
Abstract

The Schrodinger equation is solved by using the split step method,

1 Introduction

2 Schrodinger Equation

3 Fourier Analysis

Fourier analysis plays an important role in the field of science and engineering, it is a subject area which grew from the study of Fourier series. It is named after Joseph Fourier, who showed that representing a function by a trigonometric series greatly simplifies the study of heat propagation. Fourier analysis involves decomposing a function into simpler pieces, the process itself is called a Fourier transform. But before a function (usually a signal) decomposes into simpler functions, it has to be represented first, by using Fourier series to present any periodical function in terms of sine and cosine, which is defined as:

$$
\begin{gathered}
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \frac{2 \pi}{T} t\right)+b_{n} \sin \left(n \frac{2 \pi}{T} t\right) \\
a_{0}=\frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) d t \\
a_{n}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos n x d x \\
b_{n}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin n x d x
\end{gathered}
$$

a_{0}, a_{n} and b_{n} are called the Fourier co-efficients of f.

3.1 Derivation of the Fourier Transform

Fourier transform is a generalization of the complex Fourier series in the limit as $T \rightarrow \infty$. Using the following trigonometric identity one can simplify the sines and cosines of the Fourier series in terms of exponentials,

$$
\begin{aligned}
& \cos \left(2 \pi \omega_{f}\right)=\frac{e^{2 \pi \omega_{f} t}+e^{-2 \pi \omega_{f} t}}{2} \\
& \sin (2 \pi \omega f)=\frac{e^{2 \pi \omega f t}-e^{-2 \pi \omega_{f} t}}{2}
\end{aligned}
$$

the Fourier series becomes,

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[\left(\frac{a_{n}}{2}+\frac{b_{n}}{2 i}\right) e^{i n \omega_{f} t}+\left(\frac{a_{n}}{2}-\frac{b_{n}}{2 i}\right) e^{-i n \omega_{f} t}\right]
$$

which can be written as,

$$
f(t)=\sum_{n=1}^{\infty} C_{n} e^{2 \pi i n t}
$$

In this form the coefficients C_{n} are complex numbers. And we can solve it with a direct approach. Lets take the coefficient C_{k} for some fixed k. We can isolate it by multiplying both sides by $e^{-2 \pi i k t}$:

$$
\begin{gathered}
e^{-2 \pi i k t} f(t)=e^{-2 \pi i k t} \sum_{n=-N}^{N} C_{n} e^{-2 \pi i n t} \\
= \\
\ldots+e^{-2 \pi i k t} C_{k} e^{-2 \pi i k t}+\ldots=\ldots+C_{k}+\ldots
\end{gathered}
$$

thus

$$
\begin{aligned}
C_{k} & =e^{-2 \pi i k t} f(t)-\sum_{n=-N, n \neq k}^{N} C_{n} e^{-2 \pi i k t} e^{2 \pi i n t} \\
& =e^{-2 \pi i k t} f(t)-\sum_{n=-N, n \neq k}^{N} C_{n} e^{2 \pi i(n-k) t}
\end{aligned}
$$

The coefficient C_{k} is pulled out, but the expression on the right involves all the other unknown coefficients. Another idea is needed, and that idea is integrating both sides from 0 to 1 . Just as in calculus, we can evaluate the integral of a complex exponential by:

$$
\begin{aligned}
& \int_{0}^{1} e^{2 \pi i(n-k)} d t=\left.\frac{1}{2 \pi i(n-k)} e^{2 \pi i(n-k)}\right|_{t=0} ^{t=1} \\
= & \frac{1}{2 \pi i(n-k)}\left(e^{2 \pi i(n-k)}-e^{0}\right)=\frac{1}{2 \pi i(n-k)}(1-1)
\end{aligned}
$$

Note that $n \neq k$ is needed here. Since the integral of the sum is the sum of the integrals, and the coefficients C_{n} come out of each integral, all of the terms in the sum integrate to zero and we have a formula for the k -th coefficient:

$$
C_{k}=\int_{0}^{1} e^{-2 \pi i k t} f(t) d t
$$

3.2 Convolution

3.3 Discrete Fourier Transform
3.4 Fast Fourier Transform

4 Method
5 Results
6 Summary

