of the table itself.
1659 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1660 ** schema to the rootpage from the main table.
1661 ** (5) Add all table columns to the PRIMARY KEY Index object
1662 ** so that the PRIMARY KEY is a covering index. The surplus
1663 ** columns are part of KeyInfo.nXField and are not used for
1664 ** sorting or lookup or uniqueness checks.
1665 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1666 ** indices with the PRIMARY KEY columns.
1668 ** For virtual tables, only (1) is performed.
1670 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1671 Index *pIdx;
1672 Index *pPk;
1673 int nPk;
1674 int i, j;
1675 sqlite3 *db = pParse->db;
1676 Vdbe *v = pParse->pVdbe;
1678 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1680 if( !db->init.imposterTable ){
1681 for(i=0; i<pTab->nCol; i++){
1682 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1683 pTab->aCol[i].notNull = OE_Abort;
1688 /* The remaining transformations only apply to b-tree tables, not to
1689 ** virtual tables */
1690 if( IN_DECLARE_VTAB ) return;
1692 /* Convert the OP_CreateTable opcode that would normally create the
1693 ** root-page for the table into an OP_CreateIndex opcode. The index
1694 ** created will become the PRIMARY KEY index.
1696 if( pParse->addrCrTab ){
1697 assert( v );
1698 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1701 /* Locate the PRIMARY KEY index. Or, if this table was originally
1702 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1704 if( pTab->iPKey>=0 ){
1705 ExprList *pList;
1706 Token ipkToken;
1707 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1708 pList = sqlite3ExprListAppend(pParse, 0,
1709 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1710 if( pList==0 ) return;
1711 pList->a[0].sortOrder = pParse->iPkSortOrder;
1712 assert( pParse->pNewTable==pTab );
1713 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1714 SQLITE_IDXTYPE_PRIMARYKEY);
1715 if( db->mallocFailed ) return;
1716 pPk = sqlite3PrimaryKeyIndex(pTab);
1717 pTab->iPKey = -1;
1718 }else{
1719 pPk = sqlite3PrimaryKeyIndex(pTab);
1721 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1722 ** table entry. This is only required if currently generating VDBE
1723 ** code for a CREATE TABLE (not when parsing one as part of reading
1724 ** a database schema). */
1725 if( v ){
1726 assert( db->init.busy==0 );
1727 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1731 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1732 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1733 ** code assumes the PRIMARY KEY contains no repeated columns.
1735 for(i=j=1; i<pPk->nKeyCol; i++){
1736 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1737 pPk->nColumn--;
1738 }else{
1739 pPk->aiColumn[j++] = pPk->aiColumn[i];
1742 pPk->nKeyCol = j;
1744 assert( pPk!=0 );
1745 pPk->isCovering = 1;
1746 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1747 nPk = pPk->nKeyCol;
1749 /* The root page of the PRIMARY KEY is the table root page */
1750 pPk->tnum = pTab->tnum;
1752 /* Update the in-memory representation of all UNIQUE indices by converting
1753 ** the final rowid column into one or more columns of the PRIMARY KEY.
1755 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1756 int n;
1757 if( IsPrimaryKeyIndex(pIdx) ) continue;
1758 for(i=n=0; i<nPk; i++){
1759 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1761 if( n==0 ){
1762 /* This index is a superset of the primary key */
1763 pIdx->nColumn = pIdx->nKeyCol;
1764 continue;
1766 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1767 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1768 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1769 pIdx->aiColumn[j] = pPk->aiColumn[i];
1770 pIdx->azColl[j] = pPk->azColl[i];
1771 j++;
1774 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1775 assert( pIdx->nColumn>=j );
1778 /* Add all table columns to the PRIMARY KEY index
1780 if( nPk<pTab->nCol ){
1781 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1782 for(i=0, j=nPk; i<pTab->nCol; i++){
1783 if( !hasColumn(pPk->aiColumn, j, i) ){
1784 assert( j<pPk->nColumn );
1785 pPk->aiColumn[j] = i;
1786 pPk->azColl[j] = sqlite3StrBINARY;
1787 j++;
1790 assert( pPk->nColumn==j );
1791 assert( pTab->nCol==j );
1792 }else{
1793 pPk->nColumn = pTab->nCol;
1798 ** This routine is called to report the final ")" that terminates
1799 ** a CREATE TABLE statement.
1801 ** The table structure that other action routines have been building
1802 ** is added to the internal hash tables, assuming no errors have
1803 ** occurred.
1805 ** An entry for the table is made in the master table on disk, unless
1806 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1807 ** it means we are reading the sqlite_master table because we just
1808 ** connected to the database or because the sqlite_master table has
1809 ** recently changed, so the entry for this table already exists in
1810 ** the sqlite_master table. We do not want to create it again.
1812 ** If the pSelect argument is not NULL, it means that this routine
1813 ** was called to create a table generated from a
1814 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1815 ** the new table will match the result set of the SELECT.
1817 void sqlite3EndTable(
1818 Parse *pParse, /* Parse context */
1819 Token *pCons, /* The ',' token after the last column defn. */
1820 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1821 u8 tabOpts, /* Extra table options. Usually 0. */
1822 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1824 Table *p; /* The new table */
1825 sqlite3 *db = pParse->db; /* The database connection */
1826 int iDb; /* Database in which the table lives */
1827 Index *pIdx; /* An implied index of the table */
1829 if( pEnd==0 && pSelect==0 ){
1830 return;
1832 assert( !db->mallocFailed );
1833 p = pParse->pNewTable;
1834 if( p==0 ) return;
1836 assert( !db->init.busy || !pSelect );
1838 /* If the db->init.busy is 1 it means we are reading the SQL off the
1839 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1840 ** So do not write to the disk again. Extract the root page number
1841 ** for the table from the db->init.newTnum field. (The page number
1842 ** should have been put there by the sqliteOpenCb routine.)
1844 ** If the root page number is 1, that means this is the sqlite_master
1845 ** table itself. So mark it read-only.
1847 if( db->init.busy ){
1848 p->tnum = db->init.newTnum;
1849 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1852 /* Special processing for WITHOUT ROWID Tables */
1853 if( tabOpts & TF_WithoutRowid ){
1854 if( (p->tabFlags & TF_Autoincrement) ){
1855 sqlite3ErrorMsg(pParse,
1856 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1857 return;
1859 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1860 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1861 }else{
1862 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1863 convertToWithoutRowidTable(pParse, p);
1867 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1869 #ifndef SQLITE_OMIT_CHECK
1870 /* Resolve names in all CHECK constraint expressions.
1872 if( p->pCheck ){
1873 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1875 #endif /* !defined(SQLITE_OMIT_CHECK) */
1877 /* Estimate the average row size for the table and for all implied indices */
1878 estimateTableWidth(p);
1879 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1880 estimateIndexWidth(pIdx);
1883 /* If not initializing, then create a record for the new table
1884 ** in the SQLITE_MASTER table of the database.
1886 ** If this is a TEMPORARY table, write the entry into the auxiliary
1887 ** file instead of into the main database file.
1889 if( !db->init.busy ){
1890 int n;
1891 Vdbe *v;
1892 char *zType; /* "view" or "table" */
1893 char *zType2; /* "VIEW" or "TABLE" */
1894 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1896 v = sqlite3GetVdbe(pParse);
1897 if( NEVER(v==0) ) return;
1899 sqlite3VdbeAddOp1(v, OP_Close, 0);
1902 ** Initialize zType for the new view or table.
1904 if( p->pSelect==0 ){
1905 /* A regular table */
1906 zType = "table";
1907 zType2 = "TABLE";
1908 #ifndef SQLITE_OMIT_VIEW
1909 }else{
1910 /* A view */
1911 zType = "view";
1912 zType2 = "VIEW";
1913 #endif
1916 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1917 ** statement to populate the new table. The root-page number for the
1918 ** new table is in register pParse->regRoot.
1920 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1921 ** suitable state to query for the column names and types to be used
1922 ** by the new table.
1924 ** A shared-cache write-lock is not required to write to the new table,
1925 ** as a schema-lock must have already been obtained to create it. Since
1926 ** a schema-lock excludes all other database users, the write-lock would
1927 ** be redundant.
1929 if( pSelect ){
1930 SelectDest dest; /* Where the SELECT should store results */
1931 int regYield; /* Register holding co-routine entry-point */
1932 int addrTop; /* Top of the co-routine */
1933 int regRec; /* A record to be insert into the new table */
1934 int regRowid; /* Rowid of the next row to insert */
1935 int addrInsLoop; /* Top of the loop for inserting rows */
1936 Table *pSelTab; /* A table that describes the SELECT results */
1938 regYield = ++pParse->nMem;
1939 regRec = ++pParse->nMem;
1940 regRowid = ++pParse->nMem;
1941 assert(pParse->nTab==1);
1942 sqlite3MayAbort(pParse);
1943 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1944 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1945 pParse->nTab = 2;
1946 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1947 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1948 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1949 sqlite3Select(pParse, pSelect, &dest);
1950 sqlite3VdbeEndCoroutine(v, regYield);
1951 sqlite3VdbeJumpHere(v, addrTop - 1);
1952 if( pParse->nErr ) return;
1953 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1954 if( pSelTab==0 ) return;
1955 assert( p->aCol==0 );
1956 p->nCol = pSelTab->nCol;
1957 p->aCol = pSelTab->aCol;
1958 pSelTab->nCol = 0;
1959 pSelTab->aCol = 0;
1960 sqlite3DeleteTable(db, pSelTab);
1961 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1962 VdbeCoverage(v);
1963 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1964 sqlite3TableAffinity(v, p, 0);
1965 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1966 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1967 sqlite3VdbeGoto(v, addrInsLoop);
1968 sqlite3VdbeJumpHere(v, addrInsLoop);
1969 sqlite3VdbeAddOp1(v, OP_Close, 1);
1972 /* Compute the complete text of the CREATE statement */
1973 if( pSelect ){
1974 zStmt = createTableStmt(db, p);
1975 }else{
1976 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1977 n = (int)(pEnd2->z - pParse->sNameToken.z);
1978 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1979 zStmt = sqlite3MPrintf(db,
1980 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1984 /* A slot for the record has already been allocated in the
1985 ** SQLITE_MASTER table. We just need to update that slot with all
1986 ** the information we've collected.
1988 sqlite3NestedParse(pParse,
1989 "UPDATE %Q.%s "
1990 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1991 "WHERE rowid=#%d",
1992 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb),
1993 zType,
1994 p->zName,
1995 p->zName,
1996 pParse->regRoot,
1997 zStmt,
1998 pParse->regRowid
2000 sqlite3DbFree(db, zStmt);
2001 sqlite3ChangeCookie(pParse, iDb);
2003 #ifndef SQLITE_OMIT_AUTOINCREMENT
2004 /* Check to see if we need to create an sqlite_sequence table for
2005 ** keeping track of autoincrement keys.
2007 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2008 Db *pDb = &db->aDb[iDb];
2009 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2010 if( pDb->pSchema->pSeqTab==0 ){
2011 sqlite3NestedParse(pParse,
2012 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2013 pDb->zDbSName
2017 #endif
2019 /* Reparse everything to update our internal data structures */
2020 sqlite3VdbeAddParseSchemaOp(v, iDb,
2021 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2025 /* Add the table to the in-memory representation of the database.
2027 if( db->init.busy ){
2028 Table *pOld;
2029 Schema *pSchema = p->pSchema;
2030 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2031 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2032 if( pOld ){
2033 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2034 sqlite3OomFault(db);
2035 return;
2037 pParse->pNewTable = 0;
2038 db->flags |= SQLITE_InternChanges;
2040 #ifndef SQLITE_OMIT_ALTERTABLE
2041 if( !p->pSelect ){
2042 const char *zName = (const char *)pParse->sNameToken.z;
2043 int nName;
2044 assert( !pSelect && pCons && pEnd );
2045 if( pCons->z==0 ){
2046 pCons = pEnd;
2048 nName = (int)((const char *)pCons->z - zName);
2049 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2051 #endif
2055 #ifndef SQLITE_OMIT_VIEW
2057 ** The parser calls this routine in order to create a new VIEW
2059 void sqlite3CreateView(
2060 Parse *pParse, /* The parsing context */
2061 Token *pBegin, /* The CREATE token that begins the statement */
2062 Token *pName1, /* The token that holds the name of the view */
2063 Token *pName2, /* The token that holds the name of the view */
2064 ExprList *pCNames, /* Optional list of view column names */
2065 Select *pSelect, /* A SELECT statement that will become the new view */
2066 int isTemp, /* TRUE for a TEMPORARY view */
2067 int noErr /* Suppress error messages if VIEW already exists */
2069 Table *p;
2070 int n;
2071 const char *z;
2072 Token sEnd;
2073 DbFixer sFix;
2074 Token *pName = 0;
2075 int iDb;
2076 sqlite3 *db = pParse->db;
2078 if( pParse->nVar>0 ){
2079 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2080 goto create_view_fail;
2082 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2083 p = pParse->pNewTable;
2084 if( p==0 || pParse->nErr ) goto create_view_fail;
2085 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2086 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2087 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2088 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2090 /* Make a copy of the entire SELECT statement that defines the view.
2091 ** This will force all the Expr.token.z values to be dynamically
2092 ** allocated rather than point to the input string - which means that
2093 ** they will persist after the current sqlite3_exec() call returns.
2095 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2096 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2097 if( db->mallocFailed ) goto create_view_fail;
2099 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2100 ** the end.
2102 sEnd = pParse->sLastToken;
2103 assert( sEnd.z[0]!=0 );
2104 if( sEnd.z[0]!=';' ){
2105 sEnd.z += sEnd.n;
2107 sEnd.n = 0;
2108 n = (int)(sEnd.z - pBegin->z);
2109 assert( n>0 );
2110 z = pBegin->z;
2111 while( sqlite3Isspace(z[n-1]) ){ n--; }
2112 sEnd.z = &z[n-1];
2113 sEnd.n = 1;
2115 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2116 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2118 create_view_fail:
2119 sqlite3SelectDelete(db, pSelect);
2120 sqlite3ExprListDelete(db, pCNames);
2121 return;
2123 #endif /* SQLITE_OMIT_VIEW */
2125 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2127 ** The Table structure pTable is really a VIEW. Fill in the names of
2128 ** the columns of the view in the pTable structure. Return the number
2129 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2131 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2132 Table *pSelTab; /* A fake table from which we get the result set */
2133 Select *pSel; /* Copy of the SELECT that implements the view */
2134 int nErr = 0; /* Number of errors encountered */
2135 int n; /* Temporarily holds the number of cursors assigned */
2136 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2137 #ifndef SQLITE_OMIT_AUTHORIZATION
2138 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2139 #endif
2141 assert( pTable );
2143 #ifndef SQLITE_OMIT_VIRTUALTABLE
2144 if( sqlite3VtabCallConnect(pParse, pTable) ){
2145 return SQLITE_ERROR;
2147 if( IsVirtual(pTable) ) return 0;
2148 #endif
2150 #ifndef SQLITE_OMIT_VIEW
2151 /* A positive nCol means the columns names for this view are
2152 ** already known.
2154 if( pTable->nCol>0 ) return 0;
2156 /* A negative nCol is a special marker meaning that we are currently
2157 ** trying to compute the column names. If we enter this routine with
2158 ** a negative nCol, it means two or more views form a loop, like this:
2160 ** CREATE VIEW one AS SELECT * FROM two;
2161 ** CREATE VIEW two AS SELECT * FROM one;
2163 ** Actually, the error above is now caught prior to reaching this point.
2164 ** But the following test is still important as it does come up
2165 ** in the following:
2167 ** CREATE TABLE main.ex1(a);
2168 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2169 ** SELECT * FROM temp.ex1;
2171 if( pTable->nCol<0 ){
2172 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2173 return 1;
2175 assert( pTable->nCol>=0 );
2177 /* If we get this far, it means we need to compute the table names.
2178 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2179 ** "*" elements in the results set of the view and will assign cursors
2180 ** to the elements of the FROM clause. But we do not want these changes
2181 ** to be permanent. So the computation is done on a copy of the SELECT
2182 ** statement that defines the view.
2184 assert( pTable->pSelect );
2185 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2186 if( pSel ){
2187 n = pParse->nTab;
2188 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2189 pTable->nCol = -1;
2190 db->lookaside.bDisable++;
2191 #ifndef SQLITE_OMIT_AUTHORIZATION
2192 xAuth = db->xAuth;
2193 db->xAuth = 0;
2194 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2195 db->xAuth = xAuth;
2196 #else
2197 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2198 #endif
2199 pParse->nTab = n;
2200 if( pTable->pCheck ){
2201 /* CREATE VIEW name(arglist) AS ...
2202 ** The names of the columns in the table are taken from
2203 ** arglist which is stored in pTable->pCheck. The pCheck field
2204 ** normally holds CHECK constraints on an ordinary table, but for
2205 ** a VIEW it holds the list of column names.
2207 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2208 &pTable->nCol, &pTable->aCol);
2209 if( db->mallocFailed==0
2210 && pParse->nErr==0
2211 && pTable->nCol==pSel->pEList->nExpr
2213 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2215 }else if( pSelTab ){
2216 /* CREATE VIEW name AS... without an argument list. Construct
2217 ** the column names from the SELECT statement that defines the view.
2219 assert( pTable->aCol==0 );
2220 pTable->nCol = pSelTab->nCol;
2221 pTable->aCol = pSelTab->aCol;
2222 pSelTab->nCol = 0;
2223 pSelTab->aCol = 0;
2224 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2225 }else{
2226 pTable->nCol = 0;
2227 nErr++;
2229 sqlite3DeleteTable(db, pSelTab);
2230 sqlite3SelectDelete(db, pSel);
2231 db->lookaside.bDisable--;
2232 } else {
2233 nErr++;
2235 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2236 #endif /* SQLITE_OMIT_VIEW */
2237 return nErr;
2239 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2241 #ifndef SQLITE_OMIT_VIEW
2243 ** Clear the column names from every VIEW in database idx.
2245 static void sqliteViewResetAll(sqlite3 *db, int idx){
2246 HashElem *i;
2247 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2248 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2249 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2250 Table *pTab = sqliteHashData(i);
2251 if( pTab->pSelect ){
2252 sqlite3DeleteColumnNames(db, pTab);
2253 pTab->aCol = 0;
2254 pTab->nCol = 0;
2257 DbClearProperty(db, idx, DB_UnresetViews);
2259 #else
2260 # define sqliteViewResetAll(A,B)
2261 #endif /* SQLITE_OMIT_VIEW */
2264 ** This function is called by the VDBE to adjust the internal schema
2265 ** used by SQLite when the btree layer moves a table root page. The
2266 ** root-page of a table or index in database iDb has changed from iFrom
2267 ** to iTo.
2269 ** Ticket #1728: The symbol table might still contain information
2270 ** on tables and/or indices that are the process of being deleted.
2271 ** If you are unlucky, one of those deleted indices or tables might
2272 ** have the same rootpage number as the real table or index that is
2273 ** being moved. So we cannot stop searching after the first match
2274 ** because the first match might be for one of the deleted indices
2275 ** or tables and not the table/index that is actually being moved.
2276 ** We must continue looping until all tables and indices with
2277 ** rootpage==iFrom have been converted to have a rootpage of iTo
2278 ** in order to be certain that we got the right one.
2280 #ifndef SQLITE_OMIT_AUTOVACUUM
2281 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2282 HashElem *pElem;
2283 Hash *pHash;
2284 Db *pDb;
2286 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2287 pDb = &db->aDb[iDb];
2288 pHash = &pDb->pSchema->tblHash;
2289 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2290 Table *pTab = sqliteHashData(pElem);
2291 if( pTab->tnum==iFrom ){
2292 pTab->tnum = iTo;
2295 pHash = &pDb->pSchema->idxHash;
2296 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2297 Index *pIdx = sqliteHashData(pElem);
2298 if( pIdx->tnum==iFrom ){
2299 pIdx->tnum = iTo;
2303 #endif
2306 ** Write code to erase the table with root-page iTable from database iDb.
2307 ** Also write code to modify the sqlite_master table and internal schema
2308 ** if a root-page of another table is moved by the btree-layer whilst
2309 ** erasing iTable (this can happen with an auto-vacuum database).
2311 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2312 Vdbe *v = sqlite3GetVdbe(pParse);
2313 int r1 = sqlite3GetTempReg(pParse);
2314 assert( iTable>1 );
2315 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2316 sqlite3MayAbort(pParse);
2317 #ifndef SQLITE_OMIT_AUTOVACUUM
2318 /* OP_Destroy stores an in integer r1. If this integer
2319 ** is non-zero, then it is the root page number of a table moved to
2320 ** location iTable. The following code modifies the sqlite_master table to
2321 ** reflect this.
2323 ** The "#NNN" in the SQL is a special constant that means whatever value
2324 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2325 ** token for additional information.
2327 sqlite3NestedParse(pParse,
2328 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2329 pParse->db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2330 #endif
2331 sqlite3ReleaseTempReg(pParse, r1);
2335 ** Write VDBE code to erase table pTab and all associated indices on disk.
2336 ** Code to update the sqlite_master tables and internal schema definitions
2337 ** in case a root-page belonging to another table is moved by the btree layer
2338 ** is also added (this can happen with an auto-vacuum database).
2340 static void destroyTable(Parse *pParse, Table *pTab){
2341 #ifdef SQLITE_OMIT_AUTOVACUUM
2342 Index *pIdx;
2343 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2344 destroyRootPage(pParse, pTab->tnum, iDb);
2345 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2346 destroyRootPage(pParse, pIdx->tnum, iDb);
2348 #else
2349 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2350 ** is not defined), then it is important to call OP_Destroy on the
2351 ** table and index root-pages in order, starting with the numerically
2352 ** largest root-page number. This guarantees that none of the root-pages
2353 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2354 ** following were coded:
2356 ** OP_Destroy 4 0
2357 ** ...
2358 ** OP_Destroy 5 0
2360 ** and root page 5 happened to be the largest root-page number in the
2361 ** database, then root page 5 would be moved to page 4 by the
2362 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2363 ** a free-list page.
2365 int iTab = pTab->tnum;
2366 int iDestroyed = 0;
2368 while( 1 ){
2369 Index *pIdx;
2370 int iLargest = 0;
2372 if( iDestroyed==0 || iTab<iDestroyed ){
2373 iLargest = iTab;
2375 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2376 int iIdx = pIdx->tnum;
2377 assert( pIdx->pSchema==pTab->pSchema );
2378 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2379 iLargest = iIdx;
2382 if( iLargest==0 ){
2383 return;
2384 }else{
2385 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2386 assert( iDb>=0 && iDb<pParse->db->nDb );
2387 destroyRootPage(pParse, iLargest, iDb);
2388 iDestroyed = iLargest;
2391 #endif
2395 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2396 ** after a DROP INDEX or DROP TABLE command.
2398 static void sqlite3ClearStatTables(
2399 Parse *pParse, /* The parsing context */
2400 int iDb, /* The database number */
2401 const char *zType, /* "idx" or "tbl" */
2402 const char *zName /* Name of index or table */
2404 int i;
2405 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2406 for(i=1; i<=4; i++){
2407 char zTab[24];
2408 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2409 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2410 sqlite3NestedParse(pParse,
2411 "DELETE FROM %Q.%s WHERE %s=%Q",
2412 zDbName, zTab, zType, zName
2419 ** Generate code to drop a table.
2421 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2422 Vdbe *v;
2423 sqlite3 *db = pParse->db;
2424 Trigger *pTrigger;
2425 Db *pDb = &db->aDb[iDb];
2427 v = sqlite3GetVdbe(pParse);
2428 assert( v!=0 );
2429 sqlite3BeginWriteOperation(pParse, 1, iDb);
2431 #ifndef SQLITE_OMIT_VIRTUALTABLE
2432 if( IsVirtual(pTab) ){
2433 sqlite3VdbeAddOp0(v, OP_VBegin);
2435 #endif
2437 /* Drop all triggers associated with the table being dropped. Code
2438 ** is generated to remove entries from sqlite_master and/or
2439 ** sqlite_temp_master if required.
2441 pTrigger = sqlite3TriggerList(pParse, pTab);
2442 while( pTrigger ){
2443 assert( pTrigger->pSchema==pTab->pSchema ||
2444 pTrigger->pSchema==db->aDb[1].pSchema );
2445 sqlite3DropTriggerPtr(pParse, pTrigger);
2446 pTrigger = pTrigger->pNext;
2449 #ifndef SQLITE_OMIT_AUTOINCREMENT
2450 /* Remove any entries of the sqlite_sequence table associated with
2451 ** the table being dropped. This is done before the table is dropped
2452 ** at the btree level, in case the sqlite_sequence table needs to
2453 ** move as a result of the drop (can happen in auto-vacuum mode).
2455 if( pTab->tabFlags & TF_Autoincrement ){
2456 sqlite3NestedParse(pParse,
2457 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2458 pDb->zDbSName, pTab->zName
2461 #endif
2463 /* Drop all SQLITE_MASTER table and index entries that refer to the
2464 ** table. The program name loops through the master table and deletes
2465 ** every row that refers to a table of the same name as the one being
2466 ** dropped. Triggers are handled separately because a trigger can be
2467 ** created in the temp database that refers to a table in another
2468 ** database.
2470 sqlite3NestedParse(pParse,
2471 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2472 pDb->zDbSName, SCHEMA_TABLE(iDb), pTab->zName);
2473 if( !isView && !IsVirtual(pTab) ){
2474 destroyTable(pParse, pTab);
2477 /* Remove the table entry from SQLite's internal schema and modify
2478 ** the schema cookie.
2480 if( IsVirtual(pTab) ){
2481 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2483 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2484 sqlite3ChangeCookie(pParse, iDb);
2485 sqliteViewResetAll(db, iDb);
2489 ** This routine is called to do the work of a DROP TABLE statement.
2490 ** pName is the name of the table to be dropped.
2492 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2493 Table *pTab;
2494 Vdbe *v;
2495 sqlite3 *db = pParse->db;
2496 int iDb;
2498 if( db->mallocFailed ){
2499 goto exit_drop_table;
2501 assert( pParse->nErr==0 );
2502 assert( pName->nSrc==1 );
2503 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2504 if( noErr ) db->suppressErr++;
2505 assert( isView==0 || isView==LOCATE_VIEW );
2506 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2507 if( noErr ) db->suppressErr--;
2509 if( pTab==0 ){
2510 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2511 goto exit_drop_table;
2513 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2514 assert( iDb>=0 && iDb<db->nDb );
2516 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2517 ** it is initialized.
2519 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2520 goto exit_drop_table;
2522 #ifndef SQLITE_OMIT_AUTHORIZATION
2524 int code;
2525 const char *zTab = SCHEMA_TABLE(iDb);
2526 const char *zDb = db->aDb[iDb].zDbSName;
2527 const char *zArg2 = 0;
2528 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2529 goto exit_drop_table;
2531 if( isView ){
2532 if( !OMIT_TEMPDB && iDb==1 ){
2533 code = SQLITE_DROP_TEMP_VIEW;
2534 }else{
2535 code = SQLITE_DROP_VIEW;
2537 #ifndef SQLITE_OMIT_VIRTUALTABLE
2538 }else if( IsVirtual(pTab) ){
2539 code = SQLITE_DROP_VTABLE;
2540 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2541 #endif
2542 }else{
2543 if( !OMIT_TEMPDB && iDb==1 ){
2544 code = SQLITE_DROP_TEMP_TABLE;
2545 }else{
2546 code = SQLITE_DROP_TABLE;
2549 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2550 goto exit_drop_table;
2552 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2553 goto exit_drop_table;
2556 #endif
2557 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2558 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2559 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2560 goto exit_drop_table;
2563 #ifndef SQLITE_OMIT_VIEW
2564 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2565 ** on a table.
2567 if( isView && pTab->pSelect==0 ){
2568 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2569 goto exit_drop_table;
2571 if( !isView && pTab->pSelect ){
2572 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2573 goto exit_drop_table;
2575 #endif
2577 /* Generate code to remove the table from the master table
2578 ** on disk.
2580 v = sqlite3GetVdbe(pParse);
2581 if( v ){
2582 sqlite3BeginWriteOperation(pParse, 1, iDb);
2583 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2584 sqlite3FkDropTable(pParse, pName, pTab);
2585 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2588 exit_drop_table:
2589 sqlite3SrcListDelete(db, pName);
2593 ** This routine is called to create a new foreign key on the table
2594 ** currently under construction. pFromCol determines which columns
2595 ** in the current table point to the foreign key. If pFromCol==0 then
2596 ** connect the key to the last column inserted. pTo is the name of
2597 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2598 ** of tables in the parent pTo table. flags contains all
2599 ** information about the conflict resolution algorithms specified
2600 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2602 ** An FKey structure is created and added to the table currently
2603 ** under construction in the pParse->pNewTable field.
2605 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2606 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2608 void sqlite3CreateForeignKey(
2609 Parse *pParse, /* Parsing context */
2610 ExprList *pFromCol, /* Columns in this table that point to other table */
2611 Token *pTo, /* Name of the other table */
2612 ExprList *pToCol, /* Columns in the other table */
2613 int flags /* Conflict resolution algorithms. */
2615 sqlite3 *db = pParse->db;
2616 #ifndef SQLITE_OMIT_FOREIGN_KEY
2617 FKey *pFKey = 0;
2618 FKey *pNextTo;
2619 Table *p = pParse->pNewTable;
2620 int nByte;
2621 int i;
2622 int nCol;
2623 char *z;
2625 assert( pTo!=0 );
2626 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2627 if( pFromCol==0 ){
2628 int iCol = p->nCol-1;
2629 if( NEVER(iCol<0) ) goto fk_end;
2630 if( pToCol && pToCol->nExpr!=1 ){
2631 sqlite3ErrorMsg(pParse, "foreign key on %s"
2632 " should reference only one column of table %T",
2633 p->aCol[iCol].zName, pTo);
2634 goto fk_end;
2636 nCol = 1;
2637 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2638 sqlite3ErrorMsg(pParse,
2639 "number of columns in foreign key does not match the number of "
2640 "columns in the referenced table");
2641 goto fk_end;
2642 }else{
2643 nCol = pFromCol->nExpr;
2645 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2646 if( pToCol ){
2647 for(i=0; i<pToCol->nExpr; i++){
2648 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2651 pFKey = sqlite3DbMallocZero(db, nByte );
2652 if( pFKey==0 ){
2653 goto fk_end;
2655 pFKey->pFrom = p;
2656 pFKey->pNextFrom = p->pFKey;
2657 z = (char*)&pFKey->aCol[nCol];
2658 pFKey->zTo = z;
2659 memcpy(z, pTo->z, pTo->n);
2660 z[pTo->n] = 0;
2661 sqlite3Dequote(z);
2662 z += pTo->n+1;
2663 pFKey->nCol = nCol;
2664 if( pFromCol==0 ){
2665 pFKey->aCol[0].iFrom = p->nCol-1;
2666 }else{
2667 for(i=0; i<nCol; i++){
2668 int j;
2669 for(j=0; j<p->nCol; j++){
2670 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2671 pFKey->aCol[i].iFrom = j;
2672 break;
2675 if( j>=p->nCol ){
2676 sqlite3ErrorMsg(pParse,
2677 "unknown column \"%s\" in foreign key definition",
2678 pFromCol->a[i].zName);
2679 goto fk_end;
2683 if( pToCol ){
2684 for(i=0; i<nCol; i++){
2685 int n = sqlite3Strlen30(pToCol->a[i].zName);
2686 pFKey->aCol[i].zCol = z;
2687 memcpy(z, pToCol->a[i].zName, n);
2688 z[n] = 0;
2689 z += n+1;
2692 pFKey->isDeferred = 0;
2693 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2694 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2696 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2697 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2698 pFKey->zTo, (void *)pFKey
2700 if( pNextTo==pFKey ){
2701 sqlite3OomFault(db);
2702 goto fk_end;
2704 if( pNextTo ){
2705 assert( pNextTo->pPrevTo==0 );
2706 pFKey->pNextTo = pNextTo;
2707 pNextTo->pPrevTo = pFKey;
2710 /* Link the foreign key to the table as the last step.
2712 p->pFKey = pFKey;
2713 pFKey = 0;
2715 fk_end:
2716 sqlite3DbFree(db, pFKey);
2717 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2718 sqlite3ExprListDelete(db, pFromCol);
2719 sqlite3ExprListDelete(db, pToCol);
2723 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2724 ** clause is seen as part of a foreign key definition. The isDeferred
2725 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2726 ** The behavior of the most recently created foreign key is adjusted
2727 ** accordingly.
2729 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2730 #ifndef SQLITE_OMIT_FOREIGN_KEY
2731 Table *pTab;
2732 FKey *pFKey;
2733 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2734 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2735 pFKey->isDeferred = (u8)isDeferred;
2736 #endif
2740 ** Generate code that will erase and refill index *pIdx. This is
2741 ** used to initialize a newly created index or to recompute the
2742 ** content of an index in response to a REINDEX command.
2744 ** if memRootPage is not negative, it means that the index is newly
2745 ** created. The register specified by memRootPage contains the
2746 ** root page number of the index. If memRootPage is negative, then
2747 ** the index already exists and must be cleared before being refilled and
2748 ** the root page number of the index is taken from pIndex->tnum.
2750 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2751 Table *pTab = pIndex->pTable; /* The table that is indexed */
2752 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2753 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2754 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2755 int addr1; /* Address of top of loop */
2756 int addr2; /* Address to jump to for next iteration */
2757 int tnum; /* Root page of index */
2758 int iPartIdxLabel; /* Jump to this label to skip a row */
2759 Vdbe *v; /* Generate code into this virtual machine */
2760 KeyInfo *pKey; /* KeyInfo for index */
2761 int regRecord; /* Register holding assembled index record */
2762 sqlite3 *db = pParse->db; /* The database connection */
2763 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2765 #ifndef SQLITE_OMIT_AUTHORIZATION
2766 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2767 db->aDb[iDb].zDbSName ) ){
2768 return;
2770 #endif
2772 /* Require a write-lock on the table to perform this operation */
2773 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2775 v = sqlite3GetVdbe(pParse);
2776 if( v==0 ) return;
2777 if( memRootPage>=0 ){
2778 tnum = memRootPage;
2779 }else{
2780 tnum = pIndex->tnum;
2782 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2783 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2785 /* Open the sorter cursor if we are to use one. */
2786 iSorter = pParse->nTab++;
2787 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2788 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2790 /* Open the table. Loop through all rows of the table, inserting index
2791 ** records into the sorter. */
2792 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2793 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2794 regRecord = sqlite3GetTempReg(pParse);
2796 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2797 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2798 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2799 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2800 sqlite3VdbeJumpHere(v, addr1);
2801 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2802 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2803 (char *)pKey, P4_KEYINFO);
2804 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2806 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2807 if( IsUniqueIndex(pIndex) ){
2808 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2809 sqlite3VdbeGoto(v, j2);
2810 addr2 = sqlite3VdbeCurrentAddr(v);
2811 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2812 pIndex->nKeyCol); VdbeCoverage(v);
2813 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2814 }else{
2815 addr2 = sqlite3VdbeCurrentAddr(v);
2817 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2818 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2819 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2820 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2821 sqlite3ReleaseTempReg(pParse, regRecord);
2822 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2823 sqlite3VdbeJumpHere(v, addr1);
2825 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2826 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2827 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2831 ** Allocate heap space to hold an Index object with nCol columns.
2833 ** Increase the allocation size to provide an extra nExtra bytes
2834 ** of 8-byte aligned space after the Index object and return a
2835 ** pointer to this extra space in *ppExtra.
2837 Index *sqlite3AllocateIndexObject(
2838 sqlite3 *db, /* Database connection */
2839 i16 nCol, /* Total number of columns in the index */
2840 int nExtra, /* Number of bytes of extra space to alloc */
2841 char **ppExtra /* Pointer to the "extra" space */
2843 Index *p; /* Allocated index object */
2844 int nByte; /* Bytes of space for Index object + arrays */
2846 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2847 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2848 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2849 sizeof(i16)*nCol + /* Index.aiColumn */
2850 sizeof(u8)*nCol); /* Index.aSortOrder */
2851 p = sqlite3DbMallocZero(db, nByte + nExtra);
2852 if( p ){
2853 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2854 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2855 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2856 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2857 p->aSortOrder = (u8*)pExtra;
2858 p->nColumn = nCol;
2859 p->nKeyCol = nCol - 1;
2860 *ppExtra = ((char*)p) + nByte;
2862 return p;
2866 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2867 ** and pTblList is the name of the table that is to be indexed. Both will
2868 ** be NULL for a primary key or an index that is created to satisfy a
2869 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2870 ** as the table to be indexed. pParse->pNewTable is a table that is
2871 ** currently being constructed by a CREATE TABLE statement.
2873 ** pList is a list of columns to be indexed. pList will be NULL if this
2874 ** is a primary key or unique-constraint on the most recent column added
2875 ** to the table currently under construction.
2877 void sqlite3CreateIndex(
2878 Parse *pParse, /* All information about this parse */
2879 Token *pName1, /* First part of index name. May be NULL */
2880 Token *pName2, /* Second part of index name. May be NULL */
2881 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2882 ExprList *pList, /* A list of columns to be indexed */
2883 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2884 Token *pStart, /* The CREATE token that begins this statement */
2885 Expr *pPIWhere, /* WHERE clause for partial indices */
2886 int sortOrder, /* Sort order of primary key when pList==NULL */
2887 int ifNotExist, /* Omit error if index already exists */
2888 u8 idxType /* The index type */
2890 Table *pTab = 0; /* Table to be indexed */
2891 Index *pIndex = 0; /* The index to be created */
2892 char *zName = 0; /* Name of the index */
2893 int nName; /* Number of characters in zName */
2894 int i, j;
2895 DbFixer sFix; /* For assigning database names to pTable */
2896 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2897 sqlite3 *db = pParse->db;
2898 Db *pDb; /* The specific table containing the indexed database */
2899 int iDb; /* Index of the database that is being written */
2900 Token *pName = 0; /* Unqualified name of the index to create */
2901 struct ExprList_item *pListItem; /* For looping over pList */
2902 int nExtra = 0; /* Space allocated for zExtra[] */
2903 int nExtraCol; /* Number of extra columns needed */
2904 char *zExtra = 0; /* Extra space after the Index object */
2905 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2907 if( db->mallocFailed || pParse->nErr>0 ){
2908 goto exit_create_index;
2910 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2911 goto exit_create_index;
2913 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2914 goto exit_create_index;
2918 ** Find the table that is to be indexed. Return early if not found.
2920 if( pTblName!=0 ){
2922 /* Use the two-part index name to determine the database
2923 ** to search for the table. 'Fix' the table name to this db
2924 ** before looking up the table.
2926 assert( pName1 && pName2 );
2927 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2928 if( iDb<0 ) goto exit_create_index;
2929 assert( pName && pName->z );
2931 #ifndef SQLITE_OMIT_TEMPDB
2932 /* If the index name was unqualified, check if the table
2933 ** is a temp table. If so, set the database to 1. Do not do this
2934 ** if initialising a database schema.
2936 if( !db->init.busy ){
2937 pTab = sqlite3SrcListLookup(pParse, pTblName);
2938 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2939 iDb = 1;
2942 #endif
2944 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2945 if( sqlite3FixSrcList(&sFix, pTblName) ){
2946 /* Because the parser constructs pTblName from a single identifier,
2947 ** sqlite3FixSrcList can never fail. */
2948 assert(0);
2950 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2951 assert( db->mallocFailed==0 || pTab==0 );
2952 if( pTab==0 ) goto exit_create_index;
2953 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2954 sqlite3ErrorMsg(pParse,
2955 "cannot create a TEMP index on non-TEMP table \"%s\"",
2956 pTab->zName);
2957 goto exit_create_index;
2959 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2960 }else{
2961 assert( pName==0 );
2962 assert( pStart==0 );
2963 pTab = pParse->pNewTable;
2964 if( !pTab ) goto exit_create_index;
2965 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2967 pDb = &db->aDb[iDb];
2969 assert( pTab!=0 );
2970 assert( pParse->nErr==0 );
2971 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2972 && db->init.busy==0
2973 #if SQLITE_USER_AUTHENTICATION
2974 && sqlite3UserAuthTable(pTab->zName)==0
2975 #endif
2976 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2977 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2978 goto exit_create_index;
2980 #ifndef SQLITE_OMIT_VIEW
2981 if( pTab->pSelect ){
2982 sqlite3ErrorMsg(pParse, "views may not be indexed");
2983 goto exit_create_index;
2985 #endif
2986 #ifndef SQLITE_OMIT_VIRTUALTABLE
2987 if( IsVirtual(pTab) ){
2988 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2989 goto exit_create_index;
2991 #endif
2994 ** Find the name of the index. Make sure there is not already another
2995 ** index or table with the same name.
2997 ** Exception: If we are reading the names of permanent indices from the
2998 ** sqlite_master table (because some other process changed the schema) and
2999 ** one of the index names collides with the name of a temporary table or
3000 ** index, then we will continue to process this index.
3002 ** If pName==0 it means that we are
3003 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3004 ** own name.
3006 if( pName ){
3007 zName = sqlite3NameFromToken(db, pName);
3008 if( zName==0 ) goto exit_create_index;
3009 assert( pName->z!=0 );
3010 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3011 goto exit_create_index;
3013 if( !db->init.busy ){
3014 if( sqlite3FindTable(db, zName, 0)!=0 ){
3015 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3016 goto exit_create_index;
3019 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3020 if( !ifNotExist ){
3021 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3022 }else{
3023 assert( !db->init.busy );
3024 sqlite3CodeVerifySchema(pParse, iDb);
3026 goto exit_create_index;
3028 }else{
3029 int n;
3030 Index *pLoop;
3031 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3032 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3033 if( zName==0 ){
3034 goto exit_create_index;
3037 /* Automatic index names generated from within sqlite3_declare_vtab()
3038 ** must have names that are distinct from normal automatic index names.
3039 ** The following statement converts "sqlite3_autoindex..." into
3040 ** "sqlite3_butoindex..." in order to make the names distinct.
3041 ** The "vtab_err.test" test demonstrates the need of this statement. */
3042 if( IN_DECLARE_VTAB ) zName[7]++;
3045 /* Check for authorization to create an index.
3047 #ifndef SQLITE_OMIT_AUTHORIZATION
3049 const char *zDb = pDb->zDbSName;
3050 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3051 goto exit_create_index;
3053 i = SQLITE_CREATE_INDEX;
3054 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3055 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3056 goto exit_create_index;
3059 #endif
3061 /* If pList==0, it means this routine was called to make a primary
3062 ** key out of the last column added to the table under construction.
3063 ** So create a fake list to simulate this.
3065 if( pList==0 ){
3066 Token prevCol;
3067 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3068 pList = sqlite3ExprListAppend(pParse, 0,
3069 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3070 if( pList==0 ) goto exit_create_index;
3071 assert( pList->nExpr==1 );
3072 sqlite3ExprListSetSortOrder(pList, sortOrder);
3073 }else{
3074 sqlite3ExprListCheckLength(pParse, pList, "index");
3077 /* Figure out how many bytes of space are required to store explicitly
3078 ** specified collation sequence names.
3080 for(i=0; i<pList->nExpr; i++){
3081 Expr *pExpr = pList->a[i].pExpr;
3082 assert( pExpr!=0 );
3083 if( pExpr->op==TK_COLLATE ){
3084 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3089 ** Allocate the index structure.
3091 nName = sqlite3Strlen30(zName);
3092 nExtraCol = pPk ? pPk->nKeyCol : 1;
3093 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3094 nName + nExtra + 1, &zExtra);
3095 if( db->mallocFailed ){
3096 goto exit_create_index;
3098 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3099 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3100 pIndex->zName = zExtra;
3101 zExtra += nName + 1;
3102 memcpy(pIndex->zName, zName, nName+1);
3103 pIndex->pTable = pTab;
3104 pIndex->onError = (u8)onError;
3105 pIndex->uniqNotNull = onError!=OE_None;
3106 pIndex->idxType = idxType;
3107 pIndex->pSchema = db->aDb[iDb].pSchema;
3108 pIndex->nKeyCol = pList->nExpr;
3109 if( pPIWhere ){
3110 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3111 pIndex->pPartIdxWhere = pPIWhere;
3112 pPIWhere = 0;
3114 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3116 /* Check to see if we should honor DESC requests on index columns
3118 if( pDb->pSchema->file_format>=4 ){
3119 sortOrderMask = -1; /* Honor DESC */
3120 }else{
3121 sortOrderMask = 0; /* Ignore DESC */
3124 /* Analyze the list of expressions that form the terms of the index and
3125 ** report any errors. In the common case where the expression is exactly
3126 ** a table column, store that column in aiColumn[]. For general expressions,
3127 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3129 ** TODO: Issue a warning if two or more columns of the index are identical.
3130 ** TODO: Issue a warning if the table primary key is used as part of the
3131 ** index key.
3133 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3134 Expr *pCExpr; /* The i-th index expression */
3135 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3136 const char *zColl; /* Collation sequence name */
3138 sqlite3StringToId(pListItem->pExpr);
3139 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3140 if( pParse->nErr ) goto exit_create_index;
3141 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3142 if( pCExpr->op!=TK_COLUMN ){
3143 if( pTab==pParse->pNewTable ){
3144 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3145 "UNIQUE constraints");
3146 goto exit_create_index;
3148 if( pIndex->aColExpr==0 ){
3149 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3150 pIndex->aColExpr = pCopy;
3151 if( !db->mallocFailed ){
3152 assert( pCopy!=0 );
3153 pListItem = &pCopy->a[i];
3156 j = XN_EXPR;
3157 pIndex->aiColumn[i] = XN_EXPR;
3158 pIndex->uniqNotNull = 0;
3159 }else{
3160 j = pCExpr->iColumn;
3161 assert( j<=0x7fff );
3162 if( j<0 ){
3163 j = pTab->iPKey;
3164 }else if( pTab->aCol[j].notNull==0 ){
3165 pIndex->uniqNotNull = 0;
3167 pIndex->aiColumn[i] = (i16)j;
3169 zColl = 0;
3170 if( pListItem->pExpr->op==TK_COLLATE ){
3171 int nColl;
3172 zColl = pListItem->pExpr->u.zToken;
3173 nColl = sqlite3Strlen30(zColl) + 1;
3174 assert( nExtra>=nColl );
3175 memcpy(zExtra, zColl, nColl);
3176 zColl = zExtra;
3177 zExtra += nColl;
3178 nExtra -= nColl;
3179 }else if( j>=0 ){
3180 zColl = pTab->aCol[j].zColl;
3182 if( !zColl ) zColl = sqlite3StrBINARY;
3183 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3184 goto exit_create_index;
3186 pIndex->azColl[i] = zColl;
3187 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3188 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3191 /* Append the table key to the end of the index. For WITHOUT ROWID
3192 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3193 ** normal tables (when pPk==0) this will be the rowid.
3195 if( pPk ){
3196 for(j=0; j<pPk->nKeyCol; j++){
3197 int x = pPk->aiColumn[j];
3198 assert( x>=0 );
3199 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3200 pIndex->nColumn--;
3201 }else{
3202 pIndex->aiColumn[i] = x;
3203 pIndex->azColl[i] = pPk->azColl[j];
3204 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3205 i++;
3208 assert( i==pIndex->nColumn );
3209 }else{
3210 pIndex->aiColumn[i] = XN_ROWID;
3211 pIndex->azColl[i] = sqlite3StrBINARY;
3213 sqlite3DefaultRowEst(pIndex);
3214 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3216 /* If this index contains every column of its table, then mark
3217 ** it as a covering index */
3218 assert( HasRowid(pTab)
3219 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3220 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3221 pIndex->isCovering = 1;
3222 for(j=0; j<pTab->nCol; j++){
3223 if( j==pTab->iPKey ) continue;
3224 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3225 pIndex->isCovering = 0;
3226 break;
3230 if( pTab==pParse->pNewTable ){
3231 /* This routine has been called to create an automatic index as a
3232 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3233 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3234 ** i.e. one of:
3236 ** CREATE TABLE t(x PRIMARY KEY, y);
3237 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3239 ** Either way, check to see if the table already has such an index. If
3240 ** so, don't bother creating this one. This only applies to
3241 ** automatically created indices. Users can do as they wish with
3242 ** explicit indices.
3244 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3245 ** (and thus suppressing the second one) even if they have different
3246 ** sort orders.
3248 ** If there are different collating sequences or if the columns of
3249 ** the constraint occur in different orders, then the constraints are
3250 ** considered distinct and both result in separate indices.
3252 Index *pIdx;
3253 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3254 int k;
3255 assert( IsUniqueIndex(pIdx) );
3256 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3257 assert( IsUniqueIndex(pIndex) );
3259 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3260 for(k=0; k<pIdx->nKeyCol; k++){
3261 const char *z1;
3262 const char *z2;
3263 assert( pIdx->aiColumn[k]>=0 );
3264 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3265 z1 = pIdx->azColl[k];
3266 z2 = pIndex->azColl[k];
3267 if( sqlite3StrICmp(z1, z2) ) break;
3269 if( k==pIdx->nKeyCol ){
3270 if( pIdx->onError!=pIndex->onError ){
3271 /* This constraint creates the same index as a previous
3272 ** constraint specified somewhere in the CREATE TABLE statement.
3273 ** However the ON CONFLICT clauses are different. If both this
3274 ** constraint and the previous equivalent constraint have explicit
3275 ** ON CONFLICT clauses this is an error. Otherwise, use the
3276 ** explicitly specified behavior for the index.
3278 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3279 sqlite3ErrorMsg(pParse,
3280 "conflicting ON CONFLICT clauses specified", 0);
3282 if( pIdx->onError==OE_Default ){
3283 pIdx->onError = pIndex->onError;
3286 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3287 goto exit_create_index;
3292 /* Link the new Index structure to its table and to the other
3293 ** in-memory database structures.
3295 assert( pParse->nErr==0 );
3296 if( db->init.busy ){
3297 Index *p;
3298 assert( !IN_DECLARE_VTAB );
3299 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3300 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3301 pIndex->zName, pIndex);
3302 if( p ){
3303 assert( p==pIndex ); /* Malloc must have failed */
3304 sqlite3OomFault(db);
3305 goto exit_create_index;
3307 db->flags |= SQLITE_InternChanges;
3308 if( pTblName!=0 ){
3309 pIndex->tnum = db->init.newTnum;
3313 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3314 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3315 ** emit code to allocate the index rootpage on disk and make an entry for
3316 ** the index in the sqlite_master table and populate the index with
3317 ** content. But, do not do this if we are simply reading the sqlite_master
3318 ** table to parse the schema, or if this index is the PRIMARY KEY index
3319 ** of a WITHOUT ROWID table.
3321 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3322 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3323 ** has just been created, it contains no data and the index initialization
3324 ** step can be skipped.
3326 else if( HasRowid(pTab) || pTblName!=0 ){
3327 Vdbe *v;
3328 char *zStmt;
3329 int iMem = ++pParse->nMem;
3331 v = sqlite3GetVdbe(pParse);
3332 if( v==0 ) goto exit_create_index;
3334 sqlite3BeginWriteOperation(pParse, 1, iDb);
3336 /* Create the rootpage for the index using CreateIndex. But before
3337 ** doing so, code a Noop instruction and store its address in
3338 ** Index.tnum. This is required in case this index is actually a
3339 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3340 ** that case the convertToWithoutRowidTable() routine will replace
3341 ** the Noop with a Goto to jump over the VDBE code generated below. */
3342 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3343 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3345 /* Gather the complete text of the CREATE INDEX statement into
3346 ** the zStmt variable
3348 if( pStart ){
3349 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3350 if( pName->z[n-1]==';' ) n--;
3351 /* A named index with an explicit CREATE INDEX statement */
3352 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3353 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3354 }else{
3355 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3356 /* zStmt = sqlite3MPrintf(""); */
3357 zStmt = 0;
3360 /* Add an entry in sqlite_master for this index
3362 sqlite3NestedParse(pParse,
3363 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3364 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb),
3365 pIndex->zName,
3366 pTab->zName,
3367 iMem,
3368 zStmt
3370 sqlite3DbFree(db, zStmt);
3372 /* Fill the index with data and reparse the schema. Code an OP_Expire
3373 ** to invalidate all pre-compiled statements.
3375 if( pTblName ){
3376 sqlite3RefillIndex(pParse, pIndex, iMem);
3377 sqlite3ChangeCookie(pParse, iDb);
3378 sqlite3VdbeAddParseSchemaOp(v, iDb,
3379 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3380 sqlite3VdbeAddOp0(v, OP_Expire);
3383 sqlite3VdbeJumpHere(v, pIndex->tnum);
3386 /* When adding an index to the list of indices for a table, make
3387 ** sure all indices labeled OE_Replace come after all those labeled
3388 ** OE_Ignore. This is necessary for the correct constraint check
3389 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3390 ** UPDATE and INSERT statements.
3392 if( db->init.busy || pTblName==0 ){
3393 if( onError!=OE_Replace || pTab->pIndex==0
3394 || pTab->pIndex->onError==OE_Replace){
3395 pIndex->pNext = pTab->pIndex;
3396 pTab->pIndex = pIndex;
3397 }else{
3398 Index *pOther = pTab->pIndex;
3399 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3400 pOther = pOther->pNext;
3402 pIndex->pNext = pOther->pNext;
3403 pOther->pNext = pIndex;
3405 pIndex = 0;
3408 /* Clean up before exiting */
3409 exit_create_index:
3410 if( pIndex ) freeIndex(db, pIndex);
3411 sqlite3ExprDelete(db, pPIWhere);
3412 sqlite3ExprListDelete(db, pList);
3413 sqlite3SrcListDelete(db, pTblName);
3414 sqlite3DbFree(db, zName);
3418 ** Fill the Index.aiRowEst[] array with default information - information
3419 ** to be used when we have not run the ANALYZE command.
3421 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3422 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3423 ** number of rows in the table that match any particular value of the
3424 ** first column of the index. aiRowEst[2] is an estimate of the number
3425 ** of rows that match any particular combination of the first 2 columns
3426 ** of the index. And so forth. It must always be the case that
3428 ** aiRowEst[N]<=aiRowEst[N-1]
3429 ** aiRowEst[N]>=1
3431 ** Apart from that, we have little to go on besides intuition as to
3432 ** how aiRowEst[] should be initialized. The numbers generated here
3433 ** are based on typical values found in actual indices.
3435 void sqlite3DefaultRowEst(Index *pIdx){
3436 /* 10, 9, 8, 7, 6 */
3437 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3438 LogEst *a = pIdx->aiRowLogEst;
3439 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3440 int i;
3442 /* Set the first entry (number of rows in the index) to the estimated
3443 ** number of rows in the table, or half the number of rows in the table
3444 ** for a partial index. But do not let the estimate drop below 10. */
3445 a[0] = pIdx->pTable->nRowLogEst;
3446 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3447 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3449 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3450 ** 6 and each subsequent value (if any) is 5. */
3451 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3452 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3453 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3456 assert( 0==sqlite3LogEst(1) );
3457 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3461 ** This routine will drop an existing named index. This routine
3462 ** implements the DROP INDEX statement.
3464 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3465 Index *pIndex;
3466 Vdbe *v;
3467 sqlite3 *db = pParse->db;
3468 int iDb;
3470 assert( pParse->nErr==0 ); /* Never called with prior errors */
3471 if( db->mallocFailed ){
3472 goto exit_drop_index;
3474 assert( pName->nSrc==1 );
3475 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3476 goto exit_drop_index;
3478 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3479 if( pIndex==0 ){
3480 if( !ifExists ){
3481 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3482 }else{
3483 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3485 pParse->checkSchema = 1;
3486 goto exit_drop_index;
3488 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3489 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3490 "or PRIMARY KEY constraint cannot be dropped", 0);
3491 goto exit_drop_index;
3493 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3494 #ifndef SQLITE_OMIT_AUTHORIZATION
3496 int code = SQLITE_DROP_INDEX;
3497 Table *pTab = pIndex->pTable;
3498 const char *zDb = db->aDb[iDb].zDbSName;
3499 const char *zTab = SCHEMA_TABLE(iDb);
3500 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3501 goto exit_drop_index;
3503 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3504 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3505 goto exit_drop_index;
3508 #endif
3510 /* Generate code to remove the index and from the master table */
3511 v = sqlite3GetVdbe(pParse);
3512 if( v ){
3513 sqlite3BeginWriteOperation(pParse, 1, iDb);
3514 sqlite3NestedParse(pParse,
3515 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3516 db->aDb[iDb].zDbSName, SCHEMA_TABLE(iDb), pIndex->zName
3518 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3519 sqlite3ChangeCookie(pParse, iDb);
3520 destroyRootPage(pParse, pIndex->tnum, iDb);
3521 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3524 exit_drop_index:
3525 sqlite3SrcListDelete(db, pName);
3529 ** pArray is a pointer to an array of objects. Each object in the
3530 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3531 ** to extend the array so that there is space for a new object at the end.
3533 ** When this function is called, *pnEntry contains the current size of
3534 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3535 ** in total).
3537 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3538 ** space allocated for the new object is zeroed, *pnEntry updated to
3539 ** reflect the new size of the array and a pointer to the new allocation
3540 ** returned. *pIdx is set to the index of the new array entry in this case.
3542 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3543 ** unchanged and a copy of pArray returned.
3545 void *sqlite3ArrayAllocate(
3546 sqlite3 *db, /* Connection to notify of malloc failures */
3547 void *pArray, /* Array of objects. Might be reallocated */
3548 int szEntry, /* Size of each object in the array */
3549 int *pnEntry, /* Number of objects currently in use */
3550 int *pIdx /* Write the index of a new slot here */
3552 char *z;
3553 int n = *pnEntry;
3554 if( (n & (n-1))==0 ){
3555 int sz = (n==0) ? 1 : 2*n;
3556 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3557 if( pNew==0 ){
3558 *pIdx = -1;
3559 return pArray;
3561 pArray = pNew;
3563 z = (char*)pArray;
3564 memset(&z[n * szEntry], 0, szEntry);
3565 *pIdx = n;
3566 ++*pnEntry;
3567 return pArray;
3571 ** Append a new element to the given IdList. Create a new IdList if
3572 ** need be.
3574 ** A new IdList is returned, or NULL if malloc() fails.
3576 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3577 int i;
3578 if( pList==0 ){
3579 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3580 if( pList==0 ) return 0;
3582 pList->a = sqlite3ArrayAllocate(
3584 pList->a,
3585 sizeof(pList->a[0]),
3586 &pList->nId,
3589 if( i<0 ){
3590 sqlite3IdListDelete(db, pList);
3591 return 0;
3593 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3594 return pList;
3598 ** Delete an IdList.
3600 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3601 int i;
3602 if( pList==0 ) return;
3603 for(i=0; i<pList->nId; i++){
3604 sqlite3DbFree(db, pList->a[i].zName);
3606 sqlite3DbFree(db, pList->a);
3607 sqlite3DbFree(db, pList);
3611 ** Return the index in pList of the identifier named zId. Return -1
3612 ** if not found.
3614 int sqlite3IdListIndex(IdList *pList, const char *zName){
3615 int i;
3616 if( pList==0 ) return -1;
3617 for(i=0; i<pList->nId; i++){
3618 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3620 return -1;
3624 ** Expand the space allocated for the given SrcList object by
3625 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3626 ** New slots are zeroed.
3628 ** For example, suppose a SrcList initially contains two entries: A,B.
3629 ** To append 3 new entries onto the end, do this:
3631 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3633 ** After the call above it would contain: A, B, nil, nil, nil.
3634 ** If the iStart argument had been 1 instead of 2, then the result
3635 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3636 ** the iStart value would be 0. The result then would
3637 ** be: nil, nil, nil, A, B.
3639 ** If a memory allocation fails the SrcList is unchanged. The
3640 ** db->mallocFailed flag will be set to true.
3642 SrcList *sqlite3SrcListEnlarge(
3643 sqlite3 *db, /* Database connection to notify of OOM errors */
3644 SrcList *pSrc, /* The SrcList to be enlarged */
3645 int nExtra, /* Number of new slots to add to pSrc->a[] */
3646 int iStart /* Index in pSrc->a[] of first new slot */
3648 int i;
3650 /* Sanity checking on calling parameters */
3651 assert( iStart>=0 );
3652 assert( nExtra>=1 );
3653 assert( pSrc!=0 );
3654 assert( iStart<=pSrc->nSrc );
3656 /* Allocate additional space if needed */
3657 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3658 SrcList *pNew;
3659 int nAlloc = pSrc->nSrc+nExtra;
3660 int nGot;
3661 pNew = sqlite3DbRealloc(db, pSrc,
3662 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3663 if( pNew==0 ){
3664 assert( db->mallocFailed );
3665 return pSrc;
3667 pSrc = pNew;
3668 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3669 pSrc->nAlloc = nGot;
3672 /* Move existing slots that come after the newly inserted slots
3673 ** out of the way */
3674 for(i=pSrc->nSrc-1; i>=iStart; i--){
3675 pSrc->a[i+nExtra] = pSrc->a[i];
3677 pSrc->nSrc += nExtra;
3679 /* Zero the newly allocated slots */
3680 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3681 for(i=iStart; i<iStart+nExtra; i++){
3682 pSrc->a[i].iCursor = -1;
3685 /* Return a pointer to the enlarged SrcList */
3686 return pSrc;
3691 ** Append a new table name to the given SrcList. Create a new SrcList if
3692 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3694 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3695 ** SrcList might be the same as the SrcList that was input or it might be
3696 ** a new one. If an OOM error does occurs, then the prior value of pList
3697 ** that is input to this routine is automatically freed.
3699 ** If pDatabase is not null, it means that the table has an optional
3700 ** database name prefix. Like this: "database.table". The pDatabase
3701 ** points to the table name and the pTable points to the database name.
3702 ** The SrcList.a[].zName field is filled with the table name which might
3703 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3704 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3705 ** or with NULL if no database is specified.
3707 ** In other words, if call like this:
3709 ** sqlite3SrcListAppend(D,A,B,0);
3711 ** Then B is a table name and the database name is unspecified. If called
3712 ** like this:
3714 ** sqlite3SrcListAppend(D,A,B,C);
3716 ** Then C is the table name and B is the database name. If C is defined
3717 ** then so is B. In other words, we never have a case where:
3719 ** sqlite3SrcListAppend(D,A,0,C);
3721 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3722 ** before being added to the SrcList.
3724 SrcList *sqlite3SrcListAppend(
3725 sqlite3 *db, /* Connection to notify of malloc failures */
3726 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3727 Token *pTable, /* Table to append */
3728 Token *pDatabase /* Database of the table */
3730 struct SrcList_item *pItem;
3731 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3732 assert( db!=0 );
3733 if( pList==0 ){
3734 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3735 if( pList==0 ) return 0;
3736 pList->nAlloc = 1;
3737 pList->nSrc = 0;
3739 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3740 if( db->mallocFailed ){
3741 sqlite3SrcListDelete(db, pList);
3742 return 0;
3744 pItem = &pList->a[pList->nSrc-1];
3745 if( pDatabase && pDatabase->z==0 ){
3746 pDatabase = 0;
3748 if( pDatabase ){
3749 Token *pTemp = pDatabase;
3750 pDatabase = pTable;
3751 pTable = pTemp;
3753 pItem->zName = sqlite3NameFromToken(db, pTable);
3754 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3755 return pList;
3759 ** Assign VdbeCursor index numbers to all tables in a SrcList
3761 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3762 int i;
3763 struct SrcList_item *pItem;
3764 assert(pList || pParse->db->mallocFailed );
3765 if( pList ){
3766 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3767 if( pItem->iCursor>=0 ) break;
3768 pItem->iCursor = pParse->nTab++;
3769 if( pItem->pSelect ){
3770 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3777 ** Delete an entire SrcList including all its substructure.
3779 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3780 int i;
3781 struct SrcList_item *pItem;
3782 if( pList==0 ) return;
3783 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3784 sqlite3DbFree(db, pItem->zDatabase);
3785 sqlite3DbFree(db, pItem->zName);
3786 sqlite3DbFree(db, pItem->zAlias);
3787 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3788 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3789 sqlite3DeleteTable(db, pItem->pTab);
3790 sqlite3SelectDelete(db, pItem->pSelect);
3791 sqlite3ExprDelete(db, pItem->pOn);
3792 sqlite3IdListDelete(db, pItem->pUsing);
3794 sqlite3DbFree(db, pList);
3798 ** This routine is called by the parser to add a new term to the
3799 ** end of a growing FROM clause. The "p" parameter is the part of
3800 ** the FROM clause that has already been constructed. "p" is NULL
3801 ** if this is the first term of the FROM clause. pTable and pDatabase
3802 ** are the name of the table and database named in the FROM clause term.
3803 ** pDatabase is NULL if the database name qualifier is missing - the
3804 ** usual case. If the term has an alias, then pAlias points to the
3805 ** alias token. If the term is a subquery, then pSubquery is the
3806 ** SELECT statement that the subquery encodes. The pTable and
3807 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3808 ** parameters are the content of the ON and USING clauses.
3810 ** Return a new SrcList which encodes is the FROM with the new
3811 ** term added.
3813 SrcList *sqlite3SrcListAppendFromTerm(
3814 Parse *pParse, /* Parsing context */
3815 SrcList *p, /* The left part of the FROM clause already seen */
3816 Token *pTable, /* Name of the table to add to the FROM clause */
3817 Token *pDatabase, /* Name of the database containing pTable */
3818 Token *pAlias, /* The right-hand side of the AS subexpression */
3819 Select *pSubquery, /* A subquery used in place of a table name */
3820 Expr *pOn, /* The ON clause of a join */
3821 IdList *pUsing /* The USING clause of a join */
3823 struct SrcList_item *pItem;
3824 sqlite3 *db = pParse->db;
3825 if( !p && (pOn || pUsing) ){
3826 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3827 (pOn ? "ON" : "USING")
3829 goto append_from_error;
3831 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3832 if( p==0 || NEVER(p->nSrc==0) ){
3833 goto append_from_error;
3835 pItem = &p->a[p->nSrc-1];
3836 assert( pAlias!=0 );
3837 if( pAlias->n ){
3838 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3840 pItem->pSelect = pSubquery;
3841 pItem->pOn = pOn;
3842 pItem->pUsing = pUsing;
3843 return p;
3845 append_from_error:
3846 assert( p==0 );
3847 sqlite3ExprDelete(db, pOn);
3848 sqlite3IdListDelete(db, pUsing);
3849 sqlite3SelectDelete(db, pSubquery);
3850 return 0;
3854 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3855 ** element of the source-list passed as the second argument.
3857 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3858 assert( pIndexedBy!=0 );
3859 if( p && ALWAYS(p->nSrc>0) ){
3860 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3861 assert( pItem->fg.notIndexed==0 );
3862 assert( pItem->fg.isIndexedBy==0 );
3863 assert( pItem->fg.isTabFunc==0 );
3864 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3865 /* A "NOT INDEXED" clause was supplied. See parse.y
3866 ** construct "indexed_opt" for details. */
3867 pItem->fg.notIndexed = 1;
3868 }else{
3869 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3870 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3876 ** Add the list of function arguments to the SrcList entry for a
3877 ** table-valued-function.
3879 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3880 if( p ){
3881 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3882 assert( pItem->fg.notIndexed==0 );
3883 assert( pItem->fg.isIndexedBy==0 );
3884 assert( pItem->fg.isTabFunc==0 );
3885 pItem->u1.pFuncArg = pList;
3886 pItem->fg.isTabFunc = 1;
3887 }else{
3888 sqlite3ExprListDelete(pParse->db, pList);
3893 ** When building up a FROM clause in the parser, the join operator
3894 ** is initially attached to the left operand. But the code generator
3895 ** expects the join operator to be on the right operand. This routine
3896 ** Shifts all join operators from left to right for an entire FROM
3897 ** clause.
3899 ** Example: Suppose the join is like this:
3901 ** A natural cross join B
3903 ** The operator is "natural cross join". The A and B operands are stored
3904 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3905 ** operator with A. This routine shifts that operator over to B.
3907 void sqlite3SrcListShiftJoinType(SrcList *p){
3908 if( p ){
3909 int i;
3910 for(i=p->nSrc-1; i>0; i--){
3911 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3913 p->a[0].fg.jointype = 0;
3918 ** Generate VDBE code for a BEGIN statement.
3920 void sqlite3BeginTransaction(Parse *pParse, int type){
3921 sqlite3 *db;
3922 Vdbe *v;
3923 int i;
3925 assert( pParse!=0 );
3926 db = pParse->db;
3927 assert( db!=0 );
3928 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3929 return;
3931 v = sqlite3GetVdbe(pParse);
3932 if( !v ) return;
3933 if( type!=TK_DEFERRED ){
3934 for(i=0; i<db->nDb; i++){
3935 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3936 sqlite3VdbeUsesBtree(v, i);
3939 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3943 ** Generate VDBE code for a COMMIT statement.
3945 void sqlite3CommitTransaction(Parse *pParse){
3946 Vdbe *v;
3948 assert( pParse!=0 );
3949 assert( pParse->db!=0 );
3950 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3951 return;
3953 v = sqlite3GetVdbe(pParse);
3954 if( v ){
3955 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3960 ** Generate VDBE code for a ROLLBACK statement.
3962 void sqlite3RollbackTransaction(Parse *pParse){
3963 Vdbe *v;
3965 assert( pParse!=0 );
3966 assert( pParse->db!=0 );
3967 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3968 return;
3970 v = sqlite3GetVdbe(pParse);
3971 if( v ){
3972 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3977 ** This function is called by the parser when it parses a command to create,
3978 ** release or rollback an SQL savepoint.
3980 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3981 char *zName = sqlite3NameFromToken(pParse->db, pName);
3982 if( zName ){
3983 Vdbe *v = sqlite3GetVdbe(pParse);
3984 #ifndef SQLITE_OMIT_AUTHORIZATION
3985 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3986 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3987 #endif
3988 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3989 sqlite3DbFree(pParse->db, zName);
3990 return;
3992 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3997 ** Make sure the TEMP database is open and available for use. Return
3998 ** the number of errors. Leave any error messages in the pParse structure.
4000 int sqlite3OpenTempDatabase(Parse *pParse){
4001 sqlite3 *db = pParse->db;
4002 if( db->aDb[1].pBt==0 && !pParse->explain ){
4003 int rc;
4004 Btree *pBt;
4005 static const int flags =
4006 SQLITE_OPEN_READWRITE |
4007 SQLITE_OPEN_CREATE |
4008 SQLITE_OPEN_EXCLUSIVE |
4009 SQLITE_OPEN_DELETEONCLOSE |
4010 SQLITE_OPEN_TEMP_DB;
4012 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4013 if( rc!=SQLITE_OK ){
4014 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4015 "file for storing temporary tables");
4016 pParse->rc = rc;
4017 return 1;
4019 db->aDb[1].pBt = pBt;
4020 assert( db->aDb[1].pSchema );
4021 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4022 sqlite3OomFault(db);
4023 return 1;
4026 return 0;
4030 ** Record the fact that the schema cookie will need to be verified
4031 ** for database iDb. The code to actually verify the schema cookie
4032 ** will occur at the end of the top-level VDBE and will be generated
4033 ** later, by sqlite3FinishCoding().
4035 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4036 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4038 assert( iDb>=0 && iDb<pParse->db->nDb );
4039 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4040 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4041 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4042 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4043 DbMaskSet(pToplevel->cookieMask, iDb);
4044 if( !OMIT_TEMPDB && iDb==1 ){
4045 sqlite3OpenTempDatabase(pToplevel);
4051 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4052 ** attached database. Otherwise, invoke it for the database named zDb only.
4054 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4055 sqlite3 *db = pParse->db;
4056 int i;
4057 for(i=0; i<db->nDb; i++){
4058 Db *pDb = &db->aDb[i];
4059 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4060 sqlite3CodeVerifySchema(pParse, i);
4066 ** Generate VDBE code that prepares for doing an operation that
4067 ** might change the database.
4069 ** This routine starts a new transaction if we are not already within
4070 ** a transaction. If we are already within a transaction, then a checkpoint
4071 ** is set if the setStatement parameter is true. A checkpoint should
4072 ** be set for operations that might fail (due to a constraint) part of
4073 ** the way through and which will need to undo some writes without having to
4074 ** rollback the whole transaction. For operations where all constraints
4075 ** can be checked before any changes are made to the database, it is never
4076 ** necessary to undo a write and the checkpoint should not be set.
4078 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4079 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4080 sqlite3CodeVerifySchema(pParse, iDb);
4081 DbMaskSet(pToplevel->writeMask, iDb);
4082 pToplevel->isMultiWrite |= setStatement;
4086 ** Indicate that the statement currently under construction might write
4087 ** more than one entry (example: deleting one row then inserting another,
4088 ** inserting multiple rows in a table, or inserting a row and index entries.)
4089 ** If an abort occurs after some of these writes have completed, then it will
4090 ** be necessary to undo the completed writes.
4092 void sqlite3MultiWrite(Parse *pParse){
4093 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4094 pToplevel->isMultiWrite = 1;
4098 ** The code generator calls this routine if is discovers that it is
4099 ** possible to abort a statement prior to completion. In order to
4100 ** perform this abort without corrupting the database, we need to make
4101 ** sure that the statement is protected by a statement transaction.
4103 ** Technically, we only need to set the mayAbort flag if the
4104 ** isMultiWrite flag was previously set. There is a time dependency
4105 ** such that the abort must occur after the multiwrite. This makes
4106 ** some statements involving the REPLACE conflict resolution algorithm
4107 ** go a little faster. But taking advantage of this time dependency
4108 ** makes it more difficult to prove that the code is correct (in
4109 ** particular, it prevents us from writing an effective
4110 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4111 ** to take the safe route and skip the optimization.
4113 void sqlite3MayAbort(Parse *pParse){
4114 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4115 pToplevel->mayAbort = 1;
4119 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4120 ** error. The onError parameter determines which (if any) of the statement
4121 ** and/or current transaction is rolled back.
4123 void sqlite3HaltConstraint(
4124 Parse *pParse, /* Parsing context */
4125 int errCode, /* extended error code */
4126 int onError, /* Constraint type */
4127 char *p4, /* Error message */
4128 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4129 u8 p5Errmsg /* P5_ErrMsg type */
4131 Vdbe *v = sqlite3GetVdbe(pParse);
4132 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4133 if( onError==OE_Abort ){
4134 sqlite3MayAbort(pParse);
4136 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4137 sqlite3VdbeChangeP5(v, p5Errmsg);
4141 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4143 void sqlite3UniqueConstraint(
4144 Parse *pParse, /* Parsing context */
4145 int onError, /* Constraint type */
4146 Index *pIdx /* The index that triggers the constraint */
4148 char *zErr;
4149 int j;
4150 StrAccum errMsg;
4151 Table *pTab = pIdx->pTable;
4153 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4154 if( pIdx->aColExpr ){
4155 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4156 }else{
4157 for(j=0; j<pIdx->nKeyCol; j++){
4158 char *zCol;
4159 assert( pIdx->aiColumn[j]>=0 );
4160 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4161 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4162 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4165 zErr = sqlite3StrAccumFinish(&errMsg);
4166 sqlite3HaltConstraint(pParse,
4167 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4168 : SQLITE_CONSTRAINT_UNIQUE,
4169 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4174 ** Code an OP_Halt due to non-unique rowid.
4176 void sqlite3RowidConstraint(
4177 Parse *pParse, /* Parsing context */
4178 int onError, /* Conflict resolution algorithm */
4179 Table *pTab /* The table with the non-unique rowid */
4181 char *zMsg;
4182 int rc;
4183 if( pTab->iPKey>=0 ){
4184 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4185 pTab->aCol[pTab->iPKey].zName);
4186 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4187 }else{
4188 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4189 rc = SQLITE_CONSTRAINT_ROWID;
4191 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4192 P5_ConstraintUnique);
4196 ** Check to see if pIndex uses the collating sequence pColl. Return
4197 ** true if it does and false if it does not.
4199 #ifndef SQLITE_OMIT_REINDEX
4200 static int collationMatch(const char *zColl, Index *pIndex){
4201 int i;
4202 assert( zColl!=0 );
4203 for(i=0; i<pIndex->nColumn; i++){
4204 const char *z = pIndex->azColl[i];
4205 assert( z!=0 || pIndex->aiColumn[i]<0 );
4206 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4207 return 1;
4210 return 0;
4212 #endif
4215 ** Recompute all indices of pTab that use the collating sequence pColl.
4216 ** If pColl==0 then recompute all indices of pTab.
4218 #ifndef SQLITE_OMIT_REINDEX
4219 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4220 Index *pIndex; /* An index associated with pTab */
4222 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4223 if( zColl==0 || collationMatch(zColl, pIndex) ){
4224 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4225 sqlite3BeginWriteOperation(pParse, 0, iDb);
4226 sqlite3RefillIndex(pParse, pIndex, -1);
4230 #endif
4233 ** Recompute all indices of all tables in all databases where the
4234 ** indices use the collating sequence pColl. If pColl==0 then recompute
4235 ** all indices everywhere.
4237 #ifndef SQLITE_OMIT_REINDEX
4238 static void reindexDatabases(Parse *pParse, char const *zColl){
4239 Db *pDb; /* A single database */
4240 int iDb; /* The database index number */
4241 sqlite3 *db = pParse->db; /* The database connection */
4242 HashElem *k; /* For looping over tables in pDb */
4243 Table *pTab; /* A table in the database */
4245 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4246 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4247 assert( pDb!=0 );
4248 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4249 pTab = (Table*)sqliteHashData(k);
4250 reindexTable(pParse, pTab, zColl);
4254 #endif
4257 ** Generate code for the REINDEX command.
4259 ** REINDEX -- 1
4260 ** REINDEX <collation> -- 2
4261 ** REINDEX ?<database>.?<tablename> -- 3
4262 ** REINDEX ?<database>.?<indexname> -- 4
4264 ** Form 1 causes all indices in all attached databases to be rebuilt.
4265 ** Form 2 rebuilds all indices in all databases that use the named
4266 ** collating function. Forms 3 and 4 rebuild the named index or all
4267 ** indices associated with the named table.
4269 #ifndef SQLITE_OMIT_REINDEX
4270 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4271 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4272 char *z; /* Name of a table or index */
4273 const char *zDb; /* Name of the database */
4274 Table *pTab; /* A table in the database */
4275 Index *pIndex; /* An index associated with pTab */
4276 int iDb; /* The database index number */
4277 sqlite3 *db = pParse->db; /* The database connection */
4278 Token *pObjName; /* Name of the table or index to be reindexed */
4280 /* Read the database schema. If an error occurs, leave an error message
4281 ** and code in pParse and return NULL. */
4282 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4283 return;
4286 if( pName1==0 ){
4287 reindexDatabases(pParse, 0);
4288 return;
4289 }else if( NEVER(pName2==0) || pName2->z==0 ){
4290 char *zColl;
4291 assert( pName1->z );
4292 zColl = sqlite3NameFromToken(pParse->db, pName1);
4293 if( !zColl ) return;
4294 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4295 if( pColl ){
4296 reindexDatabases(pParse, zColl);
4297 sqlite3DbFree(db, zColl);
4298 return;
4300 sqlite3DbFree(db, zColl);
4302 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4303 if( iDb<0 ) return;
4304 z = sqlite3NameFromToken(db, pObjName);
4305 if( z==0 ) return;
4306 zDb = db->aDb[iDb].zDbSName;
4307 pTab = sqlite3FindTable(db, z, zDb);
4308 if( pTab ){
4309 reindexTable(pParse, pTab, 0);
4310 sqlite3DbFree(db, z);
4311 return;
4313 pIndex = sqlite3FindIndex(db, z, zDb);
4314 sqlite3DbFree(db, z);
4315 if( pIndex ){
4316 sqlite3BeginWriteOperation(pParse, 0, iDb);
4317 sqlite3RefillIndex(pParse, pIndex, -1);
4318 return;
4320 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4322 #endif
4325 ** Return a KeyInfo structure that is appropriate for the given Index.
4327 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4328 ** when it has finished using it.
4330 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4331 int i;
4332 int nCol = pIdx->nColumn;
4333 int nKey = pIdx->nKeyCol;
4334 KeyInfo *pKey;
4335 if( pParse->nErr ) return 0;
4336 if( pIdx->uniqNotNull ){
4337 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4338 }else{
4339 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4341 if( pKey ){
4342 assert( sqlite3KeyInfoIsWriteable(pKey) );
4343 for(i=0; i<nCol; i++){
4344 const char *zColl = pIdx->azColl[i];
4345 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4346 sqlite3LocateCollSeq(pParse, zColl);
4347 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4349 if( pParse->nErr ){
4350 sqlite3KeyInfoUnref(pKey);
4351 pKey = 0;
4354 return pKey;
4357 #ifndef SQLITE_OMIT_CTE
4359 ** This routine is invoked once per CTE by the parser while parsing a
4360 ** WITH clause.
4362 With *sqlite3WithAdd(
4363 Parse *pParse, /* Parsing context */
4364 With *pWith, /* Existing WITH clause, or NULL */
4365 Token *pName, /* Name of the common-table */
4366 ExprList *pArglist, /* Optional column name list for the table */
4367 Select *pQuery /* Query used to initialize the table */
4369 sqlite3 *db = pParse->db;
4370 With *pNew;
4371 char *zName;
4373 /* Check that the CTE name is unique within this WITH clause. If
4374 ** not, store an error in the Parse structure. */
4375 zName = sqlite3NameFromToken(pParse->db, pName);
4376 if( zName && pWith ){
4377 int i;
4378 for(i=0; i<pWith->nCte; i++){
4379 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4380 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4385 if( pWith ){
4386 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4387 pNew = sqlite3DbRealloc(db, pWith, nByte);
4388 }else{
4389 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4391 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4393 if( db->mallocFailed ){
4394 sqlite3ExprListDelete(db, pArglist);
4395 sqlite3SelectDelete(db, pQuery);
4396 sqlite3DbFree(db, zName);
4397 pNew = pWith;
4398 }else{
4399 pNew->a[pNew->nCte].pSelect = pQuery;
4400 pNew->a[pNew->nCte].pCols = pArglist;
4401 pNew->a[pNew->nCte].zName = zName;
4402 pNew->a[pNew->nCte].zCteErr = 0;
4403 pNew->nCte++;
4406 return pNew;
4410 ** Free the contents of the With object passed as the second argument.
4412 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4413 if( pWith ){
4414 int i;
4415 for(i=0; i<pWith->nCte; i++){
4416 struct Cte *pCte = &pWith->a[i];
4417 sqlite3ExprListDelete(db, pCte->pCols);
4418 sqlite3SelectDelete(db, pCte->pSelect);
4419 sqlite3DbFree(db, pCte->zName);
4421 sqlite3DbFree(db, pWith);
4424 #endif /* !defined(SQLITE_OMIT_CTE) */